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ABSTRACT

Deep quasi-static cone penetration provides a superior
exploration tool for soil stratification and identification,
especially in offshore work. In order to estimate the shearing
resistance and the consolidation and/or permeability character-
istics of soils, a better understanding of the mechanism of
cone penetration is needed.

This report utilizes the strain path method to investigate
the mechanism of cone penetration in clays with the specific
objective of estimating pore pressures in the soil during pene-
tration. Deformations and strains are determined assuming that
the soil provides no shearing resistance. Deviatoric stresses
and shear-induced pore pressures are determined from specially
developed soil behavior models and the strain paths of soil
elements. Approximate values of the total stresses and pore
pressures in the soil are then computed from equilibrium con-
siderations. An evaluation of the predicted pore pressure
fields in Boston Blue Clay  BBC! by means of results of special
conical pore pressure probes indicate surprisingly excellent
agreement for various overconsolidation ratios �.3<OCR<3! after
the excess pore pressures, hu, are normalized by the shaft pore
pressure,  hu!

sh

Additional interesting aspects of this study include:
applicability of cavity expansion approaches to deep penetration
and pile installation problems, likelihood of soil hydrofracture
due to pile installation, evaluation of a deviatoric stress model
capabilities in predicting the undrained behavior of BBC in
various laboratory tests, development and evaluation of a shear
induced pore pressure model for clays subjected to undrained
loading along general strain paths.
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FOREWORD

A three-year research program entitled, "In Situ Evaluation

of Geotechnical Properties of Marine Sediments," sponsored pri-

marily by the National Oceanic and Atmospheric Administration

through its MIT Sea Grant Program, was initiated in July, 1978

by the Constructed Facilities Division of MIT. Matching funds

for this research were provided by FUGRO, Inc., Consulting En-

gineers, and by Instituto Tecnologico Venezolano del Petroleo.

The objective of this research is to provide the geotech-

nical designer with more reliable methods for estimating in situ

properties of marine sediments for foundation design.

The electric  Dutch! cone penetrometer and the conical

piezometer probe represent a new generation of in situ testing

devices which are particularly valuable offshore because of their

simplicity, consistencv, and economy.

Previous efforts at MIT concentrated on:

l. Evaluating the capability of cone penetration in es-

tablishing stratification, determing variability,

and performing soil identification  Baligh et al. 1980!,

and

2. Estimating the undrained shear strength of clays  Ba-

ligh et al. 1978; Baligh and Vivatrat, 1979!.

This report investigates the pore pressures that develop in

clay deposits due to cone penetration. These pore pressures are



important for understanding the mechanism of penetration and for

estimating the coefficients of consolidation and permeability from

the pore pressure decay that takes place after interrupting cone

penetration  Baligh and Levadoux, 1980!.
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c'HAPTER 1

INTRODUCTION

~Cone enetration testing provides an efficient

and reliable method for soil exploration which is

especially suited for of fshore work. Continuous measure-

ments are obtained as the cone is pushed into the soil

and hence the test is valuable for determining stratifi-

from dense sands to soft clays. Furthermore, the

similarity with pile foundations makes cone penetration

Like most in situ tests, cone penetration lacks the

ideal conditions offered by laboratory tests, and hence

poses significant inter retation roblems. However,

recent hardware developments  Wissa et al., 1975!

enabled reliable measurements of ore ressures enerated

b cone enetration which, together with the conventional

cone resistance measurements, offer a better tool for

determining soil stratification, assess soil variability

and, in addition, provide more reliable methods for soil

identification  Baligh et al., 1980!

This research represents part of a continuing effort

at N.I.T. to develop a better understanding of the

mechanism of cone penetration ~in cia s, through theoretical

17



and experimental studies, aimed at providing reliable methods

of interpreting cone penetration results especially with re-

gard to en ineering soil roperties for field predictions and

deslsu purposes. Past research  Baligh, et al., 1978! was

primarily concerned with the undrained shear stren th of clays.

This research is primarily aimed at estimating the in situ

from the pore pressure decay that takes place after steady cone

penetration.

This report estimates the excess pore pressures in satura-

ted clays during steady cone penetration. A separate report

 Baligh and Levadoux, 1980! presents excess pore pressure dissi-

pation analyses and measurements for estimating the in situ con-

solidation  and/or permeability! properties of soils from the

pore pressure decay that takes place after steady cone penetra-

tion is interrupted.

describes the application of the "strain path

method" to deep steady cone penetration in clays. The "strain

path method"  Baligh et al., l978! is an approximate method for

systematically elucidating and solving problems which are basic-

ally strain-controlled. In this approach, the strain path of

selected elements is estimated from a deformation pattern  velo-

city field.! chosen on the basis of kinematic requirements.

Laboratory tests are then conducted or, alternatively, appropri-

ate constitutive laws used, to determine the deviatoric stresses

18



in these elements when subjected to the estimated strain paths ~
The octahedral  isotropic! stresses are then estimated by in-

tegrating the equilibrium equations. Finally, Chap. 2 discusses

the limitations of the method and suggests means to assess the

accuracy of solutions.

performs the first step in the strain path method

by determining the displacements and strains in saturated clays

due to deep steady cone penetration  assuming that the soil of-

fers no shearing resistance, i.e., behaves as an incompressible

ideal fluid! and compares predictions with limited laboratory
model test data.

Chapter 4 generalizes an analytical soil behavior model

 Iwan, 1967; Mroz, 1967; and Prevost, 1977! capable of incor-

porating the difficult anisotropic, elastoplastic, path-dependent

stress-strain-strength properties of inviscid saturated clays

subjected to undrained loading conditions in order to account

for the complicated strain paths imposed by cone penetration.

Predictions of the model are evaluated by comparisons with

laboratory test results on Boston Blue Clay.

cess pore pressures generated by undrained shearing of saturated

clays, proposes a new analytical model to estimate the pore

pressures during undrained straining of clays and evaluates pre-

dictions with laboratory test results.

19



Chapter 6 determines the excess pore water pressures in

the soil during steady cone penetration based on the strain

path method  Chapter 2!, the strain paths corresponding to an

ideal fluid  Chapter 3!, the deviatoric stress model  Chap-

ter 4j and the shear induced pore pressure model in Chapter 5

using soil parameters appropriate to normally consolidated

Boston Blue Clays Predictions are compared to field measure-

ments of penetration pore pressures at different locations on

the cone and the shaft behind it as well as measurements around

driven piles in different soils with various overconsolidation

ratios.

Finally, Chapter 7 summarizes the main conclusions reached

in this report.

20



CHAPTER 2

THE STRAIN PATH METHOD

2.1 INTRODUCTION

The pred.iction of foundation performance is one of the

most challenging aspects of geotechnical engineering. Be-

cause of the complexity of soil behavior and soil variability,

complete solutions to practical problems are not available

and the engineer relies on empirical and/or simplified

rational approaches. For example, the prediction of found-

tion settlement on sand deposits by means of the standard

penetration test results  N-values! represents an em-

pirical method  Terzaghi and Peck, 1967! whereas predictions

according to the stress path method  Lambe, 1967! are based

on a more rational, yet simplified, method. Reliable em-

pirical methods require very large data bases and are dif-

ficult to adapt to slightly different or new situations. Sim-

plified methods require engineering judgement in selecting

the input parameters and in interpreting the results.

The "stress path method"  Lambe, 1967! provides an

integrated and systematic framework for elucidating and

solving stability and deformation problems. The application

of the stress path method to deformation problems consists

of the following steps: 1! estimate the stress history at

selected locations in the soil mass and the stress increments

caused by the foundation on the basis of equilibrium



requirements; 2! conduct laboratory tests on samples ob-

tained from those locations in order to subject the soil to

the same stress path expected in the actual problem, and;

3! integrate the strains obtained from laboratory tests to

predict displacements.

The stress path is an approximate method because, even

under ideal conditions of sampling and testing capabilities

involving an infinite number of samples, the compatibility

of strains is not satisfied. A compatible strain field would

be obtained if and only if the estimated stress increments

were identical to those actually experienced in the field.

The latter depends on soil behavior and cannot, therefore, be

known a priori.

The stress path method proved successful for predicting

the performance of surface structures, e.g., excavations,

shallow foundations, natural slopes, earth dams, etc

 Lambe and Narr, 1979!. The success of the stress path
**

method in solving shallow foundation problems is due to

the essentially stress-controlled characteristic of surface

problems where stress increments can be predicted with suf-

ficient accuracy by simplified methods  e.g., analytical or

numerical elastic analyses!.

On the other hand, attempts to use the stress path method

The deformations depend on the path of integration of
the strains.

where the depth of the foundation soil below ground Sur-
face is "small" compared to its lateral extent.

22



for deep foundations encountered major problems caused by
the difficulties of estimating incremental stresses. Lambe

and Horn �965! utilized the stress paths obtained from tri-

axial extension tests  assuming ha = 0 and ha = ha ! tov e =

provide insight into the problem of pile installation in

clays. D'Appolonia �971! and Hagerty and Garlanger

�972! applied this insight to predict pore pressures caused

by pile installation. Vijayvergia and Focht �972! ex-

tended the concept further and relied on the "Rankine passive

earth pressure" to formulate the very popular semi-empirical

!I.-method for pile design in clays, especially offshore. The

Rankine passive state follows directly from the use of tri-

axial extension tests, but actually has little in common

with the stress state in the soil caused by pile driving

because: 1! the vertical stress can change significantly

 i.e., hv f 0! and, more importantly, 2! the tangentialv

stress, a>, is far from being equal to the radial stress,

o', during soil shearing  i.e., Ave g ha !.r' e r

In deep penetration problems, experimental observations

 Rourk, 1961; Vesic, 1963; Robinsky and Morrison, 1964;

Szechy, 1968; and others! indicate that soil deformations

caused by penetration of a rigid indenter are similar in dif-

ferent soils even though the penetration resistance can be dras-

tically different  i.e., soil stresses are very different!.

23



This implies that deep steady cone penetration problems are

basically strain-controlled and that the associated deforma-

tions are not very sensitive to soil behavior. Baligh �975!

outlined an approximate method that he later called the

"strain path method"  Baligh et al., 1978! for solving

these problems. In this approach, the strain path of

selected elements is estimated from a deformation pattern

 velocity field! chosen on the basis of kinematic require-

ments. Laboratory tests are then conducted or, alternatively,

appropriate constitutive laws used, to determine the devia-

toric stresses in these elements when subjected to the es-

timated strain paths. The octahedral  isotropic! stresses

are then estimated by integrating the equilibrium equations.

Figure 2.1 compares the strain and stress path methods

to identify their strong similarities. As indicated in

Fig. 2.1, the strain path method is approximate because the

estimated stresses will not, in general, satisfy the equili-

brium requirements, unless the estimated strain field is

identical to the actual one.

In this Chapter, the application of the strain path

method to deep steady cone penetration in clay is described.

The limitations of the method are discussed and means to

assess the accuracy of the solution are proposed.
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2.2 APPLICATION OF THE STRAIN PATH METHOD TO

DEEP STEADY CONE PENETRATION IN CLAY

2.2.1 General Descri tion

Deep steady cone penetration is an axisymmetric steady

state problem i.e., for an observer moving with the cone, the

deformation pattern, the strain and stress fields in the soil

do not vary with time. Accordingly, by using a cylindrical

coordinate system, the process of cone penetration is reduced

to a flow problem where soil particles move along streamlines

around the cone  Fig. 2.2!. A solution to the problem con-

sists of the strains and the stresses of soil elements along

different streamlines.

Figure 2.3 describes the steps for evaluating stresses

and pore pressures in the soil due to deep steady cone pene-

tration in clay by means of the strain path method. These

steps, to be later reviewed in details, consist of:

1! Estimate a velocity field* satisfying the conser-

vation of volume  or mass! requirement and the

boundary conditions.

2! From the velocity field determine the soil defor-

mations by integration along streamlines. Compare

with experimental model or field test results

 if possible! ~

The velocity field describes the velocity of soil
particles as they move around the cone.
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spacial coordinates.

4
4! Integrate the strain rate, ci,, along streamlinesij'

to determine the strain path  ci.! of different
ij

soil elements.

5! Estimate the initial stresses,  g..! , and initial
ij o

pore pressures, u , in the soil prior to cone pene-

tration.

6! Compute the deviatoric stresses,

si   = vi - 6.. a t!* and the shear induced
ij ij ij oct

pore pressures, 5u , along streamlines by means
s

of:

a! a model to determine si. for a given strain
i!

path  ci,!, and;ij

b! a model to determine hu for a given strain
s

path  si !ig

7-a! Prom equilibr ium cons iderations, compute the total

stresses, oi.  = si. + b.. G t!, given the devia-
ij ij ij oct

toric stresses, si .. This requires the determina-
ij

tion of the octahedral stresses, a
oct

7-b! From si. and hu , compute the effective stresses,
ij s

ij'

= Kronecker delta:
ij

and, o t= 1/30.. ~
oct ii

=Owhen if j; =lwhen i= j
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3! Compute the strain rates, c, along the streamlines
i!

by differentiating the velocities with respect to the



8! From cr t and hu determine the pore pressure u.oct s

The important steps in the method  Fig. 2.3! are discussed

below.

2.2.2 Velocit Field

The strain path method hinges on the assumption that

soil deformations during deep cone penetration can be esti-

mated with a reasonable degree of accuracy. Figure 2.3 re-

commends that deformations be obtained from velocities by

integration rather than the more obvious alternative of

estimating deformations  e.g., from laboratory penetration

tests! and then derive velocity and strains by differentia-

tion. This avoids the significant errors caused by the pro-

cess of numerical differentiation associated with the limited

accuracy of existing deformation measurements.

Most of the existing experimental results consist of

crude visual observations of deformations during cone penetra-

tion by means of photographs  Rourki 1961; Randolph et al.,

1979!. More precise measurements obtained by X-ray techniques

are currently conducted at Cambridge University, England

 Randolph, 1979! . Arthur and Phillips �975! evaluated the

accuracy of the X-ray technique under ideal conditions  pro-

viding maximum accuracy! by analyzing the same radiograph

twice, i.e., a case of uniform zero deformations and strains.

Using a 10 x 12 grid of lead shots spaced at 10 mm, they

obtain an average vertical strain equal to zero, thus showing

that no consistent error occured in deformation measurements.
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However, the standard deviation of strains was 0.3%. This

means that when the results are based on measurements of a

lead shot at a single location  as in non uniform fields!,

there is a 32% chance of obtaining an error in strain in

excess of +0.3% and a 5% chance of obtaining an error in

strain in excess of +0.6%  assuming a normal distribution of

data about the mean!. Such errors might be acceptable in some

soils subjected to special loading conditions but, in other

cases, such strains are sufficient to reach the peak strength

and hence cannot, in general, be tolerated. In penetration

experiments in clays, the X-ray technique is further compli.�

cated by:

a! the inevitable variability of the soil in the model

test. This adds to the errors in the estimated

deformation and. strain fields caused by penetration

which are highly non uniform;

b! the limited size of the clay container. The dia-

meter of the consolidometer containing the clay

must be small  = 20 cm! to require a reasonable

exposure time and yield sufficient image sharpness.

On the other hand, the radius of the consolidometer

must be large compared to that of the model pile in

order to minimize the boundary effects; and;

c! the density of the lead shots in the clay. In

order to measure the large strain gradients accur-

ately, a large number of lead shots is required,
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especially near the cone tip. On the other hand,

a high density of lead shots might, cause excessive

changes in the mechanical properties of the clay

 because of interaction between lead shots and

clay! .

Consequently, it is recommended that soil deformations

during steady cone penetration in clay obtained from experi-

mental measurements be used to evaluate velocity fields

rather than to estimate strain fields.

In this study, strains are derived from velocity fields

obtained for an inviscid incompressible  or perfect! fluid.

Chapter 3 describes the analytical methods used to derive

these velocity fields which, for clays, will be approximate.

Solutions involving materials with more complex behavior such

as viscous fluids are still under investigation at N.I.T.

2.2.3 Stress-Strain Relationshi. s

The strain paths of soil elements during cone penetra-

tion are very complicated  see Chapter 3! and cannot be du-

plicated by existing laboratory tests. Therefore, a soil

model is used herein to determine soil stresses during pene-

tration. For reasons discussed in Chapter 4, an incremental

total stress model was considered appropriate for the undrained

penetration problem. During undrained. shearing, the behavior

of clays is not affected by the octahedral normal total stress,

t = 3 ail! and, hence, only the deviatoric components of
l

oct 3



stresses, s , need to be considered:
ij

ij ij oct ij

in which a.. is the
ij

necker delta �
ij

By following a

total stress tensor and 6, is the kro-
ij

l for i = j, and; 6i. = 0 for i p j! .

soil element along its streamline, the

�-2!hu=ho + hu
oct s

Aa t is obtained from equilibrium considerations  see next
oct

section! and the shear-induced pore pressure, 5u , is evalu.-

ated by means of a new model  similar to the deviatoric stress

model! as a function of the strain path of soil elements.

2.2.5 Effective Stresses, Total Stresses and Pore Pressures

The changes in effective stresses, hei,, are evaluatedij'

from the changes in deviatoric stresses, hs , and the shearij'

30

soil model thus provides the deviatoric stress path corres-

ponding to its strain path. This process is repeated along

a number of streamlines and the deviatoric stress field is

thus evaluated at as many discrete points as desired.

2.2.4 Pore Pressure-Strain Relationshi s

In order to evaluate the pore pressure distribution in

the soil during steady undrained cone penetration, the excess

pore pressure, hu, is separated into two components. the

first corresponds to changes in octahedral normal total stress,

ha' t, and the second results from the shear deformations ofoct'

the soil, hu  see Chapter 5!:
S



induced pore pressure, 4 u
s

4u
ij ij s ij �.3!

isotropic! stress, a t. This is achieved by integrating theoct'

equilibrium equations as described in Appendix A.

The changes in pore pressure, 4u, and total stresses,

4vi. are given by:

4u = 4g t + 4u
oct s �.4!

i' 4si. + 4a t 6i'and �->!

2.3 DISCVSSIO~

The strain path method is an approximate method to sys-

tematically simplify and analyze problems where the strains

are principally governed by kinematic requirements and, thus,

are not very sensitive to material properties. The expansio~

of a cylindrical cavity in an incompressible cross-anisotro-

pic infinite medium represents one problem where solutions by

the strain path method are exact because soil strains are

independent of material properties. In more complicated

problems  e.g., cone penetration in clays! where strains are

"slightly" dependent on material properties, solutions based

on simplified strain fields are approximate. Like all

Provided an appropriate soil model is available.

3l

Evaluation of the total stresses, a , and pore pressures,
ij

u, requires determination of the octahedral normal total  or



approximate solutions, results of the strain path method re-

quire treatment of the following:

l! The source of approximation  i.e., why is the solu-

tion approximateP! in order to provide a better under-

standing of the reasons behind the resulting errors

and< hence answer the following questions �! and

�! rationally.

2! The effects of approximation  i.e., how important

are the simplifications made!. This requires cri-

teria and methods to evaluate the degree of appro-

ximation.

3! The methods to improve solutions  i.e.; how to re-

duce the effects of simplifications!.

1! Source of a roximation

Xn the strain path method, the simplification in the

strain field is the source of deviation from exactness.

Appendix A shows that the deviatoric stress field predicted

by means of the strain path method is the exact solution to

a cone penetration problem where a fictitious field of body

forces is applied.

2! Effects of a roximation

The degree of approximation of predictions obtained

by the strain path method can be evaluated analytically by

Provided an appropriate soil model is available.
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comparing:

a! the octahedral total normal stresses, c
oct'

obtained by integration along different paths

 see Chapter 6!, and;

b! the magnitude of the fictitious body forces compared

to the stress gradients  see Appendix A!.

Small fictitious body forces indicate better

results.

the predicted vs. experimental deformations

in model tests  say!, and;

the predicted vs. measured point resistance and

pore pressures at different locations  on the

tip, on the shaft behind the tip and in the soil

around the cone! by means of field measure-

a!

b!

ments  see Chapter 6 ! . However, these com-

parisons are complicated on one hand by ex-

perimental difficulties and on the other

hand by the selection of an adequate soil

model and the appropriate soil parametezs

required to perform predictions.
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Ultimately, the effects of approximations and the

practical value of the method are judged by comparing predic-

tions with laboratory and/or field measurements. For example,

application of the method to cone penetration can be evaluated

by comparing:



3! Methods of im rovin solutions

Approximate solutions obtained by the strain path

method can be improved by successive iterations on the velo-

city field until the stress field is sufficiently close to

satisfying the equilibrium requirements. A possible itera-

tive procedure consists of: a! evaluate the fictitious body

forces from the deviatoric stress field; b! estimate a new

velocity field  utilizing the same idealized material, e.g.<

an ideal fluid! after taking the fictitious body forces field

into consideration  with a negative sign!, and; c! repeat the

necessary steps to evaluate a new stress field  see Fig. 2.3!.

In this study, no attempt was made to establish the

validity of this iterative procedure or to prove its supe-

riority over other possible techniques. Therefore, solutions

presented subsequently correspond to an initial velocity

field without corrections  iterations! ~

2. 4 SUN'4N.RY

Deep steady cone penetration in clay is essentially a

"strain-controlled" problem where strains and deformations are

pr imar ily imposed by kinematic requirements. For this type

of problem, Baligh �975! proposes an approximate method

of solution called the "Strain path method". This method is

based on concepts similar to the "stress path method"  Lambe,

1967! and consists of four basic steps: a! estimate the ini-

tial stresses; b! estimate an approximate strain field

satisfying conservation of volume, compatibility and boundary
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velocity requirements; c! evaluate the deviatoric stresses

at a selected number of elements by performing laboratory

tests on samples subjected to the same strain paths or, al-

ternatively, by using an appropriate soil behavioral model,

and; d! estimate the octahedral  isotropic! stresses by in-

tegrating the equilibrium equations.

In this chapter, application of the strain path method

to deep steady cone penetration is discussed in details

 Fig. 2.3!. It is recommended to estimate the velocity fields

from solution of cone penetration in simple materials  e.g.>

perfect fluid!. Because of the complexity of the strain paths

of soil elements during cone penetration, the deviatoric

stresses and shear-induced pore pressures are evaluated by

means of behavioral soil models. The deviatoric stress field.

predicted by means of the strain path method is the exact

solution to a cone penetration problem where a fictitious

field of body forces is applied. Consequently, the octahe-

dral  isotropic! normal total stresses obtained by integra-

tion of the equilibrium equations and neglecting the fic-

titious body forces is path dependent. Evaluation of the de-

gree of approximation of the solution obtained with the

strain path method is achieved by comparing: a! the pre-

dicted soil deformations to experimental measurements;

b! the magnitude of the fictitious body forces to the stress

*Provided the soil model is adequate.
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gradients; c! the isotropic stress f ields obtained by inte-

gration along different paths, or; d! stress and pore pres-

sure predictions with laboratory and/or field measurements.
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Stress Path Method Strain Path Method

APPLICATIONS

Surface Problems Deep Problems

STEPS

4. EStimate defOrmatiOnS by
integrating strains

APPROXIMATION

Figure 2.1 Comparison of stress path and strain path methods.
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l. Estimate initial stresses

2. Estimate incremental stresses

3. Perform stress path tests on
samples  or use adequate soil
model! to obtain strains at
selected locations.

In step 2, stresses are approximate
thus leading to strains not satis-
fying compatibility requirements.
i.e., deformations in step 4 de-
pend on strain integration path.

1. Estimate initial stresses

2. Estimate incremental strains

3. Perform strain path tests on
samples  or use adequate soil
model! to obtain deviatoric
stresses at selected

locations.

4. Estimate octahedral  isotro-
pic! stresses by integrating
equilibrium equations.

In step 2, strains are approxi-
mate thus leading to stresses
not satisfying all equilibrium
conditions. i.e., octahedral
stresses in step 4 depend on
equilibrium integration path.



STREAMLINE

Figure 2.2 Problem geometry and coordinate system for deep steady
cone penetration.
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6.a Deviatoric stresses

8 - Pore pressures u

Figure 2.3 Application of the strain path method to deep steady
cone penetration: Plow Chart.
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7.a Total stresses, a .
1

6.b Shear induced pore pressures

7.b Effective stresses, <,.
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CHAPTER 3

STRAIN FIELD

This chapter presents numerical solutions for the irro-

tational steady flow of an incompressible inviscid fluid

around a cone penetrometer  or pile! under conditions of

axial symmetry  i.e., properties and flow characteristics are

independent of the tangential coordinate!. Distortions and

strains are obtained by superimposing the effect of a suit-

able distribution of sources and sinks to a uniform flow.

This method of solution has been described by Weinstein �948!,
Rouse �959!, Shames �962!, and others and was used to

determine the flow around the so-called "Rankine-body"  ovoi-

dal body of revolution!. Problem formulation is carried out

using Eulerian axes where field variables are expressed in

terms of coordinates fixed in space  with respect to the
cone! .

3.1 STREAM FUNCTIONS

The method of sources and sinks uses the superposition

principle by adding the stream functions corresponding to com-

binations of sources and sinks to that of a uniform flow,

Fig. 3.1. For steady incompressible axisymmetric flow, the

stream function $ r,z! is a convenient mathematical expres-

sion describing different particle paths  streamlines!

when ! = const. For the sake of simplicity, sources and

sinks will hereafter be referred to as sources with a  + ve!
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|I!  r z! =-4v r'
0 0

The stream function !I! corresponding to a line source
8

of length f, with a total strength m  uniformly distributed

over its length! and located at z = z is given by.

B T
0 rz! ,= m � + ~~! �. 2! *

in which:

p =   z.-  z ..- 4/2'!!' + r !
s

p = $ z -  z + jm./2!!'+r !and

The geometry of the cone penetrometer is prescribed

by a finite number of "body points" which, for simplicity

have the same z-coordinate as the line source centers,

Fig. 3.1. The stream function at the i body point. th

 r., z.! due to the superposition of the uniform velocity V
i i 0

 at infinity! and of the n line sources �, z>! distributed

*
Stream functions are completely defined except for an

additive constant which is herein dropped to cancel the
stream function along the streamline represented by the
negative z-axis.

sign to indicate a source and a  - ve} sign to indicate

a sink. Sources are located on the axis of the cone as

shown in Fig. 3.1. In cylindrical coordinates  r,z!, the

stream function f for a uniform flow of velocity V parallel
o 0

to the z-axis is given by:



along the symmetry axis is given by:

8 T

  l + ik i k!PE PE

k

k

+
3. 0 i  S.5!

in which Rk and m are the length and strength of the kth

line source, respectively, and p and p. are the dis-8 T

ik
. th thtances of the i body paint to the end paints of k line

source. The body points are located on the boundary stream-

line and thus the stream function must vanish at their loca-

tions:

8 T

Pik Pik ! QV
O i

k

i = l,2,...,n �.6!

Equations 3.6 represent n linear equations which can be

easily solved numerically to obtain the source strengths

ml, ..., m . The stream function Q at any location  r,z!
n

equations:

pk = [ z �  zk Rk/2! ! ~ + ] � ~ 9!
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n

k � 1

is then given by the following
n

4 r z! = � Q V r + m

k=1

Pk = [ z �  zk � Rk/2!

B T

 l + !

! 2 y 2 J



3. 2 VELOCITY FIELD AND DEFORMED GEOMETRY

The velocity components V and V in the meridia;i plane
r Z

 thc third velocity component, V , vanishes because of axial

symmetry! are determined from the stream function g by the

expressions:

1 3$ l ay
V = � � ~ V

r az z r gr
�. 10!

Substituting �.7! into �.10!, we get:

n

k k k
V

r B
r k p

k=1 k

z �  zk + Lk/2!
] �.l.l!

B -i 1v =v � ~  p! �  p!
z o k k

k=l

�. 12!

t
r. + V  r., z ! dt

l. r i' i

0

t

z. + V  r., z.! dT
l. Z i i

{3. 13!

{3-14!z ~
i

Another method could have been used to determine stream-

lines by solving the implicit equation:
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Deformations are obtained from velocities by numerical

integration. A material point, M. with initial coordinates
i

r'. and z'. {far enough in front of the tip! has, at any time
i

t, the coordinates:



where g r,z! is given by Eq. 3.7, and r is the radial coor-
0

dinate of the given streamline far ahead of the cone. By
varying z, and solving Eq. 3.15 for r, different streamlines

are determined for various r . However, in order to deter-

mine strain fields, the numerical integration procedure

 Eqs. 3.l3 and 3.14! proved more convenient.

3.3 STRAIN FIELD

In an orthogonal cartesian frame of reference, the

components of the rate of deformation tensor, Di.  also
ij

called stretching tensor!, are defined in terms of the gra-
dients of the velocity components, V., by the expression
 see Malvern, 1969!:

avi av,

3
� 16! *

In penetration problems considered herein, this tensor can

be directly obtained by differentiating Eqs. 3.11 and 3.12.

In order to determine the large strains associated with pene-
tration problems, we introduce the natural strain increment
tensor;

*Cylindrical coordinates will later be introduced for ap-
plications to penetration problems.



dc.. =D . ' dt
ij ij

� . 17!

and, for convenience, define the natural strain components

c , at any time t by the expression:3. j

c.. = dc.. = D... dt
ij ij ij

  3.18!,

where the integration is conducted by following the material

point through its path along a streamline. Estimates of

the natural strains will prove very useful in visualizing the

degree of straining in the soil due to penetration, and in

portraying the strain history of different soil elements.

3.3.1 Rate of Deformation

Using cylindrical coordinates, the non-vanishing corn-

ponents of the rate of deformation tensor, D , in axisymme-
1]

tric problems are given by  Malvern, 1969!:

SV SV V
D = ; D = ; D = and;

rr Br ' zz Bz ' ee
r

Vr ~Vz
D =8  � + !

rz. ez ar
� . 19!

Substituting Eqs. 3.11 and 3 .12 into Eq. 3.19, the components

of the rate of deformation tensor are obtained, Table 3 .l.

3 . 3. 2 Strain Field

Integration of Eq. 3.18 is analytically intractable and

was, therefore, performed numerically by following a stream-

line  from a starting point far ahead of the cone! and



computing natural strain increments corresponding to small

time intervals dt. The natural strains in a soil element, at

a given time t, are then simply obtained by adding the corn-

ponents of natural strain increments.

3.3.3 Com uter Pro ram

In order to compute deformations, strain-increments and

strains, a computer program was developed. A listing of this

program  written in Fortran IV! together with a description

of its use are given in Appendix B. Input data consist of

the cone geometry  half angle and radius!, the cylinder length

and the number of sources over the cone and cylinder lengths

 sources are equally spaced along the cone and cylinder axes!,

respectively. A radius of curvature can also be assigned

to smooth the cone-cylinder transition. The program first

solves the linear equations 3.6, using the elimination method,

to determine the sources strength. For different streamlines,

deformations, strain increments and strains are then com-

puted using Eqs. 3.13, 3.14, 3.17 and 3.19, respectively,

with the forward integration method. Special program modes

are available to check stability and accuracy of solutions.

3.3.4 Graphical Re resentation of Strain Paths

In axially symmetric problems, the  natural! strains

are described by four non-vanishing components: c , c
rr zz

and c . Bearing in mind that the soil treated herein is
rz

incompressible, the three normal strains must satisfy the

condition of no volume change:

46



�.20!"c + c + c 8 0

Therefore, the strain tensor can be uniquely defined

by three components  or three linearly independent combina-

tions of the components! only. In order to develop a graphi-

cal representation of different states of strain and follow

the strain path of various soil elements, we utilize the

E. � space,  E , E , E !  Prevost, l978! defined as:
i 3

l 2

E = c; E =  c � c ! and, E = c �.21!zz ' ~ ~3 90 rr

Figure 3.2 shows a strain point in the three-dimensional

E. � space where its distance from the origin is proportional
1

to the octahedral shear strain y

[E + E + E ] �.22!

oct a rr zz zz 'ee' + 'ee rr

rz
�. 23!

*Eq. 3.20 is applicable to infinitesimal strain. How-
ever, in view of the definition of the natural strains

as expressed by Eq. 3.18 and, since D + D + D0 = 0
 her imcompressible material, Table 3.1! k$. 3.% is also valid
for large values of c...

i3

P7

The value of y t is a good measure of the level of
oct

straining to which a soil element is subjected. Furthermore,

the strain paths of conventional strain controlled tests move

along the three axes  triaxial test along E,, pressuremeter test



along E~, and Direct Simple Shear test along E,, Fig. 3. 2! .

3.4 RESULTS

This section presents results of analyses conducted to

estimate deformations and strains in the soil caused by pene-

trometers  or piles! with cylindrical shafts having the

same diameter as the conical tip. Penetrometers with 18'

tips were analyzed using 20 sources along the cone axis and

80 sources along the cylinder axis  the cylinder length is

4 times the cone length}. Penetrometers with 60' tips were

analyzed using 10 and 120 sources, respectively, and a cylin-

der length 12 times that of the cone. In order to achieve

numerically stable solutions, the geometry of existing Dutch

cone penetrometer with 60' tips was slightly altered by

introducing a circular arc with a radius of curvature equal

to 3 times the cylinder radius at the cone-cylinder transi-

tion. The effect of the smooth transition between cone and

cylinder is believed to alter the deformations and strains

of the soil in its vicinity but not at some distance away.

The integration of rates of deformation. was started at a

distance of 200 radii in front of the cone apex with an inte-

gration inteval initially equal to 10 radii and decreasing

to 2% of the cylinder radius ahead of the pile. From thereon,

the integration interval was kept constant at 2%. Further

reduction of the above integration interval showed no

noticeable change in the results.



3.4.1 Predicted Deformations

The predicted deformation patterns around cones with

18' and 60 tip angles are shown in Figs. 3.3 and 3.4, res-

pectively. The deformed grids illustrate the magnitude and

distribution of the shear strains c  which are the easiest
rz

shear strains to visualize!. The sharp �8 ! cone cuts its

way through the soil and causes smaller strains than the

blunt �04! cone which causes severe straining in its

vicinity. The present analysis assumes a frictionless

soil-probe interface and, hence, is believed to under-

estimate actual soil distortions.

Figures 3.5 and 3.6 illustrate soil displacement paths,

at selected initial locations, due to cone penetration for

18' and 604 tip angles, respectively. Clearly, the soil is

monotonically deformed radially away from the cone. On

the other hand, the soil is initially pushed down in the

direction of penetration and is then pushed up after passage

of the cone base.

3.4.2 Ex erimental Deformation and Com arison with

Predictions

A thorough check on the accuracy of the predicted

deformations is prevented. by the lack of well controlled

experimental data. Figure 3 .7 shows the deformation pattern

obtained by Rourk �961! due to penetration of a flat ended

model pile into bentonite  with a water content of 300%!.

A rigid conical wedge of soil located ahead of the pile can



be easily detected. The wedge moves with the pile and has

an apex angle of approximately 90'. Soil distortions near

the pile are more pronounced than the predicted deforma-

tions for a 60' tip, Fig. 3.4.

Zn comparing theoretical predictions and experimental

deformations, in Fig. 3.7 we note that:

 a! The rigid soil wedge moving with the model pile

is much blunter  = 90 ! than the maximum tip angle  = 60 !

analyzed herein' The analyses have shown that soil

straining increases with the cone angle; and,  b! the ex-

periments reported by Rourk were conducted in a container

made of stiff cardboard jackets with a diameter equal to six

times that of the model pile. Such close boundaries reduce

soil movements in the downward and radial directions

but have a more important effect on the stresses and penetra-

tion resistance, especially for undrained conditions.

More recently, better experimental results were re-

ported by Randolph et al. �979!. The deformed grid repro-

duced in Fig. 3.8a is obtained by jacking a "C" shaped half

closed-ended pile into one-dimensionally consolidated kaolin

against a transparent perspex wall which allows photographs

to be taken. The displacement field, displacement path, and

radial displacements in Figs. 3.8b, 3.8c and 3.8d, respec-

tively, are obtained by comparing the deformed grid

 Fig. 3. Sa! wi th the izit ial grid before pene tration. The

accuracy of the measurements can be assessed in Fig. 3 .Sd
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where a scatter of +10% is observed for the radial dis-

placements. The experimental results indicate that:

�! the general deformation trends are as predicted.

ln particular, the conservation of volume requirement governs

the radial displacements behind the tip. Furthermore, the pre-

dicted tendency for the particles to return to their initial

elevation after passage of the tip  Figs. 3 .5 and 3 .6! is

also confirmed by the experimental results shown in Fig.

3 .S.c, especially for soil particles with an initial radius

r > 1.25 R  R = pile radius!, and;
0

�! the measurements are not sufficiently accurate to

provide neither the displacements close to the pile axis nor

the strains at any location in the field.

A new generation of experiments is currently underway

at Cambridge University where the pile is modelled by a cylin-

der ended with a conical tip and pushed along the axis of

a large diameter cylinder of clay. These experiments

which include deformation measurement by the X-Ray tech-

nique and pore pressure monitoring should provide a better

experimental insight into the cone penetration problem.

3.4.3 Strain Paths

Section 3.3.3 indicates that the strain paths of soil

elements due to cone penetration can be conveniently des-

cribed in the E. strain space  Eqs..3.21!. Figures 3.9 and
i

3.10 show the strain path projections  in the E,-space! of
i

three soil elements  located at r /R = 0.2, 0.5 and 1.0;
0

51



where r is the initial radial coordinate of the element and0

R is the cylinder radius! for l8' and 60 tip angles, res-

pectively. These figures illustrate the complexity of the

strain path caused by cone penetration. Of particular in-

terest is the strain path projection on the  E, E!! plane

which illustrate strains totally neglected by the cavity

expansion technique often used to analyse deep penetration

problems. For the sake of comparison and illustration,

Figs. 3 .9 and 3 .10 also show the directions and typical

magnitudes  at the end of the test! of strain paths en-

countered in common laboratory and field tests.*

Comparison of Figs. 3.9 and 3.10 reveals that the l8'

and 60' cone tips produce the same type of strains in the

soil with the latter causing much higher levels of Ey and

Eq-strains. The E,- strain  = c ! is produced by triaxial
* ~ 2tests  TC or TE! and the E, � strain  = � E: ! is produced

rz
*by the direct simple shear  DSS> test. However, the pre-

1dominant strain is the E2 � strain [=  ace � Err! ] pro-
v'3

duced by the pressuremeter test and hence provides some

justification for current approaches of modellinq cone  and

pile! penetration by means of the expansion of a cylindrical

cavity  Esrig et al., 1977, 1978, 1979; Carter et al, 1978;

Zirby et al., 1977, 1979; etc....!. Further examination of

Figs. 3.9 and 3.10 indicates that:

*Under ideal testing conditions.
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1. Strain levels: The strains caused by cone penetra-

tion are much higher than normally encountered in laboratory

tests  " -20% in TC, TE and DSS! and in the pressuremeter test

 " -10%!. Since the peak strength is reached at relatively

low strains  "- 0.35% in TC~- "10% in TE for Boston Blue Clay:

see Chapter 4! the post-peak behavior of the clay appears to

be of importance in determining cone penetration resistance;

2. Straining reversals: The permanent {residual!

strains caused by cone penetration are not monotonically

reached but all three strains  E, E~ and E,! reverse direction
1

after soil elements pass the base of the cone. The magnitude

of the strain reversal is significant � to 20% next to the

cone and can, therefore, have an important effect on both

the cone resistance and the residual stresses left in the

soil after penetration  see Chapter 4!.

3.4.4 Strain Contours

Contours of the radial normal strain , c , verticalrr'

 longitudinal! normal strain, s , meridional shear strain,zz'

maximum shear strain y = 4  s � s !** and octahedral
rz' max 1

shear strain, y  Eq. 3.23! are given in Figs. 3 ' ll through
oct

3.15, for cones with 18 and 60' tip angles. These contours

These strains are the natural strains obtained by inte-
gration of the natural strain increments; Eq. 3.18.

4*
and c, are the major and minor principal strains,

respectively.
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show the magnitude and the extent of straining due to steady
cone penetration and further indicate the complexity of the

strain field around the tip.* The blunt cone �0'! causes
higher level of strains than the sharp cone  l8'!, especially
in the soil ahead of the tip. On the other hand, behind the

tip, the strain contours become parallel to the shaft axis,
thus indicating that a uniform condition has been reached.

These residual strain contours which are very similar for

blunt �0'! and sharp �8'! cones are compared to strains
**predicted by the expansion of a cylindrical cavity in the

upper part of Figs. 3.ll, 3.14 and 3.15. Further examination

of the strain contours shows that

 l! The radial normal strains, c  Fig. 3 .il! are
rr

moderately tensile ahead of the cone and then become compres-
sive behind the vicinity of the cone apex. The residual

strains e, in soil elements close to the shaft  up to arr

distance of one half the shaft radius! are slightly underpre-
dicted by the cylindrical cavity expansion whereas the in-

verse occurs in soil elements further away from the axis;

�! The vertical  longitudinal! normal strains
zz'

shown in Fig. 3.12 are nonexistent during cavity expansion.

These strains are generally small  as compared to the radial

*The strain field for which contours are drawn in Figs.
3.ll through 3.15 is limited to 5 R in the radial direction/
4 R ahead and 10 R behind the cone apex where most of the
large straining occurs  R = shaft radius! ~

* The cylindrical cavity is expanded from a zero radius
to a final radius equal to that of the cone penetrometer shaft.
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strain magnitudes in Fig. 3.ll!, and compressive ahead of the

cone base. A concentration of tensile e occurs in the
zz

vicinity of the cone base where a sharp change in velocity

directions takes place. The vertical normal strains, c re-
zz

quire large distances behind the cone to attain residual

values  especially at some distance from the shaft!. These

residual strains are positive  compressive! near the shaft,

decrease with radius, reach a minimum negative  tensile!

value and then increase again to vanish at large distances

from the shaft.

�! The meridional shear strains, c , shown in Fig.rz'

3.l3 are nonexistent during cavity expansion. In spite of a

frictionless soil-probe interface e strains are large in
rz

the vicinity of the cone  where the soil particles experience

a change in direction of motion!, are sharply reduced

after passing the cone base and, the residual values are

quite significant along the shaft,, especially for the 60

cone.

�! Contours of maximum shear strain, y  Fig. 3.14!
max

and octahedral shear strain, y  Fig. 3.15! are very simi-
oct

lar and provide a good indication of the average shear strain

experienced by soil elements during cone penetration. The

residual values are virtually identical when predicted by

simple cavity expansion, except in the irnrnediate vicinity of

the shaft where the amount of shearing is slightly larger

during cone penetration  especially for the 60' cone!.



3. 4. 5 Strain Rate Contours

The strength and stiffness of clays depend on the rate

of undrained shearing. Ladd et al. �977! estimate that

the undrained shear strength measured in triaxial compression

tests on sensitive and plastic clays increases 10 + 5% per

log cycle of strain rate for typical strain rates employed in

the laboratory. Since cone penetration causes large strains

concentrated in narrow zones, an adequate estimate of the

strain rates during cone penetration is important when re-

sults are compared with laboratory tests typically sheared at

a rate of axial strain c = 0.5%/hr  which corresponds to
V

*an octahedral shear strain rate y = 0.35%/hr! . Using a
oct

cone radius R = 1.78 cm  i.e., a projected area of 10 cm !,

and a penetration velocity of 2 cm/sec corresponding to the

present standard adopted for cone penetration tests  Report

of the Subcommittee on Standardization of penetration Testing

in Europe, 1977!, contours of the octahedral shear strain
4

rate, 7 t, are given in Fig. 3.16. The dotted areas inoct

Fig. 3.16 represent locations where y is larger than
oct

5000%/hr. Clearly, cone penetration shears very large

volumes of soil at much higher rates than normally encountered

in laboratory strength tests.

3-5 DISCUSSION AND CONCLUSIONS

The method of "sources and sinks" of the potential theory

is utilized to predict the velocity, strain and deformation

in triaxial tests.oct /2 v
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fields caused by the deep steady penetration of cones  or

piles! with l8' and 60' tips. The principal advantage of

this prediction method is to provide analytic expressions

for the strain rates, everywhere in the soil, which can

be accurately integrated to obtain strains and deformations.

This avoids the important errors associated with differen-

tiating displacement fields to obtain the strains. However,

the proposed method presents the following difficulties:

a! The number of possible source configurations  i.e.,

the number and the locations of sources along the cone and

cylinder axes! is infinite and, therefore, numerous trials

are required to obtain an acceptable solution. Numerical

instability occurs when the sources are too closely spaced.

b! The method is best suited for slender bodies  i.e.,

sharp cones! and encounters difficulties when discontinuities

in slot>e away from the symmetry axis  i.e , at the base of the

cone! are encountered. The 60 conical tip *is probably the maximum

cone angle that can be treated by this method without the need

for a ring source located at the slope discontinuity  i.e.,

at the cone-cylinder transition!. However, in the present

study, the considerable additional computational effort did

not seem justified, in view of the small expected improve-

ment in the solution.

As in the case of experiments where deformations are
measured and the strains are then computed.

* To obtain an acceptable solution, the 60' cone was
slightly modified by fitting a circular arc  with a radius
equal to 3 times that of the cylinder! at the cone-cylinder
transition.



Due to the lack of reliable experimental results, pre-

dictions cannot be evaluated accurately. However, qualita-

tive comparisons with experimental results obtained by Rourk

�961! and Randolph et al., �979! indicate that the pre-

dicted deformations are reasonable.

The predicted strain paths and the strain contours re-

flect the complexity of the cone penetration process and

emphasize that: �! no single laboratory test can adequately

impose the strain paths encountered during cone penetration;

�! strains, stresses and pore pressures predicted by the

cylindrical cavity expansion theory can lead to important

errors because of:  a! strain reversals that take place

behind the tip and;  b! the shear strain c and the verti-
rz

cal  longitudinal! normal strain c which are neglected
zz

by cavity expansion. Therefore, in order to predict the

point resistance and the stress field in the soil caused by

steady cone penetration, a comprehensive soil model  Chapter

4! is needed.
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hz hz
T B

 Pk! '  P~! '
D

zz

D
rr  Pk! '  Pk! 'r2

hz hz
T B

T B

p [ hz ! + r !
T z

k k
In which: p = [�z ! + r ]

B B

hzk = z �  zk+k�/2!T=and

Notes: See Fig. 3.1 for definitions;
signs according to Soil Mechanics conventions.

Table 3.1 Components of the Rate of Deformation Tensor.
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Figure 3.1 Problem description
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Figure 3.2 Strain representation in the E,-space
i



Figure 3 .3 Predicted deformation pattern around an 18'cone



Figure 3 . 4 Predicted deformation pattern around a 60' cone
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Figure 3.7 Experimental deformation pattern in bentonite due to cone pene-
tration of a flat-ended model pile  after Rourk, 196'1!
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igure 3.9 Strain paths of selected elements during penetration of an
l8' cone
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Figure 3. 10 Strain paths of selected elements during penetration of a
60O cone
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Figure 3 .ll Contours of radial normal strain,
rr



Figure 3 .12 Contours of verticaI  Iongitudinal! normal strain,
E zz
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Figure 3. 13 Contours of meridional shear strain,
rx
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Figure 3.l4 Contours of maximum shear strain, g = >q c
Ihax I 3
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Figure 3.l5 Contours of octahedral shear strain, y
oct



Figure 3.l6 Contours of octahedral shear strain rate,
oct
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CHAPTER 4

DEVIATORIC STRESS MODEL

4.1 INTRODUCTION

Chapter 4 provides estimates of the complicated patterns

of displacements and strains due to deep steady cone penetra-

tion in an incompressible infinite medium. In order to deter-

mine the soil stresses caused by these strains and compute the

cone penetration resistance in clays, a comprehensive soil

model is required to account for the important aspects of soil

behavior as related to cone penetration: a! complicated strain

paths including strain reversals  i.e., "loading and unloading" !,

and large non-recoverable strains; b! initial and stress-induced.

anisotropy; c! post-peak behavior; and, d! time depending defor-

mations  e.g., undrained creep and relaxation! ~ Such a compre-

hensive model is not available at the present time

It is widely accepted that effective stresses control soil

behavior, and hence, many researchers advocate the use of effec-

tive stresses rather than total stresses in predicting soil be-

havior even in undrained problems  e.g., Schmertmann, 1975; Janbu,

1975!. When effective stress approaches are defined in the nar-

row* sense  as is often the case in geotechnical practice!, the

above statement can be misleading. Figure 4.1 shows results of

*i.e., given the effective stress in the soil at some
loading stage, what can be predicted?
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CK U * cyclic triaxial test on Boston Blue Clay  Braathen, l966!

where both the stress difference  a � 0 ! and the mean effec-
v h

tive stress a are plotted vs. the cumulative vertical strain.
oct

Results in Fig. 4.1 show that: a! when the Loading direction

is reversed  points a,b,c, and d in Fig. 4.1!, the undrained modu-

lus increases drastically although the mean effective stress has

not changed significantly, and b! the points with equal incremen-

tal  or tangential! undrained modulus on the stress-strain curves

in compression loading and denoted by l,2, and 3 in Fig. 4.1 are

associated with very different effective confinement levels

� /0 = 0.64, 0.43, and 0.22 at points L,2, and 3 respectively!.
oct vc

Therefore, for complicated stress  or strain! histories

encountered during cone penetration, comprehensive models are re-

quired to predict the stress-strain-strength behavior of the soil.

For the particular case of undrained shearing of saturated clays,

general effective stress models  e.g., the Cam-Clay! provide

no clear advantages over the total stress models used subsequently.

*
CK U = Anisotropically consolidated  under K conditions!

0 0

test sheared under undrained conditions with pore pressure measure-
ments.

* Where the strain  or stress! history is included.
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lwan �967! proposes a model for the yielding behavior

of materials and structures based on the incremental theory

of plasticity  Drucker, 1960; Naghdi, 1960!. Given the stress-

strain behavior of the material due to monotonic  increasing!

loading under simple stress systems as imposed in existing

laboratory tests  e.g., triaxial tests! the model can predict:

a! the behavior due to complicated  general! stress  or

strain! paths  e.g., plane strain tests!; and b! the behavior

under repeated loading and unloading  e.g., cyclic loading!.

The attractive aspects of the Iwan model over previous incre-

mental plasticity models are:

1! the complicated material behavior can be inter-

preted by means of a collection of mechanical elements

 spring and slip elements! in parallel and/or series.

This provides valuable insight for understanding and

using the model appropriately;

2! the ability to introduce stress-induced anisotropy

 Bauschinger effects! by means of the simple kinematic

hardening proposed by Prager �955!;

3! non-elastic behavior during unloading. This

is achieved by using a collection of yield surfaces

instead of the usual single surface;

4! flexibility in adapting to more complicated material

behavior as encountered in soils, and;

5! easy adaptability to existing numerical computational
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methods  e.g., f inite element methods! .

Independently, Mroz �967! describes a model which is

essentially identical to Ivan's with more emphasis on three-

dimensional behavior of materials rather than the one-dimen-

sional cyclic behavior. The valuable additional contributions

of Nroz are:

1! more detailed mathematical expressions and

introduction of isotropic hardening to improve the per-

formances of the model when applied to complex loading

conditions, and;

2! introduction of convenient three-dimensional strain

and stress spaces where the loading history can be more

easily visualized for plane stress problems.

In order to apply the model for predicting the undrained

behavior of clays, Prevost �977, 1978 and l979!:

1! describes the model in the deviatoric stress space;

2! introduces initial anisotropy by considering yield

surfaces initially centered off the origin in the stress

space;

3! subdivides the strain increment into elastic and

plastic increments so that the flow rule can be inverted;

4! provides three-dimensional strain and stress sub-

spaces that are more convenient for following the loading

history in many soil mechanics problems  e.g., plane

strain and axisymmetry!;

5! presents simple rules to determine the initial
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location, size and associated work-hardening moduli of the
yield sur f aces from laboratory test;

6! proposes simple isotropic hardening rules to model
cyclic loading, and;

7! provides all mathematical equations necessary to im-
plement the model into numerical computational methods.

This chapter describes the above soil model and

generalizes it to include most of the important factors in-

fluencing cone penetration in clays. Predictions of the model
are evaluated by means of laboratory test results on a normally
consolidated clay of medium sensitivity known as Boston Blue

Clay  BBC!. Subsequently, the model is used in Chapter 6 to
predict stress and pore pressure fields in clays due to steady
cone penetration.

4.2 NODEL DESCRIPTION

The proposed analytical model describes the anisotro-

pic, elastoplastic, path-dependent stress-strain-strength pro-
perties of inviscid saturated clays under undrained loading con-
ditions.

Strains are divided into elastic and plastic components.

Elastic strains are related to stresses assuming linear iso-
tropic elasticity and plastic strains incorporate the non-

linearity and anisotropy of the soil. Soil plasticity is
described by means of:  a! a yield condition describing the
stress states causing plastic flow;  b! a flow rule relating
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the plastic strains to the stresses, and;  c! hardening  or

softening! rules controlling the changes in the yield condi-

tion due to plastic flow.

4.2.1 Yield Condition

The undrained shearing behavior of saturated clays is not

affected by the octahedral normal total stress, a  = !.
oct

Hence, only the deviatoric components of stresses p si g
ig

affect the yield condition at any level of shearing.

�.1!s.. = a..
ij ij ij oct

in which ai. is the total stress tensor and 5i. is the Kro-
ij ig

necker delta �. = 1 for i = j and 6 .. = 0 for i p j! .
ij ij

For convenience, yield conditions are depicted by sur-

faces in the six-dimensional deviatoric stress space. The

model considers an arrangement of nested yield surfaces,

f , f , ...f ,, externally bound by a failure surface, fl 2 p-1

which encloses all acceptable stress states. Different shapes

Of the yield surfaces may be utilized. HOwever, fOr the sake

of simplicity, and in order to reduce the necessary soil para-

meters to manageable levels, yield surfaces of the Von Nises

type are proposed:

 QI s +  ! ] I's >  ! ]}8 k  ! P
m ij 2 ij ij ij ij

~ ~ ~ ~ ~ � 2!

Nore precisely, the plastic strain increments
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where a , and k represent the coordinates of the center m!  m!
ij

and the size of the yield surface f, in the stress space,m'

respectively. Each yield surface, f, is therefore describedm'

by seven parameters: six for its center location a and one m!
ij

for its s ize k

4.2.2 Flow Rule

The flow rule adopted by the model is the associated

normality rule of plasticity which states that: for any stress

state located on the yield surface  in the stress space!, the

plastic strain-increment vector lies along the exterior normal

to the yield surface. Applying the flow rule to the yield

surfaces described by Eq. 4.2, using linearity and isotropy for

the elastic response of the soil, and after inversion,* the

deviatoric stress increments, dsi. can be obtained in terms
ij

of the deviatoric stresses, s, and the strain increments,
ij

ij

  !
i' i'  m!

ij >j m 2 Ik m! ]2
.... �.3!

in which G is the elastic shear modulus,

H = [  H'! + �G! ] is the elasto-plastic modulus and H'm m m

is the plastic modulus of the soil.

A plastic modulus H' is associated with each yield

*Inversion of the flow rule is made possible by the pre-
sence of the elastic part of the strain increment  Prevost,
l974! .
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surface. Therefore, by following an incremental procedure one

can visualize the regions enclosed by the failure surface,

f , in stress space as divided into a finite number of sub-
P

regions where the elasto-plastic modulus, H', is constant

 e.g., the stress-strain curve of a triaxial test is sub-

divided into linear segments where the changes in slope occur

when the stress point reaches a new yield surface!.

4.2.3 Hardenin Rule

Soils harden or soften with shearing. In order to ac-

count for strain hardening  or softening! and to incorporate

the effects of loadina-unloading-reloading, the model uses

a combination of isotropic and kinematic hardening  or

softening! rules which depend on the plastic flow undergone by

the soil. During the course of plastic flow, the yield sur-

faces are translated  i.e., ai, changes in the stress space m!
ij

by the stress point, without changing in form! and they conse-

cutively touch and push each other according to hardening

rules which prevent them from intersecting. *

*The terms "loading" and "unloading" are generalized to
three dimensional problems by stating that the soi,l experiences
loading and unloading when the stress point is moving away
or toward the center of the current yield surface, respec-
tively.

* Overlapping of the subregions defined by the yield
surfaces would create zones of multivalued plastic moduli and
hence cause numerical and  more importantly! conceptual dif-
ficulties.



The size of the yield surface k, and its associated plas- m!

tic modulus, H' are allowed to vary according to stress  or
strain! history. The rules governing the translation of the
yield surfaces in the stress space are an integral part of
the model, whereas, the rules describing changes in k  m!

and H' have to be adapted to the soil at hand.m

4.2.4 Model Limitations

Prior to undrained shearing the initial location and

size of each yield surface, which are determined from experi-
mental test results, are only applicable to problems where the

soil has experienced the same strain  or stress! history  i.e.,
same consolidation history!. This implies that: a! results of

isotropically consolidated undrained test cannot be used to

predict the undrained response of a soil element consolidated

under K -condition  with K f l!; b! soil elements with dif-0 0

ferent stress histories  i.e., different overconsolidation

ratios! require separate tests to determine the necessary
model parameters, and; c! the behavior of soil elements where

principal stress directions vary during consolidation cannot be

treated because of the limitations of classical laboratory
tests to duplicate the loading history.

4.3 MODEL IMPLEMENTATION

4.3.l Deviatoric Stress Subs ace

In three-dimensional problems, a stress state is des-

cribed by six independent components. However, since the sum

of the deviatoric normal stresses vanishes  s . = 0! it is
ij
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3
= � s; S =  s � s !; S = l3 s

X y XZ
�.4!

3

S = s i S  s -s!; S =Ms2 z' 2 2 e r ' '8 rz �.5!

In the Si-space, the yield surface f becomes a sphere

with equation;

 m!
 g[ S, - g ]2j - k" � 6!

in which a. and k are the center coordinates and the m!  m!
i

rad.ius of the yield surfaces f , respectively. The distance

from the origin to any point in the S.-space is proportional
i

to the octahedral shear stress x t and,thus provides a good
oct

measure of the level of shearing:

86

suff icient to use five components to identify deviatoric

stress states  i.e., use a 5-dimensional space to map devia-

toric stress states! . In many laboratory and field tests,

loading conditions can be reduced to two-dimensional condi-

tions, e.g., axial symmetry or plane strain, in which

ae = a e = 0 or o = a z = 0  see Fig. 4.2 for definitions!.
ez r9 Xy

In such simpler cases  including cone penetration!, it is pos-

sible to map the deviatoric stresses in a 3-dimensional space

with coordinates Si defined as:



3
[S' + S' + S'j

oct �.7!

1

oct = 3 xx yy + yy zz zz xx + xzj

~ - ~ ~ -� ' 8!

The associated strains E  =E , E and E ! are defined

such that the rate of work per unit volume of soil is ex-
pressed as:

  4-9!dw = si. dpi. = KSi dE.

From Eqs. 4.4, 4.S and 4.9, the associated strains are res-

pectively given in cartesian and cylindrical coordinates by:

� .10!

and

1 2
E = c . E = �  c - c ! ~ E

zzg /3e err�'q~3rz

3H S, � a.  m! 3

 m!dS ~ = 3GdE � �G - � ! Z I s. � u,, ] dE, �.12!i i
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The flow rule in Eq. 4.3 becomes:
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4 .3.2 Parameters Describin the Initial Yield Surfaces

Prior to undrained shearing, the sizes and locations

of the spherical yield surfaces reflect the initial aniso-

tropy of the clay. In most cases of interest, initial ani-

sotropy develops during deposition and subsequent consolida-

tion under one-dimensional straining condition thus leading

to symmetry about the vertical z-axis  i.e., cross-aniso-

tropy!. The yield surfaces are, therefore, initially cen-

tered along the S| -axis  a = u = 0, for any m, Fig.

4.2.b!. In order to determine the model parameters des-

cribing the initial yield surfaces, stress-strain curves of

K -consolidated undrained triaxial compression and extension

tests are utilized as illustrated in Fig. 4.3. During tri-

axial testing, the stress point travels along the S,-axis

and, therefore, the yield surfaces remain centered on the

S -axis. The elastic shear modulus is obtained from the
1

initial slope of the steeper stress-strain curve  in general

that of the compression test! which is equal to 3 G. The

stress-strain curves for compression and extension are then

subdivided into a f inite number of pairs of linear segments

with equal slopes  see Fig. 4.3!. The starting points of the

th
m segments along the compression and extension sides pro-

vide the upper and lower intersections of the spherical yield

surface f with the S -axis, respectively. These two points
m

Assuming that Poisson's ratio v = 0.5 for undrained
loading.
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of intersection completely define the initial location and

size of the yield surface f  i.e., a is equal to the m!
m

average ordinate and, k is equal to half the distance he- m!

tween the two points! . The common slope of the two corres-

ponding segments equals 3/2 H and hence determines the

elasto-plastic modulus 8 associated with f
m m

4.3.3 Pre-Peak Behavior

During undrained shearing, soils develop a "stress-

induced" anisotropy which depends on the stress system im-

posed. ln the model, this behavior is accounted for by the

translation  a change! and the decrease in size  k ! of m!  m!
i

the yield surfaces during the process of plastic flow. The

rules governing changes in the yield surfaces affect the pre-

dicted behavior significantly and, represent a cornerstone

of any model.

Figure 4.4 illustrates the translation of yield surfaces

during the process of plastic flow as outlined in Section

4.2.3, and provides the equations needed to compute the

center displacement vector de as a function of the stress m!

point displacement vector ds. These equations are similar

to those given by Prevost �978! after assuming that the

size of the current yield surface f does not change during
m

translation. The simplified equations obtained by neglecting

*
For triaxial loading, Kq. 4.3 reduces to:

d v � a ! = �/2! . H . d c
z x m z

89



second order terms and given in the above article are not

recommended, for they may lead to overlapping of the yield

surfaces.

In order to account for the reduction in plastic modu-

lus, H', during the process of plastic flow, the following

rule is adopted herein. The plastic modulus H' associated

with the yield surface f is reduced from its initial value
m

H' to a limiting value H' when and only when the current,0
m m

yield surface is outside f .* Variation of H' between its

initial and limiting values is arbitrarily approximated by:

H' = H' exp -A ~ X !; H' < H' < H',0 ,k,,o � ' 13!
m m m m ' m m m

in which A is an experimental constant and X is the
m m

generalized  or equivalent! plastic strain given by:

 - deP. deP..!2

m 3 37
�. 14!

in which d c, . is the plastic strain-increment tensor. In-
i7

tegration in Eq. 4 .14 is carried out along the strain path

after the stress point has passed the yield surface f . The
m

experimental constants H' and A in Eq. 4.l3 are determined

from cyclic laboratory tests in which the plastic modulus

H' associated with the yield surface f is utilized several
m m
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times and where, therefore, its variation can be observed.

4.3.4 A New Model for Post-Peak Behavior

Normally consolidated Boston Blue Clay  BBC!, that will

be subsequently modelled, exhibits a very pronounced strain-

softening behavior when sheared in triaxial  or plane strain!

compression under undrained loading, following  one dimen-

sional! K -consolidation. To describe this behavior, Pre-

vost �978! proposes to use an isotropic softening rule where

the yield surfaces do not change their position in stress

space but all decrease in size simultaneously and by the

same amount. However, upon reaching large strains, the

strength reduction in the triaxial extension  TE! mode of

failure becomes unrealistic  negative strengh!!.* Therefore,

a more realistic softening rule is introduced herein:

a! the failure surface f remains at all times cen-
p

tered on the S -axis and, thus, is completely defined by its

two intersections with the Sz-axis which are the end points

of a diameter of the sphere f
P

b! the intersection of f with the negative S,-axis

remains fixed. This implies that after the peak strength

has been reached in a triaxial extension test, plastic flow

proceeds at a constant deviatoric stress;

c! the reduction in radius k of the failure surface

*
Available triaxial extension test results on BBC sug-

gest a perfectly plastic behavior once the peak strength has
been reached.
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f from its initial value k to its limiting value k *
p 0 k

is approximated by:

k  X ! = k +  k � k ! ~ exp -A ~ X } �-l5!
p o p p

in which A is an experimental constant and A is the
p p

"yielded" generalized  or equivalent! plastic strain given

by r

  dcP.. ds ..!
p 5 ij ij

P
in which ds . is the plastic strain-increment tensor. In-

ij

tegration in Eq. 4.l6 is carried out along the strain path

if and only if the stress point lies on f . Thus, re-
P

duction in size of f takes place only when the soil has
P

reached the failure state. The experimental constant A is

determined from the post peak stress-strain curve of a mono-

tonic triaxial compression test;

d! the new location of the stress point, after appli-

cation of a strain increment dpi. is determined according
ij

to the associated flow rule; i.e., the stress point moves

to the point of the sphere f where the inside normal is

parallel to and has the same direction as the plastic strain-

increment vector ds , and;
ij

Note that k is directly obtained from the strength

in the TK mode of failure.
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e! together with the radius reduction of the failure

surface f , all the yield surfaces remain tangent to f
P P

at the current stress point and decrease in size by the same
relative amount. Thus, at any time, the current radius k  m!

is given as a function of the initial radius k by:
0

k m! k P!

m ! p  !   ! g m = 1, 2 f ~ ~ ~ f   p � l !
0 0

and the coordinates a  i = l, 2, 3! of the center of f arem
8 8

given as a function of the stress point coordinates

S.  i = 1, 2, 3! by:1

! s  p!
m = 1, 2, ...,  p - 1! �.18!k m! k P!

4.3.5 Com uter Pro ram

The soil model described above was incorporated in a

computer program goded in FORTRAN IV! which is listed and

explained for the user in Appendix C. Input data consist of:

the initial yield surfaces parameters  Fig. 4.3!; the elas-

tic shear modulus G; the parameters descr ibing changes in

yield and failure conditions  to be used in Kqs. 4.l3 and

4.l5!; the initial location of the stress point  i.e., ini-

tial deviatoric stresses! and; the loading sequence in terms

of successive strain increment vectors. For each strain in-

crement vector, the program computes the corresponding

deviatoric stress increments, modifies the yield surfaces

93



and prints the value of updated deviatoric stresses.

4. 4 NODEL EVALUATION

This section evaluates the performance of the proposed

model by determining the required soil parameters from

CK U triaxial tests, predicting the response in CK U Plane
0

Strain and Direct Simple Shear tests, and comparing the pre-

dictions with measurements obtained from laboratory tests.

Results of CK U cyclic triaxial tests are utilized to de-
0

termine the parameters describing the reducti'on in plastic

moduli of the soil upon loading reversal. A discussion of

the model capability in describing the anisotropic clay

behavior u~der undrained conditions is then presented.

4.4.1 Model Parameters

The soil considered in this section consists of normally

consolidated Boston Blue Clay  BBC! which is a fairly sensi-

tive marine illitic clay. Over the last decade, extensive field

and laboratory tests were conducted on this clay at MIT.

Laboratory tests reported herein were conducted from batches

of resedimented. BBC which were prepared by consolidating

a clay slurry. The preparation procedure provided a fairly

uniform. source of clay with strength and consolidation pro-

perties similar to those of natural Boston Blue Clay  Ladd

et al., 1971!. Typical properties from numerous batches that

were used over a four year period were:

*Detailed procedures of slurry preparation and consoli-
dation are given in Appendix B of Ladd et. al. �971!.
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Liquid Limit = 4l + 2%

Plastic Limit = 20 + 2%

Plasticity
Index

a! Parameters for monotonic loadin . Figure 4.5

presents the results of two CR U triaxial compression tests
0

and four extension tests on samples of resedimented Boston

Blue Clay normally consolidated to various levels of ver-

tical consolidation stress a . The stress-strain curves ob-
VC

tained for the two compression tests are virtually identical

after the deviator  shear! stresses  a � a ! are divided by
v

a . This indicates that the clay exhibits a normalizedVC

behavior and hence enable significant generalizations to be

made. Typically, the peak strength is reached at very low

strain level  c = 0 35%! and the clay strain-softens sig-
V

nificantly such that its shearing resistance at large strain

levels  above c = 10%! becomes less than under the initialV

K -consolidation condition.

On the other hand, the results of four triaxial exten-

sion tests  Fig. 4.5! exhibit significantly higher scatter

than the compression tests. The difficulties in performing

and interpreting extension tests might represent one cause of

this scatter. Furthermore, no satisfactory explanation could

be reached by Ladd and Varallyay �965! for the unusual ob-

served effect of rate of shearing: fast stress-controlled

tests yielded slightly lower strengths than slower strain-

controlled tests. In all extension tests, necking of the
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samples was observed at vertical strains in the range of

5 to 7%.

The two solid lines in Fig. 4.5 are the idealized stress-

strain relationships fitting the experimental data of tri-

axial compression and extension tests by means of the mathe-

matical expressions of the proposed model. In the subse-

quent derivations and applications, the normalized stress-

strain behavior  with respect to v , the principal vertical
vc

effective stress at the end of consolidation! exhibited by

normally consolidated Boston Blue Clay will be fully utilized.

Normalized properties of clays which is the basis of the

SHANSEP method are presented and discussed by Ladd and Foott

�974! and Ladd et al. �977!.

The initial configuration and associated m«u» of the

yield surfaces were determined by following the procedure

outlined in Fig. 4.3. The parameter A in Eq. 4.15, des-
P

cribing the strain-softening behavior was obtained by fitting

Eq. 4.l5 to the experimental post-peak stress-strain curves

from CK U triaxial compression tests
0

b Parameters for re eated loadin . In the

laboratory results discussed above, the soil is subjected to

monotonic loading and, therefore, the yield surfaces are

utilized before any change in their size and associated

plastic moduli occurs. Chapter 3 indicates that strain re-

versals take place during cone penetration. One important

*SHANSEP is an acronym for Stress History And Normalized
Soil Engineering Properties.
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feature of the proposed model is its ability to predict soil

behavior under loading-unloading conditions.

Braathen �966! performed a series of cyclic CK U
0

triaxial tests on normally consolidated Boston Blue Clay with

highly repeatable results. Figure 4 6 presents the stress-

strain curve  open circles! of one of his tests  randomly

selected!. In this figure, the normalized deviatoric stress,

 cr - v !/a , is plotted against the generalized  or equi-v h vc'

valent ! plastic strain which, in the case of a triaxial test,

is the sum of the absolute value of the vertical strain in-

crements, dc .* The solid line in Fig. 4.6 represent the
V

idealized behavior obtained from the model after adjusting

by successive trials the parameters A and H' in Eq. 4.13.
m m

In order to reduce the number of parameters, the following

simplification was made: the parameter A describing the

rate of reduction in modulus and the ratio H' /H' which re-sk

presents the maximum amount of softening of the plastic

modulus H' are common to aj.l yield surfaces  m = 1, 2, ,p-l!.

The idealized curve in Fig. 4.6 fits very well the experi-

mental data for the first. four loading stages. The agreement

is not as good for the remaining loading stages especially

during compression loading  stages 5 and 7 in Fig. 4.6!.

*For practical purposes, d c e., the elastic part. of the
total strain increment, can be neglected and, therefore
dcP, = d~..

ij ij
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However, the normalized deviatoric stress is very well pre-

dicted at the end of any loading stage.

Table 4.1 summarizes the necessary values of the model

parameters for predicting the behavior of normally consoli-

dated BBC subjected to various loading paths.

4.4.2 Stress-Strain-Stren th Predictions

a! Plane strain tests. Figure 4.7 compares

predictions of the model  solid lines! with CK U plane strain
0

compression and extension test results on normally consoli-

dated resedimented BBC. The predicted strength in the com-

pression mode of failure is approximately 8% too high, but

the rate of post-peak strain-softening is very well predicted.

In the extension mode, the predicted soil response is too

"stiff" up to a vertical strain of 1% and then reaches a

lower strength than measured. However, after conducting an

extensive program of plane strain tests on resedimented BBC,

Ladd et al �971! conclude that:  a! the plane strain

apparatus used to obtain the results in Fight 4 ' 7 yields reli-

able data for compression tests, and;  b! stress-strain data

in the extension mode are not reliable for vertical strains

larger than 3 + 1 percent. In view of test limitations, the

predictions of the model in Fig. 4.7 appear quite reasonable.

b! Direct Sim le Shear tests. The interpretation

of Direct Simple Shear  DSS! test results is very challenging.

*At larger strain, testing errors due to side fric-
tion and sample necking lead tc measured strength values that
are too high.
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Ideal3.y, the test should develop a condition of uniform pure

shear strain in the sample under conditions of no volume

change i.e., Mohr circle of strain centered at the origin! .

However, due to possible relative slippage between the clay

sample and the upper and lower caps, and the lack of comple-

mentary shear stresses on the vertical sides of the speci-

men, strains and stresses are not uniform throughout the

sample. Furthermore, for soils, the strain and deviatoric

stress increment vectors are not necessarily coaxial and,

thus< a pure shear strain increment will not, in general,

produce a pure shear stress increment. Prevost and Hoeg

�976! have investigated stress and strain distributions for

an isotropic, elastic material tested in a direct simple

shear mode of deformation by extending the work of Roscoe

 l953! in considering boundary slippage. They found that

relative slippage at the contact between the soil specimen

and top and bottom caps  if it occurred!, together with the

lack of complementary shear stresses on the vertical sides

of the sarrrple greatly alter the distributions of shear and

normal stresses and prevent the ideal condition of constant

volume to take place during the test. To account for the

difference between the maximum and the average horizontal

shear stresses acting on the sample, Prevost and Hoeg  l976 !

propose to increase the measured average shear stress value by

10% for estimating the maximum horizontal shear stress.
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A more rigorous interpretation of the DSS test requires a

three-dimensional drained analysis of the soil specimen to-

gether with an anisotropic soil model in terms of effec-

tive stresses with adequate modelling of the soil-cap inter-

face slippage. Such a model is not available and is ex-

pected to be much more complicated that the one evaluated

herein. Therefore, the results of DSS tests presented

hereafter must. be considered in light of the many uncertain-

ties in interpreting test results.

Stress-strain curves for three CK U-DSS tests per-
0

formed on normally consolidated resedimented BBC are plotted

in Fig. 4.8. In this figure the normalized apparent {or

average! horizontal shear stress, vh/o , is plotted against
VC

the apparent engineering shear strain yh. The solid line is

predicted by the model for a pure shear strain state {and no

volume change! after reducing the shear stresses by l0% as

recommended by Prevost and Hoeg {l976.! to account for stress

nonhomogeneities within the sample. Clearly, even after this

l0% reduction, the predicted stress strain curve is too stiff

at low stress levels and leads to a higher strength  by

20 a 5%! as compared to the test results.

Note that y = 2 c ; where c is the tensorial
h xz xz

shear strain which is utilized in the theoretical derivations
of this chapter.
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4 .4.3 Stren th Anisotro

This section evaluates the capabilities of the proposed

model in predicting undrained strength anisotropy. Figure

4.9 shows the normalized deviatoric stress path of CK U
0

triaxial, plane strain and pressuremeter tests located

in the  S,, S~! plane  S, = 0!. Figure 4.10 offers similar
*

plots for the direct simple shear test with a stress path

located in the  S,, S,! plane  S = 0!. It is worth noting

that the model predicts that the deviatoric stress path for

the ideal pressuremeter test  expansion of a cylindrical

cavity! can be deduced directly fram that of the ideal

direct simple shear by a 90' rotation about the S � axis.
1

Also shown in Figs. 4.9 and 4.10 are f and f , the peak
P P

and residual spherical failure surfaces, repectively, whose

sizes are determined from the TC and TE tests.

a! Peak stren th. At large straining levels the

contribution of elastic strains is small and the plastic

strain increments de. are nearly equal to the total strain

increments de.. . Consequently, the associated flow rule
ij

utilized by the proposed model implies that at failure

 peak strength!, the total strain increment vector is normal

to the failure surface f . Therefore, the location of the
P

0stress point. on the failure surface f can be directly
P

Under idealized conditions.
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 P!
z x

Y
2

and � . 20!

The Plane Strain Compression  PSC! and Plane Strain Extension

 PSE! peak strengths are related to the radius k and

the center coordinate a of the failure surface f by: p! 0

P

 P! k P!
s  PSC! = � +

2 W3

 P! k  P!
s  PSE! = � � +� � . 21!

Combining Eqs. 4.19 and 4.21:

]'+ T' = l !'
XZ

a � s  PSC! a � s  PSE!
Z U X U

� . 22!

0 - s  PSC! a - s  PSE! q a
z u X U ! 2 Z

2 2 bP XZ
�. 23!

in which a and b are two experimental constants driven by:

s  PSC! + s  PSE!
U u

a
b s �5!

and �. 24!
a [s  PSC! s  PSE! ] ~

u u

in which s �5! is the measured undrained shear strength withU

the major principal stress at failure inclined 45 with the

vertical  z-axis! . Comparing Eqs. 4 ' 22 and 4 .23 it

becomes clear that the description of undrained strength

anisotropy implied by the proposed model is equivalent to

103

Davis and Christian �971! developed one of the most general

models to describe the undrained strength anisotropy of clays.

At  peak! failure the in-plane stresses satisfy:



that of Davis and Christian when:

� !
�. 25!

The strength anisotropy described by the proposed model is,

therefore, less general than Davis and Christian's strength

model simply because the former utilizes two strength values

 s  PSC! and s  PSE!! whereas the latter utilizes three
u u

 s  PSC!, s  PSE! and s �5! ! .
u u u

Using Eq. 4.22 together with the stress transformation

laws, the following equation is obtained:

k  P! ~3  P!  p!
s cos 28 + [1 � �   � sin 28! ] '!   4. 26!

l 1

4 k p!

in which s 8 = 4 a,f � a,f! is the undrained shear strength

for plane strain loading  dc = 0! and 8 the angle between
yy

the major principal stress at failure  a ! and the verti-
zf

cal  z-axis!. Substituting the values corresponding to f
p

in Table 4 .1 into Eq. 4 .26, the variation of s ja as a
u8 >c

function of 8 for normally consolidated BBC is obtained and

represented by the solid line in Fig. 4. ll. Also shown in

Fig 4 .11  dashed line! is the variation of  T !fio
xz f ic

where  T } is the shea stress acting on the horizontal
xz f

plane at  peak! failure. The common p~int of the two curves

corresponds to a state of pure shear in terms of stresses

 T = T !, whereas the extremum of the horizontal stress
xz max

curve  8 = 34.74'! corresponds to a state of pure shear

104



in terms of strains. The latter situation would be repro-

duced in a DSS test with perfect boundary conditions im-

posing complementary shear stresses along the vertical sides

and allowing no slippage at the specimen-cap interface. The

strength in case of pure shear in terms of strains  maximum

shear stress at failure! is slightly higher than the hori-

zontal shear stress measured during the test. In order to

compare strength anisotropy predicted by the proposed model

and the Davis and Christian model, strength plots are pre-

sented in Fig. 4.le These strength plots consist of a

polar representation where the radius is equal to s 8/v,
u8 >c

and the angle with the horizontal axis is equal to 28.

The outer circle  dashed line! describes the strength vari-

ation predicted by the proposed model and the dotted area

covers a range predicted hy Davis and Christian model de-

pending on two limiting assumptions for interpreting the DSS

test. In the first assumption, the measured horizontal shear

stress at failure during a DSS test equals the maximum shear

stress acting on the soil specimen  i.e., pure shear in

terms of stresses! and consequently 8 = 45', whereas in the

second assumption 8 = 30' corresponding to $ = 30' for BBC

 Azzouz, l977!. Results in Fig. 4 .l2 indicate that the peak

undrained shear strength predicted by the proposed model for

plane strain modes of failure  dc = 0! between PSC and PSE
yy

is generally higher than that prediced by Davis and Christian.

105



b! Residual stren th. The residual strength of

the soil after significant shearing is believed to be im-

portant in penetrations problems which cause very large

straining levels in the soil  see Chapter 3! . Unfortunately,

classical laboratory tests impose limited deformations  and,

therefore, limited strains! and, hence, can provide little

reliable information regarding residual strength. However,

the post-peak behavior in triaxial tests appears to support

the proposed hypotheses that the residual strength is identi-

cal for any mode of failure  i.e., isotropic! and equal to the

strength in the triaxial extension test.

4 . 5 SUMMARY AND CONCLUS IONS

This chapter describes the soil model proposed by

Iwan, Mroz and Prevost and evaluates the model by comparing

predictions with laboratroy tests on mormally consolidated

resedimented Boston Blue Clay under various undrained shear

conditions. For plane strain conditions, the model pre-

dicts the same peak strengths obtained by the Davis and Chris-

tian �971! elliptical model in the special case when the

ellipse degenerates into a circle.

The model is extended herein by means of a strain-

softening rule to describe the post peak behavior of clays.

The rule is based on the assumption that, in the triaxial ex-

tension mode of loading, the clay behaves as a perfectly

plastic material once failure has occurred. The stress-strain
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behavior of the clay subjected to monotonic loading is

modelled by a hardening rule which reduces the plastic

moduli associated with each yield surface as a function of the

magnitude of plastic flow, and the necessary parameters are

evaluated by means of cyclic triaxial test.

Based on comparisons between predicted and measured

stress-strain-strength behavior of normally consolidated re-

sedimented Boston Blue Clay, the following conclusions are

reached:

1! the model predictions for plane strain compression

and extension tests are reasonably good, especially in des-

cribing the post-peak behavior;

2! the simple softening law to model repeated loading

leads to good simulation of cyclic triaxial tests, and;

3! the model lacks flexibility to describe accurately

intermediate modes of failure  e.g., Direct Simple Shear, cy-

lindrical cavity expansion, etc , !. Although the DSS

test is difficult to interpret and results of "true" tri-

axial test simulating cylindrical cavity expansion  e.g.,

Kirby and Esrig, 1979! are scarce, it is apparent that the

model overestimates the strength for these two modes of

failure.

Improvements in the strength prediction capabilities of

the model could be easily achieved by considering yield sur-

faces of more general shapes  e.g., ellipsoids or spheroids!.
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However, this requires reliable stress-strain curves for

general loading conditions that are not presently available

and hence, the additional complications arising from a more

sophisticated model do not appear justifiable at the present

time.

Directional shear and true triaxial tests on clay are
presently being conducted at M.I.T.
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Elastic shear Modulus

G/0 = 182.479
VC

Initial Yield Surfaces  Spheres!2.

Yield Surface
Number

m

Center Location Radius Elasto-Plastic
Modulus

H /0
vc

a  '/0
vc

 m! /�
vc

Change in Plastic Modulus  Eg 4.13! .3

Rate of Decrease in Plastic Modulus

Limiting  Minimum! Plastic Nodulus

25. 0
m

H' /H' = 0-10,o
m m

m=1 2 ~ - 22

 Eq. 4. 15!Strain Softening.4.

Rate of Decrease in Radius

initial Radius

Limiting  Minimum! Radius

10. 55A
P

k P /0  !
0 vc

k P!/�
R vc

0.458

0.260

Table 4.1 Numerical Values of the Model Parameters for Normally
Consolidated Resedimented Boston Blue Clay  K = 0 -"37!

0
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1

2 3
4

5

6 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

0. 4874

0.4429

0.3999

0.3625

0.3338

0.3087
0.2895

0.2726

0.2595

0.2480

0.2388

0.2304

0.2237

0.2177

0.2129

0 ~ 2088

0.2056

0.2030

0.2010

0. 1995

0.1987

0.1980

0.0244

0.0942

0.1630

0.2218

0.2675

0.3066

0.3370

0.3629

0.3830

0.3999

0.4127

0.4234

0.4313

0. 4379

0.4429

0.4471

0.4503

0.4530

0.4550

0.4565

0.4573

0.4580

239. 649

166. 263

110.842

73.895

49.263

32.842
21.895

14.596

9.731

6.487

4.325

2.883

1.922

1.281

0.854

0. 570

0.380

0.253

0.169

0.113

0.050

0.000
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 I! Test used for obtaining model parameters. Therefore, the
prediction exactly matches the measured value.

�! After a 10% reduction to account for non-homogeneity of
stresses during the test  Prevost and Hoeg, 1976!.

�! Value from true triaxial test quoted by Kirby and Esrig, 1979.
Complete testing information not available.

 w! Apparent strength.

Table 4.3 Predicted vs. Measured Undrained Shear Strength of
Laboratory Tests on Normally Consolidated Resedi-
mented Boston Blue Clay.
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Figure 4. 1. Principal stress difference and mean effective stress vs
cumulative vertical strain during CK U triaxial test on
rrormally consolidated Boston Blue Clay.
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Figure 4.2 Notations and definitions.
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Figure 4.5 Measured stress-strain curves in undzained triaxial tests
on normally consolidated resedimented Boston Blue Clay.
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Figure 4.7 Predicted and measured stress-strain curves for undrained
plane strain tests on normally consolidated resedimented
Boston Blue Clay.
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CHAPTER 5

PORE PRESSURE MODEL

This chapter reviews methods for predicting the excess

pore pressures generated by undrained shearing of saturated

clays. A new analytical model to estimate the pore pressures

5.1 REVIEW QF PORE PRESSURE PREDICTION METHODS

5-1.1 Stress Theories

In order to predict the excess pore pressure,hu, during
undrained loading of soils, Skempton �954! proposes an expres-
sion for h u in terms of the changes in principal stresses Aa,
and ~o'! ..

5u = B [Ad!+ A ha, � boq! 1 �. 1!

where A and B are pore pressure parameters.

The B parameter relates the increase in pore pressure to

an all around  isotropic! increase in total stress. For satur-

ated clays, where the skeleton compressibility is very large

compared to the water compressibility, the B parameter equals
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during undrained straining of clays  e.g., during pile or cone

penetration! is proposed and evaluated by comparing predictions
with laboratory test results.



unity and Eq. 5. l reduces to:

Av, + A bo, � b,v~!

The A parameter relates the increase in pore pressure to

an increase in the stress deviator  or principal stress dif-

ference!, A  a � a ! . For a linearly elastic isotropic material,

loaded in triaxml compression, A = l/3, and in triaxial exten-

sion, A = 2/3. The variation of A with vertical strain, c

during a CK U triaxial compression test on normally consoli-
0

dated resedimented Boston Blue Clay  BBC! is shown in the lower

part of Fig. 5.1*. The A parameter, initially equals 1/3,

reaches a value Af > 0.5G at peak strength and then increases

indefinitely as the stress deviator approaches its consolida-

tion value  i.e., h a, � o,! = 0!. Figure 5.l clearly indicates

that, for saturated clays, the A parameter expressed by Eq. 5.2

cannot be used without difficulty in predictions involving

strain softening of the soil. In addition, the A parameter,

for a given soil type, is very sensitive to the initial and the

applied stress systems. Despite these shortcomings, and per-

haps because of simplicity in concept and computation, A is the

pore pressure parameter most widely used.

Henkel and Wade �966! recognized that Eq. 5. 2 does not adequately

separate the rontributi~. of isotropic and deviatoric stress

increments to the excess pore pressure during undrained shear

*See Chapter 4 for information on resedimented BBC.
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of saturated clays, and expressed hu in terms of increments of

stress invariants*:

hu= da +a A~
oct oct

where:

a= �  a+a+a!
l

Oct 3   5-4!:

[ a -a!'+  a � a!'+  a -a !'j
3 l 2 2 3 l. 3

~ ~ ~ ~   345!

T oct

and ~ denotes the difference between the present and initial

 at end of consolidation! values. The major advantage of the

pore pressure parameter "a" in Zq. 5.3 is that it equals zero

for a linearly elastic isotropic material subjected to any

kind of loading and, hence, describes the tendency of the soil

to change in volume  if drained! when subjected to a pure

shear  deviatoric! loading condition. Furthermore, a is much

less sensitive than Skempton A parameter to the applied stress

system for soils. However, as illustrated in Fig. 5.1, a

initially equal to zero, reaches a value a = 0.35 at peak

*"Henkel and Wade  l966! define the octahedral shear
stress as 3 hx in Eq. 5.5 and, therefore, write a/3 Az
instead of a hT in Eq. 5.3. oct

oct

l26

*In an earlier publication  l960!, Henkel expressed hu
in terms of invariants of stress increments but later, based on
experimental evidence, abandoned this approach.



strength and then increases indefinitely as the octahedral

shear stress approaches its consolidation value  i.e., hT = 0!.
oct

This indicates that, for saturated clays, similarly to Skempton

A parameter, the a parameter expressed by Eq. 5 .3 cannot be

readily used in predictions involving strain softening of the

soiled

Henkel equation  Eq. 5 .3! is, therefore, better suited

for estimating excess pore pressures in stress-controlled

problems where soil elements are subjected to general loading

conditions but, only up to a strain level where no significant

softening has occurred.

5.1.2 Strain Theor

Vaid and Campanella �974! performed a comprehensive pro-

gram of triaxial and plane strain undrained tests with pore

pressure measurements on normally K � consolidated Haney clay*
0

specimens trimmed from block samples. For both triaxial and

plane strain conditions, they investigate four total stress

compressionpaths: compression loading  ho > 0, 50 = 0!.
1 3

unloading  Ag = 0, p,g < p!, extension loading
1

Ao ! 0! and extension unloading  ga < 0
3 1 3

to make a valid comparison between triaxiaL and

 Aa = 0,
1

= 0!. In order

plane strain

results, all specimens were initially normally consolidated

under K conditions to the same vertical effective stress,
0

"Canadian clav with PI = 18% and sensitivity = 6-l0.
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a = 6 kg/cm . Figure 5.2.a compares the pore pressure change,

versus axial strain during triaxial and plane strain shear

and, illustrates the importance of the total stress system on

hu. On the other hand, when the change in octahedral  or mean!

normal stress, ha , is eliminated and the pore pressure changeoct'

due to shear alone, Au , is plotted, Fig. 5.2.b, much more con-
S

sistent results are obtained.

� ~ 6!Bu = hu � ha
s oct

Figure 5.3.b indicates that:

�! For a given type of test  triaxial or plane strain!

and a given mode of shearing  compression or extension! hu is

independent of the total stress path  loading or unloading!;

i.e., the shear induced pore pressure, hu , is only a function
S

of the stress path. This important result indicates that for

a saturated clay sheared under undrained conditions, hu can be
S

predicted in terms of strains independently of the mean  or

octahedral normal! stress level;

�! in the compression mode, hu is virtually the same
S

for triaxial and plane strain tests*. In the extension mode,

is slightly larger   - "10%! for plane strain than for
S

triaxial test and, finally;

�! in extension tests, 5u develops earlier  at a faster
S
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«Vaid and Campanella �974! do not mention how Av,  total
stress increment normal to the no displacement plane! was ob-
tained in order to evaluate ha t  in Eq .. 6 ! . However, it is
probable that ~ct was measureo. by means of a total stress cell
as in the MIT plane strain device.



rate with strain! than in compression tests, but the limiting
<u

s
values are approximately equal  ~ = 0.33 � 0.37!.

VC

5. 2 EFFECT OF LOADING REVERSAL ON PORE PRESSURES

Lo �961! performed undrained stress-controlled cyclic

teStS On narmally isotrOpically COnSOlidated FOrnebu clay where

the vertical stress was increased  or decreased! in steps'

Sufficient time was allowed between steps for the deviator

stress and the pore pressure to reach equilibrium values.

Therefore, each test consisted of a series of undrained incre-

mental creep tests performed at various stress levels. Figure

5.3 shows the principal stress difference  or deviator stress>

and pore pressure vs. axial strain; and pore pressure vs.

principal stress difference for one of Lo's tests  Test number

2! .

Comparing Figs. 5.3.b and 5.3.c, it is clear that the

pore pressure is better correlated to strain than to principal

stress difference during these repeated loading tests. In

fact, the pore pressure appears to be uniquely related to strain

when the applied stresses are maintained for a long period of

time after each load increment  or for very slow rate of

loading!. Unfortunately, strain controlled cyclic test results

on Boston Blue Clay presented subsequently do not confirm this

*Norwegian clay with PI = 34 + 6, Sensitivity = 2-4.
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unique relationship between pore pressure and strain in strain-

controlled cyclic tests. Furthermore, changes in octahedral

normal stress, ho , associated to changes in principal stress
oct

difference, A a � a !,vary for different loading conditions
I j

and, thus, similar relationship for other applied stress systems
is not warranted.

Figure 5.4.b shows the excess pore pressure hu vs. vertical

strain, r , during a CK U cyclic test* on normally consolidatedv 0

resedimented Boston Blue Clay  Braathen, 1966! and indicates

that in contrast to the results reported by Lo �961! ~u is

very sensitive to strain  or stress! history and exhibits a

very complicated behavior. Variation in the shear induced pore

pressure, hu, with vertical strain  Fig. 5 .4.c! exhibits aS

somewhat simpler behavior and indicates that:

a! When the shearing direction is changed from compression

to extension  a,c and e in Fig. 5.4.c!, the rate of shear

induced pore pressure generation increases drastically;

b! When the shearing direction is changed from extension

to compression  b and d in Fig. 5.4 c!, the shear induced pore

pressure,hu , first decreases and then increases to reach,S

asymptotically, the curve corresponding to a monotonic  com-

pression! loading  dashed line in Fig. 5.4.b and c!, and;

«This is the same test described in Chapter 4  see Figs.
4.1 and 4.6!; the loading history during the test is illust-
rated by means of total and effective stress paths  Fight 5.4.a!.
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predicted by means of a model relating ~us to the strain

history. Such a model is described below.

5.3 PROPOSED PORE PRESSURE PREDICTION MODEL

This section presents a new analytical model for predicting

the shear induced excess pore pressure, <u  Eq. 5.6!, gener-
S

ated in a normally consolidated saturated clay by undrained

shearing. The model is incremental and anisotropic and, can

predict hu for general strain paths  various shearing modess

as well as loading � unloading!.

5.3.l General Descri tion

The incremental shear induced excess pore pressure,

d hu !, is expressed as a function of the octahedral shear

strain increment, d Y , by the expression
oct'

dh, u ! = v2 . I c ..!
8 3. j oct �-7!

l
2Y= � I.« � ~!+ E-~!'+ c � c!j'oct 3 1 2 2 3 3 J . �.8!

Therefore, «s can be estimated by integrating Eq. 5.7 along

the strain path once the function I is determined. In order

to describe the funtion I, the strain space  ~i>! is divided
into a finite number of regions where I is constant. These

132

where the scalar function I, which controls the rate of shear

induced pore pressure, depends on strain history and, the

octahedral shear strain, Yoctp given by



regions are limited by surfaces g corresponding to a rate of

shear induced pore pressure generation I . For simplicity,

the surfaces g are described in the z..space by the equation:
lj

 ~ ~ m! !   8 m! !
ij ij ij ij m

 m!where 8 and p are the center coordinates and the size of

�-9!

~By definition, loading reversal occurs when the strain
increment vector is pointing towards the interior of the
current surface.
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the surface g , respectively.

During loading, the surfaces g which are reached by the

strain point {traveling along the strain path! are translated

remaining tangent to each other at the strain point.. The rules

governing the translation of the surfaces g are identical to
m

those presented in Chapter 4 so that the surfaces do not. change

in size and never intersect each other  see Fig. 5.6!. The

rate of shear induced pore pressure generation, I , associatedm'

to the surface g is independent of the relative magnitude of

the strain increment, components {i.e., independent of the dir-

ection of the strain increment vector! and, of the strain history

when the soil had been only subjected to monotonic loading.

Upon loading reversal*  unloading!, all I are reduced from

their initial value I to an updated value I' described from
m m

the expression:



 hu ! � Aus max s!
 Au !

s max

  5. 10!

in which  hu ! and hu are the maximum and current shear
s max s

induced. pore pressures, respectively. Since the model will

only be applied to strain paths involving at most one loading

reversal  cone penetration problem!, the variation of pu for
s

more general cyclic straining is not needed herein.

Application of the model, therefore, requires knowledge

of the initial location and size of the surface  g.. and p !
i3 m

and of the maximum shear induced pore pressure,  hu !, which
s max'

are determined experimentally as explained later.

5.3.2 Model Implementation

Although the model can readily be applied to general

described in detail in Chapters 3 and 4 . The E. � space is very
j

convenient for visualizing the strain paths of classical labor-

atory tests  triaxial, plane strain and direct simple shear!

and. field tests  pressuremeter, cone penetration! under ideal-

ized conditions. The strains E.  = El E2 and E3! are respect-
ively given in cartesian and cylindrical coordinates by:

*  hu !m which is the asymptotical value of Au, after
strain reArsaE, will be defined later in this chapter.
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strain paths where the six strain components, c , vary, the
l.7

following derivations are limited to the 3-dimensional E. � space



E = C; E2 =  C � C !; E1 2

zz 2 ~3 yy xx > ~ xz
�. ll!

and

E = c; E =  E � c. !; E = c
1 2

1 zz 2 ~3 ee rr ' ~ ~3 rz

In the E. � space, the proposed surfaces g are spheres

described by the equation:

[E-B!-p=0  m!
3. i m

�. 13!

 m!
in which 8 and p are the center coordinates and the radius

j.

of the sphere g , respectively. The octahedral shear strain,m'

is equal to:
oct

oct 3 xx yy yy zz zz xx
[ E c ! +  E E ! +  c c ! + 6 c ]xz

.... �.14!
After substituting Eqs. 5.11 into Eq. 5.14

Y = [E2 + E2 + E2]1

oc t

and Eq. 5.7 becomes:

d�u ! = I ~d [E + E + E j ~
s m 1 2 3

  5.16!

13$

Prior to undrained shearing, the sizes and locations of the

spheres g reflect the initial anisotropic behavior of the clay.
m

In most cases of interest, initial anisotropy develops during

deposition and subsequent consolidation under one-dimensional

straining conditions, thus, leading to symmetry about the



vertical z-axis  i.e., cross-anisotropy!. The surfaces g

are, therefore, initially centered along the E -axis
1

 8 = 8 = 0, for anym!. m!  m!
2 8

and, therefore, the spheres g remain centered on the E -axis;
m 1

furthermore, Eq. 5.16 simplifies to:

d hu! =I IdE   =I  dc   5.17!

The two curves for compression and extension are then

subdivided into a finite number of pairs of linear segments

with slope of opposite sign and the same absolute value. The

starting points of the m segments along the compressionth

and extension sides provide the upper and lower intersections

of the sphere g with the E -axis, respectively. These two
m 1

points of intersection completely define the initial location

<m!and size of the sphere g  i.e., 9 is equal to the average
m

ordinate and p is equal to half the distance between the

two points!. The common absolute value of the slope of the

two corresponding segments equals and, hence, determinesl

the rate of pore pressure generation I associated to g
m N

 hu !
The value of is obtained from results of cyclic

ovc

triaxial tests as illustrated in Section 5.4.
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In order to determine the model parameters describing

the initial spheres g , curves of  hu fear ! vs. axial strainm' s VC

from K -consolidated undrained triaxial compression and exten-0

sion tests are utilized as illustrated in Fig 5.7. During

triaxial testing the strain point moves along the E -axis



5.3.3 Computer Pro ram

The pore pressure model described above was incorporated

in a computer program  coded in FORTRAN IV! which is listed and

explained for the user in Appendix D. Input data consists of

the initial spheres radii p , ordinates, 8 , and associated m!
m 1

rate of pore pressure generation, I and of the parameters

 gu ! ,j to predict unloading  if any>. The strain path
s max' vc

to be followed is input by means of successive strain incre-

ment vectors. For each strain increment vector, the program

computes the corresponding deviatoric pore pressure increment,

modifies the sphere configuration and prints the value of the

updated deviatoric pore pressure.

5.4 EVALUATION OF THE PORE PRESSURE MODEL

5.4.1 Model Parameters

The soil considered in. this section consists of normally

consolidated Boston Blue Clay  BBC! described earlier in sec-I

tion 4.4.1.

Figure 5.8 shows results of CK U triaxial compression
0

and extension tests performed on normally consolidated BBC

with different vertical consolidation stresses. These results

exhibit little scatter  less than 12%!, thus confirming that

5 u can be normalized with the vertical consolidation effective
s

stress a . In order to facilitate the determination of the
vc

model parameters  as outlined in Fig. 5. 7!, each set of exper-

imental data points is fitted with an hyperbola. The hyperbolae
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for compression and extension yield the same asymptotic value
hu

  !lim = 0 43. This means that at large strains, the clay
develops the same shear induced pore pressure in triaxial com-
pression and extension.

The maximum value of the shear induced excess pore

pressure,  hu ! , developed after straining reversal, iss max'

evaluated from the results of cyclic triaxial tests presented
 

in Fig. 5.4.c. For BBC, = 0.54 proved to be a reason-
~vc

able value in the three cyclic triaxial tests with similar

stress paths reported by Braathen  l966!.

Numerical values of the model parameters for normally

consolidated resedimented BBC are tabulated in Table 5.l. The

equation necessary for computing ~us in classical laboratory
tests are given in Table 5.2.

5.4.2 Pore Pressure Predictions

Plane Strain Tests

Figure 5.9 compares predictions of the model  solid lines!

with results of CK U plane strain compression and extension
0

tests on normally consolidated resedimented BBC. Changes in

the octahedral total normal stress, hv t during these tests
oct

are evaluated from the measured values of the three normal

total stresses as tabulated by Ladd et al �971-! ~

In compression tests, the predicted shear induced pore

pressure hu ,  Fig. 5.9.a! is approximately 10% higher thanS

measured, whereas, in extension tests, ~u  Fig. 5.9.b! is
s
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mostly within the scatter of experimental data.

Direct Sim le Shear Tests

In order to compare the predicted and measured pore pres-

sures, hu  = ho t + Au !, in a DSS test, two problems arise:

 l! the change in the octahedral total normal stress, ho
oct

in the experiment cannot be determined from measurements and;

�! the stresses and strains are not uniform throughout the

sample. Therefore, simplifying assumptions are required.

Based on the detailed discussion of the DSS test in

Chapter 4, 5u is predicted in the following manner:

�! Stresses and strains are assumed to be uniform within

the soil sample which is sheared in a pure shear mode in

terms of strains  idealized testing conditions!;

�! Au is predicted with th6 proposed model by following
s

a strain path located along the E3-axis  i.e., ds = dc
zz XX

d~ = 0, dE 40!; and,
xz

�! ha is evaluated by means of the deviatoric stress
oct

model of Chapter 4.

Figure 5.10 shows the predicted and measured values of hu

vs. the engineering shear strain, y. Predictions compare

xeasonably well with rreasurements up to y = 8% but are lower

at higher strains  =25% at y = 30%!. Such accuracy is considered

reasonable in view of the uncertainties associated with inter-

pretation of the experimental results.

*During a DSS test, Aa = + <ct = 0; i.e.,
.zz~v t � � -~s  ~s = deviatoric 58rain increment!.

oct zz zz
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C clic Triaxial Tests

Figure 5.11 compares the predicted shear induced pore
pressures to measurements obtained in a CK U cyclic triaxial

0

test on normally consolidated BBC  described earlier, Fig. 5.4!.
Since the model can predict one unloading branch only, pre-
dictions are evaluated for the unloading performed at vertical
strain levels c = 1.2%, 3.6% and. 8.3%, in Figs. 5.11.a, b andv

c, respectively.

Predictions of 0u during unloading for c = 1.2 and 3.6%
s v

 Figs. 5.11.a and b! are virtually identical to the measured

values. Furthermore, hu during the last unloading  Fig. 5.llc!
s

is slightly underpredicted  =15%! at first but the agreement
is very good after the sample has been subjected to signif-
icant extension strain.

5. 5 SUMMARY AND CONCLUSIONS

A review of existing methods for predicting the excess

pore pressure, hu , generated during undrained shearing of
clays indicates the need for a new method to predict Au caused
by the very complicated strains associated with cone penetra-
tion  variable principal strain directions with large strains
and strain reversals!. A method is proposed to predict hu in
strain controlled problems. Following Henkel's approach, hu
is divided into two components: a! «oct due to changes in
confinement and b! <u caused by the tendency of the soil to
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to dilate  or contract! due to pure shear loading. The first

component, Aa , is obtained from equilibrium considerationsoct'

and, the second component, hu , is evaluated by means of a
S

new analytical model.

The model can predict hu for anisotropic clays subjected
s

to general straining conditions  with rotation of principal

strain direction! and one unloading. For monotonic loading,

all model parameters can be obtained from results of CK U
0

triaxial compression and extension tests. For unloading, the

model requires an estimate of the maximum  or limiting! hu
s

which can be obtained from results of laborabory tests in-

cluding straining reversal.

A comparison between the predicted and measured pore

pressures during plane strain compression and extension and

in direct simple shear tests indicates good agreement in spite

of the difficulty in evaluating ~o during these tests.
oct

Furthermore, the predicted pore pressures during unloading

are very close to measurements obtained from CK U cyclic
0

triaxial tests.
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Rate of Pore

Pressure

Generation

Sphere Center
Location

Radius

g  m!
I

m

 Eq. S. 10jMaximum Normalized Shear Induced Pore Pressure

 hu
8 max

vc

Table 5. l Numerical values of the model parameters for normally
consolidated resedimented Boston Blue Clay.
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1 2 3
4 5

6 7 8 9
10
ll
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

0.0
-0.0006421
-0.0008770

-0.0011675
-0.0015227

-0.0019544
-0.0024771
-0.0031096

-0.0025968
-0.0014419
-0 ' 0006395

0.0010294
0.0022827
0.0047507
0.0067247
0.0104657
0.0136211
Q.OI94399
0.0245783
0.03387I4
0.0424176
0.0576643
0.0722062
0.0979093
0.1232521
D. 1677816
0.2130503
0.2923348
0.3752503

0.5203211
0.6761177
O. 9488651
1.2492010
l. 7760948
2.3702142
3.4153561
4. 6213929
6.7513929

0.0
0.0006421
0.0008770

0.0011675
0.0015227

0.0019544
0.0024'771

0.0031096

0.0051542
0.0081677

D.0112320
0.0156636
0.0203056
0.0269504
0. 0340986
0.0442845
0.0555129

0.0715036
0.0895362
0. 1152752
0.1449294
0.3.874405
0.2374262
0.3095063
0.3959293
0.5214342
0.6747632
0.8992079
1.1784196
1.5906991
2.1126571
2.8904875
3.8922077
5.3994725
7.3729410

10.3719029
14.3636664
20.4918094

55.0

43. 37736
38.24489
33.09526
28.11354
23.44749
19.20351
15.44683

12.20514
9.47457
7.22698
5.41752
3.99169
2.89127
2.05902
1.44189
0.99303
0.67270
0.44828
0.29392

0.18962
0.12040
0.07524
0.04628
0.02803
0.01671
0.00981
0.00568
0.00323
0.00181
0.00100
0.00055
0.00029
0.00016

0.00008
0.00004
0.00002
0.00001
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Figure 5.1 Pore pressure behavior during CK U triaxial test on normally
consolidated resedimented Boston Blue Clay.
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Figure 5.2 Comparison of undrained pore pressure vs axial strain relations
in triaxial and plane strain tests on normally consolidated
undisturbed Haney clay  after Vaid and Campanella, 1974!.
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Figure 5.3 Results of a cyclic hriaxial test on an undisturbed sample
of Fornebu Clay  after Lo, 1961!.
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Figure 5 ~ 5 Relation between deviator stress, pore water pressure
and axial strain  after Bishop and Henkel, 1953!.
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CHAPTER 6

PENETRATION PORE PRESSURES

IN

BOSTON BLUE CLAY

6.1 INTRODUCTION

The primary objective of this chapter is to estimate

the pore water pressures in the soil during cone penetration

because they are essential for the rational interpretation of

the consolidation that takes place after penetration stops.

Eel'able estimates of penetration pore pressures are difficult

to achieve because of two major factors;

1! Uncertainties in the mathematical model simulating

soil behavior and, in particular, the parameters

describing the in situ properties of a given

soil. Chapters 4 and 5 present the proposed models

to predict stresses and pore pressures during un-

drained shearing of clays, provide the parameters

describing normally consolidated Boston Blue Clay

and show that the models lead to reasonable predic-

tions of selected laboratory test results, and;

2! Uncertainties in the method of analysis. Due to the

complexity of the mechanism of steady cone penetra-

tion, only approximate solutions can be obtained by

the strain path method described in Chapter 2 .
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In view of these uncertainties and with the ultimate objec-

tive of interpreting the decay of pore pressures in Boston Blue

Clay  BBC!, the chapter treats the following subjects:

l! The pressuremeter test in a soft BBC are compared to

predictions of the proposed models in normally conso-

lidated BBC are compared to predictions of other models

and to experiemntal results of self-boring pressuremeter

tests. Since the analysis of pressuremeter tests in-

volve much fewer uncertainties than the more difficult

penetration process, these comparisons thus focus on the

adequacy of the soil models used and the importance of

the model parameters selected to perform field predic-

tions in BBC; and

2! cone penetration in the same BBC deposit. .he strain

path method  Chapter 2! is used to predict stresses and

pore pressures during steady quasi-static penetration

of 18' and 60' conical tips in normally consolidated

BBC. For these predictions, strains during penetration

are approximated by the fields corresponding to a per-

fect fluid  Chapter 3! and soil behavior is described by

the soil models in Chapters 4 and 6. The predicted cone
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resistance, q , and pore pressures at different loca-
c

tions on the cone are then compared to experimental

results and limitations of the strain path method

are discussed.

6.2 EXPANSION OF CYLINDRiCAL CAVITIES AND THE

PRESSUREMZTER TEST

This section presents a detailed treatment of the pres-

suremeter test to check the adequacy of: a! the proposed

soil behavior models, and; b! the parameters selected on the

basi- of laboratory test results on resedimented Boston Blue

Clay in predicting the field performance in the soft HBC deposit

at the Saugus, Massachusetts site  Baligh et al., 1978, 1980!.

Predictions are made for the idealized conditions

associated with the undrained expansion of a  vertical! cylin-

drical cavity from a finite radius, in an incompressible soil.

6.2.1 Pro osed Solution

a! Stress-Strain Curves

1n order to predict the undrained expansion curve

*The expansion curve of a pressuremeter test relates
the internal cavity pressure  i.e., ar! to the dimensionless
volumetric expansion of the cavity, AV/V ; where hV = in-
crease in volume and V = initial volume 8f the cavity.

0
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of an idealized pressuremeter test in clay, the following are

required:

1! The initial horizontal stress:

ah = K a + u before expansion, and;
ho o vo o

a -ee
2} The shear stress   ! at various strain levels

2

when the soil is deformed under plane strain condi-

tions, i.e., dc = 0 and dc = � dc
z r e

This will enable the determination of a and ae in the soil
r

during cavity expansion. However, the prediction of pore

pressures requires that, in addition, the shear induced

pore pressures, the initial vertical stress a  = a + u !
vo vo 0

and its variation, ha, during expansion be estimated. Thisz'

could be achieved by knowing

1! the shear induced pore pressure hu  = hu � ha !and;oct

2} the deviatoric vertical stress s t= o' � cz z oct'

a t = ~ a + oe + a 	 at various strain levels
oct 5 r 6 z

when the soil is sheared under plane strain condi-

tions  dc = 0!.
2

Therefore, comprehensive predictions including

stresses and pore pressures during cavity expansion require

three stress-strain relationships.

a!  o - ve!/2; b! s , and; c! hu
The solid lines  Labelled 4L! in Pig. 6.1 present

these three relationships for normally consolidated BBC
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assuming normalized behavior with respect to the vertical

consolidation stress, a . The dependence of the normalized
vc

shear stress  a -v !/2F and the normalized vertical
r 8 vc

deviatoric stress, s /g
z VC on the radial strain e  = -~ !

r 8

The shear stress-strain relationship of the soil in

a pressuremeter mode is the same as in a direct simple

shear mode of shearing  Fig. 4.8!. The peak undrained

shear strength, s /cr [=  a � a !/2o at failure],
u vc r 8 vc

equals 0.26 at. a radial Strain E = 4.4% before
r

significant strain softening takes place;

the "residual" undrained shear strength,

 s /a ! .d 1 equals 0.15 and is asymptoticallyu vc residual

reached at "large" strains  in excess of c = 20%!;
r

and;

the vertical deviatoric stress, s /v , initially
z vc

equal to 0.31  corresponding to K = 0.537!, de-

creases during undrained shear to 0.13 at the peak

2!

3!
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are derived from the deviatoric stress model in Chapter 4

using the parameters in Table 4 ' 1 derived from laboratory
tests on normally consolidated resedimented BBC. The rela-

tionship between the normalized shear induced pore pressure,
bu /a , and c, is obtained form the pore pressure model ofs vc r

Chapter 5 using the parameters in Table 5.1 also based on

laboratory tests on normally consolidated resedimented BBC.

For normally consolidated resedimented Boston Blue Clay,

Fig. 6.1 indicates that the soil modeL in Chapter 4 predicts
that:



undrained shear strength  z = 4.4%! and eventually
r

vanishes at large strains. When s = 0, the vertical
z

stress, a , equals the octahedral stress, 0 t, whichz oct'

equals the average of v and 0 i.e., a = or 8 ' ''' z oct

 a + 08! /2.

b! Predictions in normall consolidated Boston Blue Cla

Predictions of stresses and pore pressures during cy-

lindrical cavity expansion are determined numerically  Levadoux,

1980!. Integration of the radial equilibrium equation begins at

a radius equal to 200 times the initial radius of the cavity

 r = 200R ! where conditions at infinity are imposed: a = a + u
o z vo 0

and a = a = K a + u . Using approximately l05 intervals  i.e.,
r e ov o'

0
l06 nodal points!, the interval length equals 10R at r = 200R and

0 0

decreases with 1/ r-R ! to provide better resolution in zones of
0

hggh stress gradients near the cavity wall. At each nodal point,

the natural radial strain, r , is calculated and the corresponding

values of  a � 0<!/2, s and hu are evaluated by means of ther 9 ' z s

curves labelled 51 in Fig. 6.1. The solution accuracy is checked

by increasing both the outer boundary radius and the number of

intervals. Parametric studies show a maximum discrepancy of 0.1%

between the computed stresses, and therefore, the grid described

above is considered adequate.
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Figure 6.2 presents predictions of radial and vertical

total stress and excess pore pressure distributions in the

soil  normally consolidated BBC! surrounding a pressuremeter

at different levels of expansion,  = 0.5, 2, l0 and 100%!.AV

0

Results in Fig. 6.2 illustrate the progressive shearing of the

soil during a pressuremeter test. When the volumetric strain
hVof the cavity, , reaches high levels, stresses and pore

0

pressures approach values predicted for the expansion from

zero radius  Azzouz et al., l980! . The solid lines in Fig. 6. 3 show

the predicted radial stress, a , and excess pore pressure, hu,r'

at the cavity wall versus the volume increase of the cavity
hV

V

6.2.2 Existin Solutions

Carter et al. �978! employ the finite element technique

to analyze the expansion of a cylindrical cavity from an

initial radius R using the "modified Cam-Clay" model for soil
0

behavior  Roscoe and. Burland, 1968; Schofield and Wroth, l968!.

Table 6.1 presents the model parameters selected by Carter

et al. to simulate a soil with "properties similar to those of

Boston Blue Clay"  A, e, e , N!. Based on these parameters,
cs

and the modified Cam-Clay model described by Roscoe and Burland

 l968!, Kavvadas �979! computed: 1! the equivalent input

parameters obtained from more conventional oedometer and tri-

axial tests fCR, RR, 4 TC! and 4 TE!J, and; 2! the predictions

of K and s shown in the first column of Table 6.1 assuming
0 u

a Mohr-Coulomb failure envelope.
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The modified Cam-Clay model generally overpredicts K
0

Accordingly, Carter et al. use a more realistic value of

K = O.SS for normally consolidated BBC in their analyses.
0

The second column in Table 6.l presents the equivalent para-

meters and the predictions of the model used by Carter et al.

�978! as determined by Kavvadas  l979! assuming an extended

Yon. Mises failure envelope.

Comparing the soil parameters selected by Carter et al.

�978! with measured values for normally consolidated BBC in

different laboratory tests  third column in Table 6.1! we

note that:

1! the compression ratio CR  or alternatively Z! is

underestimated by 20 to 504;

2! the recompression ratio is within the range of varia-

tion of experimental results and is therefore rea-

sonable;

3! the friction angle in triaxial compression, $ TC!

is underestimated by 3  i.e., M is low!. This is

probably necessary in order to predict reasonable

strengths at large strains because the modified

Cam-Clay model cannot simulate the observed strain

softening behavior.

4! the friction angle in plane strain compression,

] PSC!, is grossly overestimated by about 10 . The

Mohr-Coulomb criterion predicting $ PSC!

= <f TC! = 30  see first column in Table 6.l!

therefore appears more reasonable than the
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extended Von rises failure criterion.

5! the undrained shear strength for K consolidated
0

triaxial compression and extension tests are identi-

cal and equal to 0.295 a . Although this value
VC

only slightly underestimates the measured strength

in the compression mode  by 10%!, it greatly over-

estimates that in the extension mode  by 127%!;

6! the undrained shear strength for K -consolidated
0

plane strain test is independent of the loading

direction and equals 0-34 a . This provides a very
VC

reasonable estimate of the measured strength in

plane strain compression test but much too high

estimated strengths for plane strain extension

 94% too high!, direct simple shear �0% too high!

and pressuremeter loading mode �2% too high! tests.

The stress-strain curves pertinent to cylindrical cavity

expansion in normally consolidated BBC and predicted by Carter

et al. �978!* are plotted in Fig. 6 .1  curves 42!. For illus-
tration, the stress strain curves of an idealized elastic

 G/cr = 25, v = 0.5! perfectly-plastic  s Jv = 0.34!
VC u vc

material are also plotted in Fig. 6.l  curves g3!. A compari-

son of curves number 2 and 3 in Fig. 6.1 indicates the very

These curves are backfigured from the predicted stress
distributions predicted by Carter et al. �978~ for the expan-
sion of a cylindrical cavity from zero radius.
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small difference in soil behavior {during expansion of a cy-

lindrical cavity! predicted by the modified Cam-Clay and

the very simplistic elastic perfectly-plastic models.

When compared to the proposed models  curves gl! the

modified Cam-Clay predicts:

1! higher value of s ja �.34 vs. 0.26! and no strain
u VC

softening;

2! a softer response at small strain levels;

3! a faster decrease in s with strains such that.
z

s = 0 [i.e., a = 4 a + a ! J at about c = 3%,
z z r 9 r

and;

4! smaller values of the shear induced pore pressure

hu when c > 2%.
s

Finally, the radial stress, o and the excess pore pres-

sure, Au, at the cavity wall predicted by Carter et al. are

shown by the dashed lines in Fig. 6.3. Compared to the pro-

posed model, the Cam-Clay predicts:

a softer response [{o � u !/a vs. V ! at lowAV

r o vo
0

expansion levels caused by the lower stiffness at

small strains  see Fig. 6.1!;

2! a very similar limiting pressure. The limiting pres-

sure reached at high V is identical to the radialAV

0

stress at the wall of a cavity expanded from zero

radius. Azzouz et al., 1980, show that Cam-Clay and

the proposed ~odel predict similar radial stresses at

the cavity wall because the compensating effects of
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i! the lower stiffness at small strain levels and

ii! the higher strength predicted by Cam-Clay, and.;

3! lower excess pore pressures  approximately half when
5V

10%,! because of the lower predicted shear
0

induced pore pressures  see Fig. 6.1! .

In summary, the comparison of expansion curves predicted

by the proposed and Cam-Clay models in Fig. 6.3 clearly indi-

cate that even though the two models predict significantly

different stress-strain curves in the pressuremeter mode of

deformation  Fig. 6.1! the resulting expansion curves exhibit

very little difference. This emphasizes the difficulty of

back figuring the "material stress-strain curve" from ex-

perimental expansion curves: small experimental errors can

cause large errors in the back figured stress-strain curve.

6.2.3 Evaluation. of Predictions

Ladd et al. �979! present results of an extensive pressure-

meter testing program conducted in Boston Blue Clay at Saugus,

Massachusetts. Results of two tests performed with the French

self-boring pressuremeter PAFSOR at depths S3.2 and 103.2

feet are plotted in Fig. 6.4. The expansion curves for the

two tests are very close even though one of the tests  closed

circles! was conducted after a full loading-unloading cycle

had been preformed.* The expansion curve predicted by the

The loading-unloading cycle consisted of increasing
to 2.8% and then decreasing it back to 0.

hV

0
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proposed model  in 6.2 ' 1! is represented by the solid line

The prediction considers a loading stage upin Fig. 6.4.

to V = 16.2% followed by an unloading stage until
h,V

0

a � u = 0. The large discrepancy between predicted and mea-
r o

disturbing the soil.

�! The test is performed under undrained conditions;

i.e., expansion occurs at a sufficiently rapid rate

to preclude any drainage.

�! The length to diameter ratio of the cell is suf-

ficiently large to satisfy the plane strain condition

 i.e., no vertical strain!,
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sured pressuremeter results is obvious' A fair agreement can be

reached if the shear resistance  a � cr<! /2 in Fight 6.1
r

is multiplied by a factor of 2.08 at all  E ! strain levels'
r

A number of investigators have noted that the pres-

suremeter test overestimates the undrained shear strength of

clays compared to laboratory tests  Baguelin, et al., 1978;

Ladd et al., 1979!. Ladd et al.�979! provide a number of

possible causes for this important problem resulting from dif-

ferences between the actual test and the idealized conditions

assumed in the theoretical analyses. These assumptions are:

�! The surrounding soil is homogeneous and saturated.

�! The stress-strain relationship for the soil is not

affected by variations in strain rate.

�! Insertion of the probe is accomplished without



The poor agreement between the predicted and measured

expansion curves in Fig. 6.4 is probably due to a combination

of all these assumptions and possibly, the estimated stress

strain curve  Fig. 6.l! as well. However, the most signi-

ficant causes for discrepancies are believed to consist of

four categories: l! non-cylindrical expansion; 2! partial

drainage; 3! rate effects, and; 4! slight overconsolidation

of the clay.

1! Non-c lindrical ex ansion

For practical reasons, pressuremeter tests are

conducted by expanding a cylinder of finite length whereas

predictions assume an infinite cylinder length. Guard cells

are sometimes used to minimize the undesirable end effects in

the test but, additional complications have limited their

application in practice. Znd effects can be crudely assessed

by assuming the experimental expansion curve to be bounded

by the expansion pressures for cylindrical and spherical

cavities. In an elastic perfectly-plastic material subjected

to an initial isotropic stress, o , the incremental spherical
0

cavity pressure  above cr ! is 33% higher than that of a
0

cylindrical cavity. For more realistic conditions  K initial
0

stresses, anisotropic soil!, the spherical expansion pressure

is difficult to estimate because the problem becomes two

dimensional  i.e., strains and stresses do not exhibit spheri-

cal symmetry!.

Laier et al. �975! investigate the influence of length
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to diameter ratio  L/d! * in laboratory pressuremeter tests

performed on dry sand. Results of 32 tests on samples pre-

pared at two relative densities {D = 55 and 95%! and six
R

confining pressures indicate that: a! the I/d ratio has no

significant effect on the measurement of the pseudo-elastic

modulus, E, and; b! the L/d ratio has a marked effect on

measured limit pressure, p . Laier et al.,  l975! propose

a correction curve to account for the finite pressuremeter

length. This curve which is independent of relative density

and overconsolidation ratio indicates that the limit pres-

sure, pL, obtained from a pressuremeter with L/d = 7.5 is

twice that predicted with L/d ~ ~ . * H however, the validity of
these results for undrained cavity expansion in clay is doubt-

ful.

Recently, Ghionna et al., �979!, conducted in situ

pressuremeter tests in normally consolidated Porto Tolle

clay for L/d ratios of 2 and 4. Their results show that the

undrained shear strength, s, back f igured from tests with L/d=2
u

 as in PAFSOR tests! is approximately 50% higher than that

back figured with L/d = 4. However, Ladd et al.�979!

*Laier et al., utilized pressuremeters with two guard
cells with lengths equal to that of the measuring cell; i.e.,
L = 3 9 where k = measuring cell length.

Typical L/d used in pressuremeter tests are 2 in
PAFSOR and 6 in CAMKONETER equipments.
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present results of CANKONETER  L/d = 6! and PAFSOR  L/d = 2!

pressuremeter tests in Boston Blue Clay which show no notice-

able difference in limiting pressures. Furthermore, results

they obtain in the upper overconsolidated BBC with the same

PAFSOR equipment  L/d = 2! show less discrepancy between the

extimated and measured strengths of the soil.

2! Partial Draina e

Pressuremeter tests are typically performed at a

strain rate s = 1.0%/min and thus require 10 to 20 minutes

to perform. During expansion, pore pressures develop due to

the increase in isotropic compression and due to the shearing

of the soil. However, pore pressures also dissipate as soon as

gradients take place, i.e., immediately after expan-

sion starts. Dissipation of excess pore pressures repre-

sents partial drainage which tends to increase the shearing

resistance of soft clays. Faster dissipation takes place

when gradients are high  near the cavity wall! and when the

soil is pervious and stiff  high drained bulk modulus!.

Clarke et al-�979! present results of a regular

pressuremeter in soft silty clay with pore pressure measure-

ments  at the cavity wall! followed by a holding test where

the volume of the cavity is held constant. Expansion required

approximately 14 minutes and stopped at c = 10% when the

*The strain z represents the ratio of the radial movement
of the pressuremeter membrane to its initial radius; ~hV

V
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excess pore pressure gu = 100 kN/m~. Fourteen minutes

later, hu decreased to 40 kN/m~ . This clearly indicates

tha significant pore pressure dissipation must have al-

ready occurred at the end of the expansion stage.

The effects Of pore pressure dissipation on the

expansion curve are difficult to assess because the increase

in strength and the rate of dissipation depend on the effec-

tive stresses during consolidation. Prediction of these

effective stresses require very complicated soil models beyond

present capabilities.

3! Strain-Rate Effects

The stress-strain relationship for clays sheared

under undrained conditions is strain-rate dependent. Labora-

tory tests performed by Taylor �943! on Boston Blue Clay and

reported by Bishop and Henkel �962! show an 11% increase

in s when the strain rate is increased from 0.0083 %/min
u

 = 0.5%/hour! to 0.5%/min, i.e., about 60 times.

Although comprehensive experimental data on strain-

rate effects are not available, it is generally believed that

an increase in strain rate leads to an increase in undrained

shear resistance of the soil at a11 strain level  Ladd

et al., 1977!. However, results recently obtained by Hight

et al. �979! show that the effects of strain-rate on the

shearing behavior of a sandy clay can exhibit opposite

trends, depending on the overconsolidation ratio  OCR! of

the material: at low OCR  < 4!, the undrained shear
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resistance increases with increasing strain rates whereas,

at high OCR  > 4! the inverse is true. Nevertheless, in the

slightly overconsolidated BBC where the pressuremeter tests

plotted in Fig. 6.4 were conducted, little doubt exists

that an increase in strain-rate causes an increase in the

undrained shear resistance.

The strain rate in the soil during a pressuremeter

test varies inversely with the square of the radial distance

to the cavity axis. Therefore, even if expansion takes place

at a constant rate, the strain-rates in the soil vary signi-

ficantly. A soil element near the cavity wall will typically

be subjected to a strain-rate two orders of magnitude larger

than in CK U triaxial tests  s = 0.5%/hour! but an element0 v

at a radius l0 times larger will be subjected to the same

strain-rate.

Prevost  l976! proposed a simplified formula to

describe the undrained stress-strain-time behavior of clays

under axisymmetric loading conditions. He then showed that

strain rate effects can greatly influence the stress-strain

curve backfigured from the expansion curve of a pressuremeter

test. In particular, even if the clay is strain-hardening,

the stress-strain curve derived from constant strain-rate

pressuremeter tests conducted at conventional testing rates

can exhibit strain-softening behavior because of strain rate

effects.

In summary, strain rate effects complicate the
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interpretation of the expansion curve obtained from undrained

pressuremeter tests. However, in normally consolidated BBC,

they are not believed to have a dominant influence on the

expansion curve  especially the limiting pressure!.

4! Overconsolidation of the Cla

Because of availability of laboratory tests re-

sults on normally consolidated BBC, the predictions in Fig.

6.4 are obtained for an overconsolidation ratio  OCR! of

unity. Recent consolidation test results on high quality

samples  Ladd, et al., 1979! indicate that at depths 83.2

and 103.2 feet where the pressuremeter tests in Fig. 6.4 were

conducted, the overconsolidation ratio of the clay is in the

range: OCR = 1.25 � 1.35. Possible causes of overconsolida-

tion in the deep clay include erosion, lowering of water

table elevation, desiccation during clay deposition, or

aging, i.e., quasi-consolidation or precompression as defined

by Leonards and Altschaeffl �964! and Bjerrum �967!, respec-

tively.

The increase in undrained shear strength due to

overconsolidation can be estimated from results of CK U
0

direct simple shear tests on Boston Blue Clay given by Ladd

et al., 1977. At OCR = 1.3, s increases by 25% compared to

OCR = l.
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6. 2.4 Summar and Discussion of Pressuremeter Studies

Bearing in mind that the primary objective of this

chapter is to estimate pore pressures during cone penetration

in Boston Blue Clay  BBC!, the pressuremeter studies presented

above were conducted in order to: 1! check the proposed

soil behavior models to be used in analyzing the more corn-

plicated. problem of cone penetration, and; 2! evaluate the

adequacy of the soil parameters obtained from laboratory

tests on normally consolidated BBC to predict field perfor-

mance.

Results of these studies indicate that:

1! Predictions of cylindrical cavity expansion curves

obtained by the proposed model described in Chapter

4 are fairly close to predictions determined by

Carter et al., �978! using the Cam-Clay model

 see Fig. 6.3! even though the relevant stress-

strain behavior of the two models differ signifi-

cantly  see upper diagram in Fig. 6.1! . This is

due to the compensating effects of the lower moduli

at small strains and the higher strength exhibited

by the Cam-Clay as compared to the proposed model.

2! The proposed models in Chapter 4 and 5 predict much

higher pore pressures during cavity expansion than

the Cam-Clay model  see Fig. 6 .3! . This dif-

ference is basically due to the shear induced pore

pressure hu which is underestimated by Carter et
s

al.,  see lower diagram in Fig. 6. 1! .
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3! The proposed model* significantly underpredicts

the self-boring pressuremeter expansion pressures

performed at depths 83.2 and 103.2 ft when the model

parameters are determined from laboratory test

results on resedimented normally consolidated BBC.

Matching of field measurements can be obtained by

approximately doubling the estimated. in situ

shearing resistance of the soil  e.g., increasing

s�/g from 0.264 to 0.549, Fig. 6.4! . Consolida-

tion tests on high quality samples indicate that the

clay at that depth is slightly overconsolidated

 OCR = 1.3! which justifies a 25% increase in the

selected strength for field predictions. The re-

maining discrepancy �5% of the estimated strength}

might be explained by:

a! inadequacies of the predictive model based on

laboratory test results on normally consolidated

BBC. These inadequacies can be due to:

the OCR of the clay is actually higher than

1.3 and hence the in situ strength is higher

than estimated. This would, however, leave

the field vane strengths inexplicably low.

The in situ clay has a significantly different

behavior from the resedimented BBC used to

determine the model parameters. In particular,

*To be used in the analysis of cone penetration.



the in situ clay has very high peak shear

strength and/or initial stiffness that

affect pressuremeter  and cone penetration!

results but is not detected by the field

vane test. This proposition is supported by

the more sensitive behavior of the in situ clay

 as detected by consolidation tests and sug-

gested by the low salt concentration in the pore

water! but is hard to evaluate or even prove

satisfactorily.

Strain rate effects which tend to underestimate

the field strength measured by pressuremeter

 or cone penetrat.ion! tests performed at.

higher rates than laboratory tests.

b! differences between the actual pressuremeter

test and the idealized conditions assumed in theore-

tical analyses. The most significant differences

in the BBC tests shown in Fig. 6.4 are believed to

the limited Length to diameter ratio  L/d =2

in PAFSOR equipment used! which might introduce

important end effects  i.e., deviations from

idealized one dimensional cavity expansion

solutions! and hence increase the measured

expansion pressures.

Partial drainage associated with local
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consolidation and strengthening of the clay during

expansion.

6.3 STRAIN PATH PREDICTIONS DURING CONE PENETRATION

The strain path method described in Chapter 2 is now

applied to predict stresses and pore pressures during deep

steady cone penetration in normally consolidated Boston

Blue Clay.

6.3.1 Problem Geometr and Solution Techni e

The problem of cone penetration in a cross-anisotropic

material exhibits axial-symmetry about the vertical axis of

the cone. It is, therefore, sufficient to determine solu-

tions  stresses and pore pressures! in a meridional plane;

i.e., any vertical plane containing the vertical axis.

Figure 6.5 illustrates the geometry adopted to solve

the cone penetration problem by means of the strain path

method. Stresses and pore pressures are determined at

selected soil elements �5594 locations! as they move along

streamlines around the cone following the strain paths

described in Chapter 3. Streamlines are identified by their

radial location far ahead of the cone, r . Analyses are per-
0

formed using 46 streamlines to cover the soil mass between

r = 0.01 R and r = l50 R in the radial direction and,
0 0

z = - 200 R and z = 15 R in the vertical direction  R is the

radius of the shaft!. Chapter 3 describes the procedures

followed to determine the streamlines and the locations of

soil elements by integrating the assumed velocities. For a
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steady cone penetration velocity V , the time increment, ht,
0

for integration equals 10 R/V ! at z = - 200 R, decreases
0

with 1/z and, reaches 0.1 R/V ! at z > � 10 R. Table 6.2
0

describes the streamlines  r ! and the boundary conditions
0

used in the analyses.

6.3.2 Deviatoric Stress Paths

Following the strain path imposed by cone penetration

 Chapter 3!, the deviatoric stress path of each soil ele-

ment is computed by means of the soil model in Chapter 4.

The deviatoric stress space  S] S2 S,! described in

Chapter 4 provides a convenient illustration of the type

and degree of shearing to which soil elements are subjected.

Figure 6.6 shows the deviatoric stress path of an element

of normally consolidated BBC initially at a radial distance

r = 25 R from the axis of a 60' cone. For comparison,

the deviatoric stress paths corresponding to the idealized

Direct Simple Shear  DSS! and Pressuremeter  PR! modes of
*

shearing are also drawn in Fig. 6.6; they are located in the

planes S2 = 0 and, S, = 0, respectively. Figure 6.6

indicates that cone penetration subjects the soil to a very

complicated mode of shearing which consists of a combination

of Triaxial Compression  along S, � axis!, DSS and PR modes.

However, the end point. of the deviatoric stress path in

Fig. 6.6  representing the state of stress of the element

*According to the model in Chapter 4.
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far behind the tip! is close to the deviatoric stress path

of the pressuremeter test.

Figures 6.7 and 6.8 show the projections in the

 S , S , S ! space of the deviatoric stress paths of
1 2

two elements, initially located at r = R and r = 25 R,
0 0

due to penetration of 184 and 60' cones, respectively.

Comparing results in Figs. 6.7 and 6.8 we note that.

a! the deviatoric stress path of a soil element

at some distance from the cone axis  r = 25 R! is
0

virtually independent of the cone angle, and;

b! an element near the axis  r = R! is initially
0

sheared in a triaxial compression mode. Its deviatoric

stress path then follows a trajectory that is signifi-

cantly dependent on the cone angle. However, the final

deviatoric stress state shows little effect of cone

angle.

6.3.3 Extent of Failure

Figure 6.9 presents the predicted contours of the octahe-

dral shear stress*, ~ , and the extent of failure * during
oct'

is a good measure of the level of shearing in
oct

soil  see Chapter 4!.

A soil element is said to have reached failure when
its associated stress point in the deviatoric stress space
lies on the failure surface, f  see Chapter 4!.

P
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steady penetration of l8' and 60' cones in normally consoli-

dated BBC. For comparison, predictions during expansion of

a cylindrical cavity  from zero radius! using the same

soil model are also shown at the top of Fig. 6.9. The

cavity expansion solution is extensively used to study the

shaft resistance of piles  e.g. Esrig et al., l977! and

corresponds to the limiting stresses at very large expansion

levels in a pressuremeter test under idealized conditions.

Figure 6.9 shows that:

1! cone penetration causes shearing over a much

larger volume of soil than cavity expansion in spite of

the strong similarities between the strain path of

soil elements in the two problems  see Figs. 3.9 and

3. l0!;

2! the size of the failure zone behind the cone is

relatively independent of the cone angle and is signi-

ficantly larger than predicted by cavity expansion

�-5 R compared to 3.4 R!;

3! the strain softening behavior incorporated in the

soil model causes a! the boundary of the failure zone

 represented by the dotted line! to pass through points

where T t contours change sharply in direction and,oct

b! the peak values of x t are located at some distance
oct
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from the cone or the shaft behind it, and;

4! the extent of failure ahead of the blunt cone tip

 where the soil is subjected to a triaxial compression

mode of shearing! is larger than ahead of the sharp

tip �.1 R vs. 4.8 R!. However, the results of 18'

and 60 cones exhibit strong similarities outside the

failure zone, especially if the origin of z-coor-

dinate is located at mid-height of the cone instead

of the tip.

This is illustrated by Fig. 6.10 showing the contours

of the shear stress z� obtained for 18 and 60 cone

angles. The dashed line represents the contours of

y = 2% and approximately defines two zones: an inner
oct

zone where soil elements are subjected to intense shearing

and an outer zone where shearing is more moderate. We

note in Fig. 6.l0 that: a! outside the dashed line,

the cone angle has little effect on the results; b! ahead

*4
of the cone, negative shearing takes place because

soil elements near the axis  small r! are pushed down-

wards with respect to the outer elements  large r!. On the

other hand, behind the cone tip, shearing is reversed be-

cause conservation of volume requires elements near the

[ c � s ! +  c � s ! +  c � s ! ' + 6s
oct 3 r & 8 z z r rz

See sign convention in Fig. 6.10.
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cone to be pushed upwards with res~ect to the outer

elements, and; c! the shear stress t vanishes behind the
rz

cone. This is a reminder that the strain rates used in

determining the deviatoric stresses correspond to an
0

ideal fluid for which y vanishes along the shaft
rz

 frictionless boundary! .

6.3.4 Isotro ic  Octahedral! Total Stresses

The deviatoric stresses presented above were directly

obtained by means of the deviatoric soil model described

in Chapter 4 for the estimated strain paths corresponding

to an ideal fluid  Chapter 3! . Since the soil treated

herein is incompressible, octahedral  isotropic! stresses,

3cr 3s 3s
 r,z!; f  r,z!

r rz

3r r 3r az �.l.a!

30 3s Bs s
oc t f   ! f   ! r z z r z

3z z ' ' z ' 3r 3z �.l.b!

The functions f  r,z! and f  r,z! are known once the
r z

181

cr t, cannot be estimated from soil behavior models but
oct

must. be determined from equilibrium considerations. Values

of a t are necessary to estimate the pore pressures during
oct

cone penetration.

In the axisymmetric cone penetration problems, equi-

librium in the radial  r! and vertical  z! directions can

be written in the form  see Appendix A!:



deviatoric stresses are determined. Hence, integration of

Eq. 6.l.a  or Eq. 6.l.b! satisfies equilibrium in the

r-direction  or z-direction! and a can be determined for
oct

every soil element. However, the value of g t depends
oct

on the integration path unless

 f  r,z!!! = >  f  r,z!!a a
�. 2!

This condition can only be satisfied if the strain paths

are compatible with the model used to determine the

deviatoric stresses; i.e., the strains are determined

from "exact" solutions  given a soil model! rather than the

approximate strains corresponding to an ideal fluid.

a! Influence of Inte ration Path

In order to assess the effect of integration paths on

a and thus evaluate the approximations caused by the
oct

simplified strain paths, the equilibrium equations were in-

tegrated along two paths described in detail in Appendix E.

These paths are believed to provide reasonable bounds on

v t. In the first path, integration is carried out along
oct

isochronic lines* which are predominantly horizontal  i.e.,
close to the r-direction! . In the second path, integration

is carried out along streamlines which are predominantly

vertical  i.e., close to the z-direction!.

* Isochronic lines are the  initially! horizontal lines
after deformation caused by cone penetration  see Figs.
3.3 and 3.4!.



Figures 6.11 and 6.12 show the octahedral  isotropic!

stresses, o t, obtained by means of the two integrationoct'

paths for different soil elements  initially located at

various radii, r /R, from the axis! due to penetration by0

18 and 60 cones, respectively. Results in Figs. 6.11
and 6.12 indicate that:

1! The two integration paths give the same general
trends at most locations ahead of the cone base

 or z < -5R,say!. In this zone, streamline integra-

tion  dotted lines! overpredicts � - u !/a by 15
oct o vo

to 604 for the sharp 18 cone and 15 to 35% for the

blunt 60 cone;

2! behind the cone base  or z > 5H, say!, stream-

line integration predicts unrealistic drops in cr
oct.

at some radii  r = 0.1R and r = 5R in Figs. 6.11
0 0

and 6.12!, and;

3! using the same integration path, the cone angle

has little effect on a in the soil located at some
oct

distance from the cone  r > 5R, say!, provided the
0

origin of coordinates in taken at midheight of the
two cones.

b! Choice of an Inte ration Path

The results in Figs. 6.11 and 6.12 clearly show that

the approximations in the strain path method lead to de-

viatoric stresses that, upon integration, yield an isotro-

pic stress field significantly dependent upon the
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integration path. It is thus appropriate to identify the

deviatoric stress mostly responsible for the path dependency

of integration and, select an integration path minimizing

its effects.

The shearing strains corresponding to an ideal fluid

 and used in these predictions! are believed to generally

overestimate the shear strains, y , during cone penetra-rz'

tion in clay. This is because of the lack of shearing

resistance in a perfect fluid. Furthermore, in the devia-

toric model, the predicted variations in shearing stresses,

are controlled by the variations in y  or, morerz' rz

precisely in y ! and can, therefore, be unrealistic.
rz

This can be seen by the contours of z in Fig. 6.10.
rz

Consequently, the meridional shear stresses, T  especially
rz

behind the cone base!,are believed to be the main cause

for the integration path dependency observed in Figs. 6.11

and 6.12.

Furthermore, an examination of the equilibrium equa-

tions  Eqs. 6.l.a and 6.l.b! and Fig. 6.10 indicates that:

a! when integration is conducted along isochronic

lines little variation in the z-coordinate takes

place  except at small distances from the cone axis!,
3*

is generally small  except in the immediaterz

8z

vicinity of the tip! and hence the effect of

 = s ! on the octahedral stresses, a
rz rz oct

and p

184



b! when integration is conducted. along streamlines,

v t is dominated by T because �! streamlines areoct rz

nearly vertical and hence ~ is determined  except
oct

at, elevations close to that of the tip!, principally

by f , Eq. 6.l.b and �!, the function f depends on bothz'
3s

s and ' that, according to Pig. 6.10, can be large.rz !Z

In summary, predictions of the meridional shear

stresses, z based on strains corresponding to an idealrz

fluid can involve significant errors and are believed to

be the main cause for the path dependency of the octahedral

normal total stress, a t. However, when integration is
oct

carried out along isochronic lines  which are predominantly

horizontal! the effect of T on cr is minimized and hence
rz oct

more reliable estimates of a t are obtained.
oct

Accordingly, predictions of total stresses and pore

pressures presented subsequently are determined by means

of isochronic integration.

6.3.5 Total Stresses

Based on the isochronic integration path, the predicted

contours of radial and vertical total stresses, g and
r

a during steady cone penetration in normally consolidatedz'

BBC are given in Figs. 6.13 and 6.14, respectively. The

dashed line represents the contour of y = 2%. For com-
oct

parison, the results obtained for the expansion of a cylin-

drical cavity  from zero radius! using the same soil model

are shown in the upper diagrams. Figures 6. 13 and 6. 14
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indicate that:

1! outside the dashed line, which has a typical

size of 4.5R, the cone angle has little effect on the

results. In this outer zone;  a! soil elements lo-

cated near the axis ahead of the cone are subjected

to an increase in both a and a  with 5v > ha !
z r z r

following a triaxial compression mode of shearing

 ha = ho !, and!  b! far behind the cone, a steady
r 9

condition is approached where a and a are slightly
r z

higher than predicted by the cavity expansion solution;

2! inside the dashed line the effect of cone angle

is more pronounced. In this inner zone:  a! soil

elements located close to the 60 cone face are sub-

jected to higher values of 0 and a than the l8 0

r z

cone, and; b! far behind the cone base and near the

shaft, cr and a are smaller than predicted by cavity
r z

expansion.

The variations in total stresses, o , a and u along ar' 0 z

streamline initially located at a radial distance r = 0.0lR
0

 ice., practically on the centerline!, are shown in Figs.

6.L5 and 6.L6 for l8 and 60 cones, respectively. In the

outer zone, the effect of cone angle is negligible but a

significant gradual increase in all three stresses takes

place as the cone is approached. In the inner zone, the

stresses go through three distinct phases:

l! Ahead of the tip, stresses increase sharply but
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remain in the same order, a > a = a !.
z r 8

2! Along the cone face, the stresses are more or

less uniform and:  a! change their relative order to

become a > a > a as predicted by cavity expansion;
r z 8

 b! the difference between the stresses is small, i.e.,

the state of stress is close to isotropic with little

deviatoric component and;  c! the magnitude of the

stresses is higher than predicted by cavity expan-

sion; and depends on the cone angle; stresses are

higher for the blunt �0 ! than for the sharp �8 !

cone.

3! Behind the cone base, the stresses decrease

sharply within a distance of 5R and reverse their rela-

tive order to become a > a8 > a . A steady state
z 8 r

appears to be approached 10 to 15R behind the cone

base where the stresses are less than those predicted

for the expansion of a cylindrical cavity.

The dashed lines  curves d! in Figs. 6.15 and 6 .16

represent the variation of the octahedral shear stress,

for a soil element near the axis. As the cone tipoct'

is approached, the shearing strains become very large and

the shearing resistance of the soil drops sharply to its

residual strength  i.e., minimum strength! at about 0.5R

ahead of the cone tip.
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6.3.6 Pore Pressures

The pore pressures generated in the clay due to steady

cone penetration, hu,are the sum of two components:

 a! the increase in octahedral normal total stress, Ao
oct

and;  b! the shear induced pore pressure, bu
s

Figure 6.17 presents the predicted contours of hu
s

for steady penetration of 18 and 60 cones based on the0 0

model in Chapter S. These contours show that:

1! hu is relatively small  compared to the changes
S

in isotropic stress Ao t!, and;
oct

2! behind the cone base, predictions of hu are
S

very close to cylindrical cavity solutions  upper

diagram in Fig. 6.17! even at small distances from the

shaft. The cone angle has some effect on 5u in the
s

immediate vicinity of the shaft  about 2 radii!.

Figure 6.18 shows the predicted contours of the

excess pore pressure, ~u  = Au + ha t!, during steady
s oct

penetration of 18 and 60 cones in normally consolidated

BBC. The results in Fig. 6.18 show that:

1! The excess pore pressures, Au, are significant

even at large distances from the cone.

2! In the outer zone  y t < 2%!, we note that:
oct

a! the cone angle has little effect on bu, and;

b! far behind the cone base, hu is higher than

predicted by the cavity expansion solution.

3! In the inner zone  y > 2%! we note that:
oct
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a! in the vicinity of the cone face, the con-

tours are nearly spherical  especially for

the 60 cone! and are affected by the cone

angle. The 60 cone gives higher values of

hu  hu/a slightly higher than 2!, and;
vo

b! behind the cone base, hu decreases sharply

and reaches values that are not strongly af-

fected by the cone angle and are lower than

predicted by cavity expansion.

6.3.7 Effective Stresses and H draulic Fracturin

a.. = a'.. + ha.. � hu b..
13 x.j ij i j �.3!

Using Eq. 6.3 requires separate estimates of ha .. and hu
iJ

which are relatively large compared to a .. Small
i7

errors in these quantities can lead to negative effective

stresses and thus predict that hydrofracture takes place

 Massarch & Broms, l977! . However, Pa. 6. 3 can also be

Hydrofracture takes place in a soil when the pore

pressures become large enough to cause negative effective

stresses. Cracking can then take place and hence increase

the effective permeability of the soil. Hydrofracture due

to cone penetration must therefore be considered if the

pore pressure decay  after penetration stops! is to be used

in estimating the consolidation properties of the soil.

The effective stresses, a.. in any soil element can
lj

be written as:



written as:

� ~ 4!

in which

hs . = hv.. � ha
ij ij oct ij

This equation avoids the aforementioned problem and

in fact predicts the effective stresses during cone penetra-

tion without requiring the determination of cr t  which
oct

depends on the integration path; see Section 6.3-4>-

The predicted contours of radial and circumferential

effective stresses, 0 and o8 are presented in Figs. 6.19
r

and 6.20, respectively. We note in these figures that o
r

and a> remain positive everywhere in the f ield. The radial

effective stress, o , is, however, greatly reduced alongr'

the cone shaf t. This implies that measurements of pore

pressures and lateral stresses along the shaft of driven

pile whould yield very close values. On the other hand,

the circumferential effective stresses, a, vary very

little �.25 a   a8   0. 50 a in most of the field,
vo 8 vo

Fig. 6.20!.

In order to investigate hydrofracture, it is necessary

to evaluate the minor principal effective stress, a

in the soil. Results indicate that a reaches a minimum
3

value of 0.15 and 0.12 cr along the shaft and at approxi-
vo

mately 8R behind the base of 18 and 60 cones, respectively.

This means that the strain path method predicts  with a sub-

stantial safety margin! no hydrofracture during cone pene-

tration  or pile driving! in normally consolidated BBC.

190



6.4 COMPARISON WITH FIELD MEASUREMENTS

In this section, the predicted normalized excess pore

pressures  needed for linear consolidation studies! are checked

by means of field measurements. In addition, predictions of

cone resistance, g , and pore pressures, u, are compared to in
c

situ test results obtained in the BBC deposit at Saugus, Mass.

6.4.1 Field Measurements

Figure 6.21 shows the soil profile at Saugus, Mass. as de-

termined by conventional laboratory tests. The clay between

depths 25 and 75 feet is clearly overconsolidated with an OCR

decreasing from 7 to 1.4. Below 75 ft the clay is reasonably
uniform with an OCR = 1.3 +O.l.

Figure 6.22 shows the undrained shear strength of the clay

obtained by different methods. Because of sample disturbance,

results of unconfined  U! and unconsolidated-undrained  UU!

tests exhibit significant scatter  s = 0.4 + 0.2 kg/cm !,

without a clear trend with depth. The peak SHANSEP strengths

are based on results of laboratory tests on resedimented BBC

and on the OCR profile in Fig. 6.21. The field strength for

embankment stability was backfigured from an induced embankment

failure extending to a depth of 75 ft using the SHANSEP pro-

files  Azzouz and Baligh, 1978!. The field vane strength from

four holes exhibits less scatter and shows a variation
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with depth which is consistent with the OCR profile  and

hence the SHANSEP strengths and the field strength pro-

files! .

Baligh et al. �978! present extensive cone penetra-

tion results at the same site,i~eluding q and u measure-
c

ments for cones with different geometries. Figure 6.23

shows typical profiles of q for a 60 cone and u at, the
c

tip of an 18' cone. This figure combines the results

of 3 tests for both q and u and illustrates the good
c

repeatability of the measurements. Figures 6 .24 and 6 .25

present the penetration pore pressures obtained at. dif-

ferent locations along 18' and 60' cones, respectively,

after eliminating the scatter in the results caused by the

natural variability of the soil.

Figure 6.26 compares penetration pore pressures mea-

sured on the shaft behind an 18' cone with those mea-

sured behind enlarged l8' and 60 cones. Results in Fig.

6. 26 indicate that:

l! af ter a distance of about 5 diameters behind the

cone base, the pore pressures on the shaft of the re-

gular {unenlarged! 184 cone appear to reach a constant

value  u! h' Fig- 6 26.a'sh'

2! the pore pressures behind the enlarged 18' cone>

Fig. 6.26.b, are practically equal to  u! below a
sh

depth of 60' f t and slightly less in the upper stif f

deposit, and;
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~! the pore pressures behind the enlarged 60' cone,

Fig. 6 .26.c, are slightly higher than the enlarged l8o

cone and closer to  u!
sh

6.4.2 Normalized Excess Pore Pressure Distributions

The primary objective of this report is to estimate

pore pressures in the soil during cone penetration as they

repr'esent the initial conditions for the consolidation that

takes place after penetration stops.

Linear consolidation analyses re" izre estimates

of the relative  or normalized! distribution of excess

pore pressure, hu = u - u !, in the soil rather than the

absolute values of du which are more difficult to predict.

This section compares the predicted and measured excess

pore pressure fields in the soil when normalized with res-

pect to the excess pore pressure on the shaft, �u! h, at
sh'

a sufficiently large distance behind the cone

I  ~ ! h =   !

Figure 6.26a presents measured values of  u! h behind
sh

an unenlarged l8' cone. Unfortunately, similar measure-

ments behind a 604 cone are not available. However,

Pigs. 6.26b and c strongly suggest that  u! is not very
sh

sensitive to the cone angle. Therefore, in order to

normalize experimental results,  u! h behind the 60' cones
sh

were assumed to be the same as the l8' cone in Fig. 6.26a.

This assumption tends to underestimate  u! h behind 60' cones.
sh

The solid lines in Fig. 6.27 show predictions of
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hu/ hu! h in a soil element initially located very close
sh

to the axis of 18' and 60' cones according to the strain

path method and based on properties of resedimented normally

consolidated BBC  OCR = 1!. Values of hu are the same as

in Fig. 6.18 and the excess pore pressure on the shaft,

{hu! h is taken as the predicted value of hu at a distance
sh

14R behind the cone tips. Figure 6.27 also shows the mea-

sured values of Au/ hu! h at the Saugus site obtained at
sh

depths 45 4 5, 60 2 5 and 85 X 5 ft which correspond to

approximate overconsolidation ratios OCR = 3 + 0.4<

2 + 0.3 and 1.3 + O.l, respectively. Values of 5u are

directly obtained from the results in Figs. 6.24 and 6.25.

The uncertainty band of experimental results represents

the range of Au/{Au! h within a 10 ft layer centered at the
sh

required depth after neglecting "small scale" variability

in hu and �u! . A more accurate band of uncertainty insh'

hu/{5u! should include all the scatter in 5u and �u!
sh sh

due to inherent soil variability. Figure 6.23 presents the

scatter in u due to soil variability when the porous

stone is located at the tip of an 18' probe. If included

in Fig. 6.27, this scatter would be represented by a band

in the hu/ hu! h plot equal to + 0.31, 0.25 and 0.18,
sh

about the same mean, at depths 45, 60 and 85 f t, respec-

tively.*

Assuming that  hu! h has no scatter.
sh

194



Figure 6.27 indicates that:

l! the measured values of the normalized excess pore

pressure hu/ hu! vary very slightly with overcon-
sh

solidation ratio  l. 3 < OCR < 3!, and;

2! the predicted distributions of hu/ Au! h based
sh

on properties of resedimented normally consolidated

BBC  OCR = l! are very close to the measurements. This

important result means that consolidation analyses

based on the predicted distributions of hu/ hu! h can
sh

be used to interpret dissipation records obtained in

the BBC deposit at Saugus, Mass., below a depth of

45 ft  OCR < 3! .

Attempts to extend this result to the upper stiff

deposit above a depth of 40 ft was not successful because

of the large scatter in measurements of u  due to inherent

soil variability, see Fig. 6.23! as compared to the small

average values of u in this layer. When hu  = u � u !
0

and  hu! h are small, scatter makes the measured values ofsh

hu/ hu! quite unreliable.
sh

In order to check the predicted penetration pore pres-

sures at some distance from the cone, measurements of u in the

soil around the cone are required. Such measurements

are very difficult to obtain in situ because of: a! the

interference between the measuring device and soil deforma-

tions, and; b! the uncertainties in alignments which can
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introduce significant errors in the estimated radial dis-

tances. Attempts to perform such measurements in BBC by

means of two piezometers were unsuccessful, Baligh & Leva-

doux, 1980. Therefore, using the analogy between cone penetration and

pile installation, predictions of Au/ hu! h in the soil are
sh

compared with measurements conducted around a cylindrical

pile �1.9 cm in diameter! jacked into Champlain Clay

 Roy et al., 1979! .

The measurements are quite consistent and reliable

and, because of the small size of the piezometers  Geonor

M � 600! compared to the pile,* are hopefully less sensitive

to the errors mentioned above  piezometer-soil interaction

and alignment!. Furthermore, the excess pore pressure

measured along the shaft of the pile  du! h " 2a is very
sh vo

close to that measured in BBC behind piezometers

 "- 2.1 a , see Fig. 6.26! .
vo

Figure 6. 28 compares the predicted radial distribu-

tion of excess pore pressure at a sufficiently large dis-

tance  r = 14R! behind 18 and 60 cones during penetration

in normally consolidated BBC to measurements in Champlain

Clay. Results in Fig. 6. 28 show that:

1! the predicted radial distributions of pore pres-

sures behind 18 and 60 are almost identical;

2! the agreement between predictions and measurements

is remarkable, in view of  a! the approximations in the

*the pile diameter is about 6.5 times that of the
piezometer.
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strain path method,  b! the uncertainties in the f ield

measurements  in particular at small radii! and especially,

 c! the difference in behavior between BBC  OCR = 1! used

for predictions and the Champlain Clay  OCR -" 2! where

measurements are made.

Results in Fig. 6 .28 are very encouraging since they

suggest that the normalized excess pore pressure distribu-

tion during pile driving is not very sensitive to soil

type or stress history  OCR!. This is further supported by

the results in Fig. 6.29 showing that measurements in Cham-

plain Clay are not unique but are similar to other clays

of different types and stress histories. The properties

of the different clays are described in more detail in

Table 6.3

In summary, the two-dimensional  axisymmetric! nor-

malized excess pore pressure distribution around cones

 or piles! predicted by the strain path method compares

very well with field measurements  a! at different loca-

tions along the cone for a wide range of overconsolidation

ratios �.3   OCR   3! and  b! in the radial direction far

behind the tip. These distributions appear, therefore, suf-

ficiently accurate to perform dissipation analyses which

will hopefully be applicable for a wide variety of clays

with OCR   3.
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6.4. 3 Cone Resistance and Pore Pressures

a! Cone Resistance

The cone resistance, q is the force per unit area
c

required to push the cone and is related to the total

stresses  tractions! acting on the cone face by the expres-

sion:

q
l

 s cos d + s sin h! dA
C t n

A

�-5!

where s and st are the normal and tangential components
n

of the surface traction vector on the cone face; 26 is

the cone angle; A is the surface area of the cone

 A = Tl R /sin 5! and; R is the radius of the cone base

 and of the shaft!.

In the strain path solutions presented earlier, the

strain rates were determined assuming the soil to behave

as an ideal fluid with no shearing resistance. This,

together with the soil model  described in Chapter 4 !

obeying the normality rule of plasticity, leads to negli-

gible values Of s On the cane face.* Therefare, prediC-

*and along the shaft behind; see Fig. 6.l0.

19S

tions of q obtained by integrating the total stresses
c

derived from the strain path method represent "smooth "

cone solutions. In order to introduce the effects of shear

stresses on the cone face and predict q for "rough" cones,



we note that when the surface tractions st and s are
n

uniform on the cone face and equal to t and o, respec-

tively, Eq. 6.5 becomes:

q
T

+ g

tan b
  6.6!

and hence the shearing stresses on the cone face in-

creases the cone resistance by T/tan b. Predictions of

q for "smooth" and "rough" cones can, therefore, be es-

timated as follows:

Smooth cone:

Integrate the total normal stress on the cone

face obtained from the strain path solutions

 see Figs. 6.13 and 6.14! .

2

T
c rough c smooth �.7!

tan b

where average shear stress acting on the

cone face

= residual undrained shear strength

l99

of the soil

0.15 a for the model in Chapter 4.
VO

Rigorously speaking, the predicted stress fields

apply to normally consolidated resedimented Boston Blue

Clay  Table 4sl! and hence q  and u! can only be estimated
c

for this type of clay. Unfortunately, the HBC at the

Saugus site, Fig. 6 .21, is nowhere normally consolidated.



Between depths 25 and 75 ft, the OCR decreases from 7 to

1.3 and below 75 ft. OCR = 1.3. Consequently, compari-

sons with measurements at the Saugus site require extra-

polation of q  and u! predictions to different values
c

of OCR. An approximate method is described below.

Using the classical bearing capacity expression for

deep foundations  Terzaghi, 1943' Skempton, 1951! we write

the cone resistance:

�. 8!qc c u vo=Ns+v

Noting that a = a + u and setting e = s /a , Eq. 6.8
vo vo 0 u vo

becomes:

q � u
� aN +1

c

vo

�-9!

Table 6. 4 presents values o f e obtained f rom labor a-

tory tests on resedimented normally consolidated BBC and

indicates that, depending on the mode of consolidation

and undrained shearing, aNC can vary between 0.155 and

0.34. This illustrates the difficulty of defining and

estimating a cone factor N , Eq. 6.9. However, the exis-
c

If N is signif icantly dependent on OCR, the use-
fulness of Eq. 6.8 becomes highly questionable.

2gp

tence of an N factor which is independent of the overcon-
c

solidation - of the clay allows interesting extrapolations



to various OCR to be made. Assuming N to be independent*
G

of OCR, Eq. 6. 9 enables estimates of the normalized cone
qc uoresistance in the overconsolidated clays   ! to

q -u Wo
be made from the predicted values   !

q � u aOq-u
!- = �    ! � ll + l

cr OC NC vo NCvo

�. 10!

Table 6.4 presents values of <xOC/m for BBC at different

OCR's. For OCR   4 the effect of the mode of shearing on

 xp /a is not ver y s igni f ic ant** and va 1 ues are c lose to
the approximate expression proposed by Ladd et al., �977!

based on results of direct simple shear tests on clays***

CL

 OCR!
OC a.e

NC

Using the ratios a /n>C obtained from direct simple

shear tests as a reasonable average for different modes of

shearing, 'Ihble 6.5 presents predictions of  q � u !/a
c 0 vo

for "smooth" and "rough" cones �6 = 18' and 60'! at dif-

ferent OCR  = 1, 1.3, 2, and 3! according to Eqs. 6.7 and

6.10. Figure 6.30 compares predictions with the estimated

201

*Baligh and Vivatrat �979! show that the variation of
Nc for a 60' cone between depths 40 and 100 ft  OCR = 3.5
tO 1.3! at the Saugus site using the "field" strength is
relatively small  N = 10 + 2!. The "field" strength is
backfigured from an embankment failure together with thec

SHANSEP strength profile.

As compared to its effect on INC, say.
Including BBC.



range of measured values reported by Baligh et al. �978! .

The estimated ranges  dashed areas in Fig. 6.30! are

obtained by drawing the envelopes representing the

average + one standard deviation* of the measured values
for 184, 30' and 604 cones over a 10 ft layer. Results in

Fig. 6.30 indicate that:

1! the "smooth" cone solutions give reasonable

estimates of q for the 60' cone but are too low for
c

the 18 cone. Nore importantly, "smooth cone" pre-

dictions contradict measurement trends regarding the

effect. of cone angle, and;

2! the "rough" cone solutions give reasonable

estimates of q for 18' and 60 cones at low OCR
c

but underpredict q �84! and overpredict q �0'!
c c

at OCR = 3 + 0.4. This suggests that "rough" cone

solutions are more realistic and that extrapolations

to high OCR's is not possible.

The predicted resistance of 18' and 60 "rough" cones

is plotted versus depth in Fig. 6.30. This figure pro-

vides a better assessment of predictions by showing the

scatter in measurements. The overall agreement

Due to scatter caused by inherent soil variability.

**Most probably due to the assumptions that N is
independent of OCR and/or that friction on the con8 face
is also independent of OCR.
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between predictions and measurements is good. In particu-

lar, predicted and measured values are virtually iden-

tical at depths 70 a 10 and 115 ~ 10 feet. The changes

in [q �8'! � q �0 ! ] below a depth of 75 feet, where the
c c

clay is generally classified as "uniform"  OCR = 1.3 + 0.1!,

illustrate the sensitivity of q to local soil variations
c

which cannot be accounted for by predictions.

b! Pore ressures

Section 6 .4.2 shows that the distribution of the

normalized pore pressures, hu/ Au! h along the cone and
sh

the shaft behind it are well predicted by the strain path

solutions  Fig. 6 .27! . It is therefore, sufficient to

compare predicted and measured excess pore pressure along

the shaft,*  Au!
sh

Solutions obtained for resedimented normally consoli-

dated BBC  OCR = 1! yield  hu! h/a = l. 0 + 0. OS for both
sh vo

18 and 60 cones. On the other hand, field measurements

in the soft clay  below depth 75', OCR = 1.3 + 0.1! give

 hu! /o = 2.0 + 0.1 i.e., about 100% higher than pre-
sh vo

dieted. Interestingly, pressuremeter results discussed

earlier  Sec. 6.2.4! were also underpredicted by the same

soil model by roughly the same degree. Had the in situ

OCR of the clay been used  OCR = 1.3!, prediction of hu h
sh

*
Or at any other location on the cone.
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would increase by about 25%. The remaining discrepancy

can be due to: 1! the difference in behavior between re-

sedimented BBC and the in situ clay. This includes the

shear strength and the undrained stiffness  especially!

at low strains and, 2! strain rate effects dis-

cussed. earlier in Sec. 6 .2.3. However, it is important to

note that changes in soil parameters to improve predictions

of pore pressures will increase the predicted cone resis-

tance, q , and hence upset the good predictions in Figs.
c

6.39 and 6.31 by overpredicting q in the soft deposit
c

below 75 ft  OCR = 1.3!, especially for the 60' cone.

A more complete analysis of pore pressures during

penetration in the stiff upper deposit  OCR > 2! is ex-

pected to encounter less difficulty in simultaneously pre-

dicting cone resistance and pore pressure measurements.

Xn this upper deposit, the pore pressures are not as

high compared to the cone resistance  see u tip! in

Figs. 6.25 and q in Fig. 6.23 for 60' cones].
c

6.5 SUMMARY AND CONCLUSIONS

This chapter consists of 3 parts:

In Part 1 p=essuremeter studies are conducted to

check the soil behavior models  Chapters 4 and 5! and the

adequacy of soil parameters estimated from laboratory tests

on resedimented BBC. The predicted expansion curves are

close to Cam-Clay results  determined by others for BBC!

even though the stress-strain curves of the two models
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differ significantly. This is due to the compensating

effects of the shear modulus at low strains and the shear

strength of the clay.

Comparison of the predicted expansion curves with

pressuremeter tests results in the soft BBC  depths 83.2

and l03 2 ft at the Saugus site! show that matching of

field measurements requires doubling of the estimated

shear resistance of the soil. Part of this discrepancy

 about 25%! is due to overconsolidation of the in situ

clay  OCR = l.3! neglected in predictions. The remaining

discrepancy �5%! can be due to: l! simplifications made in

theoretical analyses and/or the formulation of the soil

model  e.g., end effects, partial drainage, strain rate

effects, ~ ..etc.! and/or;2! inadequacies in soil model para-

meters as described by the shear strength and/or shear

modulus at small strain levels. The latter is very dif-

ficult to estimate reliably from conventional laboratory

tests and is believed to represent a major reason for

underpredicting field measurements  Azzouz et al., 1980! .

In Part 2 of this chapter, the same soil model, with

appropriate parameters for normally consolidated BBC, is

incorporated in the strain path method  Chapter 2! to pre-

dict the normalized excess pore pressures in the soil

during deep steady penetration of l8' and 60' cones. ln spite

of uncertainties resulting from the simplified nature of strain path
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resulting from the simplif ied nature of strain path

analyses, comparisons of predictions with extensive field

measurements of pore pressures at different locations on

the cone and the shaft behind it shows excellent agreement

for both the 18' and 60 cones and, surprisingly, in the

overconsolidated BBC as well  OCR < 3!. Further comparisons

with pore pressure measurements obtained by others in the

soil surrounding a jacked pile in Champlain Clay also

show surprisingly close agreement. Since the measure-

ments in Champlain Clay exhibit strong similarities with

other clays, this suggests that predictions

of the normalized excess pore pressure distribution in the

soil is not. very sensitive to the clay type or its overcon-

solidation ratio  for OCR ~ 3!. This hypothesis is impor-

tant because, if true, it enables valuable generalizations

to be made. In particular, results of linear consolida-

tion analyses based on this normalized excess pore pres-

sure distribution can be applied to a wide varietv of

clay deposits to estimate their coefficient of consoli-

dation.

ln Part 3 of this chapter predictions of cone resis-

tance, q , and penetration pore pressures, u, based on the
c

same solutions in Part 2 are compared with field measure-

ments in BBC. Good agreement of q is achieved for l8'
c

and 60' cones for OCR < 3 provided that the overconsolida-

tion of the clay and the friction at the cone-soil
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interface are accounted for. On the other hand, predic-

tions of u are significantly underestimated in the soft

BBC deposit below 75 ft  OCR = 1.3! as in the case of the

pressuremeter test data obtained in this clay.
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Table 6.1  cont.!

DEFINITIONS

1 2 � � 2 � � 2 1/2
�! q = �   a -a ! +  a -a ! +  a -a ! j ; q > 0

1 2 2 3 3 1K2

�! p = �  a + a + a !; al, a2, a3 are major intermediate and minor

principal effective stresses  al > a2 > a3!

�! f = arcsin lf 3f lf I+sin
or = N ; subscript f refers to

a3f 1-singlf 3f

failure  according to a failure criterion!

a -a
  ! lf 3f

U 2

NOTES

�! Assuming Mohr-Coulomb failure criterion:

~ 4 is independent of failure mode

�! Assuming Extended Mises criterion:

qf
~ M =�

Pf
~ M is evaluated from triaxial compression test  a =a !

3Marcsin ~!

~ The yield surface is an ellipse with an associated flow role;
1�therefore, in plane strain failures a2f 2 ai f+a2f!

�! For M = 1.2 we have:

k = 0.671
0

0.627
0

~ neglecting elastic strains:

~ without neglecting elastic strains:

 s! K is the bulk elastic modulus: K =
k

K 2 �+9!
We assume � = and s - 0.3

3�-29!

~ The yield surface is an ellipse. with an associated Slow rule, but,
at failure, violates incompressibility requirement



Table 6. l  cont.!

2. 3A 2.3g s! CR =   !, RR =  ' !

3M  ! 4 TE! = r si �M!

M

~  SC! ~ PSE!

 8! Assuming cf2f = > alf+O3f!

 9! Numerically evaluated

l�
 >0! Numerical computation of 0, a, o, yielded that a 9 �  o ~ !

 n ! Table 4.3

�2 ! After Ladd et al. �971!
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Streamlines

r = initial radial distance of the streamline from the axis

0 R = shaft radius

Total stresses � u = effective stresses
0

~z +vc +r 8 Q +vc p

Deviatoric stresses

s = 0.309 a ; s = s = � 0.154 a
z vc' r 6 VC

Table 6.2 Streamlines and boundary stresses used in the analyses.
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Figure 6-2 Prediction of stress md pore pressure distributions at
different levels of expansion during a pressuremeter test
in normally consolidated Boston BIue Clay.
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Figure 6.3 Comparison of predicted pressuremeter expansion curves
in normally consolidated Boston Blue Clay.
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TO Z>IS R

TO fs=l50 R

~ SOIL ELEMENT

~ STREAML INES

TO Z=-200 R

r  SEE VALUES IN TASLE 8.2!

Figure 6.5 Solution to cone penetration in clay: problem geometry.
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SS ~ I

S3 Srz

Q IMLUE OF le/R
ONYECT SNlPLE SHEAR  PURE SIRDAR SI TERMS OF STRAPS

PRESSURE METER TEST  EXPANSION OF AN INFINITE
CYLSNRICAL CAVITY !

IKITE: TESTS UNOER IOEAL IZED CONDITIONS

Figure 6.7 Predicted deviatoric stress paths along two streamlines during
steady penetration of an 18' cone in normally consolidated
Boston Blue Clay.
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o
DNIECT SIMPLE SIRDAR IPVRE SHEAR IN TERMS OF STRAW!

P] PRESSISIEMETER TEST  EXPANSKNI OF AN INFRSTE
CYLSENICAL CAVITYI

NOTE: TESTS VNDER IDEALIZED ODISITION8
PEAK

Figure 6.8 Predicted deviatoric stress paths along two strearnlines during
steady penetration of a 60' cone in normally consolidated
Boston Blue Clay.
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CYLINDRICAL
CAVIT>
E XPANSION

Figure 6 .9 Predicted contours of normalized octahedral shear stress, T
octand extent of failure during steady cone penetration in

normally consolidated Boston Blue Clay �8' and 60' tips!.
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Figure 6.10 Predicted contours of normalized. shear stress, I , during
rz

steady cone penetration in normally consolidated Boston
Blue Clay �8' and 60' tips! .

224



Z
R180 T1P

-i0

fa

-15

Figure 6 .11 Comparison between two methods of integration  l8' cone!.
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Figure 6.l2 Comparison between two methods of integration �0' cone! .
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ides

Figure 6.13 Predicted contours of normalized radial total stress, r'
during steady cone penetration in normally consolidated
Boston Blue Clay  l8' and 60 tips!.
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Figure 6. l4 Predicted contours of normalized vertical total stress, 0z'
during steady cone penetration in normally consolidated
Boston Blue Clay  l8 and 60' tips!.
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CYLINDRICAL
CAVITY
EXPANSION

18'TIP 1

I,O 1.5 2.0 2.5 3.0 3.5
NCRMALIZED TOTAL STRESS

Figure 6.15 Total stress variation along the streamline initially
located at the centerline �8' tip!.
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Figure 6.16 Total stress variation along the streamline initially
located at the centerline �0' tip!.
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Figure 6.17 Predicted contours of normalized shear induced pore pressure,
hu , during steady cone penetration in normally consolidateds

Boston Blue Clay �8 and 60' tips!.
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Figure 6.18 Predicted contours of normalized excess pore pressure, Au,
during steady cone penetration in normally consolidated
Boston Blue Clay �8' and 60' tips!.
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Figure 6.19 Predicted contours of normalized radial effective stress,
a , during steady cone penetration in normally consolidated

Boston Blue Clay �8' and 60 tips!.
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Figure 6.20 Predicted contours of normalized circumferential effective
stress, 0 , during steady cone penetration in normally
consolida ed Boston Blue Clay �8 and 60' tips!.
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PORE PRESSURE, U  kg/cm2 or TSF!
0.0 5.0 IO.O 15.0

~ 4
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Figure 6.24 Penetration pore pressures at different locations on an
18' conical tip  from Baligh et al., 19'78! .
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PORE PRESSURE, u {kg/cm~ or TSF!
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T hJ
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Figure 6.25 Penetration pore pressures at different locations on a
60o conical tip  from Baligh et al., 1978!.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

�! Cone penetration testing provides a superior soil ex-

ploration technique to establish stratification, determine vari-

ability, and perform soil identification; especially if pore pres-

sures generated by cone pentration are measured in addition to

cone resistance  Baligh et al. 1980!.

�! Due to the complicated nature of cone penetration, re-

search is needed to interpret test results and hence estimate en-

gineering properties of the soils for predicting foundation perfor-

mance and conducting foundation designs. Past research at MIT con-

centrated on estimating the undrained shear strength of clays

 Baligh et al. 1978!. This report is primarily aimed a.t estimat-

ing the pore pressures during cone penetration.

�! Additional interesting aspects of this study include:

a! the applicability of cavity expansion approaches to deep pen-

etration and pile installation problems; b! the likelihood of

soil hydrofracture due to pile installation; c! the generaliza-

tion of a deviatoric stress model and the evaluation of its

capabilities in predicting the undrained behavior of Boston

Blue Clay in various laboratory shearing tests; d! the deve-

lopment and evaluation of a shear induced pore pressure model

for clays subjected to undrained loading along general strain

paths; and, e! a comparison between predicted and measured

results of self-boring pressuremeter tests in Boston Blue Clay

to compare laboratory vs' field behavior of clays.
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�! The pore pressures, u, generated in the soil by steady

cone penetration are important because a! they represent the ini-

tial conditions for the dissipation that takes place when penetra-

tion is interrupted, and b! they provide insight into the mech-

anism of cone penetration and hence enable better interpretation

of the test results.

�! Penetration pore pressures, u, are difficult to predict

because of the complicated behavior of soils; the large strains

and the complicated strain paths to which the soil is subjected;

and, the boundary conditions at the cone-soil interface.

�! Deep cone penetration in clays is an axisymmetric two-

dimensional steady state problem which is essentially strain-

controlled, i.e., strains and deformations in the soil are pri-

marily imposed by kinematic requirements. For this type of

problem, Baligh �975! proposes an approximate method of

solution called the "strain path method" consisting of four

basic steps: a! estimate the initial stresses; b! estimate

an approximate strain field satisfying conservation of volume,

compatibility and boundary velocity requirements; c! evaluate

2L7



the deviatoric stresses at a selected number of elements by

performing laboratory tests on samples subjected to the same

strain paths or, alternatively, by using an appropriate soil

behavioral model, and; d! estimate the octahedral  isotropic!

stresses by integrating the equilibrium equations.

Chapter 2 describes the application of the strain path

method to deep steady cone penetration in clays and indicates

the need to develop: a! A method for estimating approximate

velocity fields and hence compute deformations and strain paths

of the soil during cone penetration; b! Appropriate models to

determine the deviatoric stresses and the shear induced pore

pressures corresponding to these strain paths c! A method to

estimate octahedral stresses by integrating the equilibrium

equations and hence determine cone resistance and penetration

pore pressures  See Figure 4.3! .

�! Predictions of velocities, strains and deformations

in saturated clays due to steady cone penetration are conducted

in Chapter 3, assuming that the soil offers no shearing resist-

ance  i.e., behaving like an ideal fluid! utilizing the method

of "sources and sinks" of potential theory. The principal ad-

vantage of this prediction method is to provide analytic

expressions for the strain rates, everywhere in the soil, which
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can be accurately integrated to obtain strains and deformations.

This avoids the important errors associated with the more

obvious method of differentiating measured displacement fields

to obtain the strains.

Results obtained for l8' and 60 cones indicate that:

a! Strain paths caused by cone penetration are very complicated

and cannot be imposed by any one of the existing laboratory

tests; b! Cone penetration shears the soil at much higher rates

and to much higher levels of strains than common laboratory

tests; and c! Significant strain reversals take place behind

the cone base. This, together with shearing strains neglected

by  one-dimensional! expansion theories  c and c ! raises
rz zz

serious questions regarding the applicability of cavity expan-

sion solutions to penetration problems  cones and piles!.

Finally, Chapter 3 shows reasonable agreement between the

predicted soil deformations and model test results. Nore

accurate experimental results are, however, needed.

 8 ! In order to determine the shear  deviatoric! stresses

in the soil, a comprehensive model is required to account for

the important aspects of soil behavior as related to cone

penetration: a! complicated strain paths including strain re-

versals  i.e., "loading" and "unloading" !, and large non-recov-

erable strains; b! initial and stress-induced anisotropy

c! post-peak behavior, and; d! time-dependent deformations
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e.g., undrained creep and relaxation! ~

At the present. time such a model is not available.

However, the deviatoric stress model introduced by Iwan �967!

and Norz �967!; and applied to soils by Prevost  l977! ~

accounts for most of the above factors except for the time-

dependent  viscous! behavior of clays. The model is described

in Chapter 4 and is extended by means of a new strain-soften-

ing rule describing post-peak stress-strain behavior in order to

predict a more realistic behavior. Furtnermore, based on

theoretical considerations, the model is shown to predict,

under plane strain conditions, the same peak strengths obtained

by the Davis and Christian  l971! elliptical model in the

special case when the ellipse degenerates into a circle.

Using soil parameters from triaxial tests on normally

consolidated resedimented Boston Blue Clay  BBC!, the model

predictions are evaluated in Chapter 4 by comparisons with

other laboratory test results.

These comparisons show that:

a! Reasonably good predictions are obtained

in plane strain compression and extension

tests, especially in describing the post-

peak behavior;
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b! The simple softening law describing

repeated loading leads to good agree-

ment with results of cyclic triaxial

tests, and;

c! The model lacks the necessary flexi-

bility to accurately describe inter-

mediate modes of failure, e.g., Direct

Simple Shear  DSS!, cylindrical cavity

expansion, etc , .. . Although the

DSS test is difficult to interpret and

results of "true" triaxial test simulating

cylindrical cavity expansion  e.g., Kirby

and Esrig, l979! are scarce, it is appar-

ent that the model slightly overestimates

the strength for these two modes of failure.

Improvements in the strength prediction capabilities of

the model could be easily achieved by considering yield sur-

faces of more general shapes  e.g., ellipsoids or spheroids!.

However, this requires reliable stress-strain curves for general

loading conditions that are not presently available and hence,

the additional complications arising from a more sophisticated

model do not appear justifiable at the present time.



 9! A review of existing methods for predicting the excess

pore pressure, hu, generated during undrained shearing of clays

indicates the need for a new method to predict du caused by

the very complicated strains associated with cone penetration

 variable principal strain directions with large strains and

strain reversals! A method is proposed in Chapter ~ to pre-

dict hu in strain-controlled problems. Following Henkel's

approach, hu is divided into two components: a! ha t due to
oct

changes in conf inement and b! hu caused by the tendency of the
8

soil to dilate  or contract! due to pure shear loading. The

first component, ha, is controlled by equilibrium considera-oct'

tions and, the second component, hu , is evaluated by means of
s

a new analytical model.

The model can predict hu for anisotropic clays subjected
s

to general straining conditions  with rotation of principal

strain direction! and one unloading. For monotonic loading,

all model parameters can be obtained from triaxial tests. For

unloading, the model requires an estimate of the maximum  or

limiting! Au which can be obtained from results of laboratory
s

tests including straining reversal.

A comparison between the predicted and measured pore

pressures during plane strain compression and extension and

in direct simple shear tests indicates good agreement in spite

of the difficulty in evaluating ha during these tests.
oct
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Furthermore, the predicted pore pressures during unloading are

very close to measurements obtained from cyclic triaxial tests.

 l0! Chapter 6 conducts cylindrical cavity expansion

studies to evaluate the adequacy of the deviatoric stress model

 Chapter 4!, the shear-induced pore pressure model  Chapter 5!

and the soil parameters estimated from laboratory tests on

resedimented BBC by comparisons with other models and in situ

measurements during pressuremeter tests.

The predicted expansion curves are close to Cam-Clay

results  determined by others for BBC! even though the stress-

strain curves of the two models differ significantly. This is

due to the compensating effects of the shear modulus at low

strains and the shear strength of the clay. Additional results

show that, for cavity expansion problems, simple soil models

 e.g., the bilinear or the hyperbolic models! can provide as

reliable predictions as the sophisticated models  e.g., the

Cam-Clay and the proposed models! provided appropriate soil

parameters are selected.

Comparison of the predicted expansion curves with pressure-

meter tests results in the soft BBC  depths 83.2 and l03.2 ft.

at the Saugus site! show that matching of field measurements

requires doubling of the estimated shear resistance of the soil.

Part of this discrepancy  about 25K! is due to overconsolida-

tion of the in situ clay  OCR = l.3! neglected in predictions.

The remaining discrepancy �5%! can be due to: l! simplifications
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made in theoretical analyses and/or the formulation of the

soil model  e.g., end effects neglected in pressuremeter

analyses, partial drainage, strain rate effects, ...etc.!

and/or; 2! inadequacies in soil model parameters as described

by the shear strength and/or shear modulus at small strain

levels. The latter is very difficult to estimate reliably from

conventional laboratory tests and is believed to represent

a major reason for underpredicting field measurements.

 ll! Based on the strain path method, the strain paths

estimated in Chapter 3, the deviatoric stress model in

Chapter 4, the shear-induced pore pressure model in Chapter 5,

and the soil parameters obtained from laboratory tests on

normally consolidated resedimented BBC, Chapter 6 predicts the

normalized excess pore pressures in the soil during deep steady

penetration of 18' and 60' cones.

In spite of uncertainties resulting from the simplified

nature of strain path analyses, comparisons of predictions with

extensive field measurements of pore pressures at different

locations on the cone and the shaft behind it shows excellent

agreement for both the 18' and 60' cones and, surprisingly,

in the overconsolidated BBC as well   OCR   3!. Further corn-

parisons with pore pressure measurements obtained by others in

the soil surrounding a jacked pile in Champlain Clay also show

surprisingly close agreement. Since the measurements in

Champlain Clay exhibit strong similarities with other clays
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 see Fig. 6. 29!, this suggests that predictions of the

normalized excess pore pressure distribution in the soil is

not very sensitive to the clay type or its overconsolidation

ratio  for OCR   3!. This hypothesis is important because,

if true, it enables valuable generalizations to be made. In

particular, results of linear consolidation analyses  performed on

the basis of this normalized excess pore pressure distribution!

can be applied to a wide variety of clay deposits to estimate

their coefficient of consolidation.

�4! Predictions of cone resistance, q , and penetration
c

pore pressures, u, based on the strain path method are com-

pared in Chapter 6 with field measurements in BBC. Good

agreement of q is achieved for 18' and 60' cones for OCR < 3
c

provided that the overconsolic ation of the clay and the friction

at the cone-soil interface are accounted for. On the other

hand, predictions of u are significantly underestimated in

the soft BBC deposit below 75 ft  OCR = 1.3! as was the case

of the pressuremeter test data obtained in this clay.
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APPENDIX A

STRAIN PATH METHOD - EVALUATION OF TOTAL STRESSES

A. 1 SPATIAL INTEGRATION OF EQUILIBRIUM EQUATIONS

In axisymmetric problems, the equilibrium equations in terms of total

stresses are:

Bar BT« ar � Ve
+ + + R = 0

3r 3z

 A.l!

3T 30 T

3r 3z r
+ + +Z=0

in which:

r = radial coordinate

z = vertical coordinate

g = radial total stress
r

cr = circumferential total stress
e

a = vertical total stress
Z

radial shear stress acting on the vertical plane
rz

R = radial body force

and, Z = vertical body force

When the z � axis is aligned with the vertical direction  positive upwards!,

the body forces are: R = 0; Z = y  y = total unit weight of the
t t

clay! . In deep quasi-static steady penetration, the radius of the cone

 or pile! is small and the effect of gravity  y ! on equilibrium near
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the tip is negligible and equations A.l become:

BG BT 0 08rz r
+ + 0

Br 3z r

 A.2!
rz z rz

BV T
� + � + 0

Br. Bz

Dividing total stresses into deviatoric and octahedral  or isotropic!

stresses:

o = s + a
r r oct

'e = 'e ' ooct

O = s + a
z z oct

 A.3!

s
rz rz

and substituting Eqs. A.3 into Eqs. A.2, we get:

3 3oct r x'z r

3r Br Bz r
 A.4!

BG
oct

Bz

Bs Bs
rz z rz

Br Bz

In the strain path method described in Chapter 2, the right hand

side of Eq. A .4 can be determined from the deviatoric stress soil model

knowing the strain path of the soil element. The octahedral stress can

then be computed by integrating Eq. A .4 along a path starting at a loca-

tion where the octahedral stress  a ! is known  i.e., in the far
oct o

field! and utilizing:

Ba t Ba
d g = dr + dz

oct 3r 3z
 A. 5!
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*For example, a cone penetrometer  or pile! pushed to a depth of
l00 ft in soft clay induces a change in isotropic stresses approximately
equal to the total overburden stress at that depth.



where dr and d z are the radial and vertical coordinate increments be-

tween two consecutive points on the integration path.

Appendix F provides description and computer codes for a numerical

integration scheme applied along two different sets of integration paths.

A.2 IMPLICATIONS OF USING AH APPROXIMATE STRAIN FIELD

Since the strain path method is based on an approximate strain

field, it is not surprising that the resulting stresses are also approxi-

mate. This is reflected by the fact that the partial differentials af

0 do not satisfy the relation:

oct a 3a 3 av
 A-6!

In other words the right hand side of Eq. A.5 is not a total differential

and integration with Eq. A.5 is path dependent.

Mare insight into the approximations associated with the strain

path method may be gained by recognizing that can be forced

to follow an strain field  satisfying the boundary and compatibility

requirements! as lang as an appropriate body force field is superimposed.

The deviatoric stresses obtained by the strain path method in the case

of deep steady cone penetration are, therefore, the exact solution to

the stresses experienced in the soil subjected to both the baundary

displacements  at the soil-instrument interface! and an appropriate

field of fictitious body forces.

Substituting Eqs. A.3 into Eqs. A.l we obtain

266



Baoct >sr a srz r 8
  � fR!

Br Br 3z r
 .A. 7. a!

oct rz ~ z rz
Bz Br Bz r

 A.7.b!

in which fR! and  Z! are the fictitious body forces. These two equations

relate, at any point in space, the known deviatoric stresses to three

unknowns: a ,  Rj and  Zf . This indeterminancy of order one, there-

fore, indicates that an infinite number of body force  fR! and $8!! and

isotropic stress  a ! fields can be found to satisfy Eqs. A.7. For

example, given a sufficiently smooth g field, the body forces  R! and

 z! can be evaluated directly by means of Eqs. A .7 to achieve equili-

br ium.

A 3 EVALUATION OF ACCEPTABLE BODY FORCE FIELDS

267

The fictitious body force fields in the problem of cone penetration are

of interest for two reasons: a! to compare at a selected number of points

the magnitude of these body forces to the stress gradients and, thus

assess their effect in the overall solution, and; b! to develop an itera-

tive procedure in order to improve the approximate velocity field and

therefy, obtain a more accurate solution.

Because of the indeterminancy in the problem, it is necessary to

arbitrarily assign predetermined variation in one of the three unknowns:

a , fR! , and  Z! . A method for evaluating acceptable body force
oct

fields consists of:

1! Integrate Eq. A .7.a with  R! = 0 along radial lines  dz = 0!.

The resulting g field satisfies equilibrium in the radial



direction  Eq. A .7.a!;

2! Evaluate at every point the required fictitious body force

  z I so that the isotropic stress c previousLy obtained and
oct

the deviatoric stresses satisfy equilibrium in the z direction;

i.e., solve Eq. A.7.b for  Zj

An equivalent method consists of first assuming  Z! = 0, integrating

Eq. A.7.b along vertical lines  i,e., dr = 0! and finally evaluate  R!

by means of Eq. A .7.a.

Integration along radial  dz = 0! or vertical  d r = 0! lines is

more complicated than the methods of integration along isochronic

and streamlines presented in Appendix E . Indeed, such an integration

first requires interpolation of the deviatoric stresses along straight

 radial or vertical! lines.
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APPENDIX B

ESTIMATION OF STRAINS AND DEFORMATIONS

DURING CONE PENETRATION � COMPUTER PROGRAM

B.l PROGRAM DESCRIPTION

This computer program utilizes the theoretical developments

presented in Chapter 3 to compute strains and deformations for incom-

pressible, irrotational and inviscid flow around a conical tip attached

to a cylindrical shaft during steady cone penetration. The program is

coded in FORTRAN IV  double precision! and is intended to be used in

an interactive mode  e.g., MULTICS or CMS, with Honeywell or IBM

systems, respectively!. At each input stage, the user is prompted

for the next data to be entered and usage of the program is, therefore,

self-explanatory.

B.l.l General In ut

At the beginning of each new problem, the user must provide:

a! the cylinder radius;

b! the half cone angle;

c! the ratio of the cylinder to the cone length;

d! the radius of curvature at the cone-cylinder transition;

e! the number of sources uniformly spaced over the cone length;

f! the number of sources uniformly spaced over the cylinder

length, and;

The total number of sources along both segments should not exceed 2CIO.
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g! a printing control parameter:

0 no printing

only final results are printed

detailed output2

h! a storage control parameter:

= 0 no storage

P 0, parameter gives the unit number for storage

All the variables are expressed in F10.3 format.

8.1.2 Sources Stren th Evaluation

The first mode of operation  NODE = 0! is used to exit the pro-

gram when computations are completed; the next two modes  NODE = 1,2!

are intended for checking stability and accuracy of the solution and;

the last mode  NODE = 3! is invoked to carry out computations of de-

formations, strain increments and strains, along one streamline at a

time,

a! NODE = 1

The program computes values of the stream function V r,z!,

using Eq. 3 .7, at a fixed z-coordinate, for a radius varying from

0 to RNAX  in increments equal to DKLR!.

270

Once the input phase has been completed, the coordinates of the

body points and of the sources centers are computed and stored. Evalua-

tion of the sources strength  Chapter 3 ! is then accomplished by

solving the system of linear equations  Eqs. 3.6! with the elimination

method. Three modes of operation are then available.

B -1-3 Modes of 0 eration



b! NODE = 2

The streamline corresponding to a given value of the stream

function Q r,z! is located in the interval  ZMIN, ZHAX! at equal

DELZ increments by solving for r in the implicit Eq. 3 .15 by successive

trials.

c! NODE = 3

The streamline is defined by the coordinates  RO, ZO! of the

particle  to be followed along its path! at time T = 0. Numerical in-

tegration of velocities and rates-of-deformation is first carried out

 without printing! with a decreasing time increment proportional to

jl/zi up to a time equal to THIN. The time interval is then reduced

to DTF and the following quantities are printed at the end of each time

interval: relative time, z and r coordinates, strain increment com-

ponents  dc , dc , dc and dc ! and, natural strain componentsrr' zz' BB rz

 <, < > <BB and < !.rr' zz BB rz

Changing the mode of operation is achieved by setting

Z ! 1000, XPSI = 0, or RO = 0 when the present mode is equal to 1, 2,

or 3, respectively.

271
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APPENDIX C

ANISOTROPIC UNDRAINED STRESS-STRAIN MODEL

COMPUTER PROGRAM

C. 1 PROGRAM DESCRIPTION

This computer program utilizes the anisotropic undrained stress-

strain model presented in Chapter 4 to compute the deviatoric stresses

along an arbitrary strain path for axisymmetric or plane strain problems.

The program is coded in FORTRAN IV  double precision!.

The input phase consists of two parts:

l. Information specifying the model parameters and the initial condi-

tions. This includes.

a! the initial radius and the center coordinates of each

yield surface along with the initia1 plastic modulus and

a maximum allowable equivalent strain associated to it;

b! the elastic shear modulus;

c! the parameters governing changes in size and in plastic

moduli of the yield surfaces during plastic flow;

d! the initial deviatoric stresses, and;

2. Information defining the strain path to be followed. This is

achieved by specifying a series of deviatoric strain increment

vectors.

For each deviatoric strain increment vector, the program performs

the following steps:



 l! Check the loading direction.

�! Subdivide the strain increment vector into vectors cor-

responding to the maximum allowable equivalent strain, if

necessary.

�! Compute the deviatoric stress increment vector and update

the deviatoric stress vector.

�! Check if the stress point has crossed the next yield

surface.

�! Update the yield surface parameters.

�! Print the natural strains, the deviatoric stresses, the

current yield surface number and the number of intermediate

steps, at the end of each strain increment.
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C.2 USER'S MANUAL

C .2.1 MODEL PARAMETERS  UNIT = 5!

CARD 1 �15!

Mote Columns Variable ~Entr

IN Device number for strain increment input

NY Number of yield surfaces

CARD 2 �F10e3!

Mote Columns Variable ~Entr

Elastic shear modulus1-10 XG

�! 11-20 AN

�! 21-30 x LRAT

XKOP

XKLP

NOTES:

�! IN is equal to 5 when the strain increments are input
in the same data set.

�! NY   50
�! The same value is used for all the yield surfaces.

280

�!

�! 6-10

31-40

41-50

51-60

Value of A  Eq. 6.13!

Value of H' /H'  Eq. 6.13!

Radius of the initial failure surface

Radius of the residual failure surface

Value of A  Eq. 6.15!
P



CARD 3,4,...., NY + 2! �F10.3!

Note Columns Variable ~Entr

1-10 XA I,l! First center coordinate of the I yield surfaceth

11-20 XA�,2! Second

21-30 XA I,3! Third

31-40 XH I!

41-SO XH I!

 l! 51-60 SMAX I! Maximum equivalent strain increment to be

used in one step

CARD  NY + 3! �Flo. 3!

Columns Variable ~Entr

Initial value of s
zz

l-l0

31-40 SIG�!

NOTE:

�! When this field is left blank, the program automatically
sets SNAX I! = 0.0001.
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11-20

21-30

SIG�!

SIG�!

SIG�!

th
Initial radius of the I yield surface

th
Initial plastic modulus of the I yield surface

s ors
rr xx

s ors
yy

s ors
rz xz



C.2.2 STRAIN PATH INPUT  UNIT ~ IN!

�Flo. 3!CARDS lg 2g ~ ~ ~ ~

Note Columns Variable Entry

DST �!31-40

NOTES:

�! The following equation must be satisfied-

DST�! + DST�! + DST�! = 0

The program automat5.cally stops after the last card has

been read.
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�! 1- 10 DST �!

�! 11-20 DST �!

�! 21-30 DST �!

dc
zz

dc or dc
rr XX

dco ! or dc
yy

dC or dc
rz xz



C. 3 PROGRAM LISTIHG
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APPENDIX D

SHEAR INDUCED PORE PRESSURE MODEL FOR ANISOTROPIC CLAYS

COMPUTER PROGRAM

D. 1 PROGRAM DESCRIPTION

The input phase consists of two parts:

l. Information specifying the model parameters. This includes:

a! the initial center coordinates and the radius of each sphere

along with the rate of shear induced pore pressure generation

and a maximum allowable equivalent strain associated to it, and;

b! the maximum shear induced pore pressure that is reached

asymptotically in case of unloading, and;

Information defining the strain path to be followed. This is

achieved by specifying a series of deviatoric strain increment

2.

vectors.

For each deviatoric strain increment vector, the program performs

the following steps:

�! Check the loading direction.

287

This computer program utilizes the anisotropic shear induced pore

pressure model developed and presented in Chapter 5 to compute the shear

induced pore pressures along an arbitrary strain path for axisymmetric

or plane strain problems. The program is coded in FORTRAN IV  double

precision!.



�! Subdivide the strain increment vector into vectors cor-

responding to the maximum allowable equivalent strain, if

necessary.

�! Compute the shear induced pore pressure increment.

�! Check if the strain point has crossed the next sphere.

�! Relocate the appropriate spheres.

�! Print the natural strains, the shear induced pore pressure,

the number of the sphere currently used and the number of

intermediate steps, at the end of each strain increment.

288



D.2 USER'S MANUAL

D .2.1 Model Parameters  UNIT = 5!

CARD 1 �15!

Note Columns Variable ~Entr

Note Columns Variable ~Entr

�! 1-10

NOTES:

�!
�!

�!

299

�! 1-5

�! 5-10

Number of surfaces  spheres!

Device number for strain increment input

CARD 2  F10.3!

UMAX Maximum shear induced excess pore pressure

NYP 4' 50.

IN is equal to 5 vhen the strain increments are input in
the same data set.

See definition of  Au !~ in Section 7.3
s MAX



CARD 3 4 ....  NY + 2! �710.3!

Mote Columns Variable ~Entr

1 � 10

XI�!

associated to the I sphere
th

�! 51-60 PNAX I! Maximum equivalent strain increment to be used

in one step

D.2.2 Strain Path In ut  UNIT mr IN!

�F10.3!CARDS 1 2

Note Columns Variable ~Entr

�! 1-10 DST �!

�! 11-20 DST�!

�! 21-30 DST �!

�! 31-40 DST �!

dc
Zz

NtYf ES '

�! When this field is left blank, the program automatically
sets PM I! 0.001.

�! The following equation must be satisfied:
DST �! + DST �! + DST �! me 0

* The program automatically stops after the last card has been read.
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11-20

21-30

31-40

41-50

KA I, 1!

XA�,2!

XA I, 3!

XKP I!

First center coordinate of the I sphere
th

th
Second center coordinate of the I sphere

th
Third center coordinate of the I sphere

th
Radius of the I sphere

Rate of shear induced pore pressure generation

dc or de
rr XX

dao' or dc
yy

dc or dc
rz XZ



D. 3 PROGRAM LISTING

291



IC
Z'I ' ! 44

Ear R

M O Ear
Id

a
~ W ~ rrtEN tc'L ' Z 0I~ 4J C Ed
0~ a. 0 rra

0EC M Ic ' ac Ed44 0
'Ed ' 0 Ert
Ed 4 Ed INW44 rdI 0Ed H cc Yl rdIal Z EAR EC~ I - I Id 4JCOXECV IL EA 0 4I

.0 ECWMimV 4 XZR raMKEd RN I! LK ' Edc- rc 0M ZC I 4II M rdZ NN 0~ 0 OZ RadHQ QZrd ~ WZ ZWM 4 X KX MZ Zq QH KI ' Ho va

K 0 O
K 0

O ldo EJ
4l
M A

0IV4l EalI/I
A
I
acI IdO cda!oa

Na~ lt KN~ I M
4JINC WR IdQA!A A A

l 4I
K Id

K

0
K

IEd

M rd
ca0 ~

4 0 H
0 lal!4 td

404I U cd!�
Cl O W4!!

O K 4- ~

I Ed 4 Etl
id& NC
K>XM! 4I v rlR 404V ac Ea'

ral

NI Cl01I4H M
mWad

AIrdma

0 4 ~ M44 'Ma 4J0044 IM Ed O rdK r-r A A

H
ECItd

4
4l
'Z !N II% laIal Id4 ECRK Z!

444l 0
R Ed

I 04

Eai04! K
0 XC O

K04+0
K 0~ 4MOK!

4lCC 0 4IrO M a.I WO
QqrdQV M

Ear

C 0 0Cl00ca
Al

OV OV V VO

40~ oma0I
0Ci iaK

4CN >
4ClAii ld4rrl 40WaEd Oav Err44 Et
Al rrE

I 44
lalECEJ

K

I

r/II 0KWZ NJal I IEC 0O R4JH
0M 0R

I KI/I
Cl

4l W

4l

a.

rdCC
I

4

~ ac
MKR!

M
It/II@I+i4 MA* 4 NII cdH Er

lalA
0 4o o 0 AJ

44! NS
M 4l
I KM
0 ICO K

Cr0 40 O' CE NE 04 0 ~0 ' 0N Cr rr IrQM NHrr IKN HAIAWql Olw 4 cl o Ed

Al I4QWQZAl
0

H4,CN NJvv
Al

Nl OI Wa0Z OatKOCC

0oq00Ed
0 0 K

Cr

C00 441 Ct
id lal OICIC Il N'!ZK!

W M M M Z4lCE I
4
!V O

I 4 K
0

EEI N Cv M EA Z44 4I cNEA
H K Ct Eal Ia!AZM

MRRZ ZEC ICOO4 I

I/4 EI92
oa
Ial EalZ EC

EA M A A 0MM0 i Clr/ldrAAAAA
ca'C
W NC

cr 0 00
Qq

OOVOO O

292

K0 I~ M~ C~ O

4
~ R

~ NCld
~ Ed K ~
0

~ 0~ Cl

~ 4I

~ I Z
~ L

0 rd 4MRWHX'XRKNC ar NC
~ QEC0
.a. Oa.

V V OOOO

X ral444 44CC
ENI

O 44
NCI/l40EA rtr
0X I44. Id

C EAI/r 0M IIC

0EA
Ea 4llN aC Nr EdI WZ0 H 4

I IHQXECI/4 O4CNNE MN4 '/CK ZMCN CEal a. EaNca. IEd
I
O K Zac 0
LX ZXO 0MV O

M
Nlal
CI

EA
M 0IK0NC 0~ A W

0 0I I-IA 0O0 l 0
NlQEA+0000 t/ll4I N Wtd~ OME ltlK tr I ~ iWZMId I/IIa ac 0 Nl la,HI A I

KL

~ N
MWO0
r-t 004WOrt

W
11 XN 4

aq4HO

0 M0

OVO VOO

M
lalral r/I
A

v IalEtc Ed 0 0~ lrl OW>0 !i 0!NICE 40KKKQM +CÃ0MK ~ Cd ad NI 0 CEO A 0N N N0 la W 0 W 4l WV M A A 4 R 4E

W

N
cd4

Cl4Nl
0

Cl Al
ac NEAEAI/Ia, MCJAIEd Z L la0NC NC Ozr clJC rrArNXcd rAWL Zal W AJ !

4lac a. Nci Edt 0 alNAECN ZAIL HvIEC RR 0Z ZX Zca CC CC Cl ICI0 Ooz!aa,t 4rcd
0 AI0 000 00At CN



41
X Nl
CC
M

CEO
Cl
0 0

~ C

lal

A t 44
C7VJ

+ tl
0 1-1

EIIO

' EJ44 'O0 JM ~ 41J Z
~ lal~ Z

Z M I ~ O

k Ea

lslA

0A

0 Vl44 Eal
I I

HH
CL IE
IN
H 92-I

IL OI I

fu44 4
N CCD O11 4Nl O

Z 44
NC

~ 4

IC I
HZNt Xk

N CM

444ts

MXXO0
k II 0M NI004

IEJCIL

44NCICI

tl 4I 44

Z lsl XA Nl IL400Cs IM NkZXM
//EcAIC I ~44 NDICIIEN It kM

lalZ C
Nl ~

AlIN JC DC
0AiOZ~ 00 DI~ AOO Ilal Cl Di CD00Z C IMOW92I 4

OrELZ0 I"IH 0

M 4I
VJ
A +

M k
N N4lOM

M0 Lt
Z Nl
Nl
lr

00 0 0 A
EN
r

00 rAA Nk00at D
OONM4 II I IA OO CM Cl M

0 O 0 CItd OOOfal

41 Z0 Ial zi
4 144I

IA44 4! dlX 4H CI I
O 4lO A

IOO0OC'I0 J441Z0 A INH IC 4. EslZHZ

//E DI~ 0 «+OA +Xlsl 0 I ~ XN!NXO Ak4 II kZ ZNIa 000 JMOOAH

XIHXI EOX
0 0 C 0 lsOO kCM

Cl 000414

lalVJ

0 I I
0 0 0

0 A
CJ NJ

0 M Vl0 O/44

I 0 VJ
A Z 44
Cl

X 0 41
0

H D.
I

CNC4

4 4 I
DtH
t1 Et/H D.

+
0 40 ~

0 I
A 01

0

00 41' Vl
AI ~

OO0000 //1
H 41I O0
XmIC EEI
CD4 N
EN ELCC
I 0
EJ E/IH Z
D. ZK HHA

NE N

0 DI
0 Eal

N AZ H 0D. -I-C E/Ik X 0NCHJHZI 04 C 4OIN INCLH 4 0i il4 0 ED C 1/lM A EJ NC H

EEI

M M1
IalVI +OX
0- sc I

/taAHI AI ~ 117 Zsl 0 iO Z0N VJZ AA00 il tlAAAA

EEJ 444
I I
00Dt E/IAA

00 ZXZ CCCOOO I
I ZCN COOOVIVI NAA Z11 110 0ZX JC C EalOO 0

A I Vl

A
N E/I0 +0 00 HC0 ODCI tl0X ZC0C0AO

k 4 sc
Z M

ANIC
Zm0I44 VJ1'I CN
0 MM 0

A 040i OZM AVIO4l

EII!
0 Vt VI0 A NII0 'M HNH //ENJVlId CI QEDac OO

I
04I EalVJ M Vl

CI 4sl A4 c/I cOiC A NlCN talII VI I
HC ltAINl Vl4l04. iAHM

LJ

A+
M
AiVJ 4III 0ZM 'MIAxC Ot/I O

4al4/IVE0A
4 VIMA
r 01

k Z O fflA0 140 M4IVJIEII 0IC O

IEal NJ 00 41 ~Zl IH ZC AC4 +
0 ta, 0 ~OMO!

CN00 ~A AZ00
004 4 41CC4 EJ

44 0
QM I 'Z
QQOO

DJI 0CAN. ONC4 0ItAA

CX4, 40 4.0 ~ - ~
CJ

293

~ 4
DlVI
0+

M A I Nl

M 4J
t/I

+

Cl
I +
Z 41
OZI ~ H
Z ZC 0OO

IC mr LlVl
NJ AZ0 Nt
0 t/J

A0

Ar ID. VI

OIf920M Ik CD0
0Nt r'
4 tallM ZEN VJI ICX0 - � VE~ -I afZ /at XIC 0 Z DI CVt OC4EDCN L.VI~ JC Z XJ H 0CrDC ILZD- IVl X40MOZ Zf/IHQ QXJX Zrl4Y YzZO OMOA~ I

M I

M k I
A I/I

EC

+ 4
X HO

4 tlA0
444 ONOXCCI k I

41Nl
A
M
LJVl
t.

X DlIC VJ4 0

NJ NVI0 ZAtI CIC

AHIVI 0 Oli rAr
r

XO J
COW
«CNA+lO'0 4
4 N JA O Eal4 0

~ -I
VJ

1-1 J
NI CVJ O
0~ EEE
NClDD O

ANl0I/I ~
~ Vl
N II HAth f414k at 0

II NtHINHO HZ CXEDI I sy!OH HOXV XXI Z ZVEZX 0 COCO 044OQCONIQZ04 OHOOIZOAHOINEL

~ 0

x

~ x

:P.-

'0~ M

H41

ACL H0 ~ 4

Z 0 ~0 '0

O VJZ



A

~ O

W

~ ?~ M

M ~
?O O' CC

? !W Ia. 'I ~

X

4
IK

A

O
x'CX

OaIl

x
OIII
DM hC CCI X?

0 MZ III?I4DZ~ Ia4caa C M4 x?

W 0lm ?
tMaa ?M 0WXIa XX 0M aa~ Ia

II
aa IW&
! xIx4 OX A! O
~ O
X t
x?II!?WOWM ! AIK La, III ?xx?W

294



APPENDIX E

DETERMINATION OF TOTAL STRESSES FOR THE

CONE PENETRATION PROBLEM

E.l INTRODUCTION

This appendix describes a numerical method for obtaining the field

of octahedral total normal stress, o from the field of deviatoric

stresses, s , hy integrating the equilibrium equations. The strain
i3

path method leads, in general, to a total stress field which does not

satisfy total stress equilibrium and thus, integration of the equilibrium

equations is path dependent  see Appendix A!. Xn order to assess the

path dependency, integration is performed by two methods: the first method

performs integration along isochronic lines, whereas the second performs

integration along streamlines. Comparison of results obtained by the

two methods will provide valuable information in order to evaluate devia-

tions form total stress equilibrium. The computer programs necessary to

perform numerical integration according to the two methods are listed at

the end of this appendix.

E. 2 METHOD OF SOLUTION

The total stress equilibrium equations in cylindrical coordinates for

the case of axial symmetry without body forces are given by:

An isochronic line is the locus  at a given time! of particles
initially located on an horizontal line  normal to the shaft axis!.

295



3a 3a a � a
r rz r 8

3r 3z r
  E-1!

3a 3a a
rz z rz

+ + � = 0
3r 3z r

The total stress a .. can be expressed in terms of the deviatoric stress
lj

s.. and the octahedral total normal stress a by:
ij oct

a. =s.. +a
1j 13 oct  E. 2!

Substituting Eq. .2 into Eqs. E.l and rearranging terms, the equilibrium

in the radial  r! and vertical  z! directions at any point, in the de-

formed geometry, are given by:

3s 3s s � s
r rz r 63a

oct

3r 3r 3z r
 K. 3!

3s 3s s
rz z rz

3a
oct

az 3r 3z r
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Figure 8 .1 illustrate the two integration paths. When integration is

performed along isochronic lines  Fig. E.l.a! the value of a is known
oct

in the far field  r ~ ~! and integration proceeds in the direction of

decreasing r. On the other hand, when integration is performed along stream-

streamlines  Fig, E .l.b! the value of a is known in the far field

 z ~ - ~! and integration process in the direction of increasing z ~



In both methods, a central difference iterative integration

scheme is used. The value of the octahedral stress at point M
K+1

k+1 k
 cf ! , is obtained from  c ! by means of the equation:

oct oct

3a I!o'

 a !  a ! + � d~ + � ds
k+1 k oct oct

oct oct I!r az
 E. 4!

stress evaluated at point C  see Fig. F.l! and dr and dz are related

to the coordinates of the points M and M. by:
K+!,

 E-5!dr = r � rk ' d zk zk

E. 3 ISOPARAMETRIC ELEMENT AND

INTERPOLATlON FUNCTIONS

Evaluation of the various terms in Eq. E'.3 at location C in

Fig. E .1 is carried out by considering a nine node isoparametric ele-

ment, shown in Fig. E .2, similar to that used in some finite ele-

ment formulations  e.g., Bathe and Wilson, 1976!.

The basic procedure consists of expressing the element coor-

dinates and field functions in the form of interpolations using the

natural coordinate system  s,t! of the element. The coordinates

interpolations are given by:

r s,t! = Z h.  s,t! r.; z s,t! = Z h.  s,t! ' z.  E.6!
1 i 1 i
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 � 3G
oct octin which ~ and ~ are the partial derivatives of the octahedral

Br 3Z



The parabolic interpolation of a field function g in terms of its

values g. at node  i = l, 2, ..., 9! is given by:

g s,t! = g h. s,t! ' g.  E.7!

After partial differentiation with respect to s and t, Eq..7 leads to:

Bg s,t! Bhi  s,t!
i

 E. 8!

Bg s,t! Bh. s,t!
3.

~ g.

In order to obtain the partial derivatives of g in terms of the

physical coordinates, the chain rule of differentation is used:

Bg Bg Bs Bg Bt
� +

az Bs Bz Bt Bz

 E.9!

Bg Bg Bs Bg Bt
� = � � + ��

Bs B» Bt Br
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in which h.  s,t! are the interpolation functions given in Table E.l,
3.

and r. and z. are the physical coordinates at node i.
i 3.

The isoparametric element shown in Fig. E.2 consists of nine

nodes � through 9! where the values of the deviatoric stresses,

s , are known and of 4 nodes  a, b, c and d! where the right hand sides
ij

E-3 are numerically evaluated. The relative locations of the

points M , K and C  in Fig. E .1! in the isoparameteric element are
a+ I

given in Table E .2 as a function of the method of integration

utilized.



This equation can be written as:

~B Bs
a [J]  E. 10!

in which [J] can be readily evaluated by inversion of the Jacobian

operator [J] given by:

3z Br
Bs 3s

 E. 11!
Bz Br
Bt

In summary, evaluation of the partial derivatives of the octahedral

total normal stress 0 at point C proceeds as follows:
oct

1! evaluate s , s , s and r at C  a, b, c, or d in Fig. R .2!

using Eqs. E.6 and E .7 together with the known values of the parameters

at the 9 adjacent nodes and. the numerical values given in Table E.3.a;

2! evaluate and invert the Jacobian at C  Eq. E.ll!;

3! evaluate the partial derivatives with respect to s and t

of s , s and s at C using Eqs. E.8 and the numerical values givenr' z rz

in Table K.3.a and b, and
Ba Ba

r rz
4! evaluate

Br' Bz

Bc Ba
rz z

� and-
Br Bz

using the results of 2!

and 3! and Eq. E.10.
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K. 4 COMPUTER PROGRAMS: LISTINGS

E.4.1 Inte ration alon Isochronic Lines
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E.4.2 Inte ration alon Streamlines
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Table Y, . l Interpolation Functions and Their Derivatives
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Table p.2 Relative Location of the 9 Node 1soparametric
Element for Different integration Methods
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Table E .3 Values of Interpolations Functions and
Their Derivatives at the Nodes of Interest.

308



IV

b~ X 0
o

b zW
p Z

~ X
K ~
~ hJ

~ Nz g W
~ Z

z oU
4o
mK

PJ o
+0
z v!

O/0

o 1

b

309



NOTE: Point coordinotes ore indicated in porentheses

Figure E.2 Xsoparametric element.
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