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Introduction 

 

 Autonomous surface vessels (ASVs) can be simply defined as self-driving boats; vessels 

that can function independently of human control and make decisions on their own to 

accomplish specific missions. The goal of the UNH ASV team is to develop a control module that 

is low cost, robust, and modular. This module must be purchasable as a component off the shelf 

and be able to be installed on any existing vessel allowing that vessel to obtain autonomous 

capabilities.  For the UNH ASV team, basic autonomy can be defined in three stages: point-to-

point navigation, obstacle avoidance (adaptively changing path to avoid collisions), and target 

recognition, tracking and trailing. In order for a boat to have basic autonomy it must satisfy all 

three of the stages. Long term, the UNH ASV team is concerned with building a fleet of ASVs 

and having them all communicating with one another, as well as with robots beneath and 

above the water’s surface (UUVs and UAVs). 

This technology is important because the autonomous maritime robotics industry is 

rapidly growing and is projected to be worth billions of dollars globally in the next few years. 

ASVs alone are a multi-million dollar and rapidly growing part of that market. By removing the 

human element from maritime operations, ASVs have unlimited potential for growth and 

applications. They serve to reduce cost, improve efficiency, and remove human lives from 

danger in a plethora of applications. A few example applications include ocean mapping, swarm 

defense for the military, oil pipeline monitoring, aquatic research, search and rescue, and 

commercial shipping. 

This year is the third iteration of the ASV project at UNH. The previous two years helped 

to pave the way for the success of the team this year. ASV1 was custom built by the first year’s 

team, but many problems arose which hindered their ability to develop a working vessel. 

Although ASV1 was never operational, the first team accomplished much on the autonomy 

coding and immeasurably helped the success of ASV3. The second year’s team went a different 

route and purchased a 4-foot remote control (RC) boat. Like ASV1, ASV2 was not autonomous 

by the end of the year, however they left a solid platform to build on. During the summer of 

2015 members of this year’s ASV team worked on ASV2 and achieved basic first stage 

autonomous functions (waypoint navigation). This was a successful proof of concept and 

helpful launching pad for the entire ASV team in the ‘15-’16 academic year. 

This year’s team decided to follow the same route as the previous year’s team and 

purchase a boat. However, instead of a small RC boat, this year’s team purchased a 7-foot bass 

fishing boat. Drawing from the experiences of the previous two teams, a larger boat was 

deemed necessary in order to accommodate all the necessary sensors as well as increase the 

functionality and ease of working on the vessel. In order to achieve autonomy on a vessel of 

this size, a custom steering system was constructed that enabled remote and autonomous 

interfacing and control of the vessel’s trolling motor. This year’s team achieved first stage 



5 
 

autonomy on ASV3 and tested the mapping capabilities of a sonar device with the vessel. They 

also worked to improve its mission duration by experimenting with solar charging solutions 

during test operations, and to advance the UNH ASV program into second and third stages of 

autonomy. The team this year also focused on developing multi-vehicle communication and 

coordination between multiple ASVs and between ASV3 and the UNH remotely operated 

vehicle (ROV) team. Lastly, the team this year focused on refining the autonomy package on 

ASV3 to meet the robust, low cost, and modular design conditions.  

 

Physical Platform 

 

Because ASV3 was the vessel developed by this year’s team, it will remain the main 

focus of this report. Minor discussion of work done on ASV2 will follow later as a supplement to 

the work done on ASV3. 

 

Steering System 

A.  Physical Platform and Mechanism 

 Keeping with the spirit of a low-cost open-source ASV, a simple steering system was 

needed that could reuse as many original motor components as possible.  As such, a 

commercial self-steering motor (such as a Minn Kota Riptide), was out of the question.  The first 

ideas (include scans of the earliest drawings we still have) paid homage to the steering systems 

of commercial inboard motors. 

Hydraulic pistons, cable pulleys, and gearing mechanisms were considered, before being 

dismissed as overly complex, heavy, and expensive.  The small amount of power needed to turn 

the 30 lb. thrust trolling motor did not justify the high mechanical advantage of such a system.   

 Our first manufactured system was a modification of online plans (Simpson) (Figure 1).  
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Figure 1: Original Plan for friction drive steering system (Simpson) 

This system uses a high-torque, low speed 12-volt automotive window motor to operate 

a friction drive system.  Due to relative difficulty in making accurate curved wood cuts, as well 

as concerns regarding humidity swelling, it was decided to use the UNH mechanical engineering 

department’s stereolithographic 3D printer.  The dimensions of the semicircular arc were 

slightly modified (Figure 2), while the drive wheel underwent a more radical redesign (Figure 3). 

 

Figure 2: SolidWorks model of semicircle for friction drive steering system 
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The center was hollowed out and replaced with spokes to lighten weight and reduce 

printing time.  Along the circumference, a V-groove was formed to accept a serpentine V-belt to 

act as the means of providing friction contact with the semi-circle.  Along the shaft, a spline 

matching that of the window motor was selected to allow for a tight fit.  In SolidWorks, a simple 

stress analysis was performed to ensure the drive wheel and semicircle could withstand a point 

loading far in excess of the trolling motor weight. Figure 6 demonstrates that the semicircle did 

not fail due to excessive von Mises (resultant) stress.  Shear and bending stress calculations 

were also made in all dimensions.  Particular attention was paid toward bending normal stress 

in the z direction at the junction between the curved and rectangular portions of the part.  It 

was felt that the risk of failure was greatest at this location and in the z dimension (Figure 4). 

Figure 3: SolidWorks model of drive wheel for friction drive steering system 
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Figu 

 

Figure 4: SolidWorks simulation showing von Mises stress under the influence of point loading (purple arrow) 

Figure 5: SolidWorks simulation showing bending normal stress in z direction under the influence of point loading 
(purple arrow). 
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A crude plywood mount was fashioned and screwed directly into the boat hull.  This 

mount held the window motor and drive wheel (Figure 6). 

 In practice, the system had several major shortcomings.  Obtaining a drive belt of 

correct dimensions and significant tack was difficult.  We opted for a wide belt to provide ample 

contact area.  However, belts of such dimensions are rarely small in terms of length, which 

would have required the ordering of a custom made-belt.  In the interim, a sheet of pliable 

rubber was cut and taped around the wheel.  This proved unreliable, with the rubber often 

coming off during operation.  Furthermore, when the rubber stayed on, the coefficient of 

friction was often not sufficient to prevent slippage between the drive wheel and the arc.  The 

rubber-coated pipe clamps used to hold the arc to the trolling motor were difficult to attach 

and could slip after continuous operation.  Several holes had to be modified after printing due 

to mistakes in measurement.  The plastic of the hollow boat hull did not provide sufficient 

anchoring capability, leading to excessive vibration of the plywood mount.  Finally, if one was 

not careful in remotely steering the boat, it was possible to completely push the arc off of the 

drive wheel, leading to a loss of control.   

 It was soon decided that the problems of the friction drive system outweighed the 

benefits of light weight, simple construction and low cost.  However, the concept of using a 3D 

printed system on the trolling motor was judged to be sound, and development continued 

along this track.  As opposed to friction, the revised system was to use a toothed gear 

mechanism.  Considerations were made to use spur, bevel, and miter gears.  The unique 

Figure 6: Assembled steering system being tested on ASV in UNH Chase Ocean Engineering Laboratory pool 
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challenges of our system precluded the purchase of commercially available gears.  To install a 

gear on the trolling motor would have involved disassembly of the switching mechanism at the 

head of the motor, as well as possible drilling into the shaft to install a set-screw.  Furthermore, 

this would have necessitated the re-routing of the trolling motor’s wires.  There was 

considerable difficulty in finding commercial gears with the large inner diameter to fit the 

trolling motor shaft, but without an excessively large outer diameter.  On the drive wheel, a 

standard gear would have only relied on a setscrew to hold it to the spline of the window motor 

shaft, creating excessive play.  Lastly, the high strength of metal gears was not needed, nor 

could it justify the high cost.  

 Originally, the drive gear was modified to include equation driven involute teeth, using 

the procedure given by Cao.  Additionally, the semi-circular arc was given teeth to mimic a spur 

gear.  As opposed to the perpendicular axes of the drive wheel and trolling motor originally 

used, the new system was to use parallel axes (Figure 7). 

However, this still did not eliminate the possibility of the drive wheel separating from 

the arc.  It was decided that the new system had to be physically incapable of separating, no 

matter what angle the motor was turned to.  To this end, two spur gears were formed with a 

diameter similar to that of the original friction drive wheel.  The splines and spokes of the 

original drive wheel were retained, and a small shaft bore was added to the top of the drive 

gear for the provision of a positional encoder to allow precise steering.  The gear to be installed 

on the trolling motor was made in two parts to allow easy installation and removal (Figure 8). 

 

Figure 7: Proposed revised steering system using a gear drive 
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 Another difficulty that needed to be addressed was mounting the drive system to the 

boat.  It was decided that screwing directly into the boat was not acceptable, due to the 

inability to secure fasteners from the other side of the hull, as well as the lack of flexibility that 

this gave in using the steering system on another boat.  The final mount design takes advantage 

of the vise-like grip of the trolling motor mount.  Brackets and wood are used to hold the 

window motor as well as the encoder above.  This “shelf” design (Figure 9) allows easy access 

to components, and allows easy movement and stowing of the trolling motor. 

 

Figure 9: Revised steering system design.  Left: Motor disengaged and stored.  Right: Motor engaged. 

Figure 8: Two-part gear on trolling motor shaft, used for the revised drive system 
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 Finally, a precise encoder was needed to accurately find the rudder position.  It was 

quickly determined that the new encoder should be absolute, rather than incremental.  Such an 

encoder does not require counting the number of pulses to determine position.  Likewise, the 

encoder can immediately read the rudder position on startup, whereas an incremental encoder 

would have to be reset to the zero position.  Additionally, the encoder should have an interface 

that is easy to connect and read with an Arduino, and that the physical construction of the 

encoder should be rugged enough to withstand light pressure, shocking, and water.  A 

comparison of encoder communication interface busses such as CAN bus, BiSS, serial-

synchronous interface (SSI), and a straight binary interface.  In terms of cost and ease of 

programming, a binary interface using Grey code was selected. 

On the advice of one of our professors, it was recommended that the encoder be sized 
and positioned to directly measure the motion of the trolling motor.  This necessitated an 
encoder with a large hollow shaft and a means to mount the stationary portion of the encoder.  
One such mounting scheme is shown in Figure 10.  The mounting bracket of the trolling motor 
is used to secure the white mounting plate that holds the outer ring of the encoder stationary.  
Normally, this portion of the mount holds the thumbscrew used to adjust and hold the 
rotational position of the trolling motor.  Use of a longer thumbscrew as well as other 
supporting screws was proposed. 

Unfortunately, this this was quickly realized to be impractical.  The encoder had to be 

large enough to accommodate the large shaft of the trolling motor, while being thin enough 

and having a small enough outer diameter to fit into the confined space at the back of the boat.   

Likewise, quotes obtained from various vendors showed that such an encoder would be 

hundreds of dollars. 

From this point, it was decided to use a small, solid shaft absolute encoder.  An Ebay 

search led to the purchase of a Koyo TRD-NA series absolute rotary encoder from a buyer in 

China for a cost of approximately $40 (Figure 11).  

Figure 10: Originally proposed encoder mount with hollow shaft encoder. 
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This encoder featured a 10-bit resolution Grey code output through a simple interface of 12 

binary pins.  The shaft of the encoder was inserted into a slot bore on the top of the drive gear.  

A 3D printed plate was custom made to hold the encoder stationary to the wooden “shelf” 

(Figure 12). 

B. Software Control 

 The window motor requires a 12 volt input and draws a few amps.  An Arduino is only 

capable of a 5-volt output with a small amount of current.  As such, the steering motor uses the 

same H-bridge to step the voltage up and handle the higher current.  When the boat is 

operating in RC mode, the user turns and holds the steering wheel, turning the rudder.  After 

the entire boat is pointed in the desired direction, the user releases the wheel and the rudder 

automatically returns to the zero position. One of the issues involving the active feedback 

control of the encoder involves error correction.  Many electro-mechanical systems experience 

overshoot.  Electric signals respond far faster than an inertial mass.  After the current to the 

motor is turned off, the rotor will continue to rotate due to inertia.  In a feedback loop, the 

Figure 11: Koyo TRD-NA series encoder 

Figure 12: 3D printed ring used to hold and mount encoder. 
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controller will actively fight this discrepancy between actual and desired position.  This can lead 

to oscillation as the controller “hunts” for the desired position.   

Citations for steering section: 

Cao, Yang.  “Modeling an Equation Driven Involute Spur Gear in Solidworks.” Online video clip. 

Youtube, 23 Feb 2014.  Web. 7 Feb 2015.   

Simpson, Ken.  “Remote Electric Steering for Trolling Motors.” Duckworks Boatbuilder’s Supply.  

N.p, 1 November 2010.  Web. 21 October 2015. 

 

Sonar System 

 

 One of the proposed applications for the UNH ASV is as an inexpensive, lightweight, and 

unmanned sonar mapping system.  A simple depth finding sonar allows for both mapping and 

collision avoidance with submerged hazards.  One of our graduate advisors, Damian Manda, 

graciously let us borrow his CEE Hydrosystems CEE Pulse 100 sonar set. This device is an active 

sonar; it can send out and receive pings.  The set is capable of measuring depths from .3 to 100 

Figure 13: CEE Pulse 100 standard 200 kHz transducer (User’s Manual for CEEPulse 100). 
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meters.  The transducer (Figure 13) is connected to the main controller and power pack (Figure 

14).  Data is transmitted through a serial port (through Bluetooth communication is possible).   

 As outlined in [1], simple submerged pipe was employed to mount the sonar on the 

boat.  An extra Minn Kota trolling motor mount, identical to the model used to hold the ASV’s 

trolling motor, was graciously loaned by Professor Foster.  This mount allowed for a lightweight 

yet strong means to mount the sonar transducer to the front of the boat.  A proprietary metal 

mounting device was obtained from the sonar manufacturer (Figure 15).   

Figure 14: CEE Pulse 100 control and power pack (User’s Manual for CEEPulse 100) 
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This device is designed to connect to a 2-inch diameter pipe.  However, the Minn Kota 

mount can only handle a pipe of 1.25-inch diameter.  Two plastic pipes of these disparate 

diameters were bolted together.  Additionally, a slot cut was made through the 2-inch pipe to 

allow easy placement of the transducer cable.  The mounted sonar is shown in its storage 

position in Figure 16. 

Figure 15 CEE Hydrosystems sonar mounting bracket.  Right: Cut away view 

Figure 16 Sonar system with mount in storage position. 
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A test of this sonar system was conducted at Swain’s Lake near Durham.  The ASV was 

placed into autonomy mode, where it made several loops at low speed.  During this time, the 

sonar took depth measurements and the data was logged.  Computer code used by our 

graduate advisor, Damian Manda, was used to plot these depth readings at their exact location 

in space.  A color coded system was used to show the depth reading in meters.  These results 

can be seen in Figure 17. 

Citations: [1]: User’s Manual for CEEPulse 100, Version 1.0.5.  Sydney, Australia: CEE 

Hydrosystems, n.d.  Web.  

[2]: “200 kHz 8 Degree Transducer Section.”  Photograph.  CEE Hydrosystems, n.d.  Web. 29 

April 2016. 

 

“200 kHz 8 Degree Transducer Mount.”  Photograph. CEE Hydrosystems, n.d.  Web. 29 April 

2016. 

 

Sensor Mast 

 

The mast on the ASV vessel is meant to hold the sensors which give feedback to the 

autonomous system. By placing the sensors elevated above the vessel, the sensors have 

unobstructed vision around the boat and can effectively transmit data. The original ASV mast 

was a set of PVC pipes that were adhered into the existing cup holders on the vessel with a bar 

of 80/20 aluminum reaching across the bow of the boat and connecting to the pipes. The 

Figure 17 Sonar depth readings performed at Swain’s Lake.  Courtesy of Damian Manda. 
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horizontal bar would hold the sensors and provide sufficient space for all the desired 

equipment and any more space for future sensors. With the mast securely fastened there were 

very little wind oscillations during testing, however, the adhesive used to secure the pipes had 

cracked when the ASV was brought back to the Chase building. This was an indication that the 

adhesive would not suffice as a long term means of securing the mast. Other options were 

explored in securing the mast to the vessel, with the goal to use what parts were available.  

Two seats were provided with the boat and they were secured by aluminum frames that 

slid into slots along the center of the boat. The seats were held to the aluminum frames with J-

bolts; these bolts could be used to secure a platform to the aluminum frame which would then 

be secured to the boat. The same pipe mast could then be secured to the new platform in a 

way that prevented permanent fixtures to the boat and would utilize existing materials. The 

drawbacks of this installment were the previous mast assembly was attached to cup holders 

that were positioned on the gunwales of the boat and had a more elevated position; with the 

new assembly the mast would have to sit on the deck for stability which would lower the 

position of the mast.  As an alternative, the mast could be raised higher on the aluminum frame 

platform, at the cost of weaker construction and lowered resistance to wind oscillations. 

During the production of the mast, some 80/20 fixtures became available and were then 

used in producing the mast. The 80/20 is an aluminum bar that have slots on each face and 

along the length that provide easier and sturdier assembly of a structure. With two bars of 

equal length and a third that would span the beam of the boat, brackets were used to secure 

the pieces together that can be dismantled for ease of transportation. To secure this fixture to 

the boat, holes were drilled into the boat such that brackets could attach the new mast to the 

boat. The holes were drilled near the center of the length of the vessel which provided a better 

clearance for the sensors over the boats hardware. Using toggle bolts, the 80/20 mast was 

secured to the gunwales of the boat where it has a flat stable position. Given the size and 

rigidity of the brackets, the new mast is stable considering it is heavier than the previous PVC 

mast.  

The toggle bolts also provide a secure hold between the brackets and the vessel where 

the inside of the vessel is covered in foam to provide the vessel with some buoyancy if it were 

to take on water. The area of a regular bolt would not be sufficient in holding the foam 

material; the foam easily compresses under a compressive load, resulting in a weak connection. 

The toggle bolts have a much larger contact surface area, distributing the load more evenly.  

Near the same position of the mast are portholes on both sides of the boat that provided some 

access to the inside, allowing for the bolts to be securely tightened.  With the new mast in 

place, the sensors can easily be attached and are given a stable platform for collecting data. 
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Figure 18: Finished ASV3 with Sensor Mast 

ASV - ROV Communications 

 

 Work has begun on establishing basic communication between the ASVs and the ROV. 

Our plan is to have the ROV flash a light underwater while the ASV has a GoPro camera looking 

underwater and attempting to recognize the light. If the GoPro successfully identifies the light, 

the ASV will flash a light on top of its mast that mirrors the flashing of the ROV’s light, therefore 

proving that basic communication has been achieved. In order for the GoPro to recognize the 

light and flash the ASV’s light, the programs OpenCV and Matlab are being used in conjunction. 

OpenCV is useful for object identification and in this case the object would be a flashing light. 

Once the program successfully identities the light it will transmit data to Matlab which will in 

turn send a command to flash the light on top of the ASV. If everything works correctly we can 

begin to experiment with different intensities or colors of light and possibly transmit data in the 

form of Morse code. 

 

Solar Panel 

 

 In order to charge the battery on longer voyages a trickle charge solar panel was 

purchased. Because it is just a trickle charger it does not provide enough power to keep the 

batteries running 24/7, instead it lengthens the battery life by an hour or two. Mainly the solar 

panel was purchased to test the idea of keeping the battery charged for longer voyages. 

Eventually a code can be programmed that tells the ASV to hold position for a certain amount 

of time when the battery is low so the solar panel can work to recharge the battery efficiently. 

Future years may look into this concept further and purchase larger and more powerful solar 

panels that could provide a large part of the boat’s required power.  
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Wiring Diagram 

Signal Flow Chart 

 

 

 

 

 

 

RC Transmitter 

 

H-Bridge Controller 

 

Trolling Motor 

 

RC Receiver 

 

Arduino 

Handheld RC transmitter sends signal based on user input. 

Signal is used to send information about desired throttle speed 

and direction. 

Receiver interprets signal as a PWM signal with a pulse length 

from 1000 to 2000 microseconds. Receiver is wired to an input 

pin on the Arduino. 

Arduino reads signal through interrupt routines. Translates 

signal length to numerical value. Uses numerical value to 

determine proper action and sends signal to H-bridge DC motor 

controller. 

H-bridge controls motor by directing power from battery to 

positive or negative leads of motor. 5-volt signal from Arduino 

is sufficient to control MOSFET transistors directing up to 30 

amps of current. 

Brushed DC trolling motor able to run in two directions and 

responds to PWM input. 
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Figure 19: Wiring Diagram 
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Clockwise, from top left: 

Encoder: 

A 10-bit absolute encoder was chosen to provide position feedback to the control code. The 

encoder is mounted to the window motor and operates on the assumption of no slip between 

the gear attached to the window motor and the gear attached to the shaft of the trolling 

motor. 

Arduino # 2: 

The second of the two Arduinos is responsible for reading the input from the absolute encoder 

and translating the 10-bits being read into a usable integer value. This value is shared with 

Arduino # 1, where is used to calculate the error signal in the control code. 

Arduino # 1: 

The first of the two Arduinos is the hub of all activity on the ASV. In addition to communicating 

with Arduino # 2, Arduino # 1 controls the relay, receives RC input, and sends PWM signals to 

each of the h-bridge motor drivers. 

Relay: 

The relay acts as a toggle between RC and Autonomous modes. Depending on if the switch is 

open or not, pin nine can be at 5V or pulled to ground. This pin is read in the main code as an 

interrupt. 

RC receiver: 

When in RC mode this receiver sends a PWM signal to input pins on the Arduino, this input is 

translated into a direction and voltage and sent to the h-bridges. 

H-bridge motor drivers: 

Use of h-bridges allows a low power signal from the Arduino to control the high current flow 

between the marine batteries and the electric motors aboard the ASV.  

 

Software 

 

 The software behind the UNH ASV team’s autonomy can be broken down into three 

main components of discussion. First is the autonomy software itself, which allows for the boat 

to make sense of all it’s different sensor values and make decisions using those values. Second 

is the boat control code, which allows the boat to take commands from the autonomy system 

and actually translate those commands into physical rudder and throttle behaviors, as well as 

allows the boat to have autonomous and remote control modes. Thirdly is the sensor suite 

itself, which involves all of the ins and outs of the different sensor hardware, the roles they play 

in the bigger picture of autonomy, and the formats they output data in and that this data is 

then interpreted by the autonomy system. 

 

 -Autonomy 
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 Firstly, to understand the software side of the project, one must have a basic 

understanding of the autonomy software itself. The UNH ASV team achieves autonomy using an 

open source package that was developed jointly by MIT and Oxford: MOOS-IvP. MOOS stands 

for Mission Oriented Operating Suite and IvP stands for Interval Programming. If the ASV is 

considered as an organism, the brain of this organism is the raspberry pi 2 microcontroller (or 

laptop computer depending on system size) and the MOOS is what allows the brain to work. 

Imagine MOOS to be all of the neurons within the brain of the ASV. MOOS can be called a 

“publish and subscribe” software package, because it essentially is organized as a tree of 

numerous different applications that publish information to one another and subscribe for 

information from other applications to allow themselves to run. Graphically, this is shown in 

Figure 20 below: 

 
Figure 20: MOOSDB Sensor Graphic 

The central application to all of this is the MOOS database (MOOSDB). This application is simply 

a place for all other applications to dump their information to, and it is where all applications 

look for the needed input values they subscribe for. The MOOSDB is the “central neuron” 

(continuing with the brain analogy) that connects all others. The other applications ringing out 

around the MOOSDB are theoretically infinite in number and in their purposes. There are a host 

of applications that come with the initial download of MOOS from online, and MOOS users can 
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write their own MOOS applications to accomplish whatever tasks they desire. The essential 

MOOS applications that are used when running basic missions on ASV 3 and their purposes for 

ASV3, at the time of this writing, are listed below. Note, applications marked with a star were 

developed at UNH. All others come with the initial download of MOOS-IvP from online. Also 

note, purposes/ functions of all the MOOS apps below are not fully understood by the ASV 

team at this juncture. 

● MOOSDB-- MOOS database where all moos apps publish and subscribe to 

● uProcessWatch-- Monitors processes that the autonomy system is conducting; either 

says the processes are present and functioning, or flags the processes for running 

slowly, encountering errors, or not being present at all despite being expected 

● pNodeReporter--  “ Captures vehicle state information and publishes a summary string” 

-oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Site.Modules  

● iGPS-- interfaces with GPS (global positioning system) sensor and sends GPS_X, GPS_Y, 

GPS_Lat, GPS_Long, and GPS_Speed values to the MOOSDB 

● iIMU_RazorAHRS-- interfaces with IMU (inertial measurement unit) sensor and sends 

YAW, PITCH, and ROLL values measured by IMU to the MOOSDB 

● iMOOSArduino**-- MOOS app developed by ASV1 team. Takes “Desired_thrust” and 

“Desired_rudder” values from MOOSDB and sends them to control code on Arduino. 

● pEchoVar--takes variables specified by user (in our case, GPS_X, GPS_Y, GPS_Speed, 

YAW) and renames them as specified by the user (in our case, to NAV_X, NAV_Y, 

NAV_Speed, and NAV_Heading respectively). This is used by ASV3 to rename values 

input by sensors to names that are expected by the stock MOOS applications. 

● pLogger-- MOOS app that logs the values and results of an entire mission along with 

timestamps of when events occur so that the mission has an automatically generated 

and easily analyzed record file 

● pMarinePID-- built in PID controller that is used by the MOOS decision making helm to 

determine, based on its known position, speed, and heading, what it’s desired speed 

and heading values are 

● pHelmIvP-- this is the decision making helm for the MOOS-IvP software. Amongst other 

things, this App looks at a mission file and the behaviors desired for that given mission, 

as well as all relevant sensor data, and determines what actions to take and commands 

to write to the rest of the system. Two key variables it publishes are “Desired_Speed” 

and “Desired_Heading” which are then taken by iMOOSArduino to the boat control 

code 

● pShare-- MOOS application for sharing information about the running MOOSDB with 

other MOOSDBs. This is critical for having multiple boats that are running MOOS talking 

to one another.  
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● pHostInfo-- MOOS application for sharing with other MOOSDBs more general 

information about the host MOOSDB it is running on. 

● uFldNodeBroker-- MOOS application for sharing information with other MOOSDBs 

about the host MOOSDB it is running on 

● pBasicContactMgr-- MOOS app responsible for monitoring other MOOSDBs sharing 

information with its host and working to ensure there are no collisions between its host 

and these other vessels. 

 

 As can be seen from this list, even running basic MOOS missions requires coordination of 

numerous MOOS applications all of which are accomplishing a wide variety of functions. Some 

of these functions are internal to the ASV’s processing, such as pLogger, uProcessWatch, or 

pHelmIvP. Others are essential for interfacing with the boat’s sensor suite and reading in sensor 

data, such as iGPS and iIMU_RazorAHRS. Others still are essential for interacting with other 

vessels that are running MOOSDBs.  

 

This is the general architecture of the MOOS-IvP software stored on the Raspberry Pi 2-B 

microcontroller of ASV3. In the future, the team would like to use a laptop rather than the 

Raspberry Pi, as higher levels of autonomy will quickly demand more processing power and 

speed than the Raspberry Pi can easily produce. How does the ASV team actually configure 

what MOOS applications they want to be using in a given mission, or what tasks they want the 

boat to accomplish during said mission? That is done using a number of essential files. The 

raspberry pi on ASV3 runs a linux/ raspbian debian wheezy operating system. In a central file 

location which the ASV team has specified for its MOOS missions, four essential files are used to 

configure a mission. Step one in mission configuration is to determine the area the team wishes 

to operate the vessel in. By going onto google maps, a snap image can be taken of a satellite 

image of a large area (such as a lake). This image is then saved in a .tif file format in the given 

file location. Still using the google image online corresponding to the .tif image just taken, the 

GPS latitude and longitude of the extreme northern, southern, eastern, and western 

boundaries of the photo are recorded in a .info file with the same name as the .tif file.These 

values are used by MOOS to automatically divide the .tif file into both a global lat/long grid and 

into a local XY coordinate grid. 

 

These files are needed to run the MOOS GUI for observing the boat on a shore side 

computer during mission operations, and are not used for any other purpose other than giving 

the shore side team the GUI for monitoring and prompting the boat during operations. These 

files are therefore not stored on the microcontroller on the boat (as the boat is not running the 

GUI; there is no-one on the boat to look at the GUI!). The last two files configure the actual 

MOOS mission itself, and they are the .MOOS and .BHV files. The .MOOS file, amongst 
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numerous purposes, names the mission, specifies the initial latitude and longitude location of 

the mission origin (immediately updated by the GPS upon mission launch), specifies what 

MOOS apps are running during the given mission, specifies where the mission behavior files are 

to be found, and configures essential parameters for every MOOS application. These 

parameters vary from application to application (for example specifying the PID gains for 

pMarinePID, specifying the ports that the GPS, IMU, and Arduino are located at etc). Also 

specified for each application are the number of times per second applications are run and that 

applications publish to the MOOSDB and subscribe for information. This aspect is of critical 

importance, because if the applications are not all timed correctly a mission can quickly 

breakdown for numerous reasons, from applications looking for information prior to 

applications they depend on publishing that information, to running so many times per second 

the rest of the mission is starved of processing power. The .BHV file specifies the different 

behaviors/ tasks the boat will be running during the mission. These behaviors, similar to with 

MOOS apps, are theoretically infinite in the number that can be run and their functionality. 

Stock behaviors exist with the download of MOOS, such as the avoid collision behavior for 

avoiding crashes with other MOOS-running-vessels or the waypoint behavior for doing basic 

waypoint navigation. Custom behaviors can also be written, such as an ocean mapping 

behavior, an aggressive swarm and defend behavior, or a search and rescue behavior. Also 

similar to the MOOS apps, the meat and potatoes of the behavior/ application functions are not 

contained within the .BHV/.MOOS files. These files contain essential configuration information, 

but the behaviors and apps themselves are defined elsewhere in the system. In the .BHV file 

specifically, the configuration information for each behavior varies, for example the waypoint 

behavior allows for specifying what points the boat should visit, how close to a point the boat 

must get to consider itself “arrived”, etc while the avoid collision behavior requires specifying 

how far away to keep other vessels, etc. All behaviors require inputting a priority weight, 

however, which tells the MOOS decision making helm which behavior is the most important 

one if faced with a decision where multiple behaviors it is running conflict with one another. 

For example, a boat running the collision avoidance and waypoint behaviors during its mission 

is running both behaviors constantly, but if collision avoidance is weighted higher and another 

vessel comes dangerously close, the boat will engage in avoiding that collision over continuing 

along its planned waypoint path, and will not resume the waypoint path until the collision is 

avoided. This concludes the discussion of the Autonomy helm as a whole. 

 

 -Arduino Control Code 

 Continuing the analogy of the ASV as an organism, if the Raspberry Pi or Laptop 

containing MOOS and the sensor drivers is the brain, then the Arduino Mega 2560 

microcontroller is the nervous system. This microcontroller receives input of desired heading 

and desired thrust values from either the autonomy helm or the user via remote control, 
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converts those values to a pulse width modulated (PWM) signal, and then sends those values 

where they need to go in order to influence the steering and throttle motors. The throttle 

aspect of the code is relatively straightforward, initial calibration of the RC system was done 

early in the year to determine what PWM values received from the RC receiver on the boat 

corresponded to what degree of trigger pull by the human captain on the RC controller. These 

PWM values are then mapped to produce a given speed output by the trolling motor, and are 

sent to an h-bridge controller. The h-bridge acts as a switch within the motor’s circuit, allowing 

or denying current based on a low power control signal. Whenever this signal from the Arduino 

is set high (5V) the h-bridge will allow the current to flow from the battery to the motor. Two h-

bridges were used in this iteration of the ASV, a 30 Amp h-bridge for the trolling motor 

(throttle) and a 2 Amp version for the window motor (steering). 

 

 -Sensor Functionality 

 The last major subject to discuss regarding the software side of ASV3 is the raw sensor 

output signals and the work done with forwarding higher level autonomy utilizing 

experimentation with higher level sensors.  

 The GPS and IMU sensors on ASV 3 function in what is essentially a plug and play 

fashion. The only calibration necessary for these sensors involved calibrating the 

accelerometers, gyroscopes, and magnetometers on the 9DOF SparkFun razor IMU. This IMU 

has a built in Arduino pro mini microcontroller that internally processes its raw data values. In 

MOOS, in the iIMU_RazorAHRS app, the sensor output format and specific data desired can be 

specified, and for our case this desired data is simply the YAW about the z-axis of the vessel 

(used to determine heading). The GPS_X,GPS_Y, and GPS_Speed values are piped directly in 

using the iGPS moos app without any calibration or processing, and these are used to 

determine the position and speed of the ASV. 

 These two sensors alone are sufficient for obtaining point to point navigation and for 

running the collision avoidance behavior in MOOS. Remember, collision avoidance is avoiding 

collision with another vessel running MOOS/ a vessel that tells the ASV where it is and where it 

is going. This is very different than obstacle avoidance (second stage autonomy) which involves 

the ASV detecting an obstacle on its own (without the obstacle saying it is there) and then 

adapting its waypoint planned path to avoid said obstacle. The sensor used to accomplish 

obstacle avoidance is a Light Detection and Ranging system (LiDAR). LiDAR works by mounting a 

laser beam atop a spinning, encoded platform. As the laser spins, the beam goes out and 

bounces off of obstacles, and based on the phase of the laser when it returns to the sensor the 

sensor determines the distance to the particle. Based on the moment that the laser beam is 

received back in by the lidar, the system also knows at what angle the beam was fired out, and 

therefore also knows the angle off of the boat to the given obstacle. Currently, the ASV team 

has worked with a low cost Neato-XV11 LiDAR system which will be implemented on ASV2 



28 
 

(purchasing a system for ASV3 was not within this year’s existing budget). The first major step 

to implementing obstacle avoidance has been attempting to understand the format that the 

LiDAR uses to report data, and from there working to find or code a script that will essentially 

create an occupancy grid about the boat and use LiDAR data to constantly update this grid with 

the presence of obstacles. Up till the time of this writing, the ASV3 team has only read data 

from ASV2’s LiDAR on an Ubuntu laptop computer. At first, a python script for reading in LiDAR 

data and producing a GUI of the LiDAR was used to help conceptually understand the values 

being read. Quickly, however, the team found that python was far too slow computationally to 

handle the massive amount of data the LiDAR was generating. The team this year found a ROS 

(Robot Operating System) script that had been developed for the same LiDAR as ASV2. ROS is a 

software platform that is far more widely used than MOOS-IvP, and while MOOS is stronger for 

developing autonomy, ROS is more widely used therefore more support and question forums 

exist making it more user friendly. It was also quickly found when running the ROS LiDAR script 

that ROS was far more computationally efficient at processing the LiDAR data and running the 

LiDAR GUI than python. An image of the GUI produced by the ROS script can be seen in Figure 

21 below: 

 
Figure 21: LiDAR GUI 

The current work being done by the ASV team at the time of this writing is working to figure out 

the following: how can LiDAR values be piped from ROS, which can handle the large data 

volume in a computationally efficient manner, into MOOS and made available to the autonomy 

system? If LiDAR data is piped directly into MOOS, what existing drivers are there for obstacle 

avoidance, and how could they be adapted to utilize LiDAR data? If no existing stock MOOS 

applications work for using our specific LiDAR, our CS student has been considering an obstacle 

avoidance code that could be written either within MOOS as a MOOS application, or outside of 

MOOS that could pipe final decisions regarding obstacle locations and needed autonomy helm 
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actions into the MOOSDB. This specific area of work, despite being focused on ASV2’s LiDAR 

and developing second stage autonomy on ASV2, is directly applicable to the future of working 

with any LiDAR to do obstacle avoidance on any MOOS vessel in UNH’s ASV fleet. More specific 

details about the logic behind the potential obstacle avoidance code can be obtained upon 

request. 

  

The other area of major development regarding software for the sensor suite is on the 

image processing front. The team this year began delving into work on to enable the target 

track and trail behavior. MOOS has a stock track and trail behavior built in for recognizing 

another vessel running MOOS as a target, however the team has no experience running this 

behavior and is in the process of working to understand what applications will enable its 

functionality and how so. As this research has continued, the team is greatly interested in 

developing a track and trail behavior for recognizing targets that may not be running a MOOS 

database and reporting their information to a vessel in the fleet. To do this, the first step by the 

team has been looking into the way in which a computer loads in images from a GoPro camera 

(our camera of choice for ASV3) various programs for image processing. Among these 

programs: two open source software have been considered (OpenCV and Predator) as has 

Matlab. Currently, the team is developing an image processing script to use in providing proof 

of concept of ASV-ROV communication. Using Matlab imaging processing software and a GoPro 

camera, ASV3 will monitor the ocean beneath it. The ROV will drive beneath the ASV and flash 

an incredibly bright light in a pattern, which the ASV will observe and then duplicate using a 

light on the surface. This project goal serves a twofold purpose. First of all, it is to prove that an 

ASV and ROV can communicate with one another/ pass information in some basic form. Long 

term, acoustics are the ideal and practical form of communication, however due to budgeting 

issues the team this year could not afford an expensive acoustic transducer, and therefore light 

is an inexpensive means for achieving proof of concept in the current academic year. Secondly, 

using light allows the team to conduct research and gain experience in doing image processing 

to detect a “target” and make decisions based on the actions of that target. This experience will 

prove invaluable for applying image processing to recognizing and reacting to targets on the 

surface. At this juncture, a Matlab code has been developed that is capable of picking a target 

out from a known backdrop, and interpreting information regarding target size and velocity 

from that information. The key now is strengthening this code so that it will be more applicable 

when some characteristics are not known about the background (such as the characteristic 

length information of pixel size to physical dimension needed to interpret target size and 

velocity), dealing with target motion not just perpendicular to the vessel, but also at angles to 

the vessel, and getting Matlab to make decisions based on the observation of the target (such 

as turning a surface light on or off for a given time period). This concludes discussion of the 

current software aspects surrounding the sensor suite. 
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Applications/ Importance 

 

 ASVs have almost unlimited applications in the maritime theater. They can be used for a 

variety of applications ranging from ocean mapping to search and rescue to swarm defense. For 

example, if the National Oceanic and Atmospheric Administration (NOAA) had a fleet of ASVs 

equipped with ocean mapping equipment, they would be able to send each ASV to a different 

location and cut down on their mapping time and costs significantly. The Navy is very interested 

in autonomous vessels for both search and rescue and swarm defense. When they need to 

rescue someone in the water, they can send in an ASV instead of endangering other sailors lives 

by sending them to rescue the person. A swarm of ASVs could also be programmed with a 

swarm defense behavior to deter any threats to Navy ships or any other ship that runs through 

dangerous waters. ASVs are ideal for potentially dangerous missions, as they remove the 

human element from the whole operation. 

 

Holloway Competition 

 

 This year our team entered the Holloway Prize Competition, an idea to market 

competition within the University System of New Hampshire. The goal of our company, Aquatic 

Autonomous Solutions, was to provide customers with low cost autonomy for their vessels in 

the form of a “black box” control module. This control module would be able to interface with 

any vessel, from a small fishing boat to a full size ocean liner, and allow it to have full 

autonomous capabilities. The aspect of our product that set us apart from other companies is 

that they don’t have to purchase a new autonomous boat. Our control module would interface 

with their existing vessels and would save the customer tens of thousands of dollars.  

 Our team placed second in the Nelson Poster Competition and third in the Bud Albin 

semifinal round. Although we did not make it to the final round, many judges expressed 

interest in our product and encouraged us to continue to working on our business plan. 

 

Conclusion 

 

 This year’s team has been the most successful out of the previous 2 years. Full first stage 

autonomy was achieved on ASV2 as well as ASV3, and lots of progress was made with the other 

sensors such as the LiDAR and the sonar. We created a large proof of concept in the form of 

ASV3 and proved that the modular and component of the shelf philosophy of our team can be 

applied to larger vessels. We began to delve into future applications such as ocean mapping 

with the sonar tests, and laid the groundwork for future teams to continue developing obstacle 

avoidance and object tracking and trailing.  
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