
SURFACE CURRENT DRIFTERS EVOLUTION and APPLICATION

E.C. Monahan, P.C. Hawkins, & E.Q. Monahan MICHIGAN SEA GRANT PROGRAM

SURFACE CURRENT DRIFTERS: EVOLUTION AND APPLICATION

BY

Edward C. Monahan1

Peter C. Hawkins

and

Elizabeth A. Monahan

Department of Atmospheric and Oceanic Science
College of Engineering
The University of Michigan

Michigan Sea Grant Program
MICHU-SG-74-603

September 1974

Table of Contents

]	Page
Sec	ction A:	Introduction	n and	Backgr	ound	(Edv	vard	Mor	ahan]		•	1
Sed	ction B:	Procedure f (Peter C. H	or Pro lawkins	cessine (3)	g Dri	ift (Curre	ent	Marke	er Da	ıta	17
I.	Introduc	tion	•		•	•	•		•			17
II.	Preparat	ion of Curr	ent Ma	rkers	•		•		•			17
III.	Drift Cu	ırrent Marke	r Rele	ase Log	·				•	•		18
IV.	NODC Dri	ft Bottle C	oding	Form-re	eleas	e Da	ta		•	•		20
V.	Key-punc	hing Drift	Bottle	· Coding	Rel	ease	Dat	a	•			20
VI.	Chart Re	cords of Re	lease	Data	•	•	•	. •	•		•	21
VII.	Procedur	e for Recor	ding R	ecovery	Dat	a	•		•		•	22
VIII.	Computer	Summary of	Relea	se and	Reco	very	Dat	a				24
IX.	Analysis	• • •	•			•	•	•			•	24
Sec	tion C:	Appendices	•		•	•	•		•	•		25
I.	Sample fo	orm of Prepa	aratio	n of Dr	ift (Curr	ent.	Mar]	cers			25
II.	Sample fo	orm of Drift	t Curre	ent Mar	ker 1	Relea	ase :	Log	•	•		26
III.	Drift Ma	rker Types						•	•	•	•	27
IV.	Sample le	etter for Ad	cknowle	edgment		•	•		•	•		28
v.	Sample of	E Summary Co	mputer	r Print	out	•	•		•			29
Sec	tion D: I	Bibliography	(Eliz	abeth A	A. Mc	naha	an)	•				30
* pa	ae 62 :	Addendu	ιm									

Figure Captions

Figure	1:	Evolution of sea surface drifter types. Time line from upper left to lower right. Small numbers identify literature citations via attached key 3
Figure	2:	A cross-sectional view of the Flotteur of Prince Albert the First of Monaco. Note the waterline 8
Figure	3:	Release and recovery points for Möbius drifters released in Saginaw Bay in August 1973. Four drifters released from point 2 were found on the shores of open Lake Huron, one being found on the Canadian side of the Lake
Figure	4:	Release and recovery points for Möbius drifters released from R/V KNORR in February and March 1974. O's with letters locations where 25 drifters released, O's with numbers locations where 50 to 76 drifters released. X marks recovery point 11
Figure	5:	Historic open ocean drifter trajectories. Based primarily on Carruthers (1956), Krümmel (1908), and Standler, et al (1969)
Figure	6:	Drifter release locations, 18-20 July 1974, during first research cruise of R/V LAURENTIAN. Points 1, 10, and 11 were treated as "diagnostic points", at each of which 150 to 200 drifters were released 14

SECTION A: INTRODUCTION AND BACKGROUND

E. C. Monahan

While spending several years in residence at the Woods Hole Oceanographic Institution working on my dissertation, I was impressed with the extensive drift-bottle study of the coastal currents then being conducted at that institution by Mr. Dean F. Bumpus (e.g., Bumpus and Lauzier, 1965). It was thus quite natural, when I subsequently found myself sailing up and down Lake Superior on Great Lakes Ore Boats in the conduct of an entirely different kind of research effort, to nonetheless consider, and then implement, a drift-bottle current study (Monahan, 1968; Hughes, et al, 1970), to supplement the meager circulation data then available on that body of water.

From that time forward, I have been convinced that an explicit, computer-based, technique is needed to enhance the worth and acceptability of drifter current study results.

At present, in conjunction with Mr. Philip Pilgrim and Prof. John H. Holland of the Computer and Communications Science Department of this university, we are working on two such techniques. Since these techniques will be presented in detail in Mr. Pilgrim's dissertation, I will only sketch them here.

The first scheme, which I refer to as the "diagnostic points" technique, is a method of testing, via intercomparison, several hypothetical circulation patterns for the body of water under study. The alternative circulation patterns can be derived from numerical dynamical circulation models, from previous (or preliminary) measurement programs, or from intuition. Each hypothetical circulation pattern is used, in turn, to assign current vectors to each cell into which the body of water is subdivided in the computer. A simple diffusion model is also programmed into the computer. A geographical point is then selected in the body of water under study, and in computer simulation a large number of drifters are released from that point, and via the processes of advection and diffusion, many will be seen to intersect, or strand on, the shoreline. The distribution of these stranded drifters is then intercompared, as we go from one hypothetical circulation pattern to another. If the variation in the distribution of stranding between the various hypothetical patterns is slight, then this particular geographical point is deemed unsuited as a "diagnostic point", and we proceed to other

points and other simulations, until we identify several geographical points that should make good "diagnostic points", in that the computer simulations indicate that for each point, the patterns of drifter stranding will vary markedly between the various hypothetical circulation patterns. We then release, in the actual body of water, large clusters of surface drifters at these predetermined "diagnostic points" and thereby hope to economically conduct the critical experiments that will enable us to select the hypothetical circulation pattern that most closely mimics nature.

The second scheme, which we might well call the "tabula rasa" technique, is the more demanding and comprehensive approach, and may in the long run have the greater potential. Here we begin with a "clean slate", i.e. no assumptions about the specific circulation pattern within the body of water under study. We do have a list of physical constraints to be applied to our body of water, and they are arranged in a hierarchy, with only one of them held absolute (that the water can't cross the shoreline), and all of the others given finite and different, The non-absolute constraints include: 1) the requirement that the flow in the body of water be horizontally nondivergent, 2) the minimization of the system's kinetic energy, 3) the minimization of streamline curvature, and 4) the minimization of speed changes along a trajectory, to name only a few. We then begin to introduce our observational data, one drifter return at a time. After each new set of data (release point, recovery point, time elapsed, for each additional drifter return) is introduced, we iterate our circulation pattern to minimize the violation of our weighted constraints. Due to diffusion and other factors it is clear that simple trajectory analyses for the various drifter returns might give us a set of markedly different current vectors for the same cell in the computer simulation of our body of water. Thus we must devise explicit techniques for establishing the "optimum" current vector for each cell and for assigning penalty weights to each cell based on the trajectory scatter through that cell. Without going into further detail, it should be apparent that the "tabula rasa" technique of drifter return analysis is considerably more complex than the "diagnostic points" procedure. It is my belief though that this second scheme will be more fruitful in establishing and sustaining the desired interaction between the applied physical oceanographers (or limnologists) who use it in interpreting their observations, and the geophysical fluid dynamicists, who are developing the various numerical dynamical models. deed, by determining the sensitivity of the computer_produced circulation patterns to variations in the weighting of the various physical constraints, we can hope to add to the fundamental knowledge about the general behavior of bodies of water.

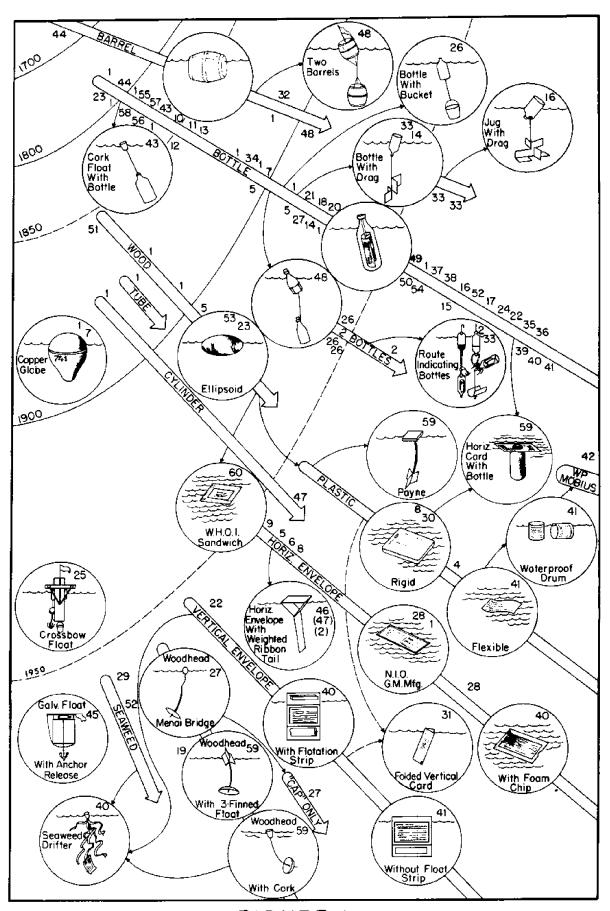


FIGURE 1

KEY

1.	Carruthers 1956		Pillsbury 1890
2.	Barnes 1959	33.	Carruthers 1928
3.	Nelson 1922	34.	Harrington 1895
	Terrell and Green 1972 Brodie 1960	35.	Hughes, Farrell and Monahan
	Heath 1969	36.	Monahan 1968
	Garstang 1898	37.	
	Duncan 1965		1957
	Olson 1951	38.	Ruschmeyer and Olson 1958
	Bache 1856	39.	
	Bache 1854	40.	Higgins 1972
	Bache 1855		McCown 1973
	Bache 1849	42.	Monahan and Monahan 1973
	Trites and Banks 1958	43.	Daussy 1840
15.	Dodimead and Hollister 1958	44.	Bulletin Trimestriale 1954
	Chevrier and Trites 1960	45.	Cahiers Oceanographiques 1954
	Hamby 1964	46.	Bougis and Ruivo 1955
	Schulz 1935	47.	Duboul-Razavet 1958
	Woodhead 1970		Thoulet 1908
	Tibby 1939	49.	Bumpus and Lauzier 1965
	Uda 1936	40.	Bumpus 1965
22.	Magliocca and Leudemann 1970	51.	Babinet 1856
23.	Gakkel and Samsoniya 1961	52.	Yoshida 1963
	Norcross and Stanley 1967	53.	
25.	Carruthers 1939		Institute, USSR 1932
	Crestani 1931	54.	
	Harvey and Gould 1966	55.	Philosophical Magazine 1819
28.	Tomczak 1968	56.	Philosophical Magazine 1822a
	Innman and Quinn 1952	57.	
30.	Stander and Campbell 1969	58.	Philosophical Magazine 1809
	Martin 1967	59.	
		60.	Bumpus 1971

For several years after my work on Lake Superior I had no opportunity to carry out additional drifter studies, but beginning in 1971, when I first conducted the University of Michigan's spring Oceanography Field Practicum Program in Woods Hole, I again, in conjunction with my students, had an opportunity to use sea surface drifters in current measurement programs. By the spring of 1972 we were conducting field intercomparisons of various drifter designs which, when coupled with laboratory tank studies, quickly convinced us that all drifters do not behave alike (see, e.g., Higgins, 1972; Monahan et al, 1974). Some designs proved to be much too susceptible to direct wind influence.

I began to consider designing new types of sea surface drifters, and was led to look to the literature to see what had already been tried. This literature search, which became protracted and was conducted in large part by Mrs. Elizabeth A. Monahan, yielded a quantity and variety of sea surface drifter designs that are truely staggering. A summary of these numerous designs, arranged to show their historical evolution, is given in Figure 1. The key which accompanies this figure provides the association of the small numbers on the face of Figure 1 with the extensive bibliography included in this report.

There have been at least a half-dozen significant mutations of the simple drift-bottle design alone.

Prince Albert the First of Monaco, patron of that principality's Oceanographic Museum, was responsible for a number of drifter designs that were introduced in the latter part of the nineteenth century. His most elaborate drifter was in the form of a pear, made of copper, and contained a glass enclosed note and a suitable amount of ballast (Figure 2). Dr. J. N. Carruthers, of England's National Institute of Oceanography, noted for his many ingenious current measuring techniques, has in the past several decades designed several route indicating drifters, ranging from a double drift bottle device to a "crossbow float".

With the advent of durable plastics after the Second World War, a number of new surface drifter types made partially or entirely of plastic were introduced. Among these were a rigid plastic card that floats horizontally on the sea surface and a card-containing envelope made of plastic film which also floats flat in the water. Another popular drifter consists of a plastic envelope containing a postcard which is ballasted with a metal tab or washer so that it floats vertically.

Table I: Record of Use of Sea Surface Drifters Made of "Ascot"

													6					(F)				ĺ	(2)				í	(2)				
Comments	(1)	=	=	E	=		:	=		=	(2)	(7)		=	=			(2),	(4)		=	=	: :	!	=	=	: =		*		*	*
ٽ *	49.5	53,3	32.0	52.0	5.0		20.0) u	0.00	20.5		0.07		0.0	0.0) }	1	0.1	10.0	. J.	# C	25.0	15.0	40.0	7	7.17	13.0	10.3	38.3		33.4	20.3
Recovered	.52	56	16	26) r 	I	4	ታ L	CT	α	ה ה ה	77		0	c	>		1	9		0 !	15	6	24	,	£Ţ	∞	9	247		215	151
Released	105	105	i C	ט ני	000	>	0.0	9 6	i. L	90		011		26	001) -		826	9		ני	09	09	09		09	09	28	645		920	774
Cooperating Scientists	D. McCown	=	Ξ	=	E		=	; ;	=	=		D. McCown	T. Danek	00		M. Staicup & D. Atwood			7 · · ·	D. Elikason	=	=	=	=		¥	=	=				R. Monier
Vessel	R/V ASTERIAS I	(F O P P)	(=	=		=	•	=	=		R/V SHENEHON	(N.O.A.A.)	=		R/V CRAWFURD (U.P.R.)		R/V KNORR (W.H.O.I.)		K/V ASTEKIAS (W.H.O.I.)	2	=	E	=		=	=	=	R/V	LAURENTIAN	"(M-∩)	±
Location	Buzzards Bay,	Mass.				Vineyard Sound,	Mass.	=	Buzzards Bay,	Mass.	=	ζ,	r. Huron	Lake Huron		Mona Passage, Atl. Ocean- Carib. Sea		- 4		Vineyard Sound Mass.	=	=	=	Buzzards Bay,			=	=	South. Lake	Michigan	=	
Drifter Type*	ပ	•	-	ပ	0	ບ		0	ပ		0	Z		Σ		Σ		×		0	Σ	£ C	ە ر	n C	•	Σ	ξ C	ט כ	74 M			74 0 74 0
Date	May 8, 1973		=	10	10	17		17	22		22	August 29-31,	1973	August 31, 1973	20-21	1973	u	rebruary o - March 5, 1974		May 10, 1974	ć -) ·	01,	0 5) †	9) (0 4 6	10-21			July 18-20, 1974 August 6-9, 1974

Addendum

to

Surface Current Drifters: Evolution and Application

(MICHU-T-74-004)

 Revisions and Additions to Table I, based on drifter releases and returns subsequent to 21 August 1974 but prior to 12 December 1974.

Table 1 Update

.

<u>Date</u>	Drifter Type*	<u>Released</u>	Recovered	<u>%</u>	Comments
√July 18-20, 1974	М	645	247	38.3	*
July 18-20, 1974	0	920	215	23.4	*
Aug. 6-9, 1974	0	774	157	20.3	_ ★
(Aug. ?, 1974	M	200	1	0.5	(7)
Sept. 14-15, 1974	M	200	0	0.0	(8)
/ Oct. 3, 1974	0	20	0	0.0	(9)
7 Oct. 3, 1974	М	20	0	0.0	(9)
Oct. 3, 1974	S	10	2	20.0	(5)*(9)(11)
Oct. 18-24, 1974	0	763	15	2.0	(10)
? ? 1974	M	?	1	?	(12)

*See Table I in report for details

- (7) Irish drifters, released from Gulf Oil tanker out of Bantry Bay, release log not yet available. First return from Head of Kinsale, Co. Cork.
- (8) Irish drifters, released in North Atlantic Ocean from O.W.S. WEATHER SURVEYOR (from I.M.E.R. Edinburgh) on way to Ocean Station "Juliett", by Captain P.E. Robertson.
- (9) UMSG drifters, released in Saginaw Bay, Lake Huron, from R/V SHENEHON (N.O.A.A./G.L.E.R.L.), by L. Danek.
- (10) UMSG drifters, released in southern Lake Michigan from R/V LAURENTIAN, by P. Pilgrim.
- (11) Two returns from Ontario, Canada.
- (12) Irish drifters, released by University College Galway off West Coast of Ireland, release log not yet available. First return from Donegal.
- ЛЦ ✓ II. Correction to Figure 6

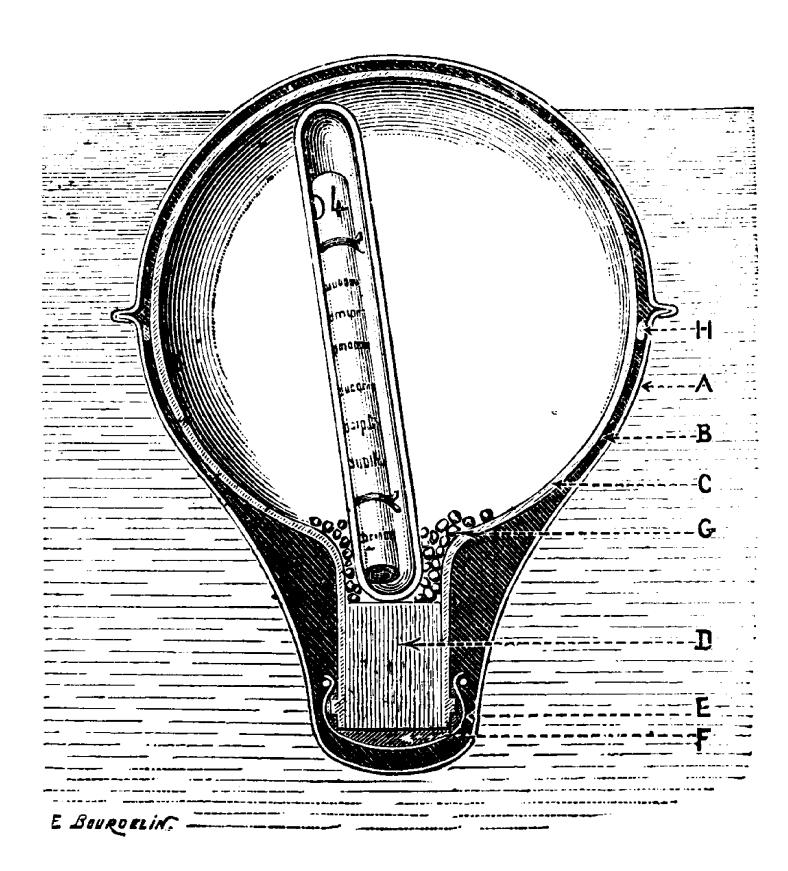
 Meridians are incorrectly labeled. Meridian marked as 88°W is actually 87°30'W. Likewise, meridian labeled 87°W should bear notation 86°30'W.
- 739 ✓ III. Addition to Bibliography
 The following citation should be added to the bibliography:
 Metcalf, W.G. and M.C. Stalcup, 1974: Drift bottle returns from the
 Eastern Caribbean. Bull. Mar. Sci. 24; 392-395.

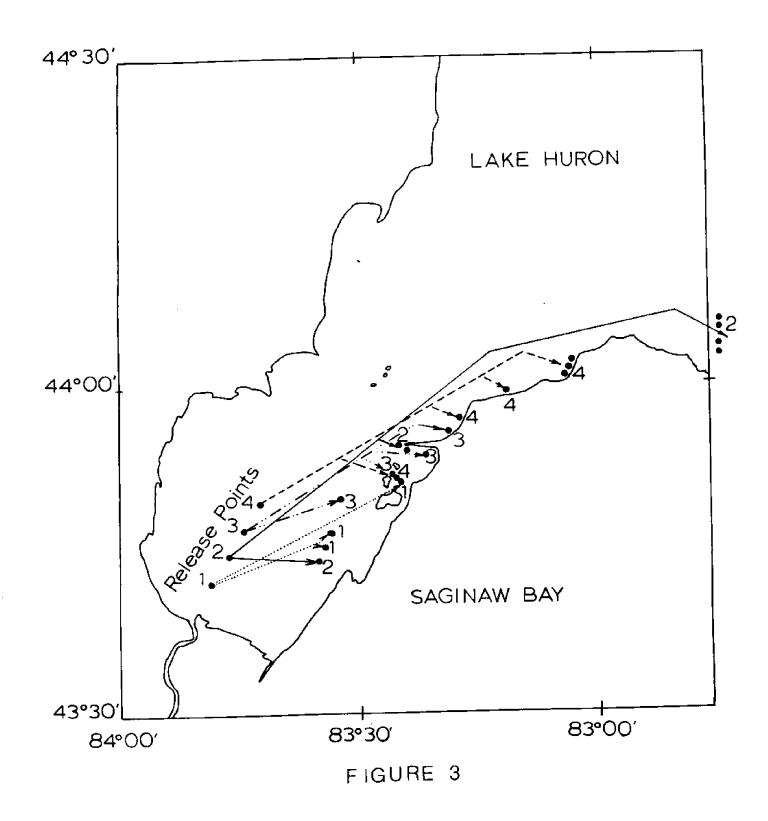
Added to page 7

Table 1 (continued)

* Encoded in accord with Table IV, N.O.D.C. Manual M-6, with modifications proposed by us.

- Returns as of 27 June 1973 Returns as of 24 June 1974
- Single return from Haiti as of this date
 - Returns as of 7 June 1974
- "Ascot" orange cards inside flint glass bottles
- Irish drifters, released from Gulf Oil tanker out of Bantry Bay, release log not yet available. First return from Head of Kinsale, Co. Returns as of 21 August 1974 3
- Irish drifters, released in North Atlantic Ocean from O.W.S. WEATHER SURVEYOR (from I.M.E.R. Edinburgh) on way to Ocean Station "Juliett", by Captain P.E. Robertson. 8
- UMSG drifters, released in Saginaw Bay, Lake Huron, from <u>R/V SHENEHON</u> (N.O.A.A./G.L.E.R.L.), by L. Danek. 6)
- (10) UMSG drifters, released in southern Lake Michigan from R/V LAURENTIAN, by P. Pilgrim.
- (11) Two returns from Ontario, Canada.
- (12) Irish drifters, released by University College Galway off West Coast of First return from Donegal. Ireland, release log not yet available.



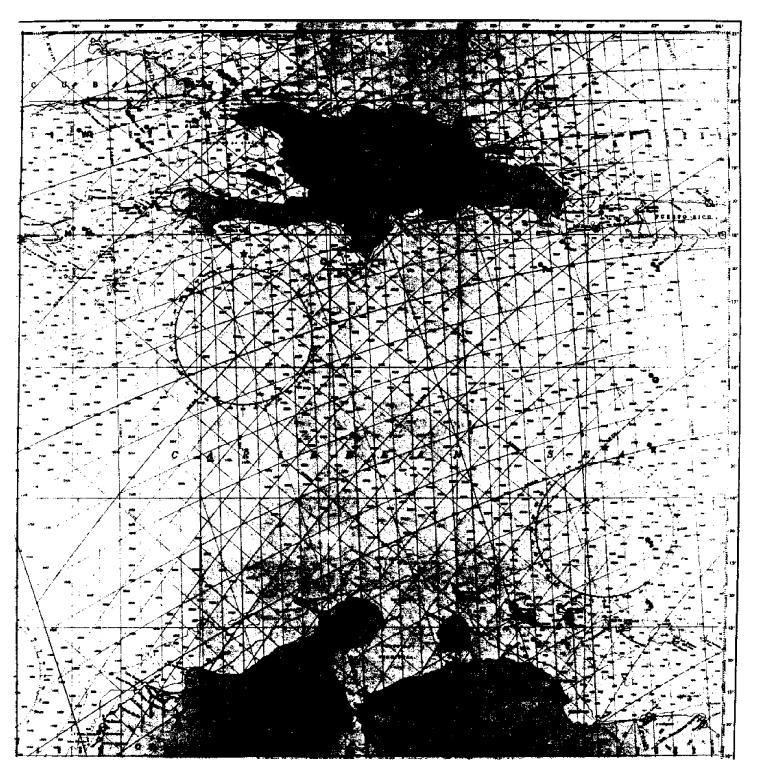

FIGURE 2 — Flotteur du Prince de Monaco: coupe montrant la disposition intérieure.

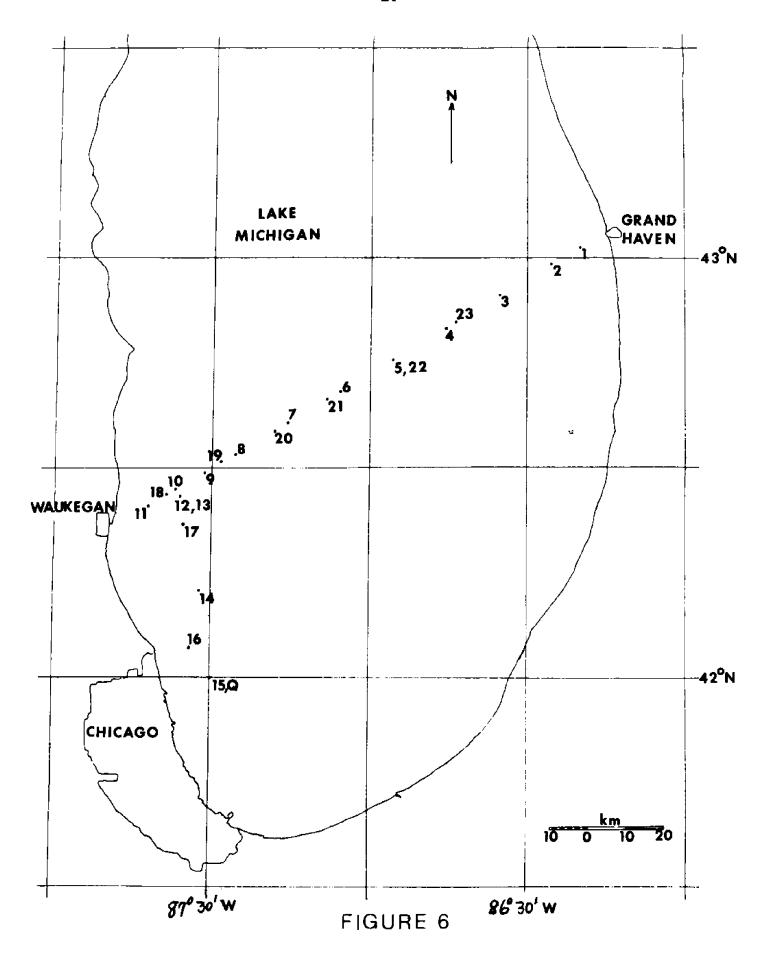
One of my students had read of a "waterproof paper" used in divers' tablets, and knowing of my search for a suitable material for sea surface drifters he called this material to my attention. It turned out to be a product of Appleton Papers, Inc., Appleton, Wisconsin, going by the trade name of "Underwater Ascot". It is produced by applying a special coating to both sides of sheets of Dupont's "Tyvek", a spun-bonded olefin. I was pleased to find that I could obtain from Appleton Papers sheets of orange fluorescent "underwater Ascot". It is from this material that all of our recent drifters have been made. (We have been informed by Dupont's Public Affairs Department that ours is the first use of this material in the manufacture of printed sea surface drifters.)

In time for the spring 1973 Oceanography Field Practicum program in Woods Hole, we had had printed by the M.B.L. Press, Ann Arbor, Michigan, a supply of two kinds of drifters: simple, flexible, horizontally-floating cards (3-1/4" x 5-1/2"); and "drums" (simple loops or rings made of strips 3-1/4" wide and 11" long). Mr. Donald L. McCown, a student participant in the Practicum released many of both types in the nearby bays that spring. We had a return of 39.3% on the simple cards and 43.9% on the drums (or rings). See Table 1 for details.

Encouraged by the high fraction returned, we set out to use drifters made of "Underwater Ascot" in our summer 1973 study of the circulation in Saginaw Bay of Lake Huron. While the "rings" were clearly less directly wind influenced than the simple cards, we decided to use even longer (approximately 3 foot) strips of "Ascot" in our Lake Huron work to improve still further the drifter performance. (A return postcard is printed on a portion of each strip, as is a text explaining the nature of our work). To keep these larger loops from "squashing" into elongated ovals, with their major axes lying horizontally near the water surface, we gave each strip of "Ascot" a half-twist before stapling the ends together (preferably with stainless steel or copper staples), thus forming a Möbius loop. The results of this study of Saginaw Bay are depicted on Figure 3. As indicated in Table 1, we had a satisfactory 20% return of postcards from those Möbius drifters, several returns coming in "in good shape" as late as May 1974.

In order to establish the durability of drifters made of this material, over long periods of time on the high seas, we prepared bilingual (Spanish-English) Möbius drifters, and in conjunction with Mr. Marvel C. Stalcup of W.H.O.I., and Dr. Donald K. Atwood of the University of Puerto Rico; and released over 900





FIGURE 4

of them in the Caribbean Sea between September 1973 and March We received negligible returns (see Table 1 and Figure Since many of these were released between Cuba and Haiti, political and linguistic difficulties may in part explain the It might also be mentioned that the extremely low return rate. Caribbean is a region notorious for low drift-bottle return rates, e.g. Stalcup and Metcalf (1972) experienced a 3.3% return of drift bottles released during a study of currents in the passages of the Lesser Antilles. In spite of these considerations, and the paradoxical fact that it is invariably the drifter that is adrift a short period of time and travels a modest distance that provides more solid insight into the currents of a region than the drifter that is afloat for years and travels thousands of miles (e.g., see Figure 5), we are nonetheless disappointed in the insignificant return rate from our Caribbean study. We have already begun participating in another open ocean current study and we intend to participate in several additional such studies, to determine, once and for all, the suitability of drifters made of "Ascot" in circumstances where they must endure continuous wave action during long periods afloat.

Tests conducted during the spring 1974 Oceanographic Field Practicum program by Mr. David Eriksson, a student participant, showed that the simple drum drifters and Möbius loop drifters suffered less direct wind influence than did the horizontal "particard" drifters (See Table 1 for return percentages). An advantage of all the drifter types made from "Underwater Ascot" is that while a herring gull may find one of these drifters as enticing as any other bright floating object, its exploratory pecks will not have the catastrophic effect on this drifter that they often have on a plastic envelope drifter. (A plastic envelope when pierced often floods and sinks, or the enclosed paper card becomes an illegible pulp.)

Starting in July 1974, as one part of a study of the currents in southern Lake Michigan, supported by the University of Michigan Sea Grant Program and the City of Chicago, I, assisted by Mr. Roy Monier and others, have been releasing large clusters of drifters at numerous points in the lake, with as many as 150 to 200 being released at each of several predetermined "diagnostic points" (Figure 6). By 9 August 1974, 2389 drifters (all but 50 of which were either simple drums or Möbius loops made of "Ascot", see Table 1) had been set adrift in Lake Michigan. The initial rate of return (see Table 1) indicates that ultimately a higher fraction of drifter postcards will be returned from Lake Michigan than from the previous year's Saginaw Bay study. (The insert in this report has printed on it samples of the Lake Michigan

version of our drifter. When cut from the sheet it can be bent into the drum or ring shape and stapled, or by adding a 22" additional strip to the end of the basic 11" strip, one can then form, as previously described, a larger Möbius drifter).

In order to carry out a second open ocean test of our "Ascot" drifters, we have joined Prof. Brian McK. Bary, of University College Galway, in the conduct of a study of the currents off the west coast of Ireland. The west coast of Ireland, being for much of its length rugged, should provide a critical test of our drifters, again in a situation where drift-bottles have fared badly (Tulloch and Tait, 1959). By the summer of 1974, 1200 of the 2000 trilingual (English, French, and Irish) drifters printed for this study had been sent to Ireland, and the Gulf Oil Corporation Marine Department had agreed to assist us by providing for the release of drifters from their tankers sailing in and out of Bantry Bay.

In conjunction with Dr. R. Molina of the Laboratorio Oceanografico de Canarias, and Sr. N. Gonzalez of the Laboratorio Oceanografico de La Coruña, I am at present preparing the text (to appear ultimately in Spanish, Portuguese, French and English) for "Ascot" drifters that will be released in a study of the currents off the northwest coast of Spain, and in the Ria (estuary) de Arosa. Participating in this study will be scientists from the Instituto Español de Oceanografica, the Woods Hole Oceanographic Institution, and The University of Michigan.

I have likewise begun, with Dr. David A. Ross of W.H.O.I., to prepare an Arabic-English drifter to be used in the Eastern Mediterranian off the coast of Egypt.

The next section of this report, prepared by Mr. P. Hawkins, describes in detail the steps involved in preparing drifters and processing drifter postcard returns.

A bibliography, listing 260 papers and publications dealing with surface current drifters, and prepared by Mrs. E. A. Monahan, represents the final section of this report.

In conclusion, I would suggest that others, even those not primarily interested in physical oceanography (or physical limnology) but with a need of information about the currents in their regions of study, consider mounting modest circulation studies using drifters of the type I have described. They are relatively inexpensive to manufacture, simple to assemble, occupy negligible volume on even the smallest of research vessels, and can be deployed with ease from aircraft as well as from ships. In addition, the use of drifters of these types does not present

the environmental specter of broken glass. Granted it is ideal to use sea surface drifters to complement current determinations obtained via extensive drogue tracking and the analysis of eulerian records from moored current meters. But when it is not possible to carry out a full-scale current study (for fiscal or other reasons), rather than curse one's fortune, I recommend that a surface drifter study be undertaken.

SECTION B: PROCEDURE FOR PROCESSING DRIFT CURRENT MARKER DATA

Peter C. Hawkins

T. Introduction

The purpose of this procedure is to outline in detail those steps concerned with the collection and processing of data in a scientific program designed to measure water currents with drift current markers. The procedure covers the preparation, release and recovery of drift current markers as well as the transmitting of appropriate data to the NODC. It is intended that the steps outlined will be applicable for drift current markers in large bodies of fresh water (eg. Great Lakes) as well as ocean waters. The procedure has been developed in connection with an investigation by the University of Michigan - Sea Grant Program which is sponsored by NOAA (U.S. Dept. of Commerce).

II. Preparation of Current Markers

The proper preparation of current markers will serve to minimize or avoid many possible pitfalls in the subsequent processing of data following the release and recovery of the drift current markers. A checklist of critical areas appears below.

<u>General</u>

 Postal Permits. To facilitate and encourage returns, it is suggested postal permits be used on the reply cards whenever possible.

When current markers are released in waters where the geography or prevailing currents may lead to multi-national recoveries, there is no "international postal permit" which can be employed. In this case, you will have to request that the finder mail in the reply card at his own expense with a promised refund of postage charges.

- 2. Ink Fading. Drift current markers are subjected to continuous exposure to sunlight. Such exposure will normally result in a relatively quick (eg. 2-3 weeks) and substantial fading of the fluorescent dyes used in some drift marker reply cards.
- 3. Water-proofness. Despite all precautions, some reply cards are subjected to a water soaking either prior to recovery or during the process of recovery. Waterproof reply cards will permit, in many cases, the finder to use the reply card for its intended purpose where in the past a water soaked reply card would likely be discarded.
- 4. Writing Surface. The concern for a waterproof reply card has led to the use of various plastics as a material for the drift current marker reply card. Care should be taken to select a material which can be written on with both pen and pencil clearly and with ease.

Inducements

When a drift current marker is recovered along the shore, whether the reply card is sent on to the investigator or discarded may well depend on how much you can arouse the curiosity and interest of the finder. The copy on the reply card, therefore, becomes an extremely important factor in maximizing the number of returns relative to recoveries. Some suggestions are noted below as inducements to the finder to return the reply card properly filled out.

- 1. Letter. Tell the finder that he will receive a letter from the investigatory group acknowledging his efforts. The letter will indicate the time and point of release (Lat., Long.) of the drifter which was discovered.
- 2. Brochure. Tell the finder he will receive, in addition to a letter, a brochure briefly describing the historical and present application of drift markers as a device used by oceanographers to study currents.
- 3. Miscellaneous. Other inducements may include an offer to pass on to the finder a) a financial reward, and b) a brief synopsis of the final technical report on the study.

Numbering

All drift current marker reply cards should be numbered to maintain control over the release and recovery position analysis. It is important to maintain a Master Record of these number (and alphabetic) sequences which have been used to identify reply cards to prevent duplication. Especially in those cases where a drift marker current study is going to take place over a period of perhaps 2-3 years, it is wise to lay out prior to the initial release a number (and alphabetic) plan for the reply cards that will encompass the entire project, again, to avoid duplication or confusion in assigning recovered cards to the proper release.

Batching (Identifying Numbers)

During the preparation of drift current markers for a release cruise, it is suggested the drift markers be batched in "sequential number" groups. In addition, it is recommended a summary record be maintained of the drift markers which have been prepared for the cruise. (See Appendix I)

III. Drift Current Marker Release Log

This form is designed to summarize the pertinent data concerning the release of drift current markers during a cruise.

In addition, as recoveries are made and returned to the investigating body, this record will be the easiest to use in connecting recovery reply cards with the appropriate release information. The form has been designed for easy shipboard use on a clipboard. See Appendix II for a copy of this form.

Following is a brief description of the various headings on the <u>Drift Current Marker Release Log:</u>

Cruise: Name of vessel and cruise number, eg. R/V KNORR No. 347

Investigator: Name of individual completing the Release Log.

Station No.: An arbitrary numerical classification of a given location (Lat., Long.) where the drift markers are released, Example: 129, 029 for No. 29, 007 for No. 7.

Type: Refers to alphabetic identification of various drift marker types. See Appendix III.

Day: Day of month. Example: 21 or 09 for the 9th.

Month: Month of year. Example 12 for December, 07 for July.

Year: Last two digits of year. Example "74" for 1974.

Hour: Notation for time of release in hours and minutes. Use time in time zone of release station. Also, use 0-2400 hours reference. Example 0810 for 8:10 am and 1635 for 4:35 pm. Indicate time zone in heading block.

Lat.: Reference to latitude of release station in "degrees, minutes, tenths of minutes". Example 41°24'.6. In addition, reference to the hemisphere should be noted in the heading of the column in the blank; N for Northern Hemisphere and S for Southern Hemisphere.

Distance from shore: Shortest distance from shore to release station in (nearest) whole nautical miles. Example: "002" for 2 nautical miles, "084" for 84 nautical miles and "121" for 121 nautical miles.

Drift Marker Nos.: Record the numbers of the drift markers released at this station. Be sure to include alphabetical prefixes or suffixes. Examples: "A 0084 - A 0147" (for the 64 drift markers from 84 to 147), "A 9984 - A 9999 and B 0000 - B 0032" (for 49 drift markers), "UMMO 532-581, AOSUM 0093 - 0321".

Subsequently, the information on the <u>Drift Marker Release Log</u> is to be transferred to the NODC <u>Drift Bottle Coding Form</u> (Provisional) Form No. NODC-EXP-3167/37(4-56). See Section B, IV below.

IV. NODC Drift Bottle Coding Form For Release Data

The purpose of this form is to collect drift marker release (and recovery) data in the proper sequence to facilitate key punching (punch) cards for transmission to the NODC. The steps are as follows:

Source of Data

- 1. Reference is made to the <u>Drift Marker Release Log</u>
 (Section B, III) as a source of information for completing the <u>Drift Bottle Coding Form</u> release data.
- 2. Cross Referencing The Drift Bottle Coding Form should be cross-referenced to the Drift Marker Release Logs. It is suggested the "Ship's Name" and "Cruise No." from the Drift Marker Release Log be inserted in the heading at the top of the Drift Bottle Coding Form entitled "Name of Platform". Additional numerical or alphabetical symbols may be used to assure rapid and specific cross-referencing capability from one form to the other.
- 3. Instructions for Completion of the Drift Bottle Coding Form. NODC has published a manual with complete and detailed instructions on the completion of this form.

 These instructions appear in the NODC Manual for Processing Current Data, Part 1, Publication M-6 (Provisional).

Note: Release data is recorded on the NODC Drift Bottle Coding Form immediately. It is then processed onto punch cards and forwarded to the NODC. Recovery data will be processed in a similar manner as it becomes available; there is no delay in recording and processing release data in anticipation of the arrival of recovery data. Release data is processed first and separately.

V. Key-Punching Drift Bottle Coding Release Data

After completion of the NODC Drift Bottle Coding Form, the release data is key-punched on punch cards for transmission to the NODC and computer analysis by the investigating group. Instructions are as follows:

- 1) Instructions for Key-Punching. Reference is made to NODC Manual for Processing Current Data, Part 1. Complete instructions for key-punching are incorporated in the manual. Only release data is key-punched at this time. Two identical cards are key-punched.
- 2) Transmission of Punch Cards. The two (2) identical punch cards containing release data are disposed of as follows:
 - a) First card should be sent to the NODC at the following address:

NODC D761 U.S. Department of Commerce National Oceanic and Atmospheric Administration Washington, D.C. 20235

b) The other card is retained by the investigating group for its own information and analysis.

VI. Chart Records of Release Data

A graphic picture of release (and recovery) data is achieved by noting release (and recovery) positions on a chart of the appropriate area. Two types of charts may be employed. A large bathymetric chart may be used as a "situation chart" noting the results from several related cruises in some detail. For publication purposes, smaller simpler renditions of the same geographic area are required similar to the examples shown in Figures 3 and 6.

In those charts used for publication purposes, more than one chart of a given area may be required depending on the number of release stations and/or the number of drift current markers released at each station. For example, if there are only a few release stations and a limited number of drift current markers released at each station, a chart similar to Figure 3 maybe used. On the otherhand, if the release points number 23, for example (see Figure 6), it is obvious you cannot record all recoveries on this one chart. In this instance, additional charts are required for each 3 or 4 release stations.

1) Record data. At each release point on a chart, data related to the following factors may be noted: 1) station number, 2) number of drift markers released, 3) drift marker numbers, eg. A-0009 to A-0143. Colored-coded pins may be used to mark release point positions on the "situation chart". (The same color codes can be retained in the subsequent recording of recovery data for each release point on the chart.)

2) Bathymetric Chart Sources:

Great Lakes

NOAA-National Ocean Survey Distribution Division - (C-44) Riverdale, Md. 20840

Tel. (301) 344-2613

U.S. Coastal Waters

Officer in Charge U.S. Naval Oceanographic Distribution Center 5801 Tabor Avenue Philadelphia, Pennsylvania 19120

World Coastal Waters

(Same as U.S. Coastal Waters)

VII. Procedure for Processing Recovery Data

When a Drift Current Marker Reply Card is returned by the finder, it will initiate a number of steps. The items noted below will outline those steps which should be followed:

- 1) Release Log Check. Upon receipt of a drift current marker reply card, check the file of Drift Marker Release Logs to ascertain precisely the cruise, date and point of release of the particular drift marker. Write on the reply card
 - a) Date of release
 - b) Latitude, and Longitude of point of release,
 - c) Any other information required in the acknowledgment letter.
- Drift Bottle Coding Form Recovery Data. After #1) has been completed, all appropriate information on the reply card should be recorded on the NODC Drift Bottle Coding Form in the Release and Recovery sections. The record of recovery data will appear as a separate and new line item below the release data. Recovery data is added to the NODC Drift Bottle Coding Form in chronological order. All release and recovery information specifically related to each recovery reply card should be recorded on the Drift Bottle Coding Form as a separate (and new) line item. Reference is made to the NODC Manual for Processing Current Data, Part 1 for specific instructions as to how to complete each column in the Drift Bottle Coding Form.

Upon completion of the transfer of information from the reply card to the Drift Bottle Coding Form, the reply card should be stamped (rubber stamp suggested) "F", noting that this step is complete. (Note: The order in which drift current marker data is recorded on the NODC Drift Bottle Coding Forms is not of great importance. Once punch cards have been

developed from the NODC Drift Bottle Coding Form, a collator can easily sequence release and recovery information in any desired manner. It is suggested, however, that release and recovery data for a cruise or series of related cruises be listed in chronological order on the same set of NODC Drift Bottle Coding Form(s). A separate Coding Form would normally be used for another cruise related to a different project or an investigation in different body of water (e.g., Lake Michigan vs. Lake Huron.)

Acknowledgment. After completing #2, the reply card acknowledgment letter should be sent to the finder. A sample Acknowledgment letter appears in Appendix IV. The Acknowledgment will normally contain information which relates specifically to the individual reply card (e.g., date of release, Lat. and Long. of release station). Nevertheless, it is recommended a form letter be used where the typist fills in the address, date of release, Lat., Long., etc. A brochure or another insert may also accompany the acknowledgment offering background information on the investigation or drift markers in general.

When the acknowledgment letter has been completed and mailed, stamp the reply card with an "L" (rubber stamp suggested) signifying that the acknowledgment has been sent out.

Key Punching-Recovery Data. Again, the NODC Drift Bottle
Coding Form serves as an information source for key punching
2 cards with (release and) recovery data. Detailed instructions for key-punching are outlined on the NODC Manual
for Processing Current Data, Part 1. One card should be
forwarded to:

NODC D761 U.S. Department of Commerce National Oceanic and Atmospheric Administration Washington, D.C. 20235

The other card is retained by the investigating group as a basis for further analysis.

5) Chart Record of Recovery Data. (Reference should be made to Section VI, p. 5). All recoveries should be spotted on charts on which the release station is noted. Since recovery points by their nature are going to be more numerous than release stations, some thought should be given to the method for noting recoveries to avoid the creation of a cluttered and confusing graphic portrayal of release and recovery data.

VIII. COMPUTER SUMMARY OF RELEASE AND RECOVERY DATA

Both the release and recovery punch cards can be used to tabulate release-recovery data on a computer printout. This printout is nothing more than a numerical summary of release data (as detailed on the NODC Drift Bottle Coding Form) and recovery data (as detailed on the same form). No analysis is performed. A sample portion of such a printout appears in Appendix V.

IX. ANALYSIS

The raw data for release and recovery of drift current markers are gathered for the purpose of analysis to determine the characteristics of water movement in a given area under a variety of aquatic and atmospheric conditions. Such analyses may vary depending on the location of the body of water, season, weather conditions, and the ingenuity of the investigator. The nature and magnitude of the raw data, in most cases, lends itself to computer analysis.

SECTION C: APPENDICES

APPENDIX I: PREPARATION OF DRIFT CURRENT MARKERS

Requisition				
For	(e.g., City of	Chicago)	Date	(requisition filled out)
To be cor	mpleted by	(date ne	ed current	markers)
TYPE		QUANITITY		NO./BAG, CARTON, ETC.*
(see Appendi	x III)			
Authorizatio	on (signat	ure)		_·
Production F	Record			
DATE	QUANTITY		ACCUM. TO	TAL MARKER NOS.
6/5/74	300	•	300	A-0000 to A-0299
6/6/74	400		700	A-0300 to A-0699
				
				
				
	 			
	· · · · · · · · · · · · · · · · · · ·			
 				
				
				
			 	
			-	

^{*} Each bag, carton, etc. containing a number of drift markers should be labelled with the identifying Reply Card Nos. contained therein.

Appendix II

Drift Current Marker Release Log (Revised)

DRIFT MARKER RELEASE LOG

VESSEL/CRUISE	INVESTIGATOR	INSTITUTION	
Station T No. of No. y Markers Day Mo. Y		Distance Long. from Shore	
			
		┤┤┤┤┤┤┤ ┼┼┼┼	
' 			
	<u> </u>		
			_
		<u> </u>	

^{*} S:BALLASTED BOTTLES
B:SEA BED DRIFTERS
E=Vertical Envelopes
0=Cylindrical Drums

N= ND BALLAST C+ DRIFT CARD M=Moblus Loop *** DO NOT WRITE IN THIS COLUMN

Appendix III

Drift Marker Types

<u>Type</u>	Alphabetical Code
Seaweed (real or artificial) with	_
drift card attached	A
Sea bed drifter	В
Drift card (or envelope) - horizontal	C
Drogue bottle	D
Vertical envelopes	E
Drogue lost	L
Waterproof Mobius loop	М
Unballasted bottle 1	N
Waterproof drum (cylinder)	0
Ballasted bottle	e S
Cap of woodhead drifter	U
Folded vertical card	v
Woodhead Sea Bed drifters modified to	
float at surface	W
Payne surface drifter	X
Horizontal Envelope with weighted ribbon	Y
Double drift bottles	${f z}$

Bottles floating at an angle equal to or greater than 45 degrees from the horizontal position are designated as "ballasted"; bottles floating at an angle less than 45 degrees from the horizontal position are designated as "unballasted".

Appendix IV

Acknowledgment

Date

Dear	 :
	 _

We appreciate very much your cooperation in returning to us the drift current marker which you found on the shore recently. It may interest you to know that this drift marker was released on (date) at (Lat., Long.) in (body of water). Your reply added to the many others we receive allows us to analyze in detail the prevailing water movements.

Most people are unaware of the fact the drift markers have been employed for many centuries by oceanographers as a scientific tool for studying water currents. We are enclosing a brochure entitled Drift Bottles and Other Surface Current Markers which briefly describes the history of drift current markers and their modern day application.

Thank you very much for your help in our investigation of water currents. If you ever see another drift bottle or marker, we hope it will, again, arouse your curiosity.

Sincerely yours,

Institution
Program (eg. Sea Grant Program - NOAA)

enc: brochure

APPENDIX V
Sample of Summary of Release and Recovery Data

D NA	8484	and the second	Made and a Dollar A. Do Wallands	
R.NO. 00053	DATA		MICHIGAN DRIFT CARD EXPERIMENT	. 🛦
00054	3 <u>1</u> 021 31021	74051012412507046 74051012412507046		10
00055	31021	74051012412507046		10
00056	31021	74051012412507046	0239400655740527413507052630000130170082	7.7
00057	31021	74051012412507046	0239E00582740512412707055E30000080020402	
000 58 000 59	31021 31021	74051012412507046	0239EC0590740513412907102E26500160030532 0260C00320740522413507050E32000110120092	
00040	31021	74051012412507046 74051012412507046	0239E005897*0524412607053E300000701*0052	
00061	31021	74051012412507046	0239E00611740524412607052E30000060140042	
00065	31021	74051012412507046	0239MC07C2740525412507054A2780005Q150032	
00063	31021	74051012412507046	0260500569740602412707035E06000120230052	
00064	31021 31021	74051015413307047 74051015413307047		10 10
00066	31021	74051015413307047	03600	lo
00067	31021	74051015413307047	0324E i i	Ĭŏ
00068	31021	74051015413307047		ΙŌΞ
0006 9 0007 0	31021	74051015413307047	0324£ 1 1	0
00071	31021 31021	74051015413307047 74051015413307047	V;-:-	Ď.
00072	31021	74051015413307047		0
00073	31021	74051015413307047	0360MC0750740513413207056A26400070030232 1	ŏ
00074	31021	74051015413307047		Ō.
00075	31021	74051015413307047	0360801005740513413207056426400070030232 1	Ō
00076	31021 31021	74051015413307047 74051015413307047		0
00078	31021	74051015413307047		å
00079	31021	74051015413307047	0336600558740514412907047F18200030040082 1	ŏ
00080	31021	74051015413307047	0360M00756740514412707048E19400070040182 1	Ō
00082	31021 31021	74051015413307047 74051015413307047	0324E01179740514413207058E2540009C040222 1 036080104074051541340703940780060050122 1	Ö
00053	31021	74051015413307047		Ö
00084 .	31021	74051015413307047		ò
00085	31021	74051015413307047	0360400718740516413707039405900070060122 1	
00086	31021	74051015413307047	0324E01165740516414007043A01900080060132 1	-
00087 00088	31021	74051015413307047	032*E011577*0516*1*007043401900080060132 1	-
00089	31021 31021	74051015413307047 74051015413307047		Ò
00090	31021	74051015413307047	0360901015740517413607039406200070070102 1	Õ
00091	31051	74051015413307047	0324E01198740517413607039406200070070102 1	Ō.
00023	31021	74051015413307047 74051015413307047	0360S02364740517413807039A04900080070112 1 0360C00255740518414107038A03800100080132 1	
00024	31021 31021	74051015413307047	0350C002PD740518414107036503800100060132 1: 0355Sc0593740516413607035506000070050092 1:	
00095	31021	74051015413307047	035450042474051841360703940900070080092 1	
00096	31021	74051015413307047	0360M00739740518413607039406000070080092 1	
00097	31021	74051015413307047	0360001003740518413607039406000070080092 1	
00098 00099	31021 31021	74051015413307047 74051015413307047	036000100974051841360703970600070080092 10 0360001010740518413607039406000070080092 10	-
00100	31021	74051015413307047	0360801012740518413607039Å05000070080092 1	Ξ
00101	31021	74051015413307047	0360001019740518413607039406000070080092 10	=
00105	31021	74051015413307047	036060104374051841360703950900070050092 1(Ď
00103	31021	74051015413307047	0360001044740518413607039406000070080092 10	Ξ
00104	31021	74051015413307047	0360801055740518413607039Å06000070050092 10	Ō

SECTION D: BIBLIOGRAPHY

E. A. Monahan

- Airey, J. J. 1924. Long distance drifts. Marine Observer 1: 130-131.
- Akagawa, M. 1956. On the Oceanographical conditions of the North Japan Sea (west of the Tsugaru Straits) in Summer. Part 2. Bull. Hakodote Mar. Obs. 3(11).
- Albert, Prince de Monaco 1905. L'Outillage moderne de l'oceanographie.
 Bull. Inst. Oceano. Monaco, No. 25, 12p.
- American Journal of Science 1822. Intelligence, etc. Series I, Vol. 4, p. 390.
- Athanassopoulos, M. le Dr. 1921. Note de la delegation Hellenique.

 <u>Bull. Comm. Int. Exp. Sci. Mer. Med.</u>, No. 6, p. 14.
- Babinet, M. 1856. Comptes-Rendus Acad. Sci. Paris. 43(4):186-188.
- Bache, A. D. 1847: Appendix #12. Annual Report, U.S. Coast and Geodetic Survey. p. 76.
- Bache, A. D. 1849: Appendix #11. Annual Report, U.S. Coast and Geodetic Survey. p. 87-88.
- Bache, A. D. 1854. Annual Report, U.S. Coast and Geodetic Survey. p. 61-62, 189-190.
- Bache, A. D. 1855: Appendix #54. Annual Report, U.S. Coast and Geodetic Survey, p. 359.
- Bache, G. M. 1856: Appendix #46. Annual Report, U.S. Coast and Geodetic Survey, p. 279-280.
- Bache, G. M. 1846: Letter to the superintendent. Annual Report, U.S. Coast and Geodetic Survey, p. 46-51.
- Barkley, R. A., B. M. Ito and R. P. Brown 1964: Releases and recoveries of drift bottles and cards in the central Pacific. U.S. Fish Wildl. Serv., Special Sci. Rep. Fish , No. 492, 31p.
- Barnes, H. 1959. Oceanography and Marine Biology. London, George Allen & Unwin. 218p.
- Barnes, H. and E. F. W. Goodley 1961: The general hydrography of the Clyde sea area, Scotland. <u>Bull. Mar. Ecol.</u> 5(43):112-150.
- Barros Gonzalez, G. 1963. La Oceanografia en la Armada de Chile.

 <u>Boletin Informativo</u>, No. 64, p.14, 22.
- Beeton, A. M., J. H. Johnson and S. H. Smith 1959. Lake Superior limnological data 1951-1957. U.S. Fish and Wildl. Serv., Special Sci. Rep. Fish, No. 297, 177p.

- Belonogin, P. F. 1929. Observations of surface water currents of the Azov Sea by means of bottles. Proc. 2nd Hydrolog. Congress U.R.S.S., Marine Section, 2-II. pp. 398-401.
- Berget, A. 1906. L'Utilite de l'etude des courants. <u>Bull Inst.</u> Oceano. Monaco, No. 77, 18p.
- Berget, A. 1920. Les <u>Problemes de l'Ocean</u>. Paris, E. Flammarion. pp. 201-202.
- Bigelow, H. B. 1924. The physical oceanography of the Gulf of Maine. <u>Bull. Bur. Fish.</u> Vol. 40, Part II. pp. 867-910.
- Bougis, P. and M. Ruivo 1955. Sur l'utilization des flotteurs en matiere plastique (modele siphonophore) pour l'etude des courants. Cah. Oceanogr. 7(4):159-171.
- Bohnecke, G. 1955. The principles of measuring currents. Union Geodesique et Geophysique Internationale: Association d'Oceanographie Physique, Publ. Sci. No. 14, 28p.
- Boy-Ed, E. 1928. Flaschenposten. <u>Ann. d. Hydrogr. und Mar. Met.</u> 16: 138-139, 196-197, 258, 400-401.
- Brodie, J. W. 1960. Coastal surface currents around New Zealand.
 N. Z. Jl. Geol. Geophys. 3:235-252.
- Brooke Smith, L. A. 1927. Wireless and weather, an aid to navigation. Chapter VIII. Wind, and set and drift of current.

 Marine Observer 4:152-158.
- Brucks, J. T. 1971. Currents of the Caribbean and adjacent regions as deduced from drift-bottle studies. <u>Bull</u>. <u>Mar. Sci., Miami</u> 21(2):455-465.
- Bruns, E. 1968. Ozeanologie. Vol. 3. Leipzig, B.G. Teubner, p. 199.
- Bryan, W. B. 1968. Low-potash dacite drift pumice from the Coral Sea. Geol. Mag. 105(5):431-439.
- Bulletin of the Arctic Institute, U.S.S.R. 1932. A report of the Baldwin-Zeigler expedition. 1(2):32-33.
- Bulletin of the Arctic Institute, U.S.S.R. 1933. Finding of buoys and bottles thrown into the Laptev Sea. 2:3, 58, 75.
- Bulletin of the Arctic Institute, U.S.S.R. 1935. Drift of a bottle in the Kara Sea. 5(12):559.
- Bulletin de la Societe des Amis de l'Institute Oceanographique 1935. L'etude des courants transatlantiques 14(51);7.

- Bulletin Trimestrial 1948. Liste des campagnes scientifiques de S.A.S. le Prince Albert ler de Monaco. No. 5, pp. 9-14.
- Bulletin Trimestrial 1954. Un precurseur du Prince Albert: Bernardin de Saint-Pieree, No. 31, pp. 9-10.
- Bumpus, D. F. 1960. Sources of water contributed to the Bay of Fundy by surface circulation. J. Fish. Res. Bd. Canada 17(2):181-197.
- Bumpus, D. F. 1961. Drift bottle records for the Gulf of Maine, Georges Bank and the Bay of Fundy, 1956-1958. U.S. Fish and Wildl. Serv., Special Sci. Report Fish. No. 378.
- Bumpus, D. F. 1965: Bottled Oceanography. Oceanus, 11(3):20-23.
- Bumpus, D. F., J. Chase, C. G. Day, D. H. Frantz, Jr., D. Ketchum and R. G. Walden 1957. A new technique for studying non-tidal drift with results of experiments off Gay Head, Massachusetts and the Bay of Fundy. J. Fish. Res. Bd. Canada 14(6):931-944.
- Bumpus, D. F. and L. M. Lauzier 1965. Surface circulation on the continental shelf off eastern North America between Newfoundland and Florida. Folio 7, Serial Atlas of the Marine Environment. N.Y., Amer. Geog. Soc.
- Burt, W. V. and B. Wyatt 1964. Drift bottle observations of the Davidson Current off Oregon, In: Yoshida (ed.), Studies on Oceanography, Tokyo.
- Cahiers Oceanographiques 1954. Informations. Wormley: Nouveau type de flotteur derivant. Cah. Oceanogr. 6(8):314-315.
- Cahiers Oceanographiques 1955. Flotteurs temoins de courant. Cah. Oceanogr. 7(6):269.
- Cahiers Oceanographiques 1955a. Informations. Auckland: Derive d'une bouteille de Nlle. Zelande en Grande-Bretagne. Cah. Oceanogr. 7(6):223.
- Cahiers Oceanographiques 1957. Informations. Port-Etienne.
 Bouteilles pour l'etude des courants. Cah. Oceanogr. 9(4):197.
- Cahiers Oceanographiques 1960: Informations. Washington. Bouteilles de derive. Cah. Oceanogr. 60(3):159.
- Cahiers Oceanographiques 1964. Informations. Washington.

 Lancers de bouteilles pour la mesure des courants. Cah.

 Oceanogr. 16(2):121.
- Cahiers Oceanographiques 1966. Informations. Paris. Operation mondiale "Messages a la mer". Cah. Oceanogr. 18(10):837-838.

- Cahiers Oceanographiques 1967. Courants a l'embouchure de la riviere Columbia. Cah. Oceanogr. 19(7):533.
- Cahiers Oceanographiques 1968. Informations. Acapulco "Messages a la mer". Cah. Oceanogr. 20(9):756.
- Canada Dept. Fish. 1958. Pacific drifts. Trade News 10(12):25.
- Canada Dept. Fish. 1962. Bottle shark. Trade News 14:6-7.
- Carruthers, J. N. 1928. New drift bottles for the investigation of currents in connection with fishery research. J. Cons. Perm. Int. Explor. Mer. 3(2):194-205.
- Carruthers, J. N. 1930. Further investigations upon the water movements in the English Channel. <u>J. mar. Biol. Assoc.</u> 17(1):241-275.
- Carruthers, J. N. 1930a. Aims and methods in the study of currents.

 Rap. et Proc.-Ver.des Reun. du Cons. Perm. Int. Expl. Mer.

 44:24-31.
- Carruthers, J. N. 1930b. The water movements in the Straits of Dover. <u>Jour. du Cons. Perm. Int. Expl. Mer.</u> 5(2):167-191.
- Carruthers, J. N. 1939. The Lowestoft crossbow float. Int. Hydrog. Rev. 16(2):149-153.
- Carruthers, J. N. 1939a. The investigation of surface current eddies in the sea by means of short-period drift bottles.

 Inst. Mar. Fish and Oceano., Memorial volume for Knipovich.

 pp. 39-46.
- Carruthers, J. N. 1956. 'Bottle Post' and other drifts. J. Inst. Nav. 9:261~281.
- Carruthers, J. N. 1961a. A simple current-measuring bottle for fishermen. Natl. Inst. Oceanogr. Coll. Repr., Vol. 9.
- Carruthers, J. N. 1963. Some oceanography from the past. <u>J. Inst.</u> Nav. 16(2):180-188.
- Carruthers, J. N. 1967. An improved simple current-measuring bottle for fishermen. <u>Wormley</u>: <u>Natl</u>. <u>Inst</u>. <u>Oceanogr</u>. 4p.
- Carruthers, J. N. 1969. Floating messages-bottle post and other drifts. PLA Monthly, Port of London Authority 44(525):203-213.
- Cayan, D. 1971. A drift bottle study of Vineyard and western Nantucket Sounds. In: Monahan, E. (ed.), Oceanography Field Practicum. University of Michigan Sea Grant Prog. Tech. Rept. No. 13. pp. 69-87.

- Chang, J., S. Park and B. Sung 1971. Drift bottle and dye diffusion experiments in waters off Kori. <u>Bull. Pusan</u> <u>Fish. Coll.</u> 11(2):73-80.
- Chang, S. 1970. The circulation in Chinju Bay. 2. Results of drift bottle experiments. Bull. Korean Fish. Soc. 3(2): 137-147.
- Chang, S. 1971. Oceanographic studies in Chinju Bay. <u>Bull</u>.

 <u>Pusan Fish</u>. <u>Coll</u>. 11(1):1-44.
- Chevrier, J. R. and R. W. Trites 1960. Drift-bottle experiments in the Quoddy region, Bay of Fundy. J. Fish. Res. Bd. Canada, 17(6);743-762.
- Chew, F., K. L. Drennan and W. J. Demoran 1962. Drift-bottle return in the wake of Hurricane Carla, 1961. J. Geophys. Res. 67(7):2773-2776.
- Coker, R. E. 1947. This Great and Wide Sea. Chapel Hill, U. North Carolina Press. pp. 122-123.
- Comptes-Rendus Hebdomedaires, 1838. Rapports. Comptes-Rendus, Acad. Sci. Paris 6(13):384-385.
- Crestani, G 1931. Floats used in Italy for the study of surface currents of the ocean. Int. Hydrogr. Rev. 8(1):185-189.
- Daniel, R. J. and M. B. A. Lewis 1930. Surface drift bottle experiment in the Irish Sea, July 1925-June 1929. Report for 1929. Lancashire Sea-Fisheries Laboratory, University of Liverpool. No. 38. p. 36-86.
- Daussy, M. 1840. Sur les observations de courants faites au moyen de bouteilles jetee a la mer. <u>Comptes-Rendus Acad. Sci., Paris</u> 8(3):81-83.
- Day, C. G. 1958. Surface circulation in the Gulf of Maine as deduced from drift bottles. U.S. Fish. Wildl. Serv. Fish. Bull. 141(58):443-472.
- de Buen, 0. 1921. Rapport preliminaire sur la croisiere de la "Giralda". <u>Bull. Comm. Int. Ex. Sci. Mer. Med.</u> No. 6. p. 7-8.
- de Laubenfels, M. W. 1950. Ocean currents in the Marshall Islands. Geogr. Rev. 40(2):254-259.
- de Saint-Pierre, J. 1784. Studies of Nature. Translated by Henry Hunter. 5 vol. London, C. Dilly, 1796. Vol. 1, p. liv, lxv-lxvi.
- Dodimead, A. J. and H. J. Hollister 1958. Progress report of drift bottle releases in the northeast Pacific Ocean. J. Fish. Res. Bd. Canada. 15(5):851-865.

- Duboul-Razavet, C. 1958. Sur quelques lancers de cartes siphonophores et de bidons lestes au large de la baie de Marseille. <u>Bull. Inst. Oceanogr. Monaco. Vol. 1132. 16p.</u>
- Duggan, C. B. 1973. Inshore timed self-anchoring float (ITSA float). ICES Hydrography Committee, C. M. 1973/Cl.
- Duncan, C. P. 1965. Disadvantages of the Olson drift card and description of a newly designed card. <u>J. mar. Res.</u> 23(3); 233-236.
- Duncan, C. P. 1967. Current measurements off the Cape Coast.

 Fish. Bull., Misc. Contr. Oceanogr. mar. Biol. S. Afr., 4:9-14.
- Duncan, C. P. and J. H. Nell 1969. Surface currents off the Cape Coast. <u>Investl. Rep. Div. Sea Fish. S. Afr. 76</u>, pp. 1-19.
- Edwards, C. 1968. Water movements and the distribution of hydromedusae in British and adjacent waters. Sarsia 34:331-346.
- England Ministry of Agriculture and Fisheries 1931. Drift bottles.

 Fisheries Notice #16. 24pp.
- Engstrom, S. G. 1967. Laying out surface drifters in the eastern North Sea and the Skagerrak in the summer of 1966. Lysekil, Sweden. <u>Havsfisk</u>. Med. No. 33, 8p.
- E. Rr. 1936. Bewegung von Flaschenposten in der Ostee. Seewart V, 3/4, 104-108.
- EOS. Oceanographers tag huge North Atlantic eddy. EOS: Trans. Amer. Geophy. Un. 53(9):875-876.
- Favorite, F. 1964. Drift bottle experiment in the northern Pacific Ocean. J. Ocean. Soc. Japan 20(4):160-167.
- Ferruglio, G. 1912. <u>Boll. del R. Comitato Talassografico Italiano,</u> No. 17.
- Fishery Investigations 1920. Series III. Hydrography. Vol. IV The North Sea. London Ministry of Agric. and Fisheries.
- Fisk, D. M. 1971. Recoveries from 1964 through 1968 of drift bottles released from a merchant vessel, S. S. Java Mail, enroute Seattle to Yokohama, Oct. 1966. Pacific Sci. 25(2): 171-177.
- Fry, F. E. J. 1956. Movements of drift cards in Georgian Bay in 1953. J. Fish. Res. Bd. Canada 13(1):1-5.
- Fujimoto, M. and T. Hirano 1972. Study on the Kuroshio current as a means of transportation and diffusion of fish eggs and larvae. I. The results of drift bottle experiments. Bull. Tokai Reg. Fish. Res. Lab, No. 17. pp.51-68.

- Gakkel, Y. Y. and L. P. Samsoniya 1961. The first drifting radio-buoys. Okeanologiya 1(4):691-700. (transl. in D.-s. Res. 9(4):538-546.)
- Garstang, W. 1898. Report on the surface drift of the English Channel and neighbouring seas during 1897. J. Mar. Biol. Assoc. N.S. V:199-231.
- Gaskell, T. F. 1968. The history of the Gulf Stream. Bull. Inst. oceanogr. Monaco. Special #2. p. 77-86.
- Gautier, Y. 1956. Sur quelques lachers de cartes du type "siphonophore" en vue de l'etude des courants de surface devant le delta du Rhone. Cah. Oceanogr. 8(6):274-283.
- G.B.S. 1965. Lost SIO mooring finally turns up. Geo. Marine Tech. 1(10):9.
- Gibbs, P. 1969. Drift bottle messages. Frontiers 33(4):12-15.
- Gilson, G. 1900. Exploration de la mer sur les cotes de la Belgique en 1899. Memoires Musee Royal d'Histoire Naturelle de Belgique 81p.
- Gilson, G. 1924. Exploration de la mer. III Recherches sur la derive dans la mer de Nord. <u>Memoires Musee Royal d'Histoire Naturelle de Belgique</u>. No. 35. 51p.
- GM Mfg. and Instrument Corp. Bulletin WAP 1366.
- Guppy, H. B. 1917. Plants, seeds and currents in the East Indies and Azores. London: William Norgate.
- Hachey, H. B. 1935. The circulation of Hudson Bay water as indicated by drift-bottles. Science 82(2125):275-276.
- Hamby, R. J. 1964. Drift bottle studies at Bodega Head, California. Calif. Coop. Oceanic Fish. Invest. and Office of Naval Res.
- Harrington, M. W. 1895. Currents of the Great Lakes as deduced from the movements of bottle papers during the seasons of 1892, 1893 and 1894. U.S. Dept. of Agric., Weather Bureau, Bull. B. 6p.
- Harvey, J. 1968. The movements of sea-bed and sea-surface drifters in the Irish Sea, 1965-1967. Sarsia 34:227-242.
- Harvey, J. G. and W. G. Gould 1966. A note on the design of seasurface drifters. J. Cons. perm. int. Explor. Mer. 30(3):358-360.
- Hata, K. 1964. The report of drift bottles released in the North Pacific Ocean. J. Ocean. Soc. Japan 19(1):6-15.

- Hattori, S. and H. Katoh 1966. Surface current in the southern waters off Japan viewed from drift bottle experiment with special reference to translocation of fish eggs and larvae.

 Bull. Tokai Reg. Fish. Res. Lab. No. 45, p. 1-30.
- Heath, R. A. 1969. Drift card observations of currents in the central New Zealand region. N.Z. Jl. mar. Freshwat. Res. 3(1): 3-12.
- Herdman, H. F. P. 1954. Operation post card. The Trident 16(180): 196-197.
- Hermann, F. and H. Thomsen 1946. Drift-bottle experiments in the Northern Atlantic. Medd. Komm. Danmarks Fisk. Havander., Ser. Hydro., V. 3.
- Higgins, B. 1972. Surface circulation of Nantucket Sound as determined by drifters. in: Monanan, E. (ed.), Oceanography Field Practicum, U. Mich. Sea Grant Prog. Tech. Rept. No. 33, pp. 85-123.
- Hiraiwa, T., T. Fujii, and S. Saito 1967. An experimental study of drift and leeway. J. Inst. Navig. 20(2):131-145.
- Hognestad, P. T. 1971. Forsok med stromflasker i Nord-Norge i 1970. Fisken og Havet No. 1:21-24.
- Hollister, H. J. 1958. Canadian ocean drift bottle recovered in Hawaii. Progress Reports of F. R. B. Pacific Coast Stations 111:22.
- Hughes, J. D., J. P. Farrell and E. C. Monahan 1970. Drift-bottle study of the surface currents of Lake Superior. Mich. Academician Vol II, No. 4, pp. 25-31.
- Hughes, P. 1956. A determination of the relation between wind and sea surface drift. Quart. J. Roy. Met. Soc. 82:494-502.
- Hughes, P. 1957. A determination of the relation between wind and sea surface drift (discussion). Quart. J. Roy. Met. Soc. 83:276-277.
- Hunt, E. B. 1859. On some anomalies in the Florida Gulf Stream. Amer. J. Sci. Series 2, Vol. 27, p. 206-217.
- Huntsman, A. G., W. B. Bailey and H. B. Hachey 1954. The general oceanography of the Strait of Belle Isle. J. Fish. Res. Bd. Canada 11(3):198-260.
- Huzii, M. and M. Kimura 1961. Drifting of 20,000 current bottles, released in the south-west of Kyushu, July 1960. Hydr. Bull. 67:58-62.

- Innman, D. L. and W. H. Quinn 1952. Currents in the surf zone.

 Proceedings of the 2nd Conf. on Coastal Engineering, pp. 24-36.
- Inst. Scient. Explor of the North 1931. Die flaschenpost ausgesetzt vom Eisbrecher "Sedoff" im Jahre 1929. <u>Inst. Scient. Explor. of the North</u> 49:97-98.
- Japanese Hydrographic Department. Repost on picked up current bottles (in Japanese). Bull. Hydrogr.
- Jeffreys, J. G. 1870. Letter to the editor. Nature, Nov. 17, p. 48.
- Jenkins, J. T. 1921. A Textbook of Oceanography. London, Constable and Co., Ltd. pp. 135-139.
- Johnson, A. B. 1884. North Atlantic currents. Science 4(91):415-418.
- Johnson, J. H. 1958. Surface-current studies of Saginaw Bay and Lake Huron, 1956. U.S. Fish. Wildl. Serv., Special Sci. Rep. Fish. No. 267, 84p.
- Johnson, S. I. and J. L. Squire 1970. Surface currents as determined by drift card releases on the continental shelf off the northwestern United States. U.S. Fish. Wildl. Serv., Bur. Sport Fish. Wildl. Techn. Pap. 48:1-12.
- Karwowski, J. 1963. Measurement of sea currents by means of drift bottles. Int. Hydrogr. Rev. 40(2):119-123.
- Kasahara, S. 1960. A comparative study on the drifts of the polyethylene current envelope and current bottles with or without drogue. Ann. Rept. Japan Sea Reg. Fish. Res. Lab. 6:31-38.
- Kawai, H. and M. Nagahara 1973. Bottom currents on the continental shelf of the Japan Sea measured with sea-bed drifters. I. Bull. Jap. Sea Reg. Fish. Res. Lab. 24:1-19.
- Kawakami, K. 1957. The report of the drift-bottle experiments at the west entrance of Tugaru Strait, Hokkaido, Japan. I. <u>J. Ocean.</u>
 Soc. <u>Japan</u> 13(4):131-138.
- Kawakami, K. 1959. The report of the drift-bottle experiments at the west entrance of Tugaru Strait, Hokkaido, Japan. II. J. Ocean. Soc. Japan 15(1):5-10.
- Kimura, K. 1950. Investigation of ocean current by drift-bottle experiments (No. 1). <u>J. Oceanogr. Soc. Japan</u> 5(2-4):70-84.
- Kisindo, S. 1934. Methodes d'observations des courants oceaniques suivies actuellement par l'Hydrographic Department de Tokyo et resultats obtenus a ce jour. Rev. Hydrogr. XI(1):85-92.
- Krummel, O. 1902. Der Ocean. Vienna, F. Tempsky, 285p.

- Krummel, O. 1908. Flaschenposten, treibende Wracks und andere Triftkorper in ihrer Bedeutung für die Enthullung der Meeresstromungen. Meereskunde II. Heft 7, 32p.
- Krummel, O. 1911. Handbuch der Ozeanographie. Vol. II, p. 434-39.
- Kubo, T. 1930. On the surface drift currents in the Yellowand Chinese Eastern Sea determined by drift bottles (in Japanese). J. Oceano. 2(2):289-296.
- LaCombe, H. 1965. Cours d'Oceanographie Physique. Paris, Gauthier-Villars. p. 57-59.
- Larkin, R. R. and G. A. Riley 1967. A drift bottle study in Long Island Sound. <u>Bull</u>. <u>Bing</u>. <u>Oceano</u>. <u>Coll</u>. 19(2):62-71.
- Lauzier, L. M. 1965. Drift bottle observations in Northumberland Strait, Gulf of St. Lawrence. J. Fish. Res. Bd. Canada 22(2): 353-368.
- Lawford, A. L. 1956. The effect of wind upon the surface drift in the northeastern Atlantic and the North Sea. Weather 11:155.
- Lawford, A. L. 1956a. Postscript to operation post card. Trident 18(208):350.
- Lee, Arthur and J. Ramster 1968. The hydrography of the North Sea. A review of our knowledge in relation to pollution problems. Helgolander wiss. Meeresunters. 17:44-63.
- Lee, C. and C. Bong 1969. A study on the surface current of the southern sea of Korea by drift bottle experiments. Bull. Fish. Res. Dev. Agency 4:45-58.
- Lee, S. P. 1854. Report and charts of the cruise of the U.S. brig "Dolphin" Washington. <u>Senate Exec. Report</u> #59, 33rd Cong. 1st sess. 1854. p. 39-40.
- Levin, F. C. 1927. Drifts of derelict ships in the North Atlantic Ocean. Marine Obs. 4:219-222.
- Luedemann, E. F. 1967. Preliminary results of drift-bottle releases and recoveries in the western tropical Atlantic. Bolm. Inst. Oceanogr. S. Paulo 16(1):13-22.
- Luedemann, E. F. and N. J. Rock 1971. Studies with drift bottles in the region off Cabo Frio. In: Fertility of the Sea, John D. Costlow, ed., vol. 1:267-283, N.Y., Gordon and Breach Science Publishers.
- Magliocca, A. and E. F. Luedemann 1970. Lista de Corpos-de-deriva recuperados 1955-1963. Contr. Inst. oceanogr. Univ. S. Paulo, ser. Ocean. Fish. No. 12, 21p.
- Metcalf, W.G. and M.C. Stalcup, 1974: Drift bottle returns from the Eastern Caribbean. Bull. Mar. Sci. 24; 392-395.

- Magrini, G. 1921. Programme des recherches a executer par la mission Italienne chargee de l'exploration scientifique des Detroits de Constantinople. Bull. Comm. Inst. pour l'Expl. Sci. de la Mer. Med. No. 5, Mar. 30, 1921, 20p.
- Malpas, A. H. 1930. Preliminary account of the results of drift bottle experiments in the Gulf of Mannar. Ceylon J. Sci. C: Fisheries: Bulletin of the Ceylon Fisheries IV, April 1930.
- Marinelli, O. and G. Platania 1908. Memorie geografiche 1908, No. 5, p. 188 ff.
- Marinelli, 0. 1909. Rivista Geograf. Italiana 1909, Vol 16,6.
- Marine Observer's Log 1926a. Derelict barge. Mar. Obs. 3:3.
- Marine Observer's Log 1926b. Current observations. Mar. Obs. 3:23.
- Marine Observer's Log 1926c. Buoy drifts. Mar. Obs. 3:94.
- Marine Observer's Log 1929a. Drift of a buoy. Mar. Obs. 6:28.
- Marine Observer's Log 1929b. Current drift. Mar. Obs. 6:191.
- Marine Observer's Log 1933. Drift of bottles. Mar. Obs. 10:43.
- Martin, J. W. 1967. New plastic drift card. Limnol. and Oceanogr. 12(4):706-707.
- Mavor, J. W. 1920. Circulation of water in the Bay of Fundy and Gulf of Maine. Trans. Am. Fish. Soc. 50:333-334.
- Mayor, J. W. 1920a. Drift bottles as indicating a superficial circulation in the Gulf of Maine. Science 52:442-443.
- Mavor, J. W. 1921a. On a bottle which drifted from the Gulf of Maine to the Azores. Science 53:187-188.
- Mavor, J. W. 1921b. Another drift bottle which crossed the Atlantic. Science 53:389.
- Mavor, J. W. 1922. The circulation of the water in the Bay of Fundy.

 I. Introduction and drift bottle experiments. Contr. Can.

 Biol. New Series 1:101-124.
- McCown, D. L. 1973, in E. C. Monahan, G. S. Tucker and G. T. Kaye (eds.), Oceanography Field Practicum, <u>U. Mich. Sea Grant Prog. Tech. Rept.</u> (unpubl. mss.)
- McKenzie, R. A. and S. N. Tibbo 1961. Herring movements in the Bay of Fundy and Gulf of Maine 1957 and 1958. J. Fish. Res. Bd. Can. 18(2):221-252.
- Ministre des Affaires Entrangeres 1858. Correspondence. Comptes-Rendus Acad. Sci. Paris 46(1):38-39.

- Mitchell, H. 1857. Annual Report. U.S. Coast and Geodetic Survey. Appendix 35.
- Mitchell, H. 1858. Annual Report. U.S. Coast and Geodetic Survey. Appendix 28.
- Miyata, K. and K. Nagahara 1959. On the drift-bottle experiments made from August, 1955 to October, 1958 in the Sea of Japan. Ann. Rept. Japan Sea. Reg. Fish. Lab. 5:133-147.
- Monahan, E. C. 1968. A report on a continuing drift-bottle study of the surface currents of Lake Superior. Northern Mich. Univ. Phys. Dept., Lake Superior Studies Report No. 2. pp. 31.
- Monahan, E. C. and E.A. Monahan 1973. Drift bottles and other surface current markers. Univ. Mich. Sea Grant Prog. MICHU-SG-73-104.
- Monahan, E. C., B. J. Higgins and G. T. Kaye 1974. A comparison of vertical drift-envelopes to conventional drift-bottles. (submitted to Limnol. and Oceanogr., Jan. 1974).
- Napoleon, Prince 1856. Experiences sur la direction des courants de l'ocean Atlantique septentrional. Comptes-Rendus Acad. Sci. Paris 43(10):547-548.
- National Oceanographic Data Center 1965. Manual for processing current data. Part 1. NODC Publ. M=6 (Provisional).
- Nature 1870. Notes. <u>Nature</u> 3(54):36, 48, 87, 108.
- Nelson, E. W. 1922. On the manufacture of drift bottles. J. Mar. Biol. Ass. U.K. N.S. 12(4):700-716.
- Neumann, H. 1967. Die Beziehung zwischen Wind und Oberflachenstromung auf Grund von Triftkartenuntersuchungen. Dt. hydrogr. Z. 19(6):253-266.
- New York Times. Long caper by a wild buoy ends. Sunday, Sept. 10, 1972.
- Norcross, J. J. and E. M. Stanley 1967. Inferred surface and bottom drift. in: Harrison, W., J. J. Norcross, N. A. Pore and E. M. Stanley. Circulation of shelf waters off the Chesapeake Bight. ESSA Professional Paper 3, Washington, D. C. p. 11-42.
- Oceanographical Section, H. M. O. 1957. Report of the Oceanographic observations of the Okhotsk Sea from April to May 1956. <u>Bull</u>. Hakodote Mar. Obs. 4(2).
- Olson, F. C. W. 1951. A plastic envelope substitute for drift bottles. J. mar. Res. 10(2):190-193.
- Olssen, B. 1968. Report on investigation of some drift bottles in the Baltic. Havsfiskelaboratoriet. Meddelande No. 57, 19p.

- Otto, L. 1972. Drift bottle experiments in the North Atlantic from "H. Nl. M. S. Snellius". Hydrographic Newsletter 2(5):375-383.
- Page, J. W. 1849. Letter to the Director. Annual Report.
 U.S. Coast and Geodetic Survey. p. 87-88.
- Palausi, G. 1968. Etude du mode de dispersion de flotteurs colores dans la baie de Cannes. Rev. int. Oceanogr. Med. 9:191-205.
- Paskausky, D. F., A. J. Nalwalk, D. L. Murphy and R. C. Kollmeyer 1974.

 Helicopter launching of surface and sea-bed drifters. Geophys.

 Res. Letters 1(1):55-57.
- Pasquay, J.-N. and J. Bennot 1971. Utilization de cartes-flotteurs pour l'etude des derives de surface et application a la prevision des pollutions cotieres. <u>LaHouile</u> <u>Blanche</u> 26(8): 769-778.
- Philosophical Magazine 1819. Northern expedition. 54:467.
- Philosophical Magazine 1809. Miscellaneous article. 34:146-147.
- Philosophical Magazine 1822. Currents in the ocean. 59:313-314.
- Philosophical Magazine 1822a. Arctic Expedition. 59:397.
- Pillsbury, J. E. 1890. Appendix 10: The Gulf Stream a description of methods employed in the investigation ... Annual Report.

 U.S. Coast and Geodetic Survey. p. 514.
- Platania, G. 1923. Experiments with drift-bottles (2nd report). In:
 Schmidt, Johs., ed., Report on the Danish Oceanographical
 Expeditions 1908-10 to the Mediterranean and adjacent seas.
 Vol. 3, miscell. Paper 5. Copenhagen, Andr. Fred. Host and Son, 1923.
- Popular Science Monthly 1887. Surface currents of the ocean. 30:137.
- Pryterch, H. F. 1929. Investigation of the physical conditions controlling spawning of oysters and the occurrence, distribution and setting of oyster larvae in Milford Harbor, Conn. Bull. U.S. Bur. Fish. 44:429-503.
 - Rao, T. S. S. 1963. On the pattern of surface circulation in the Indian Ocean as deduced from drift bottle recoveries. Indian Jour. Met. Geophys. 14(1):1-4.
- Redfield, W. C. 1837. Remarks on the supposed connexion of the Gulf Stream with opposite currents. American Journal of Science Series I, 32:349-354.

- Richards, A. F. 1958. Transpacific distribution of floating pumice from Isla Benedicto, Mexico. <u>Deep-sea</u> Res. 5(1):29-35.
- Ridgway, N. M. 1972. Direction of drift of surface oil with wind and tide. N.Z. Jour. mar. Freshwat. Res. 6(1&2):178-184.
- Riley, G. A. 1952. Hydrography of the Long Island and Block Island Sounds. Bull. Bing. Oceano. Coll. 14(3):5-39.
- Riley, J. D. and J. W. Ramster 1972. Woodhead seabed drifter recoveries and the influence of human, tidal and wind factors.

 <u>Jour. du CPEIM</u> 34:389-415.
- Roberts, G. M. 1970. Plotting the 7-year drift of a bottle.

 Product Engineering 41(8):90.
- Rouch, J. 1970. Flottages naturels en 1949. Cah. Oceanogr. 2(8): 299-301.
- Rouch, J. 1954. Bottle papers. <u>Bull. Inst. Oceano. Mon. No. 1046</u>, up. 7p.
- Ruschmeyer, O. R. and T. A. Olson 1958. Water movements and temperatures of western Lake Superior. Univ. Minn., School of Public Health, 86p.
- Ruschmeyer, O. R., T. A. Olson and H. M. Bosch 1957. Lake Superior study, summer of 1956. Univ. Minn., School of Public Health, 85p.
- Ryckman, R. G. 1968. Physical and chemical characteristics of Little Bay de Noc. Unpubl. M.S. thesis, Univ. Wisconsin-Milwaukee, 60p.
- Scheltema, R. 1966. Evidence for trans-Atlantic transport of gastropod larvae belonging to the genus Cymatium. Deep-sea Res. 13:83-95.
- Schenck, H. Van N., Jr. 1972. Simulating drifting oil spills.

 Maritimes 16(1):12-13.
- Scherzer, K. 1861. <u>Voyage of the Novarra</u>. London, Saunders, Otley & Co., Vol. 1, p. 55-56.
- Schmidt, J. 1913. Experiments with drift bottles (first report).

 Danish Oceanographical Expeditions 1908-10 to the Mediterranean and adjacent seas. Vol. 3, miscel paper 1, 13pp.
- Schott, G. 1897. Die Flaschenposten der Deutschen Seewarte. Abhandlungen, Vol. XX, No. 2. Hamburg, Deutschen Seewarte.
- Schulz, B. 1935. Flaschenpostuntersuchengen im sudlichen Kattegat 10 bis 17 August 1931. Ann. de Hydr. usw. 63(1):1-10.

- Schulz, B. 1929. Die englischen Restromunterschungen in Kanal und in der sud-westlichen Nordsee. Ann. de. Hydrogr. und Maritimen Meteoro. 10:344-348.
- Schwartzlose, R. 1963. Nearshore currents of northwestern United States and Baja California as measured by drift bottles.

 <u>Calif. Coop. Fish. Invest. Repts.</u> 9:15-22.
- Shannon, L. V., G. H. Stander and J. A. Campbell 1973. Oceanic circulation deduced from plastic drift cards. <u>Investl. Rep. Sea Fish. Brch. S. Afr.</u> 108:1-31.
- Stalcup, M. C. and W. G. Metcalf 1972. Current measurements in the passages of the Lesser Antilles. J. Geophys. Res. 77:1032-1044.
- Stander, G. H., L. V. Shannon and J. A. Campbell 1969. Average velocities of some ocean currents as deduced from the recovery of plastic drift cards. <u>J. mar. Res.</u> 27(3):293-300.
- Sverdrup, H. U. and R. H. Fleming 1942. The waters off the coast of Southern California, March to July 1937. <u>Bull. Scripps Inst.</u> Oceanogr. <u>Tech. Series</u> Vol. 4, p. 261-375.
- Tabor, A. J. 1932. Drifts in the Indian and Pacific Oceans. Mar. Obs. 9:203-209.
- Tait, J. B. 1930, 1931, 1937. The surface water drift in the northern and middle areas of the North Sea and in the Faroe-Shetland Channel. Fish. Bd. Scotland. Sci. Invest. (I, 60p; II, 3-82; III, 88pp; IV, 3-56).
- Tait, J. B. 1934. Surface drift-bottle results in relation to temperature, salinity and density distributions in the North Sea. Rapp. P.-V. Reun. CPELM, 3eme partie, Appendices 1933-34, LXXXIX:69-79.
- Talbot, G. B. 1965. Drift bottle modifications for air drops.

 Trans. Am. Fish. Soc. 93(2):203-204.
- Taning, A. V. 1931. Drift-bottle experiments in Iceland waters.

 Rapp. P.-V. CPELM 72:3-20.
- Terrell, R. E. and T. Green III 1972. Investigations of the surface velocity structure of lake currents. <u>Limnol</u>. and <u>Oceanogr</u>. 17(1):158-160.
- Thoulet, J. 1908. <u>Instruments et Operations d'Oceanographic Pacifique</u>. Paris, R. Chapelot et Cie., 186p.
- Tibby, R. B. 1937. Drift bottles released off coast of Southern California. Science 86(2232):328-329.
- Tibby, R. B. 1939. Report on returns of drift-bottles released off Southern California, 1937. Div. Fish. and Game of Calif., Fish. Bull. #55, 1939, p. 1-36.
- Tolbert, W. H. and G. G. Salsman 1964. Surface circulation of the eastern Gulf of Mexico as determined by drift-bottle studies.

 J. Geophys. Res. 69(2):223-230.

- Tomczak, G. 1964. Investigations with drift cards to determine the influence of the wind on surface currents. In: Yoshida (ed.), Studies on Oceanography. Tokyo. p. 129-139.
- Trites, R. W. and R. E. Banks 1958. Circulation on the Scotian Shelf as indicated by drift bottles. J. Fish. Res. Bd. Canada 15(1):79-89.
- Tulloch, D. S. and J. B. Tait 1959. Hydrography of the northwestern approaches to the British Isles. Mar. Res. 1; 32p.
- Tully, J. P. 1935. Kuroshio. Prog. Rep. F.R.B. Pac. Coast Stat. 25:21-22.
- Uda, M. 1936. Distribution of drifting bodies in the ocean current. Bull. Jap. Soc. Sci. Fish. 4(4):289-293.
- Uda, M. 1952. On the fluctuation of Oceanic current. Second report. Drift current in Japan Sea, Yellow Sea and East China Sea. <u>Bull. Tokai Reg. Fish. Res. Lab.</u>, No. 3 (Contr. B) Jan. 1952, No. 12, 15p.
- V.V. 1935. Finding of a buoy. Bull. Arct. Inst. V(5/6):150, 100; V(11):399-400, 420-421.
- Van Oosten, J. 1963. Surface currents of Lake Michigan 1931 and 1932. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. No. 413, 51p.
- Waldichuk, M. and S. Tabata 1955. Oceanography of the Strait of Georgia. V. Surface currents. Prog. Repts. F.R.B. Pac. Coast Stat. 104:30-33.
- Waldichuk, M. 1958. Drift bottle observations in the Strait of Georgia. J. Fish. Res. Bd. Canada 15(5):1064-1102.
- Watanabe, N. 1955. Current investigation by drift bottle experiment in Japanese waters. Kagaku-Asahi 171:87-93.
- Wiese, V. 1933. Drift of two buoys from the Kara to the Norwegian Sea (in Russian). <u>Bull. Arct. Inst. 1/2, 10:39-40</u>.
- Wiese, W. J. 1935. Drift of buoy from Kara Sea to Lofoten Islands.
 Bull. Arct. Inst. V(7):205-206, 229-230.
- Wiese, W. J. 1935a. The drift of buoys from the Kara Sea to the coasts of Norway. Bull. Arct. Inst. V(9):290, 309-310.
- Wiese, W. J. 1935b. Drift of buoys from the Laptev Sea to the coasts of Greenland. Bull. Arct. Inst. V(10):340-341, 367-368.
- Woodhead, P. M. J. 1968. Sea surface drift between Central Queensland and New Zealand. <u>Aust. J. Sci. 31(5):195-196.</u>

- Woodhead, P. M. J. 1970. Sea surface circulation in the southern region of the Great Barrier Reef, Spring 1966. Aus. J. Mar. Freshw. Res. 21:89-102.
- Wyatt, B., D. A. Barstow, W. E. Gilbert and J. L. Washburn 1971.

 Drift bottle recoveries and releases off the Oregon Coast
 1961 through 1970. Oregon State University, Dept. of Oceanography
 Data Report No. 50. 6lp.
- Wyatt, B., W. V. Burt and J. G. Pattullo 1972. Surface currents off Oregon as determined from drift-bottle returns. J. Phys. Oceanogr. 2(3):286-293.
- Yoshida, T. 1963. Studies on the distribution and drift of the floating seaweeds. <u>Bull. Tohoku Reg. Fish. Res. Lab. No. 23, p. 141-186 (in Japanese, English abs).</u>
- Zeigler, J. M. and H. J. Tasha 1969. Measurement of coastal currents. Coastal Engineering 11th Conf. Proc. Vol. I, p. 436-445.