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ABSTRACT

The objective of this report is to provide:

1. An analysis of the experimental results obtained from a 3 m flexible riser
model with its top end oscillated harmonically with an amplitude of two diameters

orthogonal to a uniform stream which is constant with depth and of speed equal to

240 mm/s.

9. A comparison of the experimental results from the flexible model with

theoretical predictions of the response based on rigid cylinder experimental results.
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1. A DESCRIPTION OF THE RISER
MODEL

Preliminary data describing the riser model can be found in Chryssostomidis and
Patrikalakis (1982) and MITSG Report 83-2, and more refined estimates in
Patrikalakis (1983). A description of the model based on the information given in

Patrikalakis (1983) is included here for the reader’s convenience.

The model is made up of an aluminum tube covered externally with 2 sealing

material. The overall model characteristics are:

- Length between ball joints (L) = 3.000m

- Aluminum tube LD. (D;,) = 10.92 mm |

- Aluminum tube O.D. (D)) = 12.61 mm

- External sealing diameter (D,) = 15.3 mm

- Average mass per unit length (M) = 0.327 kg/m

- Average effective weight per unit length (We)= 1.378 N/m
- Effective overpull at the lower ball joint (Pe(0)) = 172 N

- Bending stiffness of a cross section (EI} = 37.6 Nm?

The inside of an aluminum tube is filled with a glycerin solution in water of
density approximately equal to 900 kg/m>. At the ends of the model there are
ball joints which minimize the end bending moments. Above the upper ball joint
there is a slip joint, which is designed to minimize tension variations due to
flexural motions. The riser model is also designed so it can be tensioned to the
desired tension. The first two ”natural frequencies” of the model in water are
approximately equal to 1.57 and 6.06 Hz, respectively. These have been determined

theoretically using ¢ =1 and have been verified from a decay test in quiescent



water, where the initial amplitude of the res].)onse was of the order of 1/10 of the

effective diameter.

The model is instrumented at ten equidistant locations, 10, each with two strain
gage full bridges installed on the outer surface of the aluminum tube, designed to
isolate bending from tension and to measure bending strains on two orthogonal
directions A and B.In the vertical static equilibrium condition, planes A and B are
parallel and orthogonal to the centerline of the towing tank, respectively. The
actual location of each branch of the bending bridges is at approximately 9.80
degrees from planes A and B. The numbering of the bridges begins at the upper
end, while their elevation is measured from the axis of the lower ball joint. The
first and last bending bridges are L/Il from the axes of the top and bottom ball
joints, respectively, and the separation between bending bridges is L/ll.  For
example, bridge A6 measures bending strains created by deflections in plane A at
elevation Z==5L/Il from the axis of the lower ball joint. In addition, the model is
instrumented at two exira positions Tl and T2, 10l mm from the axes of each ball
joint, with specially designed full bridges isolating tension from bending. Tension
bridge T2 is at the lower end of the model. Finally, the model is instrumented at
an additional location, Q1, 1773 mm from the upper ball joint, with a full torsion
bridge. The mass per unit length of a single wire is 0.198 grams/m, while the
total mass of all wires for all 23 full bridges is approximately 2.73% of the total
model mass. Their total volume is approximately equal to 5.32 em®.  _The four

wires of each bridge are braided to avoid interference and are sent internally to

the lower end of the model.

The oscillation of the top end of the model is created by a DC motor driven by
a signal generator and controlled by a tachometer measuring angular velocities and
a linear variable differential transducer, LVDT, measuring displacements. The
rotational motion of the motor is converted to linear motion via a specially

designed rack anti-backlash pinion system. During the experiments, measurements



from a number of strain bridges and the LVDT were made simultaneously and
were recorded digitally. Using the torque bridge, it was observed that the structural
torsion was negligible, see Chapter III of Patrikalakis (1983). It was estimated
analytically, and also confirmed by the tension bridge measurements, that the
tension variation during the experiments was small, approximately 5% of the
effective tension. Therefore, even for the lowest excited mode, the ratio of the
change of restoring force due to temsion variation to the overall restoring force is
very small (0.39%). This implies that the assumption of constant effective tension

with time is an acceptable approximation for theoretical estimates of the response.

From calibration experiments in air, it was estimated that the structural
damping ratio ¢ was approximately equal to 0.016 and 0.010 for the first and
second flexural modes, respectively. Therefore, typical fluid drag forces are much
larger than our estimates of the structural damping forces. Our experiments in air
also revealed that when the upper end of the model was oscillated in air in a
certain plane, some flexural response orthogonal to this plane existed.  This
happens because our model was mot rotationally uniform. It was estimated that
the flexural response orthogonal to the direction of excitation was not larger than
approximately 12% of the response in the plane of applied oscillation. It was felt

that such an imperfection would not substantially affect the experimental results in

water,



2. PRESENTATION OF EXPERIMENTAL
AND THEORETICAL RESULTS

The experiments presented in this report involve harmonic excitation of the top
end of the riser model orthogonal to plane A at an amplitude approximately equal
to two effective diameters and orthogonal to a uniform stream which is constant
with depth and of speed V_ equal to 120 mm/s for the conditions shown in Table
2-1. Bending strains in plane A at Z=3L/ll, 5L/l and 8L/Il, and in plane B at
Z==3L/1l, 5L/, 6L/l and 8L/l were recorded. The Reynolds number and water
temperature for all experiments analyzed in this report are 1568 and 14.1 degrees
C, respectively. Reynolds number is defined by Re = VD /v where v is the
kinematic viscosity _of fresh water. A partial preliminary analysis of the

experithents presented in this report has been given earlier in Chryssostomidis and

Patrikalakis (1982).

The experimental and theoretical results reported here include plots of:

1. The root mean square of the measured motion of the top end as a
function of frequency.

2. The root mean square measured dynamic bending strains as a function
of the response frequency and the measured static bending strains.

3. The measured and theoretical predictions of the bending strains paraliel
and orthogonal to the oscillation of the top end.

4. The measured maximum bending strains paralle] and orthogonal to the
oscillation of the top end and independent of direction.

5. Indicative partial synchronous time traces of the motion of the top end
and measured bending strains from three bridges.

The root mean square responses have been calculated using standard FFT codes
from the International Mathematical and Statistical Library (IMSL) on an IBM

370/168 computer. The root mean square respomse is the square root of the
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Table 2-1: Description of experiments and information for the
theoretical prediction of the response in planes A and B.

Experiment Number 51 60 70 81 88
Frequency of Excitation 0.5 0.775 1.5 1.95 2.925
fo in Hz - B ) - :
Measured A/Dg 1.90 1.90 1.91 1.92 1.94
Reduced Velocity U¥* 31.37 20.24 10.46 B.04 5.36
Reduced Frequency R 100 155 300 390 585
Measurement Record
Length in Seconds 51.15 51.15 34.1 34.1 34.1
Added Mass Coefficient &
Used in Theoretical -0.28 ~0.27 -0.26 -0.25 0.50
Prediction '
Drag Coefficient ;d Used
in Theoretical Prediction 1.03 1.02 1.01 1.00 0.38
Maximum Calculated Dynamic
Displacement Ratio y/Dg 1.90 1.90 2.10 2.10 1.94
Mean Calculated Dynamic

. .02 d . . .
Displacement Ratio y/D 1.0 1.11 1.60 1.57 0.84
Average Drag. Coefficient ED
Used in Theoretical 1.13 1.18 1.52 1.78 1.85

Prediction
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product of the power spectral density of the response times the effective bandwidth
B, employed in the Fourier analysis of the results. The root mean square rather
than the magnitude of the power spectral demsity was selected for presentation
because, in most cases, the experimental response was practically periodic. The
logarithmic representation of the power spectral density was not selected because it
tends to visually exaggerate the significance of smaller components, which are not
important in this problem. For each major peak of the root mean square plots,
the root mean square value of the response is shown. This is computed as the
square root of the sum of the squares of the rms response strains at discrete
frequencies, B, Hz apart, in the neighborhood of each peak. In addition, the
overall dynamic root mean square value of the response is shown together with the
static bending strain response. The Fourier and maxima calculations were

performed using the record length shown in Table 2-1.
The nomenclature used in the Figures and Table 2-1 is defined below:

The experiment number corresponds to the numbering system employed during
the performance of the experiments. BE is the effective bandwidth B, employed in
the Fourier analysis in Hz. THETA is the angle of oscillation of the top end with
respect to the longer side of the towing tank in degrees. VC is the current speed
V. in mm/s. FE is the nominal frequency of excitation f, of the top end i Haz.
A/DE is the ratio of the measured amplitude A of the excitation of the top end
divided by the effective diameter D, U* is the reduced velocity defined by
U*=V _/f.D, and 3 is the frequency parameter defined by ﬂ:feDE/u.

The Figures of the root mean square motion of the top end are referred to by
the experiment number and the letters LVDT. The Figures of root mean square
measured bending strains are referred to by the experiment identification number
and the bridge name. The Figures showing the measured and theoretical

predictions and maxima are referred to by the experiment identification number



12

and the plane name. Figures showing the time traces are referred to by the

experiment identification number and the letter T (trace).

Table 2-1 includes information about the theoretical prediction of the response at
f=f in plane B and the static resbonse in plane A. These predictions have been
performed as described in Section IV.4.3 and Appendix B, and Section V.4.3 of
Patrikalakis (1983), respectively. The rigid cylinder derived hydrodynamic coefficients
¢4, ¢ and ¢ employed in the determination of ¢y ¢ and ¢ of Table 2-1 are
shown in Figures A-1, A-2 and A-3, taken from Mercier (1973). The Reynolds
number in Mercier's experiments was, for the most part, equal to 8000. The
amplitude to diameter ratio of the imposed motion was less than 1.3 for c, and ¢
and less than 15 for ¢ In the computation of Ed' ¢, and ¢, no Reynolds
number correction was included and linear extrapolation was used for amplitude to

diameter ratios outside the domain of existing data.

The lift response frequency due to vortex shedding, f, for a spring mounted
rigid cylinder is shown in Figure A-4. When the frequency of oscillation of the top
end, f,, is sufficiently smaller than f then the response in plane B is primarily at
f, and f. On the other hand, when the frequency of oscillation of the top end is
close to f then the response in plane B is primarily at f, and is nearly
monochromatic. In addition, in all cases of excitation some response in plane B is
also present at very low frequencies. This is associated with slow variation of the

spanwise cotrelation of the lift force, see Mercier (1973).

A summary of the results for the response in plane B is shown in Figures 51B,
60B, 70B, 81B and 88B. These include the theoretical and measured dynamic
response strain at f_ and the maximum measured dynamic response strain in plane
B. Our present theoretical estimate of the maximum response in plane B is the
same as our estimate of the dynamic response at { in plane B. This is expected to

give realistic results for the maximum in plane B when the response orthogonal to
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the current is practically monochromatic. = When the frequency of imposed
oscillation is much lower than the first "natural frequency” of the cylinder and the
lift response frequency due to vortex shedding, f, the procedure suggested in
Section IV.4.3 of Patrikalakis (1983), may be employed to estimate the response at
f,. This procedure does not supply any phase information between the response at
f, and the lift response at f. In addition, it assumes that there are no appreciable

interactions between force components at f and f.

The dynamic response in plane A is significant when compared to the dynamic
response in plane B. When the lift response frequency due to vortex shedding, f, is
not synchronized with the frequency of oscillation, dynamic response in plane A
occurs at f, f and f = f,. When the lift response frequency due to vortex
shedding, f,, is synchronized with the frequency of oscillation, dynamic respomse in
plane A occurs at nf, where n is a small integer, and is magnified when nf, is
close to a “natural frequency” of the model. Some low frequency response in plane
A is also encountered and as before it is associated with slow variation of the

spanwise correlation of the dynamic force parallel to the current, see Mercier

(1973).

A summary of the results for the response in plane A is shown in Figures 51A,
60A, 70A, 81A and 88A. These include the theoretical and measured static
response strain; the maximum measured dynamic response strain; the maximum
dynamic response strain independent of plane; and our present theoretical estimate
of the maximum response strain independent of plane. The latter is computed as

the square root of the sum of the squares of the static strain and of the maximum

dynamic response strain in plane B.
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Figure A-1: Rigid Cylinder Results
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Length/pA0w2x+1 as a Function of U* Parametrically with Respect to
the Non-Dimensional Harmonic Oscillation Amplitude, x/D, Orthogonal

to a Current, Mercier (1973).

Nomenclature:

p : Density of the fluid
— 2
A = aD%/4
D : Cylinder Diameter
w : Circular Frequeney of Oscillation

x : Amplitude of Oscillation
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Figure A-2: Rigid Cylinder Results
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Figure A-3: Rigid Cylinder Results
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Figure A-4: Spring Mounted Rigid Cylinder Results
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Plots of the Vortex Shedding Frequency, f,, the Response Frequency f, and the
Non-Dimensional Response Half Amplitude, Y/D, for a Smooth Spring Mounted
Rigid Cylinder Oscillating Orthogonally to a Uniform Water Stream. Taken from
Patrikalakis (1983) with data derived from Dean et al (1977). Model
characteristics: f =2.15 Hz, D=25.4 mm, m=293, A~~13, §=0.147, K =0.91,
Re~~2680 to 10370.
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Nomenclature for Figure A-4:

Ul = V /D

1 = (K/M)?2x
= Spring constant
=M+ M

K
M
M = Mass of spring mounted cylinder
M

a = Al
m = M/A oL
A=L/D

L. = Cylinder length

K, = 26M,/pD’L

§ = me/(KM)!/?

¢ = Dashpot coefficient

ggmax gpmin . opvelopes of Strouhal number
for a fixed rigid cylinder in a uniform stream,

derived from Figure 2 of Chapter IV of Patrikalakis (1983).






