
Autonomous Surface Vehicle Senior Research Project

University of New Hampshire

TECH 797 Undergraduate Ocean Research Projects 2015-2016

May 4, 2016

Team Members

Ryan Bachman – Mechanical Engineering

Liam Collins – Mechanical Engineering

Aaron Connolly – Mechanical Engineering

Isaac Gagnon – Computer Science

Tim Panella – Mechanical Engineering

John Perrella – Mechanical Engineering

Hunter Rowley – Mechanical Engineering

Project Advisors

Dr. May-Win Thein

Andrew D’Amore

Damian Manda

2

TECH 797 Acknowledgment

 This work is the result of research sponsored in part by the New Hampshire Sea Grant

College Program through NOAA grant #NA10OAR4170082, and the UNH Marine Program.

3

Table of Figures

Figure 1: Original Plan for friction drive steering system (Simpson) .. 6

Figure 2: SolidWorks model of semicircle for friction drive steering system 6

Figure 3: SolidWorks model of drive wheel for friction drive steering system 7

Figure 4: SolidWorks simulation showing von Mises stress under the influence of point loading

(purple arrow) ... 8

Figure 5: SolidWorks simulation showing bending normal stress in z direction under the

influence of point loading (purple arrow). ... 8

Figure 6: Assembled steering system being tested on ASV in UNH Chase Ocean Engineering

Laboratory pool ... 9

Figure 7: Proposed revised steering system using a gear drive ... 10

Figure 8: Two-part gear on trolling motor shaft, used for the revised drive system 11

Figure 9: Revised steering system design. Left: Motor disengaged and stored. Right: Motor

engaged. .. 11

Figure 10: Originally proposed encoder mount with hollow shaft encoder. 12

Figure 11: Koyo TRD-NA series encoder ... 13

Figure 12: 3D printed ring used to hold and mount encoder. .. 13

Figure 13: CEE Pulse 100 standard 200 kHz transducer (User’s Manual for CEEPulse 100). 14

Figure 14: CEE Pulse 100 control and power pack (User’s Manual for CEEPulse 100) 15

Figure 15 CEE Hydrosystems sonar mounting bracket. Right: Cut away view 16

Figure 16 Sonar system with mount in storage position. ... 16

Figure 17 Sonar depth readings performed at Swain’s Lake. Courtesy of Damian Manda. 17

Figure 18: Finished ASV3 with Sensor Mast ... 19

Figure 19: Wiring Diagram .. 21

Figure 20: MOOSDB Sensor Graphic ... 23

Figure 21: LiDAR GUI ... 28

file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132897
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132898
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132899
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132899
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132900
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132900
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132901
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132901
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132902
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132903
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132905
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132906
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132907
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132908
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132909
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132910
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132911
file:///E:/School/SENIOR/ASV/UPDATED%20tech%20797%20final%20paper.docx%23_Toc450132912

4

Introduction

 Autonomous surface vessels (ASVs) can be simply defined as self-driving boats; vessels

that can function independently of human control and make decisions on their own to

accomplish specific missions. The goal of the UNH ASV team is to develop a control module that

is low cost, robust, and modular. This module must be purchasable as a component off the shelf

and be able to be installed on any existing vessel allowing that vessel to obtain autonomous

capabilities. For the UNH ASV team, basic autonomy can be defined in three stages: point-to-

point navigation, obstacle avoidance (adaptively changing path to avoid collisions), and target

recognition, tracking and trailing. In order for a boat to have basic autonomy it must satisfy all

three of the stages. Long term, the UNH ASV team is concerned with building a fleet of ASVs

and having them all communicating with one another, as well as with robots beneath and

above the water’s surface (UUVs and UAVs).

This technology is important because the autonomous maritime robotics industry is

rapidly growing and is projected to be worth billions of dollars globally in the next few years.

ASVs alone are a multi-million dollar and rapidly growing part of that market. By removing the

human element from maritime operations, ASVs have unlimited potential for growth and

applications. They serve to reduce cost, improve efficiency, and remove human lives from

danger in a plethora of applications. A few example applications include ocean mapping, swarm

defense for the military, oil pipeline monitoring, aquatic research, search and rescue, and

commercial shipping.

This year is the third iteration of the ASV project at UNH. The previous two years helped

to pave the way for the success of the team this year. ASV1 was custom built by the first year’s

team, but many problems arose which hindered their ability to develop a working vessel.

Although ASV1 was never operational, the first team accomplished much on the autonomy

coding and immeasurably helped the success of ASV3. The second year’s team went a different

route and purchased a 4-foot remote control (RC) boat. Like ASV1, ASV2 was not autonomous

by the end of the year, however they left a solid platform to build on. During the summer of

2015 members of this year’s ASV team worked on ASV2 and achieved basic first stage

autonomous functions (waypoint navigation). This was a successful proof of concept and

helpful launching pad for the entire ASV team in the ‘15-’16 academic year.

This year’s team decided to follow the same route as the previous year’s team and

purchase a boat. However, instead of a small RC boat, this year’s team purchased a 7-foot bass

fishing boat. Drawing from the experiences of the previous two teams, a larger boat was

deemed necessary in order to accommodate all the necessary sensors as well as increase the

functionality and ease of working on the vessel. In order to achieve autonomy on a vessel of

this size, a custom steering system was constructed that enabled remote and autonomous

interfacing and control of the vessel’s trolling motor. This year’s team achieved first stage

5

autonomy on ASV3 and tested the mapping capabilities of a sonar device with the vessel. They

also worked to improve its mission duration by experimenting with solar charging solutions

during test operations, and to advance the UNH ASV program into second and third stages of

autonomy. The team this year also focused on developing multi-vehicle communication and

coordination between multiple ASVs and between ASV3 and the UNH remotely operated

vehicle (ROV) team. Lastly, the team this year focused on refining the autonomy package on

ASV3 to meet the robust, low cost, and modular design conditions.

Physical Platform

Because ASV3 was the vessel developed by this year’s team, it will remain the main

focus of this report. Minor discussion of work done on ASV2 will follow later as a supplement to

the work done on ASV3.

Steering System

A. Physical Platform and Mechanism

 Keeping with the spirit of a low-cost open-source ASV, a simple steering system was

needed that could reuse as many original motor components as possible. As such, a

commercial self-steering motor (such as a Minn Kota Riptide), was out of the question. The first

ideas (include scans of the earliest drawings we still have) paid homage to the steering systems

of commercial inboard motors.

Hydraulic pistons, cable pulleys, and gearing mechanisms were considered, before being

dismissed as overly complex, heavy, and expensive. The small amount of power needed to turn

the 30 lb. thrust trolling motor did not justify the high mechanical advantage of such a system.

 Our first manufactured system was a modification of online plans (Simpson) (Figure 1).

6

Figure 1: Original Plan for friction drive steering system (Simpson)

This system uses a high-torque, low speed 12-volt automotive window motor to operate

a friction drive system. Due to relative difficulty in making accurate curved wood cuts, as well

as concerns regarding humidity swelling, it was decided to use the UNH mechanical engineering

department’s stereolithographic 3D printer. The dimensions of the semicircular arc were

slightly modified (Figure 2), while the drive wheel underwent a more radical redesign (Figure 3).

Figure 2: SolidWorks model of semicircle for friction drive steering system

7

The center was hollowed out and replaced with spokes to lighten weight and reduce

printing time. Along the circumference, a V-groove was formed to accept a serpentine V-belt to

act as the means of providing friction contact with the semi-circle. Along the shaft, a spline

matching that of the window motor was selected to allow for a tight fit. In SolidWorks, a simple

stress analysis was performed to ensure the drive wheel and semicircle could withstand a point

loading far in excess of the trolling motor weight. Figure 6 demonstrates that the semicircle did

not fail due to excessive von Mises (resultant) stress. Shear and bending stress calculations

were also made in all dimensions. Particular attention was paid toward bending normal stress

in the z direction at the junction between the curved and rectangular portions of the part. It

was felt that the risk of failure was greatest at this location and in the z dimension (Figure 4).

Figure 3: SolidWorks model of drive wheel for friction drive steering system

8

Figu

Figure 4: SolidWorks simulation showing von Mises stress under the influence of point loading (purple arrow)

Figure 5: SolidWorks simulation showing bending normal stress in z direction under the influence of point loading
(purple arrow).

9

A crude plywood mount was fashioned and screwed directly into the boat hull. This

mount held the window motor and drive wheel (Figure 6).

 In practice, the system had several major shortcomings. Obtaining a drive belt of

correct dimensions and significant tack was difficult. We opted for a wide belt to provide ample

contact area. However, belts of such dimensions are rarely small in terms of length, which

would have required the ordering of a custom made-belt. In the interim, a sheet of pliable

rubber was cut and taped around the wheel. This proved unreliable, with the rubber often

coming off during operation. Furthermore, when the rubber stayed on, the coefficient of

friction was often not sufficient to prevent slippage between the drive wheel and the arc. The

rubber-coated pipe clamps used to hold the arc to the trolling motor were difficult to attach

and could slip after continuous operation. Several holes had to be modified after printing due

to mistakes in measurement. The plastic of the hollow boat hull did not provide sufficient

anchoring capability, leading to excessive vibration of the plywood mount. Finally, if one was

not careful in remotely steering the boat, it was possible to completely push the arc off of the

drive wheel, leading to a loss of control.

 It was soon decided that the problems of the friction drive system outweighed the

benefits of light weight, simple construction and low cost. However, the concept of using a 3D

printed system on the trolling motor was judged to be sound, and development continued

along this track. As opposed to friction, the revised system was to use a toothed gear

mechanism. Considerations were made to use spur, bevel, and miter gears. The unique

Figure 6: Assembled steering system being tested on ASV in UNH Chase Ocean Engineering Laboratory pool

10

challenges of our system precluded the purchase of commercially available gears. To install a

gear on the trolling motor would have involved disassembly of the switching mechanism at the

head of the motor, as well as possible drilling into the shaft to install a set-screw. Furthermore,

this would have necessitated the re-routing of the trolling motor’s wires. There was

considerable difficulty in finding commercial gears with the large inner diameter to fit the

trolling motor shaft, but without an excessively large outer diameter. On the drive wheel, a

standard gear would have only relied on a setscrew to hold it to the spline of the window motor

shaft, creating excessive play. Lastly, the high strength of metal gears was not needed, nor

could it justify the high cost.

 Originally, the drive gear was modified to include equation driven involute teeth, using

the procedure given by Cao. Additionally, the semi-circular arc was given teeth to mimic a spur

gear. As opposed to the perpendicular axes of the drive wheel and trolling motor originally

used, the new system was to use parallel axes (Figure 7).

However, this still did not eliminate the possibility of the drive wheel separating from

the arc. It was decided that the new system had to be physically incapable of separating, no

matter what angle the motor was turned to. To this end, two spur gears were formed with a

diameter similar to that of the original friction drive wheel. The splines and spokes of the

original drive wheel were retained, and a small shaft bore was added to the top of the drive

gear for the provision of a positional encoder to allow precise steering. The gear to be installed

on the trolling motor was made in two parts to allow easy installation and removal (Figure 8).

Figure 7: Proposed revised steering system using a gear drive

11

 Another difficulty that needed to be addressed was mounting the drive system to the

boat. It was decided that screwing directly into the boat was not acceptable, due to the

inability to secure fasteners from the other side of the hull, as well as the lack of flexibility that

this gave in using the steering system on another boat. The final mount design takes advantage

of the vise-like grip of the trolling motor mount. Brackets and wood are used to hold the

window motor as well as the encoder above. This “shelf” design (Figure 9) allows easy access

to components, and allows easy movement and stowing of the trolling motor.

Figure 9: Revised steering system design. Left: Motor disengaged and stored. Right: Motor engaged.

Figure 8: Two-part gear on trolling motor shaft, used for the revised drive system

12

 Finally, a precise encoder was needed to accurately find the rudder position. It was

quickly determined that the new encoder should be absolute, rather than incremental. Such an

encoder does not require counting the number of pulses to determine position. Likewise, the

encoder can immediately read the rudder position on startup, whereas an incremental encoder

would have to be reset to the zero position. Additionally, the encoder should have an interface

that is easy to connect and read with an Arduino, and that the physical construction of the

encoder should be rugged enough to withstand light pressure, shocking, and water. A

comparison of encoder communication interface busses such as CAN bus, BiSS, serial-

synchronous interface (SSI), and a straight binary interface. In terms of cost and ease of

programming, a binary interface using Grey code was selected.

On the advice of one of our professors, it was recommended that the encoder be sized
and positioned to directly measure the motion of the trolling motor. This necessitated an
encoder with a large hollow shaft and a means to mount the stationary portion of the encoder.
One such mounting scheme is shown in Figure 10. The mounting bracket of the trolling motor
is used to secure the white mounting plate that holds the outer ring of the encoder stationary.
Normally, this portion of the mount holds the thumbscrew used to adjust and hold the
rotational position of the trolling motor. Use of a longer thumbscrew as well as other
supporting screws was proposed.

Unfortunately, this this was quickly realized to be impractical. The encoder had to be

large enough to accommodate the large shaft of the trolling motor, while being thin enough

and having a small enough outer diameter to fit into the confined space at the back of the boat.

Likewise, quotes obtained from various vendors showed that such an encoder would be

hundreds of dollars.

From this point, it was decided to use a small, solid shaft absolute encoder. An Ebay

search led to the purchase of a Koyo TRD-NA series absolute rotary encoder from a buyer in

China for a cost of approximately $40 (Figure 11).

Figure 10: Originally proposed encoder mount with hollow shaft encoder.

13

This encoder featured a 10-bit resolution Grey code output through a simple interface of 12

binary pins. The shaft of the encoder was inserted into a slot bore on the top of the drive gear.

A 3D printed plate was custom made to hold the encoder stationary to the wooden “shelf”

(Figure 12).

B. Software Control

 The window motor requires a 12 volt input and draws a few amps. An Arduino is only

capable of a 5-volt output with a small amount of current. As such, the steering motor uses the

same H-bridge to step the voltage up and handle the higher current. When the boat is

operating in RC mode, the user turns and holds the steering wheel, turning the rudder. After

the entire boat is pointed in the desired direction, the user releases the wheel and the rudder

automatically returns to the zero position. One of the issues involving the active feedback

control of the encoder involves error correction. Many electro-mechanical systems experience

overshoot. Electric signals respond far faster than an inertial mass. After the current to the

motor is turned off, the rotor will continue to rotate due to inertia. In a feedback loop, the

Figure 11: Koyo TRD-NA series encoder

Figure 12: 3D printed ring used to hold and mount encoder.

14

controller will actively fight this discrepancy between actual and desired position. This can lead

to oscillation as the controller “hunts” for the desired position.

Citations for steering section:

Cao, Yang. “Modeling an Equation Driven Involute Spur Gear in Solidworks.” Online video clip.

Youtube, 23 Feb 2014. Web. 7 Feb 2015.

Simpson, Ken. “Remote Electric Steering for Trolling Motors.” Duckworks Boatbuilder’s Supply.

N.p, 1 November 2010. Web. 21 October 2015.

Sonar System

 One of the proposed applications for the UNH ASV is as an inexpensive, lightweight, and

unmanned sonar mapping system. A simple depth finding sonar allows for both mapping and

collision avoidance with submerged hazards. One of our graduate advisors, Damian Manda,

graciously let us borrow his CEE Hydrosystems CEE Pulse 100 sonar set. This device is an active

sonar; it can send out and receive pings. The set is capable of measuring depths from .3 to 100

Figure 13: CEE Pulse 100 standard 200 kHz transducer (User’s Manual for CEEPulse 100).

15

meters. The transducer (Figure 13) is connected to the main controller and power pack (Figure

14). Data is transmitted through a serial port (through Bluetooth communication is possible).

 As outlined in [1], simple submerged pipe was employed to mount the sonar on the

boat. An extra Minn Kota trolling motor mount, identical to the model used to hold the ASV’s

trolling motor, was graciously loaned by Professor Foster. This mount allowed for a lightweight

yet strong means to mount the sonar transducer to the front of the boat. A proprietary metal

mounting device was obtained from the sonar manufacturer (Figure 15).

Figure 14: CEE Pulse 100 control and power pack (User’s Manual for CEEPulse 100)

16

This device is designed to connect to a 2-inch diameter pipe. However, the Minn Kota

mount can only handle a pipe of 1.25-inch diameter. Two plastic pipes of these disparate

diameters were bolted together. Additionally, a slot cut was made through the 2-inch pipe to

allow easy placement of the transducer cable. The mounted sonar is shown in its storage

position in Figure 16.

Figure 15 CEE Hydrosystems sonar mounting bracket. Right: Cut away view

Figure 16 Sonar system with mount in storage position.

17

A test of this sonar system was conducted at Swain’s Lake near Durham. The ASV was

placed into autonomy mode, where it made several loops at low speed. During this time, the

sonar took depth measurements and the data was logged. Computer code used by our

graduate advisor, Damian Manda, was used to plot these depth readings at their exact location

in space. A color coded system was used to show the depth reading in meters. These results

can be seen in Figure 17.

Citations: [1]: User’s Manual for CEEPulse 100, Version 1.0.5. Sydney, Australia: CEE

Hydrosystems, n.d. Web.

[2]: “200 kHz 8 Degree Transducer Section.” Photograph. CEE Hydrosystems, n.d. Web. 29

April 2016.

“200 kHz 8 Degree Transducer Mount.” Photograph. CEE Hydrosystems, n.d. Web. 29 April

2016.

Sensor Mast

The mast on the ASV vessel is meant to hold the sensors which give feedback to the

autonomous system. By placing the sensors elevated above the vessel, the sensors have

unobstructed vision around the boat and can effectively transmit data. The original ASV mast

was a set of PVC pipes that were adhered into the existing cup holders on the vessel with a bar

of 80/20 aluminum reaching across the bow of the boat and connecting to the pipes. The

Figure 17 Sonar depth readings performed at Swain’s Lake. Courtesy of Damian Manda.

18

horizontal bar would hold the sensors and provide sufficient space for all the desired

equipment and any more space for future sensors. With the mast securely fastened there were

very little wind oscillations during testing, however, the adhesive used to secure the pipes had

cracked when the ASV was brought back to the Chase building. This was an indication that the

adhesive would not suffice as a long term means of securing the mast. Other options were

explored in securing the mast to the vessel, with the goal to use what parts were available.

Two seats were provided with the boat and they were secured by aluminum frames that

slid into slots along the center of the boat. The seats were held to the aluminum frames with J-

bolts; these bolts could be used to secure a platform to the aluminum frame which would then

be secured to the boat. The same pipe mast could then be secured to the new platform in a

way that prevented permanent fixtures to the boat and would utilize existing materials. The

drawbacks of this installment were the previous mast assembly was attached to cup holders

that were positioned on the gunwales of the boat and had a more elevated position; with the

new assembly the mast would have to sit on the deck for stability which would lower the

position of the mast. As an alternative, the mast could be raised higher on the aluminum frame

platform, at the cost of weaker construction and lowered resistance to wind oscillations.

During the production of the mast, some 80/20 fixtures became available and were then

used in producing the mast. The 80/20 is an aluminum bar that have slots on each face and

along the length that provide easier and sturdier assembly of a structure. With two bars of

equal length and a third that would span the beam of the boat, brackets were used to secure

the pieces together that can be dismantled for ease of transportation. To secure this fixture to

the boat, holes were drilled into the boat such that brackets could attach the new mast to the

boat. The holes were drilled near the center of the length of the vessel which provided a better

clearance for the sensors over the boats hardware. Using toggle bolts, the 80/20 mast was

secured to the gunwales of the boat where it has a flat stable position. Given the size and

rigidity of the brackets, the new mast is stable considering it is heavier than the previous PVC

mast.

The toggle bolts also provide a secure hold between the brackets and the vessel where

the inside of the vessel is covered in foam to provide the vessel with some buoyancy if it were

to take on water. The area of a regular bolt would not be sufficient in holding the foam

material; the foam easily compresses under a compressive load, resulting in a weak connection.

The toggle bolts have a much larger contact surface area, distributing the load more evenly.

Near the same position of the mast are portholes on both sides of the boat that provided some

access to the inside, allowing for the bolts to be securely tightened. With the new mast in

place, the sensors can easily be attached and are given a stable platform for collecting data.

19

Figure 18: Finished ASV3 with Sensor Mast

ASV - ROV Communications

 Work has begun on establishing basic communication between the ASVs and the ROV.

Our plan is to have the ROV flash a light underwater while the ASV has a GoPro camera looking

underwater and attempting to recognize the light. If the GoPro successfully identifies the light,

the ASV will flash a light on top of its mast that mirrors the flashing of the ROV’s light, therefore

proving that basic communication has been achieved. In order for the GoPro to recognize the

light and flash the ASV’s light, the programs OpenCV and Matlab are being used in conjunction.

OpenCV is useful for object identification and in this case the object would be a flashing light.

Once the program successfully identities the light it will transmit data to Matlab which will in

turn send a command to flash the light on top of the ASV. If everything works correctly we can

begin to experiment with different intensities or colors of light and possibly transmit data in the

form of Morse code.

Solar Panel

 In order to charge the battery on longer voyages a trickle charge solar panel was

purchased. Because it is just a trickle charger it does not provide enough power to keep the

batteries running 24/7, instead it lengthens the battery life by an hour or two. Mainly the solar

panel was purchased to test the idea of keeping the battery charged for longer voyages.

Eventually a code can be programmed that tells the ASV to hold position for a certain amount

of time when the battery is low so the solar panel can work to recharge the battery efficiently.

Future years may look into this concept further and purchase larger and more powerful solar

panels that could provide a large part of the boat’s required power.

20

Wiring Diagram

Signal Flow Chart

RC Transmitter

H-Bridge Controller

Trolling Motor

RC Receiver

Arduino

Handheld RC transmitter sends signal based on user input.

Signal is used to send information about desired throttle speed

and direction.

Receiver interprets signal as a PWM signal with a pulse length

from 1000 to 2000 microseconds. Receiver is wired to an input

pin on the Arduino.

Arduino reads signal through interrupt routines. Translates

signal length to numerical value. Uses numerical value to

determine proper action and sends signal to H-bridge DC motor

controller.

H-bridge controls motor by directing power from battery to

positive or negative leads of motor. 5-volt signal from Arduino

is sufficient to control MOSFET transistors directing up to 30

amps of current.

Brushed DC trolling motor able to run in two directions and

responds to PWM input.

21

Figure 19: Wiring Diagram

22

Clockwise, from top left:

Encoder:

A 10-bit absolute encoder was chosen to provide position feedback to the control code. The

encoder is mounted to the window motor and operates on the assumption of no slip between

the gear attached to the window motor and the gear attached to the shaft of the trolling

motor.

Arduino # 2:

The second of the two Arduinos is responsible for reading the input from the absolute encoder

and translating the 10-bits being read into a usable integer value. This value is shared with

Arduino # 1, where is used to calculate the error signal in the control code.

Arduino # 1:

The first of the two Arduinos is the hub of all activity on the ASV. In addition to communicating

with Arduino # 2, Arduino # 1 controls the relay, receives RC input, and sends PWM signals to

each of the h-bridge motor drivers.

Relay:

The relay acts as a toggle between RC and Autonomous modes. Depending on if the switch is

open or not, pin nine can be at 5V or pulled to ground. This pin is read in the main code as an

interrupt.

RC receiver:

When in RC mode this receiver sends a PWM signal to input pins on the Arduino, this input is

translated into a direction and voltage and sent to the h-bridges.

H-bridge motor drivers:

Use of h-bridges allows a low power signal from the Arduino to control the high current flow

between the marine batteries and the electric motors aboard the ASV.

Software

 The software behind the UNH ASV team’s autonomy can be broken down into three

main components of discussion. First is the autonomy software itself, which allows for the boat

to make sense of all it’s different sensor values and make decisions using those values. Second

is the boat control code, which allows the boat to take commands from the autonomy system

and actually translate those commands into physical rudder and throttle behaviors, as well as

allows the boat to have autonomous and remote control modes. Thirdly is the sensor suite

itself, which involves all of the ins and outs of the different sensor hardware, the roles they play

in the bigger picture of autonomy, and the formats they output data in and that this data is

then interpreted by the autonomy system.

 -Autonomy

23

 Firstly, to understand the software side of the project, one must have a basic

understanding of the autonomy software itself. The UNH ASV team achieves autonomy using an

open source package that was developed jointly by MIT and Oxford: MOOS-IvP. MOOS stands

for Mission Oriented Operating Suite and IvP stands for Interval Programming. If the ASV is

considered as an organism, the brain of this organism is the raspberry pi 2 microcontroller (or

laptop computer depending on system size) and the MOOS is what allows the brain to work.

Imagine MOOS to be all of the neurons within the brain of the ASV. MOOS can be called a

“publish and subscribe” software package, because it essentially is organized as a tree of

numerous different applications that publish information to one another and subscribe for

information from other applications to allow themselves to run. Graphically, this is shown in

Figure 20 below:

Figure 20: MOOSDB Sensor Graphic

The central application to all of this is the MOOS database (MOOSDB). This application is simply

a place for all other applications to dump their information to, and it is where all applications

look for the needed input values they subscribe for. The MOOSDB is the “central neuron”

(continuing with the brain analogy) that connects all others. The other applications ringing out

around the MOOSDB are theoretically infinite in number and in their purposes. There are a host

of applications that come with the initial download of MOOS from online, and MOOS users can

24

write their own MOOS applications to accomplish whatever tasks they desire. The essential

MOOS applications that are used when running basic missions on ASV 3 and their purposes for

ASV3, at the time of this writing, are listed below. Note, applications marked with a star were

developed at UNH. All others come with the initial download of MOOS-IvP from online. Also

note, purposes/ functions of all the MOOS apps below are not fully understood by the ASV

team at this juncture.

● MOOSDB-- MOOS database where all moos apps publish and subscribe to

● uProcessWatch-- Monitors processes that the autonomy system is conducting; either

says the processes are present and functioning, or flags the processes for running

slowly, encountering errors, or not being present at all despite being expected

● pNodeReporter-- “ Captures vehicle state information and publishes a summary string”

-oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Site.Modules

● iGPS-- interfaces with GPS (global positioning system) sensor and sends GPS_X, GPS_Y,

GPS_Lat, GPS_Long, and GPS_Speed values to the MOOSDB

● iIMU_RazorAHRS-- interfaces with IMU (inertial measurement unit) sensor and sends

YAW, PITCH, and ROLL values measured by IMU to the MOOSDB

● iMOOSArduino**-- MOOS app developed by ASV1 team. Takes “Desired_thrust” and

“Desired_rudder” values from MOOSDB and sends them to control code on Arduino.

● pEchoVar--takes variables specified by user (in our case, GPS_X, GPS_Y, GPS_Speed,

YAW) and renames them as specified by the user (in our case, to NAV_X, NAV_Y,

NAV_Speed, and NAV_Heading respectively). This is used by ASV3 to rename values

input by sensors to names that are expected by the stock MOOS applications.

● pLogger-- MOOS app that logs the values and results of an entire mission along with

timestamps of when events occur so that the mission has an automatically generated

and easily analyzed record file

● pMarinePID-- built in PID controller that is used by the MOOS decision making helm to

determine, based on its known position, speed, and heading, what it’s desired speed

and heading values are

● pHelmIvP-- this is the decision making helm for the MOOS-IvP software. Amongst other

things, this App looks at a mission file and the behaviors desired for that given mission,

as well as all relevant sensor data, and determines what actions to take and commands

to write to the rest of the system. Two key variables it publishes are “Desired_Speed”

and “Desired_Heading” which are then taken by iMOOSArduino to the boat control

code

● pShare-- MOOS application for sharing information about the running MOOSDB with

other MOOSDBs. This is critical for having multiple boats that are running MOOS talking

to one another.

25

● pHostInfo-- MOOS application for sharing with other MOOSDBs more general

information about the host MOOSDB it is running on.

● uFldNodeBroker-- MOOS application for sharing information with other MOOSDBs

about the host MOOSDB it is running on

● pBasicContactMgr-- MOOS app responsible for monitoring other MOOSDBs sharing

information with its host and working to ensure there are no collisions between its host

and these other vessels.

 As can be seen from this list, even running basic MOOS missions requires coordination of

numerous MOOS applications all of which are accomplishing a wide variety of functions. Some

of these functions are internal to the ASV’s processing, such as pLogger, uProcessWatch, or

pHelmIvP. Others are essential for interfacing with the boat’s sensor suite and reading in sensor

data, such as iGPS and iIMU_RazorAHRS. Others still are essential for interacting with other

vessels that are running MOOSDBs.

This is the general architecture of the MOOS-IvP software stored on the Raspberry Pi 2-B

microcontroller of ASV3. In the future, the team would like to use a laptop rather than the

Raspberry Pi, as higher levels of autonomy will quickly demand more processing power and

speed than the Raspberry Pi can easily produce. How does the ASV team actually configure

what MOOS applications they want to be using in a given mission, or what tasks they want the

boat to accomplish during said mission? That is done using a number of essential files. The

raspberry pi on ASV3 runs a linux/ raspbian debian wheezy operating system. In a central file

location which the ASV team has specified for its MOOS missions, four essential files are used to

configure a mission. Step one in mission configuration is to determine the area the team wishes

to operate the vessel in. By going onto google maps, a snap image can be taken of a satellite

image of a large area (such as a lake). This image is then saved in a .tif file format in the given

file location. Still using the google image online corresponding to the .tif image just taken, the

GPS latitude and longitude of the extreme northern, southern, eastern, and western

boundaries of the photo are recorded in a .info file with the same name as the .tif file.These

values are used by MOOS to automatically divide the .tif file into both a global lat/long grid and

into a local XY coordinate grid.

These files are needed to run the MOOS GUI for observing the boat on a shore side

computer during mission operations, and are not used for any other purpose other than giving

the shore side team the GUI for monitoring and prompting the boat during operations. These

files are therefore not stored on the microcontroller on the boat (as the boat is not running the

GUI; there is no-one on the boat to look at the GUI!). The last two files configure the actual

MOOS mission itself, and they are the .MOOS and .BHV files. The .MOOS file, amongst

26

numerous purposes, names the mission, specifies the initial latitude and longitude location of

the mission origin (immediately updated by the GPS upon mission launch), specifies what

MOOS apps are running during the given mission, specifies where the mission behavior files are

to be found, and configures essential parameters for every MOOS application. These

parameters vary from application to application (for example specifying the PID gains for

pMarinePID, specifying the ports that the GPS, IMU, and Arduino are located at etc). Also

specified for each application are the number of times per second applications are run and that

applications publish to the MOOSDB and subscribe for information. This aspect is of critical

importance, because if the applications are not all timed correctly a mission can quickly

breakdown for numerous reasons, from applications looking for information prior to

applications they depend on publishing that information, to running so many times per second

the rest of the mission is starved of processing power. The .BHV file specifies the different

behaviors/ tasks the boat will be running during the mission. These behaviors, similar to with

MOOS apps, are theoretically infinite in the number that can be run and their functionality.

Stock behaviors exist with the download of MOOS, such as the avoid collision behavior for

avoiding crashes with other MOOS-running-vessels or the waypoint behavior for doing basic

waypoint navigation. Custom behaviors can also be written, such as an ocean mapping

behavior, an aggressive swarm and defend behavior, or a search and rescue behavior. Also

similar to the MOOS apps, the meat and potatoes of the behavior/ application functions are not

contained within the .BHV/.MOOS files. These files contain essential configuration information,

but the behaviors and apps themselves are defined elsewhere in the system. In the .BHV file

specifically, the configuration information for each behavior varies, for example the waypoint

behavior allows for specifying what points the boat should visit, how close to a point the boat

must get to consider itself “arrived”, etc while the avoid collision behavior requires specifying

how far away to keep other vessels, etc. All behaviors require inputting a priority weight,

however, which tells the MOOS decision making helm which behavior is the most important

one if faced with a decision where multiple behaviors it is running conflict with one another.

For example, a boat running the collision avoidance and waypoint behaviors during its mission

is running both behaviors constantly, but if collision avoidance is weighted higher and another

vessel comes dangerously close, the boat will engage in avoiding that collision over continuing

along its planned waypoint path, and will not resume the waypoint path until the collision is

avoided. This concludes the discussion of the Autonomy helm as a whole.

 -Arduino Control Code

 Continuing the analogy of the ASV as an organism, if the Raspberry Pi or Laptop

containing MOOS and the sensor drivers is the brain, then the Arduino Mega 2560

microcontroller is the nervous system. This microcontroller receives input of desired heading

and desired thrust values from either the autonomy helm or the user via remote control,

27

converts those values to a pulse width modulated (PWM) signal, and then sends those values

where they need to go in order to influence the steering and throttle motors. The throttle

aspect of the code is relatively straightforward, initial calibration of the RC system was done

early in the year to determine what PWM values received from the RC receiver on the boat

corresponded to what degree of trigger pull by the human captain on the RC controller. These

PWM values are then mapped to produce a given speed output by the trolling motor, and are

sent to an h-bridge controller. The h-bridge acts as a switch within the motor’s circuit, allowing

or denying current based on a low power control signal. Whenever this signal from the Arduino

is set high (5V) the h-bridge will allow the current to flow from the battery to the motor. Two h-

bridges were used in this iteration of the ASV, a 30 Amp h-bridge for the trolling motor

(throttle) and a 2 Amp version for the window motor (steering).

 -Sensor Functionality

 The last major subject to discuss regarding the software side of ASV3 is the raw sensor

output signals and the work done with forwarding higher level autonomy utilizing

experimentation with higher level sensors.

 The GPS and IMU sensors on ASV 3 function in what is essentially a plug and play

fashion. The only calibration necessary for these sensors involved calibrating the

accelerometers, gyroscopes, and magnetometers on the 9DOF SparkFun razor IMU. This IMU

has a built in Arduino pro mini microcontroller that internally processes its raw data values. In

MOOS, in the iIMU_RazorAHRS app, the sensor output format and specific data desired can be

specified, and for our case this desired data is simply the YAW about the z-axis of the vessel

(used to determine heading). The GPS_X,GPS_Y, and GPS_Speed values are piped directly in

using the iGPS moos app without any calibration or processing, and these are used to

determine the position and speed of the ASV.

 These two sensors alone are sufficient for obtaining point to point navigation and for

running the collision avoidance behavior in MOOS. Remember, collision avoidance is avoiding

collision with another vessel running MOOS/ a vessel that tells the ASV where it is and where it

is going. This is very different than obstacle avoidance (second stage autonomy) which involves

the ASV detecting an obstacle on its own (without the obstacle saying it is there) and then

adapting its waypoint planned path to avoid said obstacle. The sensor used to accomplish

obstacle avoidance is a Light Detection and Ranging system (LiDAR). LiDAR works by mounting a

laser beam atop a spinning, encoded platform. As the laser spins, the beam goes out and

bounces off of obstacles, and based on the phase of the laser when it returns to the sensor the

sensor determines the distance to the particle. Based on the moment that the laser beam is

received back in by the lidar, the system also knows at what angle the beam was fired out, and

therefore also knows the angle off of the boat to the given obstacle. Currently, the ASV team

has worked with a low cost Neato-XV11 LiDAR system which will be implemented on ASV2

28

(purchasing a system for ASV3 was not within this year’s existing budget). The first major step

to implementing obstacle avoidance has been attempting to understand the format that the

LiDAR uses to report data, and from there working to find or code a script that will essentially

create an occupancy grid about the boat and use LiDAR data to constantly update this grid with

the presence of obstacles. Up till the time of this writing, the ASV3 team has only read data

from ASV2’s LiDAR on an Ubuntu laptop computer. At first, a python script for reading in LiDAR

data and producing a GUI of the LiDAR was used to help conceptually understand the values

being read. Quickly, however, the team found that python was far too slow computationally to

handle the massive amount of data the LiDAR was generating. The team this year found a ROS

(Robot Operating System) script that had been developed for the same LiDAR as ASV2. ROS is a

software platform that is far more widely used than MOOS-IvP, and while MOOS is stronger for

developing autonomy, ROS is more widely used therefore more support and question forums

exist making it more user friendly. It was also quickly found when running the ROS LiDAR script

that ROS was far more computationally efficient at processing the LiDAR data and running the

LiDAR GUI than python. An image of the GUI produced by the ROS script can be seen in Figure

21 below:

Figure 21: LiDAR GUI

The current work being done by the ASV team at the time of this writing is working to figure out

the following: how can LiDAR values be piped from ROS, which can handle the large data

volume in a computationally efficient manner, into MOOS and made available to the autonomy

system? If LiDAR data is piped directly into MOOS, what existing drivers are there for obstacle

avoidance, and how could they be adapted to utilize LiDAR data? If no existing stock MOOS

applications work for using our specific LiDAR, our CS student has been considering an obstacle

avoidance code that could be written either within MOOS as a MOOS application, or outside of

MOOS that could pipe final decisions regarding obstacle locations and needed autonomy helm

29

actions into the MOOSDB. This specific area of work, despite being focused on ASV2’s LiDAR

and developing second stage autonomy on ASV2, is directly applicable to the future of working

with any LiDAR to do obstacle avoidance on any MOOS vessel in UNH’s ASV fleet. More specific

details about the logic behind the potential obstacle avoidance code can be obtained upon

request.

The other area of major development regarding software for the sensor suite is on the

image processing front. The team this year began delving into work on to enable the target

track and trail behavior. MOOS has a stock track and trail behavior built in for recognizing

another vessel running MOOS as a target, however the team has no experience running this

behavior and is in the process of working to understand what applications will enable its

functionality and how so. As this research has continued, the team is greatly interested in

developing a track and trail behavior for recognizing targets that may not be running a MOOS

database and reporting their information to a vessel in the fleet. To do this, the first step by the

team has been looking into the way in which a computer loads in images from a GoPro camera

(our camera of choice for ASV3) various programs for image processing. Among these

programs: two open source software have been considered (OpenCV and Predator) as has

Matlab. Currently, the team is developing an image processing script to use in providing proof

of concept of ASV-ROV communication. Using Matlab imaging processing software and a GoPro

camera, ASV3 will monitor the ocean beneath it. The ROV will drive beneath the ASV and flash

an incredibly bright light in a pattern, which the ASV will observe and then duplicate using a

light on the surface. This project goal serves a twofold purpose. First of all, it is to prove that an

ASV and ROV can communicate with one another/ pass information in some basic form. Long

term, acoustics are the ideal and practical form of communication, however due to budgeting

issues the team this year could not afford an expensive acoustic transducer, and therefore light

is an inexpensive means for achieving proof of concept in the current academic year. Secondly,

using light allows the team to conduct research and gain experience in doing image processing

to detect a “target” and make decisions based on the actions of that target. This experience will

prove invaluable for applying image processing to recognizing and reacting to targets on the

surface. At this juncture, a Matlab code has been developed that is capable of picking a target

out from a known backdrop, and interpreting information regarding target size and velocity

from that information. The key now is strengthening this code so that it will be more applicable

when some characteristics are not known about the background (such as the characteristic

length information of pixel size to physical dimension needed to interpret target size and

velocity), dealing with target motion not just perpendicular to the vessel, but also at angles to

the vessel, and getting Matlab to make decisions based on the observation of the target (such

as turning a surface light on or off for a given time period). This concludes discussion of the

current software aspects surrounding the sensor suite.

30

Applications/ Importance

 ASVs have almost unlimited applications in the maritime theater. They can be used for a

variety of applications ranging from ocean mapping to search and rescue to swarm defense. For

example, if the National Oceanic and Atmospheric Administration (NOAA) had a fleet of ASVs

equipped with ocean mapping equipment, they would be able to send each ASV to a different

location and cut down on their mapping time and costs significantly. The Navy is very interested

in autonomous vessels for both search and rescue and swarm defense. When they need to

rescue someone in the water, they can send in an ASV instead of endangering other sailors lives

by sending them to rescue the person. A swarm of ASVs could also be programmed with a

swarm defense behavior to deter any threats to Navy ships or any other ship that runs through

dangerous waters. ASVs are ideal for potentially dangerous missions, as they remove the

human element from the whole operation.

Holloway Competition

 This year our team entered the Holloway Prize Competition, an idea to market

competition within the University System of New Hampshire. The goal of our company, Aquatic

Autonomous Solutions, was to provide customers with low cost autonomy for their vessels in

the form of a “black box” control module. This control module would be able to interface with

any vessel, from a small fishing boat to a full size ocean liner, and allow it to have full

autonomous capabilities. The aspect of our product that set us apart from other companies is

that they don’t have to purchase a new autonomous boat. Our control module would interface

with their existing vessels and would save the customer tens of thousands of dollars.

 Our team placed second in the Nelson Poster Competition and third in the Bud Albin

semifinal round. Although we did not make it to the final round, many judges expressed

interest in our product and encouraged us to continue to working on our business plan.

Conclusion

 This year’s team has been the most successful out of the previous 2 years. Full first stage

autonomy was achieved on ASV2 as well as ASV3, and lots of progress was made with the other

sensors such as the LiDAR and the sonar. We created a large proof of concept in the form of

ASV3 and proved that the modular and component of the shelf philosophy of our team can be

applied to larger vessels. We began to delve into future applications such as ocean mapping

with the sonar tests, and laid the groundwork for future teams to continue developing obstacle

avoidance and object tracking and trailing.

31

Appendices

Works Cited

Cao, Yang. “Modeling an Equation Driven Involute Spur Gear in Solidworks.” Online video clip.

Youtube, 23 Feb 2014. Web. 7 Feb 2015.

Simpson, Ken. “Remote Electric Steering for Trolling Motors.” Duckworks Boatbuilder’s Supply.

N.p, 1 November 2010. Web. 21 October 2015.

User’s Manual for CEEPulse 100, Version 1.0.5. Sydney, Australia: CEE Hydrosystems, n.d. Web.

“200 kHz 8 Degree Transducer Section.” Photograph. CEE Hydrosystems, n.d. Web. 29 April

2016.

List of Figures

Figure 1

Figure 2

32

Figure 3

Figure 4

Figure 5

33

Figure 6

Figure 7

34

Figure 8

Figure 9

35

Figure 10

Figure 11

36

Figure 12

Figure 13

Figure 14

37

Figure 15

Figure 16

38

Figure 17

Figure 18

39

Figure 19

40

Figure 20

41

Figure 21

