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ABSTRACT

The objectives of this work are to:

- Formulate the static problem of a compliant riser
idealized as a slender non-rotationally uniform rod
with bending, extensional and torsional degrees of
freedom,

- Present an embedding technique used to solve the
general two-dimensional and three-dimensional static
problems of a buoyant compliant riser.

- present examples from the static analysis of buoyant
compliant riser configurations in the presence and
absence of external currents.
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NOMENCLATURE
A1'A0:Ab
By
*
B
C
C
C
0
CD' Cf
CI
D
D
p>,p"
E
EA
EIEE B
Ega,Epn
e e

total inner and outer cross-sectional area of
riser tubes; total outer cross-sectional area
of riser tubes and buoyancy modules

buoyancy per unit length of buoyancy modules
in water

= for y<h, and zero othervise

mean internal fluid speed; for our application
p,iC2<< p

centroid of a cross-section

static rotation matrix

normal mean drag and tangential frictional
coefficients

drag coefficient of a buoyancy module for flow
parallel to %

maximum dimension of a cross-section
dimensions of the cross-section of Figure 2-1
Young's modulus

extensional rigidity

maximum and minimum bending rigidities of a
cross-section

effective rigidities EIEE—CZJ%E:EIHH-CZJ?n
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1P ,c1f
e
hi’hw
JR:J1
L, Ly
4
m , m
-
M
H
p
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external hydrodynamic force per unit length

(excluding gravity effects):

T - C E n "
F, [FH, o FH]. u
acceleration of gravity

torsicnal and effective torsional rigidity

1P - 2 J%C

internal fluid and salt water elevations above
the axes origin
mass inertia per unit length tensor of riser

material and buoyancy modules

3o diag[J;;,Jgg,Jnn]

R R !
and internal fluid

¥

- Aj gL LEE .mn
J;= diagldi™,J37 .3y ]
where diag( ] stands for diagonal matrix
unstretched riser length, buoyancy module
length
(WR+Wb)/g, (wR
external hydrodynamic moment per unit length

+w1+wb)/g

internal overpressure due to well (i.e. total
internal static pressure minus p{)

internal pressure due to gravity,pig(hi—y)



external pressure due to gravity,P,gl(h -y)
tension in riser material

wetted perimeter of a cross-section,

PE” = PN+ ¢y (A -A )/CeLy
shear force in the # and 3, direction
stretched and unstretched length of the
centerline
time
effective tension
array of unit vectors (1, 7. K]T
+

. > > T
array of unit vectors (g5 £4:7p]

current velocity

+
Vv = [vx, 0, vz].u =

L E n ]
tvg . Vs vo].u0

[0, v‘E

n "
o vol. ug

effective weight per unit length,

*
'l-W_i +Ww_-B_-B

W =W b b

R

average effective weight per wunit length in
water

buoyancy module material, internal fluid and
riser materials weights per unit length
coordinates of C in the inertial frame

internal fluid and salt water densities



Euler angles

. i
vector rate of rotation of Czén

the rod,

-
a=1[a%,a%,a 1.u"

frame

along
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Chapter 1
INTRODUCTION AND QUTLINE

Compliant risers are assemblages of pipes with very small
overall bending rigidity used to convey o©il from the ocean
floor or a subsurface buoy to a surface platform. A compliant
riser is permitted to acquire large static deformations
because of its small bending rigidity and readjusts its
configuration in response to large slow motions of the
supporting platforms, to which it is rigidly connected,
without excessive stressing. Compliant risers have been used
successfully in protected waters in buoy loading stations for
tankers. Extensions of shallow water concepts have been
recently proposed by the industry as alternatives to
conventional production risers, because they simplify the
overall production system.

The purpose of this work is to:

- Formulate the static problem of a compliant riser
idealized as a slender non-rotationally uniform rod
with bending, extensional and torsional degrees of
freedom.

- Present an embedding technique to solve the general
two-dimensional and three- dimensional static
problems of a buoyant compliant riser.

- Present examples from the static analysis of buoyant

compliant riser configurations in the presence and
absence of external currents.
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This work is organized as follows:

- Chapter 2 provides a complete formulation of the
static problem together with a summary of the
assumpt ions hecessary for 1its derivation. This
Chapter provides the governing equations and
boundary conditions and explicit expressions for the
external loads.

- Chapter 3 provides a numerical solution algorithm
using an embedding technique.

- Chapter 4 provides numerical results for a buoyant
riser configuration with uniformly distributed

buoyancy modules, and

- Chapter 5 provides numerical results for a buoyant
riser configuration with a single large buoyancy
module.



13

Chapter 2
PROBLEM FORMULATION

2.1 Model Assumptions

A mathematical model for the static behavior of slender
elastic rods undergoing large deformations with small strains
is given in Love [1] and Landau and Lifshitz [2]. The
modification to account for dynamic effects and the presence
of a heavy fluid inside and outside the tube modelled as @&
slender rod can be found in Nordgren (3] and Patrikalakis [4].
Methods for the computation of the motion of elastic rods with
equal principal stiffnesses and with torgue applied at the
ends can be found in Nordgren {5,3] and without torque in
Garrett [6].

Patrikalakis and Chryssostomidis [7] extended the
mathematical model derived in Nordgren [3] and Patrikalakis
[4] to allow the computation of non-linear motions of an
assemblage of tubes modelled as a non-rotationally wuniform
slender elastic rod with space varying torque. Thelr model
also accounts for the effects of a steady internal flow.

In this work, we specialize the model developed in
Patrikalakis and Chryssostomidis [7] to allow the comphtation

of static responses. The static equations are derived from
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the general dynamic equations by setting the components of the
velocity and angular velocity equal to zero and replacing the
external loads with their mean values. The mean values of the
external loads may, however, strongly depend upon the dynamic
response, such as in the case of vortex induced dynamic 1lift,
see Patrikalakis and Chryssostomidis [8,9]. Given that the
dynamic response depends upon the static response, {(e.g. upon
the static tension), statics and dynamics are, 1in fact,
non-linearly coupled. We believe that this coupling may be
analyzed with an iterative procedure and we, therefore,
consider the static loads as given functions of the static
orientation and position of the riser and the external
excitation,

Following Patrikalakis and Chryssostomidis [7], we summarize

the basic assumptions of our mathematical model for the static

problem:

1. The compliant riser is modelled as a single
non-rotationally uniform rod rather than as an
assemblage of interacting rods or shells. We make
this idealization in order to reduce the degrees of
freedom and to allow analysis of the lobal
behavior of our system with the currently available
-, . - »
information on the structural characteristics of
such structures,

2. The materials employed in the construction of
different layers of compliant risers are assumed to
be homogeneous, isotropic and linearly elastic.

3. Strains are assumed to remain uniformly small
although deformations may become large.

4., Shearing deformations are neglected, Rayleigh
slender beam theory, see Crandall et al [10].

5, Thermal effects are neglected.



15

Further theoretical and experimental research might be

necessary to quantify the errors implied by the above list of

assumptions.

2.2 General Three-Dimensicnal Governing Equations and Boundary

Conditions

The static equations are derived from the general dynamic
equations, Patrikalakis and Chryssostomidis {71, by setting
the components of velocity and angular velocity equal to zero
and replacing the external loads with their mean values. This
procedure leads to:

1. Three force equations:

_AboNeaNeE_wel b =
Tos QoQo+Qoﬂo wc12+FH0 0 (2.1)
E Aot n_y .0 .rE -
Oos Q090+Togo wc22+FH0 0 (2.2)
N1 obinbelowe® +FD =
QOS TOQO+QOQO WC32+FHD 0 (2.3)

2, Three moment eguations:

Pt 1114 JRS SRR | PR Y

(GIeQO)S+(EIe -EIg )QOQO+MH0-0 (2.4)
EL.8 P NNy ~Z-N AN

(EIe no)s+(ele-EIe )QOQO-QO-O (2.5)
mnaN [ QP 3 NS PN

(EIe QO)S—(GIe-EIe )9090+00-0 (2.6)

3. Three equations relating the derivatives of the Euler

angles with the Euler angles and the components of 8 e
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= (o5ci n

o5 = (ﬂos1nw0 + rooswo)/coseO (2.7)
N Nes

Bos = Fcosty - 2 sing, (2.8)
- o5 .

Vos = Q0+¢’ossmeo (2.9a)

or using equation (2.7)

- ob Ecs n
Y= Qo+taneo(§zos1nwo+ﬂocoswo) {2.9b)

0s

4. Three equations relating the derivatives of the Cartesian

coordinates x ,y, and z, with the Euler angles:

Xos = (1+e0)coseocos¢0 (2.10)
Yog = (1*e,)cos8 sing (2.11)
Z, = -(1+eo)sin80 (2.12)

5. The equation for the stretched arc length s; :

Sgs = ]+e0 (2.13)

where subscript or superscript o denotes static quantities and
subscript s denotes derivative with respect to the unstretched
arc length, s, of the centerline., To simplify the notation,
subscript o has been omitted in the superscripts ¢ , & and n.

The elements, C?j , of the complete 3 x 3 static rotation

H

matrix, CO , between U and UO defined by
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Uy = CgU (2.14.0)

are given below in terms of the static Euler angles:

C{H = cos®  cos¢, (2.14.1)
c3, = cos8 sing, _ (2.14.2)
0 (2.14.3)

C-l 3 = -S'ineo

0 _ .: .
¢y = sing_ siny cos¢, - cosy sing, (2.14.4)

0 : . )
Cyy = sing siny sing + cosy cose (2.14.5)
° (2.14.6)

Co3 = cosO siny,

0
c3; = sing cosy cose + siny sing, (2.14.7)
0
C3p = 51n0 cosy sing - siny cos¢ (2.14.8)
(2.14.9)

cgh = coseocosub

A geometric interpretation of the Euler angles used in this
work can be found in Patrikalakis and Chryssostomidis [7].
To complete the set of governing equations, the constitutive

relation between To and e, needs to be used:
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T,= EA e, (2.15)

In the case of the general threé-dimensional static problem
No = 13 boundary conditions are necessary to complete the
statement of the problem. For the case of a buoyant riser
configuration, de Oliveira and Morton [ll]) and de Oliveira et
al [12], an appropriate set of boundary conditions involves
the prescription of ¢0, eo, Yo %o ¢ Yo ard z, at s=0 and s=L
and s*(0)=0. For the case of a catenary configuration,
Panicker and Yancey [13], the above boundary conditions at s=0
need to be modified to also express the equilibrium of

interaction forces and moments and kinematic compatibility

with the lower rigid riser section.
2.3 External Forces and Moments

The prediction of the external loads FHO and ;Ho is,
perhaps, one of the more important factors in a successful
analysis of the static behavior of compliant risers, Until
rational methods allow the prediction of these loads in
separated flows, approximate estimates based on strip theory
and experimental two-dimensional flow models may be used for
design purposes, see Patrikalakis (4] and Patrikalakis and
Chryssostomidis {8]. Due to lack of appropriate experimental
data for compliant riser geometries, we adopt the following
procedure based on Sarpkaya and Isaacson {14] to estimate the

K] + .
external static force FHo due to a current, We assume first
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that the external current velocity is a given function of y,

and of the following form:

.
V{yy) =0V, (5),0.V, (¥ )L (2.16)
Using equation (2.14) we can estimate the components V% , V%
BN -
and Vg of G in the 1local Co' 50 and ;0 system at a

particular point C on the riser centerline:

T T
(Vo017 = €TV, (95),0,V, ()]

The component of v orthogonal to e , denoted by Ve , €an
P %o 0

be obtalined from:
N = VEE v ™ (2.17)

The static drag force perpendicular to 25 and in the

SEn

direction of va is expressed as:

Fo = 0. 50,0V oV, & (2.18)

where Df is the maximum frontal dimension of the cross-section
orthogonal to GE” and Cp is 8 drag coefficient, which depends
at least upon the geometry of the cross- section, its
orientation and Reynolds number and is primarily due to

separaticn and wake formation. Using (2.17) and (2.18), the

=
drag forces in the directions Eo and ﬁo can be obtained from:

FE = 0.50,De(s)CV V] (2.19)
N nyEn '
FI = 0.50,0¢(s)CpV VSN (2.20)
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To simplify our calculaticns we further assume that we can

approximate a compliant riser cross-section as in Figure 2-1

below

-
na
A D2
-
0 -

i \ya”/ 2

Figure 2-1: Cross-section Idealization

for our estimates of D¢ . We observe that the cross-section

3

in Figure 2-1 reduces to a circle if D =D and will provide a

correct estimate of Dy for an arbitrary number of tubes of
-’- ‘ 3
equal diameter arranged along the n axis consecutively in a

series., From the assumed geometry we obtain:
D¢=(0°-0")|coso]+D" (2.21)
where
|cosal=|vE] / [VEM (2.22)

Using (2.21) to (2.22), we can reduce (2.19%9) and (2.20) to
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FEO . O.SQNCDVE[(DE_Dn)|V§| . D”lVE”IJ (2.23)
Flo = 0.5p,CoVAL(D5-0M) V]| + D"VEN1 (2.24)

Elongated compliant riser sections are expected to
experience a small (static) lift orthogonal to Eo and ﬁg”,
which is however neglected in this work due to lack of
appropriate experimental data. In all subsegquent analysis

(2.23) and (2.24) will be used to predict the static forces in

> . . . ' .
the &, and ﬁb directions respectively. In the numerical
implementation, Dg and D" are functions of s. We can

therefore model risers, the cross-sections of which are
multiple adjacent tubes 1in a series possibly covered with
circular buoyancy modules over part of their length.

For the evaluation of the drag force parallel to Eo we

distinguish two separate contributing mechanisms. First, a

frictional component which can be evaluated from:
FF=0.50 PE(s)CVEIVE] (2.25)
" floi'o ‘

where P&N(s) is the length of the wetted perimeter of the
cross- section and Cf a frictional coefficient which is at
least two orders of magnitude less than (5 . Second, we
distinguish a separation drag parallel tt:fo due to presence
of buoyancy modules. It is possible to incorporate this
effect in an equation which provides the total drag force in
the Eo direction, while keeping the form of equation (2.29) by

writing:
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FC

70=0.50,PEN(s)CVEVE] (2.26)

where Pgn(s) is an "equivalent" wetted perimeter defined by

e
Cb(Ab-AO)

ENfcyaph
PEN(s)=P="(s) + Tt (2.27)

1
wvhere CD is a separation drag coefficient for the buoyancy

modules for a flow parallel hjco, Ap, AO the cross-sectional
area of the buoyancy modules and riser tubes and Lb the length
of the buoyancy modules. Within the bare part of the
compliant riser we can set Ab =A0 and therefore get Pinfs) =
Pgn(s) to recover (2.25). Within the part of the riser
covered by buoyancy modules, equations {(2.26) and (2.27) also
allow a uniformly distributed force due to separation.
Finally, we need to provide estimates for the external
torgque per unit length, Nﬁo . Within ideal flow theory, the
presence of Mﬁo can be explained because the cross-section 1s
not, in general, symmetrical about an axis orthogonal to Gin
on the Eono plane, see Newman (151]. Due to lack of
experimental data for real flow conditions, we estimate the
external torque per unit length from potential theory, Newman

{151, using:

ME, = (ms - mD) vEVD (2.28)

g

where m and m: are the added masses per unit length in the
i + - -
£, and n, directions. The values of the added masses are

considered functions of s in our implementation and therefore
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allow Mﬁo to become zera for circular cross-sections.
- )
Denoting by ¢ the angle between Eo and Vgn , equation (2.28)

can be reduced to the following form:

R 2
Mﬁo=o.5(m§-mg)sm2c|v§”| (2.29)

This equation indicates that for a particular cross-section

and current velocity, the external torque reaches an extremum

when o =(2n-1)n /4 for n=1,2,3,4.
2.4 Non-Dimensional Three-Dimensional Equations

It is convenient to convert the governing equations to &

first order system of ordinary differential equations of the

following symbolic form:

W= (s.w) (2.30)

-
where wo(s) is the solution vector and ?6 a given {(non-linear)

function of 30 and s. For the general three-dimensional

static problem we choose:

> - E M.aC o€ 1. . .ok T
WooLT059 0380505203828 030 Yo Zoishl  (2.31)
with Ny= 13 unknown scalar variables. The first twelve

variables are coupled in the governing equations, while s;(s)
can be determined from (2.13) and (2.15) once the computation
of TO is completed.

Before proceeding to bring the governing equations in the
form (2.30), it is convenient to introduce non-dimensional

variables. Forces are non-dimensionalized by WAL, where W, is
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the average effective weight per wunit length of the riser
fully submerged in water. Lengths are non-dimensionalized by
I, the unstretched length of the riser. We also introduce the

following non-dimensional parameters:

8P(s)=4 L°/61°(s) (2.32)
85(s) = W L /EI%5(s) (2.33)
() = W,L7EIMs) (2.34)
y{s) = W,L/EA(s) (2.35)

(s.y,) = Wls,y )/W, (2.36)

and from now we denote non-dimensional quantities with the
same symbol as dimensional quantities. If we wish to refer to
a dimensional quantity, we will state this explicitly. The
resulting non-dimensional equations describing three-

dimensional statics of a compliant riser with torsion are:

- n E Z
0s HC12+Qo 0 Qo o} “Fio (2.37)
£ Nak n .
QOS - UC22 Q Q TOQO FHO (2-38)



e
05

0s

25

Prul n £y aNaé Py oF
-gPM +(1/787-1/87)2 2+ (1/87) 9]

8°1Q7- (1/6P-178Ma%aD- (176%) 95

Nra& p Evebnl M SN
-8 [Qo-(T/B -1/8 )Qoﬂo+(1/8 )590]

&es n
+
(Qos1nw0 rooswo)/coseo

£ n. .
rooswO Qos1nw0

4 et n
Qo+tan80[ﬂos1nwo+ﬂocosw0]

0
(g e,y
0
(1+YT0)C12
0
(1+YT0)C13

1+YT0

(2.

.39)

.40)

41)

.42)

.43)

.44)

.45)

.46)

.47)

.48)

.49)
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where the elements cgj of the static transformation matrix can

be evaluated from (2.14) in terms of the Euler angles.

The boundary conditions appropriate for a buoyant riser

configuration, such as in de Oliveira and Morton [11], are:

X,(0)5,(0)=2 (0) = 5.(0) = 0 (2.50)
8,(0) = y,(0) = 0 (2.51)

¢0(0) = ¢y {2.52)

xo (1 )=xgs Yol )=yys 201 )=2g (2.53)
(2.54)

¢'0(1 )=¢T's eo(t )=9T's ‘PO(I )=¢'T

2.5 Non-Dimensional Two-Dimensional Equations Without Torsion

In this case the solution vector (2.31} reduces to NO— 7

non-trivial components:

.
S35 63X sY 035k (2.55)

w, = [T,.0539,

)
The non-dimensional governing equations describing the
two-dimensional static problem without torsion in the 13

plane obtained from (2,37} to (2.49) using (2.14) are:

= i gn_f;
Tos using, + Qoﬂo FHO (2.56)
£ . n &
QOS MCoSo, - TOQO-FH0 (2.57)
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n _ AN Ny oM

b, = -8[Q; + (1/87)¢R] (2.58)
bgs = QQ (2.59)

Xog = (1+YT0)cos¢0 (2.60)

Yoo = (]+WTo)sin¢o (2.61)

SES = 1+VT0 (2.62)

The boundary conditions appropriate for a buoyant riser

confiquration, such as in de Oliveira and Morton [l1], are:

XO(O) = yo(O) = S;(U) =0 {2.63)
¢0(0) = ¢B (2.64)
XO(I) = XTs yO(]) = .YT (265)
¢0(1) = ¢T (2.66)

- -
In the two-dimensional case, the Q)andgo components of the

>
external force due to current V(yo) = Vx(yo)T reduce to:



where:

28

Fﬁo = r%cos¢0[cos¢0|
e = -ksing |sing |
Ho o 0

(559,20, 50, PSS )C LV, () 1V, (¥ )1 /4,

K(5,¥,)=0.50,0° (5 )Cp¥, (v 1V, (¥o) | /W,

(2.67)

(2.68)

(2.69)

(2.70)
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Chapter 3
NUMERICAL SOLUTION ALGORITHM

1.1 Introduction

General methods for the solution of two-point boundary value
problems can be found in Keller (16], Ferziger [17] and
Pereyra [18]. We start our discussion from the solution of
the general three-dimensional static problem with torsion
described by equations (2.37) to (2.49). In this work, we
solve equations (2.37) to (2.49), supplemented by boundary
conditions (2.50) to {2.54), by embedding our problem into a

more general class of boundary value problems. Symbolically

our problem:

w=t(s, %), S[w(0),W(1)] =0 (3.71)

where prime denotes derivative with respect to s,
'§=[w](s),w2(s)...wn(s)]T is the solution vector,

* T

-'F=[f] ,fz. . -fN]To 9=[91 1Goe - -gN] ’

0<s<1, and [ ]T denotes transpose
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is embedded into

w'=F(s,w;e), g[W(0},W(1)3¢]=0 (3.72)

1]
—

where € is a continuation parameter, 0<e€ < 1 , and when £
equations (2.71}) and (2.72) are identical.

Using the embedding technique, & sequence of problems with
values of € such that 0=g; <g, ...< ep=1 are solved. The
solution of the problem involving £, uses as initial
approximation the solution of the problem involving ¢,

In our embedding technique for the case of a buoyant riser

configuration in a general current, we replace

- equation (2.16) by
U0y 50 170 7 1PV (7)Y (g IOV 5 (g e (v )V 3 DU (3.73)

equation (2.52) by

o) = - 3.74
8, (03€) = g 4e(dp-0p.) (3.74)
equations (2.53) by
Xo (1 38) = xpo¥e(xp=x1,) (3.75.1)
Yol13€) = ypi*elyr-ys) (3.75.2)
- (3.75.3)

20(1 ;E) ZT.E+€(ZT“ZT1‘)

and equations (2.54) by
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¢0(1 ',EZ) = ¢T1+E(¢'T'¢T.i) (3.76.1)
6 (1:e) = 8y +elor-6yy) (3.76.2)
¥, (15€) = VpyrelVr-vgy) (3.76.3)

where subscript i denotes an initial problem, €=0, for
which the full solution of the corresponding boundary value
problem is available. This solution may, for example, be the
result of a previous step of our procedure. We also note that
by selecting Vi o Zry BTi and wTito be zerc, the resulting
initial preblem, £=0, is a two- dimensional static probien
without torsion, which |is relatively simpler to solve. We,
therefore, see that we can start the soluiion of the general
three- dimensional problem from the solution of the
two-dimensional problem which we treat next. Solutions of
this problem, with the method explained in the sequel have
been published by Chryssostomidis and Patrikalakis [19].

In our embedding technique for the case of a two-dimensional
configuration of a buoyant riser (in the H f plane) in a

moderate to strong current in the x direction, we replace

- %((yo)lvx(yo)l in equations (2.69} and (2.70) by
VT ]+ el (rd IV, (v | - VIV, 1]

where V, is the mean current speed of the original
problem



32

- win equations (2.56) and (2.57) by eu , and
- xy and y in equatlons (2. 65) by x{ +€(x: - x. )}
Iy xT ginEdTl

and yr *+. € , where KT and YT are de in
SECthﬂ 3.2,

In this manner, we obtain an initial problem, €=0, which

- is easier to sclve than the actual problem (e =1),
so we can start our solution process without
difficulty, see Section 3,2, and
- expresses the balance of all major external and
restoring forces of the original problem correctly,
everywhere in 0 < s < 1
For the case of a buoyant riser in a moderate to strong
current, the major external force 1s the normal drag, and the
major restoring force is the effective tension except near the
ends where bending becomes also important. Using our
embedding technique, we obtain an initial problem, ¢ =0, which
corresponds to a neutrally buoyant riser in a moderate to
strong constant current. This idealization, therefore, gives
us a correct estimate of the order of magnitude of both
external and restoring forces.
For the case of a buoyant riser in a weak Or zero current
our embedding technique involves the following steps:
- we determine the response of the actual riser 1in a
fictitious moderate c¢onstant current, V_ . , using

the procedure outlined above, and X

- we replace V_ (y )IV (y )| in equations (2.69) and
(2.70) by

inlvxil + E[Vx(yo)lvx(yo)l_vxilvxi|]
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In the case of a weak current the two step process 1S
necessary in order to determine an initial configuration for
the second step which includes the effects of effective
weight, which now plays a significant role.

The solution of equation (3.72) was obtained using a
non-uniform grid finite difference method, see Pereyra [18].
The non-uniform grid was necessary to permit an efficient
resolution of boundary layers near s=0 and s=1, see
Patrikalakis [4]. The solution of the finite difference
equations 1is based on- 3 modified Newton's ite}ation method
coupled with a deferred correction technique also described in
Pereyra [18]. This method uses an approximate solution of the
problem and yields a more accurate solution which makes the
absolute error less than a prespecified tolerance. During the
solution process, additional grid points may be inserted
automatically to reduce and to equidistribute the error on the
final mesh. Our code uses the Fortran library NAG [20] and
has been implemented on an IBM 370/168 mainframe. All

arithmetic was done in double precision (15 decimal digits}.

3.2 Initial Asymptotic Approximation of the Two-Dimensional

Solution

In this Section, we derive an approximate solution of the
two- dimensional static problem for e=0 corresponding to a
neutrally buoyant compliant riser in a constant current. For
simplicity we neglect frictional forces because of their small

effect in the determination of effective tension. In addition
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we use the mean frontal diameter, ﬁ£ , in the estimation of
the normal drag force, Finally we assume that ¥y=0 because
the extensional rigidity of the riser is very large. With

these assumptions the resulting governing equations are:

PSR T S | 2 3.77
TOS = Qo Q2 Qos Toﬂo *t ksing, ( )
N = _aNrpk n n = AN
Q¢ = =B LQ+(1/87) 201, ¢, = 2 (3.78)
= = si .7
Xpg = €OSO. s Yoo = STNG. (3.79)
where
= nEr v v
k = 0.5 DCp vxlvx[/wa (3.80)

A uniform leading order approximation of ¢, (s} can be found by

simple boundary layer theory, see Carrier and Pearson [21], to

be

do(s) = ¢g(s) + ¢;(s)+¢§(s) (3.81)
where

¢g(s) = Arctan[-1/(xs+c)]+6 (3.82)

¢l(s) = [¢Bf¢g(0)]exp{-s[fgs”(0)]1/2} (3.83)



35

82(5) = Lop-s2(1)Iexpt-(1-s)T8"(NIVE (.80

§=0 if -(As+c)>0, &=r if -(as+c)<0 . (3.85)
r = &/T, (3.86)
¢ is a constant of integration and TL the leading order

estimate of the tension, which in our case is independent of
S,
Imposing the boundary conditions (2.65) and neglecting the

contributions of ¢] (s) and ¢2(s), because they are small, we
o 0

obtain

(1/A)[1/sin¢g(0)-1/sin¢g(1)]-KT =0 13.87)

'(1/1)1n{tan[¢g(1)12]/tan[¢g(o)/2]}-yT =0 (3.88)

Equations (3.86) to (3.88) are three algebraic equations for
x, ¢ and TB which are solved by Powell's hybrid method, see
Powell [22] and therefore equation (3.81) is now fully
determined. This 1in turn allows us to obtain leading order
approximations for Tg, Q%,Qg, X, and Yo - When we integrate
equations (3.79) using (3.81), we obtain x0(1)=x+ and yo(l)=yi
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where x+ andg y+ are close to but not identical to ¥ and yy

This small discrepancy is rectified by our embedding procedure

in which we replace Xq by Xy ot € (xT—x+) and T by y++

E(YT-Y';' )-
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Chapter ¢
NUMERICAL RESULTS FOR A BUOYANT RISER CONFIGURATICON WITH

UNIFORMLY DISTRIBUTED BUOYANCY MODULES

The structural design details of the buoyant compliant riser
analyzed in this work can be found in de Oliveira and Morton
[11].  The riser is made up of two fléxible tubes with inner
diameter of 85.7 mm and outer diameter of 122.9 mm, clamped
together as in Figure 4-1 .

The overall riser characteristics are: L=88.392 m;
WeW =2.92 N/m; EA=267 MN; g™ 23.3 kN.md; EITC =12.2
kN.m?;GiP=0.582 MN.mZ; D°=0.31 m; D'=0.20 m; ps” =0.93 m;
AU=237.4 cm2;A1=115.4 cmz: pi=820 kg/m3; p=3.45 MPa; c=0;
m=49.93 kg/m; m-=40.47 kg/m; m§ =82.44 kg/m; n) =50.32 kg/m;
vertical distance of lower support, s=0, from ocean floor 18
7.62 m. The value of the effective weight was taken constant
because it was assumed that buoyancy is provided by small
uniformly distributed modules, Patrikalakis [4]. If this is
not the case the local value of W should be used. For the
same reason, effective constant values of DE, p", Pgn, m, m&,
mg and mg are used in this paper. Due to presence of strain

relief units at the ends, the following values of bending and

torsional rigidities at s=0 and s=L were used: EIV =6.6
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P 2 _y
kN.md: EISE =24.4 kN.m%; GI =1.164 MN.m . These rigidities

vere assumed to decay linearly to the previous values within
10 m from s=0 and s=L. In addition, for all excitatign
conditions studied in this paper we used ¢B = $7 = 90 degrees;
eT = 0; z; = 0 ; and CD = 1 and Cf = 0,05.

The excitation cases we investigate in this paper correspond
to the expected minimum and maximum water depth for the

application described in de Oliveira and Morton {11]. 1In Case

1, the water depth was 80.77 m; hw=hi=73‘15 m; xT=0 and

yT=?0.10 m. In Case 2, the water depth was 92.96 m;
hw=hi=85'34 m: xT=6.10 m and yT=82.30 m. For Case 1, ¢two
two-dimensional and four three-dimensional excitation
conditions were examined. Condition 1 involves two-

dimensional excitation (without torsion) by a unidirectional
linear strong current with Vx(0)=1'03 m/s and Vx(hw)=l'55 m/s.
In this c¢ondition, wo(L)=0Ir leading to a two-dimensional
configuration without torsion. Condition 2 corresponds to
¥(L)=0 and a zero current and represents a "buckled”
two-dimensional configuration of the riser due to its own
weight in the XY plane. Figures 4-2 and 4-3 show the results
of Case 1, Condition 1 and Figures 4-4 and 4-5 the results of
Case 1, Condition 2, obtained by executing our two-dimensional
static program, For Case 1, Condition 1, the initial
approximation for our embedding technique was obtained using
the method of Section 3.2 for a constant current equal to 1.29
m/s, the mean value of the actual current. For Case 1,

Condition 2, the initial approximation for our embedding
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technique was obtained using the method of Section 3.2 for a
weak constant current equal to 0.1 m/s. Our embedding
procedure, in both cases slowly applies the effective weight
forces and modifies the current to the actual profile (linear
and zero current, respectively). Figures 4-2 and 4-4 show the
displacement x (solid line) and the angle ¢0 {(dashed line) as
a function of y,. Figures 4-3 and 4-5 show the component of
the rate of rotation Qg {solid line) and the effective tension
T, {dashed  line} as a function of Yy - All variables plotted
are non-dimensional.

In Case 1, Condition 1 we observe the creation of sharp
boundary layers, the extent of which can be clearly seen from
the plot of ¢ versus y, ., Figure 4.2 . Iﬁside these layers,
the .effective tension, T0 , and the component of the rate of
rotation, Q; , change very rapidly while for the remainder of
the riser length these two quantities are practically constant
as can be seen from Figure 4.3 ., Effective tension outside
the boundary layers remains essentially constant, because, as
we said earlier, our system is highly bucyed. The <curvature,
92 , outside the boundary layers remains essentially constant
because the effective tension and external force exhibit small
variations with s. The maximum effective tension for Case 1,
Condition 1 has been estimated to be 7.974 kN and the maximum
tension 47.1 kN. The tension due to internal overgressure
amounts to 39.8 kN which shows the importance of the internal
overpressure in the estimation of tension. Note, however,

that tensile strain is directly related to effective tension,
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see eguation (2.15), and, therefore, internal overpressure
affects hoop stresses primarily, at least within the
assumptions of equation (2.15). For a discussion of these
assumptions see Appendix C, Patrikalakis and Chryssostomidis
(7]). The minimum bending radius for Case 1, Condition 1 is
0.90 m, The value of the minimum bending radius 1is an
important design parameter because it affects the structural
integrity of the riser and our ability to access the well, soO
care must be taken to select the appropriate strain relief
.units to control bending at the ends.

In Case 1, Condition 2, we observe the creation o¢of a
moderately sharp internal layer around s=0.16 where the
bending moment rapidly undergoes change of sign and reaches an
extreme value. The corresponding minimum bending radius is
7.65 m which is much less critical than the bending radius
encountered in Case 1, Conditioen 1 involving a strong current.
This occurs because the value of the effective weight is very
small. However, the riser is nearly horizontal within the
internal layer referred to above and this may affect our
ability to easily access the well. The ameount and
distribution of buoyancy and the top offset are the important
parameters in the present condition of zero current and can be
used to control the configuration of the riser. In
particular, the effect of non-uniform buoyancy distribution
may be studied, with the objective of keeping the riser as
vertical as possible for the condition of zero external

current. As can be seen from Figure 4-5, the effective
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tension varies between -0.4453 WL or 0.12 kN at s=0 and
0.5547 waL or 0.14 at s=L becoming positive near s=0,39. The
maximum tension occurs at s=L and is equal to 39.5 kN and is
almost entirely due to the internal pressure.

For the water depth of Case 1, and in addition to the two
two-dimensional static configurations, we also studied the
effect of rotating the linear current of Condition 1 to
q: =12, 30, 60 and 90 degrees with respect to the XY plane
{i.e. from the +X to the -2 direction) with a corresponding
platform rotation ¥{L)=10, 25, 25 and 25 degrees. The
solution for the first three-dimensional excitation condition
{ q: =12 and yfL)=10 degrees) was obtained using the two-
dimensional solution for Case 1, Condition 1 as our initial
approximation for the starting-up of the embedding procedure.
The solution for the next three-dimensional excitation
condition ( q:=30 and wéL)=25 degrees) was obtained using the
previous three-dimensional solution as our initial
approximation and so on. The results of our three-dimensional
excitation conditions are shown in Figures 4-6 to 4-15 . In
Figures 4-6 and 4-7 we plot X, and z versus Yo + respectively.

0
In Figure 4-8 we plot X, versus‘zo. In Figures 4-9 to 4-11 we
plot ¢0,60 and.w0 Versus y ., respectivelyt In Figure 4-12 we
plot T, versus Y, and in Figures 4-13 to 4-15, Q% ' Q% ani
ﬂg versus Yg. All wvariables plotted are non-dimensional.
From Figures 4-6 to 4-8 , we observe that away from the ends

the riser nearly follows the direction of the current and its

centerline is fairly close to a planar curve, This occurs
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because the rigidity of this configuration is very small away
from the ends. However, close to the ends Figures 4-6 to 4-11
indicate that the centerline is a highly tortuous curve. This
complicated transition near the ends is due to the effects of
the boundary conditions and the rigidity of the structure. iIn
Figures 4-6 and 4-8, we can see that when ©,=90 degrees (i.e.
the current is in the YZ plane), the riser does not lie on the
YZ plane, <x0=0}, because of the effect of the top end
boundary condition (q§L)=2S degrees). The riser, however, is
nearly parallel to the current direction away from the ends.
In conclusion, the highly buoyant riser under study readjusts
its configuration in response to changes of the direction of
the principal external lcad, i.e. the current, rather than
resist this change. This 1is an 1indication of 1its high
flexibility, Figures 4-9 to 4-11 clearly indicate the extent
of boundary layers near the ends, where bending effects are as
important as tension effects. Inside the boundary layer
regions, the effective tension Ty (Figure 4-12), and the
components of g (Figures 4-13 to 4-15) change very rapidly
while for the remainder of the riser these quantities are
slowly varying and nearly constant. The effective tension
outside the boundary layers remains fairly constant for the
same reason as in the two-dimensional configuration., However,
this constant value decreased with changing current direction,
from 6.=10 to 90 degrees because the projected riser area
perpendicular to the current direction decreases. For

example, looking at cross-sections near s=0.5 where ¢ =80
0
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degrees and ¢,=0, we cbtain ¢60.5)=6.4, 16,0, 20.4 and 16.9
degrees. In this case wéO.S) represents rotation angle from
the XY plane and therefore the relative rotation of the
current with respect to the cross-section is 5.6, 14, 39.4 and
73.1 degrees which together with Figure 2-1 provides an
explanation of the decrease of the projected area. Figure
4-13 for QE indicates that the maximum torsion Qg , occurs
when Bc =60 degrees, or for a relative rotation between
current and most cross-sections close to 45 degrees, where the
torque due to the current is maximum. However, the resuting
maximum shear stress due to torsion is small, as expected from
order of magnitude estimates, and is not a critical parameter
in this case. Figures 4-14 and 4-15 show that as the current
direction changes from @c =0 to 90 degrees, QE and QE near the
ends increase and decrease, respectively. The boundary

conditions and the change of current direction provide an

immediate explanation of this change, The bending strain,
eb , in a general three-dimensional configuration can be found
easily from eb = ﬂgn - qg , where & and n are the

non-dimensional local coordinates of a point of a cross
section within the material layers participating in bending.
So, for example, the maximum bending strain at s=L for Case 1,
Condition 1 (two-dimensional configuration) is 0.068 while for
Case 1 and the three-dimensional configuration with 8. =90 and
wJL)=25 degrees the corresponding value is 0.065, The
decrease in the maximum bending strain between the two

excitation conditions is due to the decrease of the overall
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drag due to a decrease of the projected area perpendicular to

the current.
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Figure Legend (Figures 4-6 to 4-15)
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Coming now to Case 2, where the top end of the riser has an
offset of xT=6.lO m and, due to increase of water level,
yT=82.30 m. Here, again the riser is subject to a linear
strong current in the x direction with v, (0)=1.03 m/s and
W<(hw)=l'55 m/s where m‘=hi=85.34 m. In addition,wO(L)=O and,
therefore, the riser has a two-dimensional configuration in
the XY plane without torsion. Figures 4-16 and 4-17 show the
results for this excitation condition, obtained be executing
our two-dimensional static program. The initial approximation
for our embedding technique was obtained using the method of
Section 3.2 for a constant current equal to 1.29 m/s, the mean
value of the actual currect. As in Case 1, Conditien 1, our
procedure slowly applies the effective weight forces and
modifies the current to the actual linear profile. Figure
4-16 shows the displacement X, {(solid 1line) and the angle
A (dashed line) as a function of y,. Figure 4-17 shows the
component of the rate of rotaticn Qg (solid 1line) and the
effective tension T, {dashed line) as a function of y .
Again, all variables plotted are non-dimensional.

The comments pertaining to the response for Case 1,
Ccondition 1 also hold 1in the present excitation condition.
The maximum effective tension for Case 2 is equal to 16.6 KN
and the maximum tension 1is 55.6  KkN. The tension due to
internal overpressure again amounts to 39.8 KN. The increase
of the effective tension with respect to Case 1, Condition 1
is a result of a decreased sag due toO the change of the

position of the top end with respect to the lower end of the
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riser. Finally, the minimum bending radius for the present
case is 1.05 m, i.e. 16.4% larger than the corresponding value
for Case 1, Condition 1 and therefore less critical. AS
s:ated before, the value of the minimum bending radius is an

important design parameter and needs to be controlled with

appropriate strain relief units at the ends.
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Chapter 5
NUMERICAL RESULTS FOR A BUOYANT RISER WITH A SINGLE

BUOYANCY MODULE

The riser analyzed in this Section is made up of two
flexible tubes with inner diameter of 85.7 mm and outer
diameter of 122.9 mm clamped together and haviné the same
structural characteristics as in Chapter 4. However, this
riser does not have small wuniformly distributed buoyancy
modules as the riser of Chapter 4. The present riser Iis
supported by a single large buoyancy module placed at
approximately 1/3 of the length from the lower end, which
gives the configuration a lazy S shape. This example was
selected because no numerical data for lazy S configurations
was available to us and only in order to test our computer
program for & situation involving sharp changes of the
structural characteristics of the riser such as those
occurring in the presence of large buoyancy module or buoy at
some point along the length of the riser.

The overall riser characteristics are: L=88.392 m;
Wy=125.55 N/m; EA=267 MN; A =237.4 er? ; A;=115.4 cm?;  04=820
kg/m3; p=3.45 MPa; c=0; vertical distance of lower supporet,

s=0, from ocean floor is 7.62 m.
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For the bare riser sections, we used the following

additional characteristics: wW=251,1 N/m; E1m1=3.3 kN.mz;

£156212.2 kN.m®; GI'=0.582 MN.m2; D°=0.2458 m; DN=0.1229 m;

p51=0.772 m; m=49.93 kg/m, mE=40.47 kg/m; m§=0; me =48.638
kg/m; mg =12.16 kg/m; J%%=0.4932 kg.m, J;°=0.0781 kg.m. The

bare riser sections extend for 11=28.964 m and 12=57.928 m

from s=0 and s=L, respectively.

For the riser sections covered by the buoyancy module we
used: We-7147.4 N/m; EI™=89.1 MN.a?; EI°C=89.1 MN.n?;
61P=69.1 MN.mZ; p*-p"=1.269 m, p§"=20.53 m: m=566.4 kg/m;
m®=556.9 kg/m; mS =1271.4 kg/m; my =nfl =1296.4 kg/m;
J5%=106.51 kg.m; J§;=O. In order to model the transition of
the structural rigidities between the bare riser sections and
those covered by the buoyancy module, we assumed that the bare
riser rigidities increased linearly to the above rigidities
within 0.2 m from each end of the buoyancy module. The
physical length of the buoyancy module is Lb=1‘5 m so that
L=1, + L+ 1_. The lower end of the buoyancy module is at

1 b 2

s=1 from the lower end.
1
In this work we studied two two-dimensional excitation

conditions at a water depth of 72.62 m with h ,=h;=65 m, xT=2O
m and yT=62 m in the presence of unidirectional strong
currents, In the first case we used a constant current with
Vx=2 m/s and the second case a8 linear current with v, (0)=1.03
m/s and V,(h, )= 1.55 m/s. Given that the average effective

weight per wunit length W,=125.55 N/m is now significant as

compared to the current force due to the mean value of the
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ﬁgﬁxlv I where 5£=0.263 m is the mean

current, 0.5pwc %

D
diameter, we started the embedding procedure using as initial

current a very strong constant current with V, =5 m/s for which
the initial analytical approximation of Section 3.2 is
expected to be reasonable and solved the problem for Vx=5 h/s
accurately including all forces. Using this converged
solution for V =5 m/s as initial approximation, we solved the
problem for a constant current Vx=3'5 m/s using our embedding
technique. This last solution was subsequently used as
initial approximation for the solution of a static problem for
a constant current Vx=2.75 m/s determined using our embedding
technique. Finally, this solution for Vx=2'75 m/s was used as
initial approximation of our first static problem involving a
constant current with speed Vx=2 m/s. The solution for Vx=2
m/s was used as initial approximation for the solution of our
second static excitation case involving a linear current. In
order to accurately resolve the structural changes at the ends
of the buoyancy module, a sufficiently large number of initial
points need to be used to start the process correctly. So,
for example, our initial analytical solution for vV, =5 m/s used
120 uniformly distributed points, which provides three
discretization points within the buoyancy module. Qur final
solution for the constant and linear currents involves 18
discretization points within the bucyancy module out of a
total of 195 dicretization points. The remaining 57
discretization points beyond the 120 original points are

densely distributed close to s=0, s=L, s=l1, sz1.|+Lb to
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provide accurate resolution of regions involving sharp changes
of the solution. The addition of new discretization points
beyond the original 120 is done automatically by the program
in order to reduce and equidistribute the error on the final
mesh [18].

Figures 5-1 to 5-3 and 5-4 to 5-6 show our results for the
constant 2 m/s current and the linear current respectively.
Figures 5-1 and 5-4 show the displacement X, (solid line) and
the angle ¢ o in degrees (dashed line) as a function of y,.
Subscript o denoting static gquantities was dropped for
convenience in the figures. Figures 5-2 and 5-5 show the ra:e
of rotation Q% (solid 1line) and the effective tension T,
(dashed line) as a function of y,. Figures 5-3 and 5-6 show
the shear férce Qg (solid line) and the tension in the
material Py (dashed line} as a function of yo. All variables
plotted except 40 are non-dimensional. Lengths are
non-dimensicnalized by L and forces by waL=ll.1 kN.

For the «case of constant current 2 m/s ,the buoyancy module
lies approximately between y,=0.1809 and 0.1854 and for the
case of the linear current between y;=0.2367 and 0.2284. In
terms of arc length the buoyancy module lies approximately

between s=0.3277 and 0.3447. The plots of¢_, 20, T, Qg and

o’ o
P, indicate a very sharp,change of the solution near the ends
and near the pecsition of the buoyancy module, as expected.
For the constant current case the minimum bending radius

occurs at s=0Q and is approximately equal to 0.406 m, while for

the weaker linear current case, this occurs near the buoyancy
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module anéd 1is equal to 0.440 m. This occurs because the
relative importance of the buoyancy force from the module as
compared to the normal drag force increased from the first to
the second excitation case. The above values of the bending
radii are excessively small which indicates that improvements
in the design of the system should be made. This was not
attempted because the present system angd excitation were only
chosen to exhibit the applicability of our program for very
nen-uniform systems. We expect however that strain relief
units at the ends and the connection with buoys and more
uniformly distributed modules will provide the tools to

achieve better performance.
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