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ABSTRACT

Deep quasi-static cone penetration provides a superior
exploration tool for soil stratification and identification,
especially in offshore work. 1In order to estimate the shearing
resistance and the consolidation and/or permeability character-
istics of soils, a better understanding of the mechanism of
cone penetration is needed.

This report utilizes the strain path method to investigate
the mechanism of cone penetration in clays with the specific
objective of estimating pore pressures in the soil during pene-
tration. Deformations and strains are determined assuming that
the soil provides no shearing resistance. Deviatoric stresses
and shear-induced pore pressures are determined from specially
developed soil behavior models and the strain paths of soil
elements. Approximate values of the total stresses and pore
pressures in the soil are then computed from equilibrium con-
siderations. An evaluation of the predicted pore pressure
fields in Boston Blue Clay {(BBC) by means of results of special
conical pore pressure probes indicate surprisingly excellent
agreement for various overconsolidation ratios (1.3<OCR<3) after
the excess pore pressures, Au, are normalized by the shaft pore
pressure, (Au)sh.

Additional interesting aspects of this study include:
applicability of cavity expansion approaches to deep penetration
and pile installation problems, likelihood of soil hydrofracture
due to pile installation, evaluation of a deviatoric stress model
capabilities in predicting the undrained behavior of BBC in
various laboratory tests, development and evaluation of a shear
induced pore pressure model for clays subjected to undrained
loading along general strain paths.
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FOREWORD

A three-year research program entitled, "In Situ Evaluation
of Geotechnical Properties of Marine Sediments," sponsored pri-
marily by the National Oceanic and Atmospheric Administration
through its MIT Sea Grant Program, was initiated in July, 1978
by the Constructed Facilities Division of MIT. Matching funds
for this research were provided by FUGRO, Inc., Consulting En-
gineers, and by Instituto Tecnologico Venezolano del Petroleo.

The objective of this research is to provide the geotech-
nical designer with more reliable methods for estimating in situ
properties of marine sediments for foundation design.

The electric (Dutch) cone penetrometer and the conical
piezometer probe represent a new generation of in situ testing
devices which are particularly valuable offshore because of their
simplicity, consistency, and economy.

Previous efforts at MIT concentrated on:

1. Evaluating the capability of cone penetration in es-

tablishing stratification, determing variability,
and performing soil identification (Baligh et al. 1980),
and

2. Estimating the undrained shear strength of clays (Ba-

ligh et al. 19278; Baligh and Vivatrat, 1979).

This report investigates the pore pressures that develop in

clay deposits due to cone penetration. These pore pressures are



important for understanding the mechanism of penetration and for
estimating the coefficients of consolidation and permeability from
the pore pressure decay that takes vlace after interrupting cone

penetration (Baligh and Levadoux, 1980).



TABLE OF CONTENTS

Page
Title Page 1
ABSTRACT . 2
ACKNOWLEDGEMENTS 3
FOREWORD 4
TABLE OF CONTENTS 6
LIST OF TABLES 11
LIST OF FIGURES 12
CHAPTER 1: INTRODUCTION 17
CHAPTER 2: THE STRAIN PATH METHOD 21
2.1 Introduction 21
2.2 Application of the Strain Path Method to
Deep Steady Cone Penetration in Clay 25
2.2.1 General Description 25
2.2.2 Velocity Field 27
2.2,3 Stress-Strain Relationships 29
2.2.4 Pore Pressure Strain Relationships 30
2.2.5 Effective Stresses, Total Stresses,
and Pore Pressures 30
2.3 Discussion 31
2.4 Summary 34
CHAPTER 3: STRAIN FIELD 40
3.1 Stream Functions 40
3.2 Velocity Field and Deformed Geometry 43

3.3 8train Field 44



3.5
CHAPTER 4:
4.1

4.2

3.3.1 Rate of Deformation

3.3.2 Strain Field

3.3.3 Computer Program

3.3.4 Graphical Representation of Strain
Paths

Results

3.4.1 Predicted Deformation

3.4.2 Experimental Deformation and Compari-
son with Predictions

3.4.3 Strain Paths

3.4.4 Strain Rate Contours

Discussion and Conclusions

DEVIATORIC STRESS MODEL

Introduction

Model Description

4.2.1 Yield Condition

4.2.2 Flow Rule

4.2.3 Hardening Rule

4.2.4 Model Limitations

Model Implementation

4,.3.1 Deviatoric Stress Subspace

4.3.2 Parameters Describing the Initial
Yield Surfaces

4.3.3 Pre~Peak Behavior

4.3.4 A New Model for Post-Peak Behavior

4.3.5 Computer Program

Model Evaluation

45
45

46

46
48

49

49
51
53
56
77
77
81
82
B3
84
85
85
85

88
89
91
93
94



CHAPTER

CHAPTER

5.2

5.3

4.4.1 Model Parameters

4.4.2 Stress-Strain-Strength Predictions

4.4.3 Strength Anisotropy

Summary and Conclusions

PORE PRESSURE MODEL

Review of Pore Pressure Prediction Methods

5.1.1 8Stress Theories

5.1.2 Strain Theory

Effect of Loading Reversal on Pore Pressures

Proposed Pore Pressure Prediction Model

5.3.1 General Description

5.3.2 Model Implementation

5.3.3 Computer Program

Evaluation of the Pore Pressure Model

5.4.1 Model Parameters

5.4.2 Pore Pressure Predictions

Summary and Conclusions

PENETRATICN PORE PRESSURES IN BOSTON BLUE
CLAY

Introduction

Expansion of Cylindrical Cavities and the
Pressuremeter Test

6.2.1 Proposed Solution
6.2.2 Existing Solutions
6.2.3 Evaluation of Predictions

6.2.4 Summary and Discussion of
Pressuremeter Studies

94

98
101
106
124
124
124
127
129
132
132
134
137
137
137
138
140
155
155

157

157
161

165

173



6.3

6.5
CHAPTER 7:
REFERENCES

APPENDIX A:

A.l

A.2

4.3

APPENDIX B:

B.l

Strain Path Predictions During Cone
Penetration

6.3.1 Problem Geometry and Solution
Technique

6.3.2 Deviatoric Stress Paths

6.3.3 Extent of Failure

£.3.4 Isotropic (Octahedral) Total Stress
6.3.5 Total Stresses

6.3.6 Pore Pressures

6.3.7 Effective Stresses and Hydraulic
Fracturing

Comparison with Field Measurements
6.4.1 Field Measurements

6.4.2 Normalized Excess Pore Pressure
Distributions

6.4.3 Cone Resistance and Pore Pressures
Summary and Conclusions

SUMMARY AND CONCLUSIONS

STRAIN PATH METHOD-EVALUATION OF TOTAL
STRESSES

Spatial Integration of Eguilibrium Equations

Implications of Using an Approximate Strain
Field

Evaluation of Acceptable Body Force Fields

ESTIMATION OF STRAINS AND DEFORMATIONS DURING
CONE PENETRATION - COMPUTER PROGRAM

Program Description

B.1.1 General Input

176

176
177
178
181
185

188

189
191

191

193
198
204
246

256

264

264

266

267

269
269

269



APPENDIX

APPENDIX

APPENDIX

B.1l.2 Sources Strength Evaluation
B.1.3 Modes of Operation
Program Listing

ANISOTROPIC UNDRAINED STRESS~STRAIN MODEL -
COMPUTER PROGRAM

Program Description
User's Manual
Program Listing

SHEAR INDUCED PORE PRESSURE MODEL FOR
ANISOTROPIC CLAYS - COMPUTER PROGRAM

Program Description

User's Manual

D.2.1 Model Parameters {(unit = 5)
D.2.2 Strain Path Input (unit = in)
Program Listing

DETERMINATION OF TOTAL STRESSES FOR THE CONE
PENETRATION PROBLEM

Intreduction
Method of Solution

Isoparametric Element and Interpolation
Functions

Program Listing
E.4.1 Integration along Isochronic Lines

E.4.2 1Integration along Streamlines

10

270
270

272

278
278
280

283

287
287
289
289
290
291

295
295
295

297

300
300

303



LIST OF TABLES

Components of the rate of deformation tensor

Numerical values of the model parameters for
normally consclidated residemented Boston Blue
Clay (KO = 0.537)

Peak strength prediction for different modes
of failure, as a function of the strengths for
triaxial compression and extension tests

Predicted vs measured undrained shear strength
of laboratory tests on normally consolidated
resedimented Boston Blue Clay

Numerical values of the model parameters for
normally consolidated resedimented Boston Blue
Clay

Computation of the shear induced pore pressure
during undrained shear of clays in classical
laboratory tests

Model parameters and predictions of the Cam-Clay
model {after Kavadas, 1979)

Streamlines and boundary stresses used in the
Analysis.

Data on clays where pore pressure measurements
were ohtained during pile installation

Undrained shear strengths of resedimented Boston
Blue Clay from laboratory tests

Prediction of (qc - uo)/oVo for different OCR
Interpolation functions and their derivatives

Relative location of the 9 node isoparametric
element for different integration methods

Values of interpolation functions and their
derivatives at the nodes of interest

11

109

110

111

142

143

208

211

212

213
214

306

307

308



Figure

2.2

2.3

LIST OF FIGURES

Comparison of stress path and strain path
methods

Problem geometry and coordinate system for
deep steady cone penetration

Application of the strain path method to deep
steady cone penetration: flow chart

Problem description

Strain representation in the E.-space

Predicted deformation pattern around an 18° cone
Predicted deformation pattern around a 60° cone

Soil displacements during penetration of an
18° cone

Soil displacements during penetration of a
60° cone

Experimental deformation pattern in bentonite
due to cone penetration of a flat-ended model
pile (after Rourk, 1961)

Experimental results of a model pile test in
Kaolin (after Randolph et al., 1979)

Strain paths of selected elements during
pPenetration of an 18° cone

Strain paths of selected elements during
penetration of a 60° cone

Contours of radial normal strain, €rp

Contours of vertical (longitudinal) normal

strain, Ezz

Contours of meridional shear strain, €y

Contours of maximum shear strain,

Ymax ~ 1/2(e3 - €3)

12

Page

37

38

39
60
6l
62
63

64

65

66

67

69

70

71

72

73

74



4.11

4.12

Contours of octahedral shear strain, Yoot 75

Contours of octahedral shear strain, Yoct 76
Principal stress difference and mean effective

stress vs cumulative vertical strain during

CK,U triaxial test on normally consolidated

Boston Blue Clay 112
Notations and definitions 113
Determination of initial model parameters 114
Translation of yield surfaces 115

Measured stress-strain curves in undrained
triaxial tests on normally consolidated
resedimented Boston Blue Clay 116

Measured and idealized stress-strain curves for
an undrained cyclic triaxial test on normally
consolidated resedimented Boston Blue Clay 117

Predicted and measured stress-strain curves for
undrained plane strain tests on normally consoli-
dated resedimented Boston Blue Clay 118

Predicted and'measured stress-strain curves for
undrained direct simple shear tests on normally
consolidated resedimented Boston Blue Clay 119

Predicted deviatoric stress paths in the (S;, Sj3)
plane for undrained tests on normally consolidated
resedimented Boston Blue Clay 120

Predicted deviatoric stress paths in the (51,53}
prlane for undrained tests on normally conso.idated
resedimented Boston Blue Clay 121

Predicted strength anisotropy for plane strain
loading 122

Plane strain strength anisotropy predicted by
different modes 123

Pore pressure behavior CKyU triaxial test on
normally consolidated resedimented Boston Blue Clay 144

Comparison of undrained pore pressure vs axial

strain relations in triaxial and plane strain tests

on normally consolidated undisturbed Haney Clay

(after vVaid and Campanella, 1974) 145

Results of a cyclic triaxial test on an undisturbed
sample of Fornebu Clay (after Lo, 1971) 146

13



5.4

5.9

5.10

5.11

6.1

6.3

Stress path and pore pressure vs vertical strain
in CK,U cyclic triaxial test on normally consoli-
dated resedimented Boston Blue Clay 147

Relation between deviator stress, pore water pres-
sure, and axial strain (after Bishop and Henkel,

1953) 148
Surfaces translation 149
Determination of initial model parameters 150

Measured shear induced pore pressures vs vertical
strain in CKgU triaxial tests on normally consoli-
dated resedimented Boston Blue Clay 151

Predicted and measured shear induced pore pressures
vs vertical strain in CKnU plane strain tests on
normally consolidated resedimented Boston Blue Clay 152

Predicted and measured pore pressures vs engineer-
ing shear strain in CKgoU direct simple shear tests
on normally consolidated resedimanted Boston Blue
Clay 153

Measured and predicted shear induced pore pressure
in CK,U triaxial tests with strain reversal 154

Comparison of predicted stress-train curves for
CK,U undrained expansion of a cylindrical cavity
in normally consolidated Boston Blue Clay 215

Prediction of stress and pore pressure distributions
at different levels of expansion during a pressure-
meter test in normally consolidated Boston Blue Clay 216

Comparison of predicted pressuremeter exXpansion
curves in normally consolidated Boston Blue Clay 217

Predicted vs measured expansion curves for pressure-
meter tests in normally consolidated Boston Blue
Clay 218

Solution to cone penetration in clay: problem
geometry 219

Predicted three-dimensional deviatoric stress path

during steady penetration of a 60° cone in normal-
ly consolidated Boston Blue Clay 220

14



6.9

6.14

Predicted deviatoric stress paths along two
streamlines during steady penetration of an
18° cone in normally consolidated Boston
Blue Clay

Predicted deviatoric stress paths along two
streamlines during steady penetration of a
60° cone in normally consolidated Boston
Blue Clay

Predicted contours of normalized octahedral
shear stress, T,,¢, and extent of failure
during steady cone penetration in normally
consolidated Boston Blue Clay (18° and 60°
tips)

Predicted contours of normalized shear
stress, T,,, during steady cone penetration
in normally consclidated Boston Blue Clay
{18° and 60° tips)

Comparison between two methods of integration
{18° cone)

Comparison between twoe methods of integration
{60° cone)

Predicted contours of normalized radial total
stress, ¢.., during steady cone penetration in
normally consolidated Boston Blue Clay (18°
and 60° tips)

Predicted contours of normalized vertical total
stress, o,, during steady cone penetration in
normally consolidated Boston Blue Clay (18°

and 60° tips)

Total stress variation along the streamline
initially located at the centerline (18° tip)

Total stress variation along the streamline
initially located at the centerline (60° tip)

Predicted contours of normalized shear induced
pore pressure, Aug, during steady cone penetra-
tion in normally consclidated Boston Blue Clay
(18° and 60° tips)

Predicted contours of normalized excess pore
pressure, Au, during steady cone penetration in
normally consolidated Boston Blue Clay (18° and
60° tips)

15

221

222

223

224

225

226

227

228

229

230

231

232



6.19

6.21

6.22

6.23

6.24

6.26

6.27

6.28

6.29

6.30

6.31

Predicted contours_of normalized radial
effective stress, 0 s during steady cone
penetration in normally conscolidated Boston
Blue Clay (18° and 60° tips)

Predicted contours of normalized circumfer-
ential effective stress oy, during steady
cone penetration in normally consolidated
Boston Blue Clay (18° and 60° tips)

S0il profile at the test site as determined
by conventional laboratory tests (from
Baligh and Vivatrat, 1979)

Laboratory and field vane undrained shear
strength at the test site (from Baligh and
Vivatrat, 1979)

Cone resistance and pore pressure during
penetration (from Baligh and Vivatrat, 1979)

Penetration pore pressures at different
locations on an 18° conical tip (from Baligh
et al., 1978)

Penetration pore pressures at different loca-
tions on a 60° conical tip (from Baligh et
al., 1978)

Penetration pore pressures behind cones with
different geometries (from Baligh et al., 1978)

Predicted vs measured longitudinal distribu-
tions of normalized excess pore pressures along
18° and 60° cones during steady penetration

in Boston Blue Clay

Predicted vs measured radial distribution of
normalized excess pore pressure during steady
cone penetration in clay

Au/0yo for different clays due to pile driving

Comparison of predicted and measured cone
resistances in Boston Blue Clay

Predicted and measured point resistance in
Boston Blue Clay (18° and 60° tips) at Station
246, Saugus, Massachusetts

Integration schemes

Isoparametric element
16

233

234

235

236

237

238

239

240

241

242

243

244

245

309

310



C'HAPTER 1

INTRODUCTION

Cone penetration testing provides an efficient

and reliable method for soil exploration which is

especially suited for offshore work. Continuous measure-
ments are obtained as the cone is pushed into the so0il
and hence the test is valuable for determining stratifi-

cation and variability in a large variety of soils ranging

from dense sands to soft clays. Furthermore, the
similarity with pile foundations makes cone penetration

results particularly attractive for the design of piles.

Like most in situ tests, cone penetration lacks the

ideal conditions offered by laboratory tests, and hence

poses significant interpretation problems, However,

recent hardware developments (Wissa et al., 1975)

enabled reliable measurements of pore pressures generated

by cone penetration which, together with the conventional

cone resistance measurements, offer a better tool for

determining soil stratification, assess soil variability
and, in addition, provide more reliable methods for soil

identification (Baligh et al., 1980)

This research represents part of a continuing effort
at M.I.T. to develop a better understanding of the

mechanism of cone penetration in clays, through theoretical

17



and experimental studies, aimed at providing reliable methods

of interpreting cone penetration results especially with re-

gard to engineering soil properties for field predictions and

design purposes. Past research (Baligh, et al., 1978) was

primarily concerned with the undrained shear strength of clays.

This research is primarily aimed at estimating the in situ

consolidation and/or permeability characteristics of clays

from the pore pressure decay that takes place after steady cone
penetration.

This report estimates the excess pore pressures in satura-
ted clays during steady cone penetration. A separate report
(Baligh and Levadoux, 1980) presents excess pore pressure dissi-
pation analyses and measurements for estimating the in situ con-
seolidation {and/or permeability) properties of soils from the
pore pressure decay that takes place after steady cone penetra-
tion is interrupted.

Chapter 2 describes the application of the "strain path
method"” to deep steady cone penetration in clays. The "strain
path method” (Baligh et al., 1978) is an approximate method for
systematically elucidating and solving problems which are basic-
ally strain-controlled. 1In this approach, the strain path of
selected elements is estimated from a deformation pattern (velo-
city field) chosen on the basis of kinematic requirements,
Laboratory tests are then conducted or, alternatively, appropri-

ate constitutive laws used, to determine the deviatoric stresses
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in these elements when subjected to the estimated strain paths.
The octahedral (isotropic) stresses are then estimated by in-~
tegrating the equilibrium equations. Finally, Chap. 2 discusses
the limitations of the method and suggests means to assess the
accuracy of solutions.

Chapter 3 performs the first step in the strain path method
by determining the displacements and strains in saturated clays
due to deep steady cone penetration (assuming that the soil of-
fers no shearing resistance, i.e., behaves as an incompressible
ideal fluid) and compares predictions with limited laboratory
model test data.

Chapter 4 generalizes an analytical soil behavior model
(Iwan, 1967; Mroz, 1967; and Prevost, 1977) capable of incor-
porating the difficult anisotropic, elastoplastic, path-dependent
stress-strain-strength properties of inviscid saturated clays
subjected to undrained loading conditions in order to account
for the complicated strain paths imposed by cone penetration.
Predictions of the model are evaluated by comparisons with
laboratory test results on Boston Blue Clay.

Chapter 5 reviews existing methods for predicting the ex-
cess pore pressures generated by undrained shearing of saturated
clays, proposes a new analytical model to estimate the pore
pressures during undrained straining of clays and evaluates pre-—

dictions with laboratory test results.
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Chapter & determines the excess pore water pressures in
the soil during steady cone penetration based on the strain
path method (Chapter 2}, the strain paths corresponding to an
ideal fluid (Chapter 3), the deviatoric stress model (Chap-
ter 4} and the shear induced pore pressure model in Chapter 5
using soil parameters appropriate to normally consolidated
Boston Blue Clay. Predictions are compared to field measure-
ments of penetration pore pressures at different locations on
the cone and the shaft behind it as well as measurements around
driven piles in different soils with various overconsolidation
ratios.

Finally, Chapter 7 summarizes the main conclusions reached

in this report.
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CHAPTER 2

THE STRAIN PATH METHOD

2.1 INTRODUCTION

The prediction of foundation performance is one of the
most challenging aspects of geotechnical engineering. Be-~
cause of the complexity of so0il behavior and soil variability,
complete solutions to practical problems are not available
and the engineer relies on empirical and/or simplified
rational approaches. For example, the prediction of found-
tion settlement on sand deposits by means of the standard
penetration test results (N-values) represents an em-
pirical method (Terzaghi and Peck, 1967) whereas predictions
according to the stress path method (Lambe, 1967) are based
on a more rational, yet simplified,method. Reliable em-
pirical methods require very large data bases and are dif-
ficult to adapt to slightly different or new situations. Sim-
plified methods require engineering judgement in selecting
the input parameters and in interpreting the results.

The "stress path method" (Lambe, 1967) provides an
integrated and systematic framework for elucidating and
solving stability and deformation problems. The application
of the stress path method to deformation problems consists
of the following steps: 1) estimate the stress history at
selected locations in the soil mass and the stress increments

caused by the foundation on the basis of equilibrium
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requirements; 2} conduct laboratory tests on samples ob-
tained from those locations in order to subject the soil to
the same stress path expected in the actual problem, and;
3) integrate the strains obtained from laboratory tests to
predict displacements.

The stress path is an approximate method because, even
under ideal conditions of sampling and testing capabilities
involving an infinite number of samples, the compatibility
of strains is not satisfied.* A compatible strain field would
be obtained if and only if the estimated stress increments
were identical to those actually experienced in the field.
The latter depends on so0oil behavior and cannot, therefore, be
known a priori.

The stress path method proved successful for predicting
the performance of surface structures, e.g., excavations,
shallow foundations, natural slopes, earth dams, etc.,...
(Lambe and Marr, 1979%). The success of the stress path
method in solving shallow foundation problems**ischuato
the essentially stress-controlled characteristic of surface
problems where stress increments can be predicted with suf-
ficient accuracy by simplified methods (e.g., analytical or
numericél elastic analyses).

On the other hand, attempts tc use the stress path method

x
The deformations depend on the path of integration of
the strains,
*x

where the depth of the foundation so0il below ground sur-
face is "small" compared to its lateral extent.
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for deep foundations encountered major problems caused by
the difficulties of estimating incremental stresses. Lambe
and Horn (1965) utilized the stress paths obtained from tri-
axial extension tests (assuming aov = (0 and &09 = &cr) to
provide insight into the problem of pile installation in
clays. D'Appolonia (1971) and Hagerty and Garlanger

(1972) applied this insiqht to predict pore pressures caused
by pile installation. Vijayvergia and Focht {1972) ex-
tended the concept further and relied on the "Rankine passive
earth pressure" to formulate the very popular semi-empirical
A-method for pile design in clays, especially offshore. The
Rankine passive state follows directly from the use of tri-
axial extension tests, but actually has little in common
with the stress state in the soil caused by pile driving
because: 1) the vertical stress can change significantly
(i.e., on # 0) and, more importantly, 2) the tangential
stress, Og is far from being equal to the radial stress,
Ur, during soil shearing (i.e.,AoB# Acr).

In deep penetration problems, experimental observations
(Rourk, 1961; Vesic, 1963; Robinsky and Morrison, 1964;
Szechy, 1968; and others) indicate that soil deformations
caused by penetration of a rigid indenter are similar in dif-
ferent soils even though the penetration resistance can be dras-

tically different (i.e., soil stresses are very different).
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Thi§ implies that deep steady cone penetration problems are
basically strain-controlled and that the associated deforma-
tions are not very sensitive to soil behavior. Baligh (1975)
outlined an approximate method that he later called the
"strain path method" (Baligh et al., 1978) for solving
these problems. In this approach, the strain path of
selected elements is estimated from a deformation pattern
(velocity field) chosen on the basis of kinematic require-
ments. Laboratory tests are then conducted or, alternatively,
appropriate constitutive laws used, to determine the devia-
toric stresses in these elements when subjected to the es-
timated strain paths. The octahedral (isotropic) stresses
are then estimated by integrating the equilibrium equations.

Figure 2.1 compares the strain and stress path methods
to identify their strong similarities. As indicated in
Fig. 2.1, the strain path method is approximate because the
estimated stresses will not, in general, satisfy the equili-
brium requirements, unless the estimated strain field is
identical to the actual one.

In this Chapter, the application of the strain path
method to deep steady cone penetration in clay is described.
The limitations of the method are discussed and means to

assess the accuracy of the solution are proposed.
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2.2 APPLICATION OF THE STRAIN PATH METHOD TO

DEEP STEADY CONE PENETRATION IN CLAY

2.2.1 General Description

Deep steady cone penetraticon is an axisymmetric steady
state problem i.e., for an observer moving with the cone, the
deformation pattern, the strain and stress fields in the soil
d6 not vary with time. Accordingly, by using a cylindrical
coordinate system, the process of cone penetration is reduced

to a flow problem where soil particles move along streamlines

around the cone (Fig. 2,2)., A solution to the problem con-
sists of the strains and the stresses of s0il elements along
different streamlines. |

Figure 2.3 describes the steps for evaluating stresses

and pore pressures in the soil due to deep steady cone pene-
tration in clay by means of the strain path method. These
steps, to be later reviewed in details, consist of:

1) Estimate a velocity field* satisfying the conser-
vation of volume (or mass) requirement and the
boundary conditions.

2) From the velocity field determine the soil defor-
mations by integration along streamlines. Compare
with experimental model or field test results

(if possible).

*The velocity field describes the velocity of soil
pParticles as they move around the cone.
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3) Compute the strain rates, éij' along the streamlines
by differentiating the velocities with respect to the
spacial coordinates.

4) Integrate the strain rate, éij' along streamlines
to determine the strain path (eij) of different

s0il elements,

5 Estimate the initial stresses, (cij) , and initial
0
pore pressures, u,, in the soil prior to cone pene-
tration.
6) Compute the deviatoric stresses,
. :
sij( = cij - Gij ooct) and the shear induced

pore pressures, Aus, along streamlines by means
of:
a) a model to determine sij for a given strain
path (eij), ang;
b) a model to determine Aus for a given strain
path (eij).
7-a) From equilibrium considerations, compute the total
13 + Gij Goct)' given the devia-
toric stresses, Sij' This requilres the determina-

stresses, cij (= s

tion of the octahedral stresses, ¢

oct

7-b} From s and Aus, compute the effective stresses,

ij
Gij'
*
Gij = Kronecker delta: = 0 when i # j; = 1 when & = j
and, %oct = 1/3 Oii-
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8) From Ooct and Aus determine the pore pressure u.
The important steps in the method {Fig. 2.3) are discussed
below.

2.2.2 Velocity Field

The strain path method hinges on the assumption that
s0il deformations during deep cone penetration can be esti-
mated with a reasonable degree of accuracy. Figure 2.3 re-
commends that deformations be obtained from velocities by
integration rather than the more obvious alternative of
estimating deformations (e.g., from laboratory penetration
tests) and then derive velocity and strains by differentia-
tion. This avoids the significant errors caused by the pro-
cess of numerical differentiation associated with the limited
accuracy of existing deformation measurements.

Most of the existing experimental results consist of
crude visual observations of deformations during cone penetra-
tion by means of photographs (Rourk, 1961; Randolph et al.,
1379). More precise measurements cbtained by X-ray techniques
are currently conducted at Cambridge University, England
(Randolph, 1979). Arthur and Phillips (1975) evaluated the
accuracy of the X-ray technique under ideal conditions (pro-
viding maximum accuracy) by analyzing the same radiograph
twice, i.e., a case of uniform zero deformations and strains.
Using a 10 x 12 grid of lead shots spaced at 10 mm, they
Obtain an average vertical strain equal to zero, thus showing

that no consistent error occured in deformation measurements.
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However , the standard deviation of strains was 0.3%. This
meéns that when the results are based on measurements of a
lead shot at a single location (as in non uniform fields),
there 1is a 32% chance of obtaining an error in strain in
excess of +0.3% and a 5% chance of obtaining an error in
strain in excess 0f 10.6% (assuming a normal distribution of
data about the mean). Such errors might be acceptable in some
soils subjected to special loading conditions but, in other
cases, such strains are sufficient to reach the peak strength
and hence cannot, in general, be tolerated. 1In penetration
experiments in clays, the ¥X-ray technique is further compli-
cated by:

a) the inevitable variability of the so0il in the model
test. This adds to the errors in the estimated
deformation and strain fields caused by penetration
which are highly non uniform;

b) the limited size of the clay container. The dia-
meter of the consolidometer containing the clay
must be small (= 20 cm) t0 require a reasonable
exposure time and yield sufficient image sharpness.
On the other hand, the radius of the consolidometer
must be large compared to that of the model pile in
order to minimize the boundary effects,; and;

c) the density of the lead shots in the clay. In
order to measure the large strain gradients accur-

ately, a large number of lead shots 1is required,
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especially near the cone tip. On the other hand,
a high density of lead shots might cause exce;sive
changes in the mechanical properties of the clay
(because of interaction between lead shots and

clay).

Consequently, it is recommended that soil deformations
during steady cone penetration in clay obtained from experi-
mental measurements be used to evaluate velocity fields
rather than to estimate strain fields.

In this study, strains are derived from velocity fields
obtained for an inviscid incompressible (or perfect) fluid.
Chapter 3 describes the analytical methods used to derive
these velocity fields which, for clays, will be approximate.
Solutions involving materials with more complex behavior such
as viscous fluilds are still under investigation at M,I.T.

2,2.3 Stress-Strain Relationships

The strain paths of soil elements during cone penetra-
tion are very complicated (sece Chapter 3) and cannot be du-
Plicated by existing laboratory tests. Therefore, a soil
model is used herein to determine soil stresses during pene-
tration. For reasons discussed in Chapter 4, an incremental
total stress model was considered appropriate for the undrained
penetration problem. During undrained shearing, the behavior
of clays is not affected by the octahedral normal total stress,

_ 1
ooct(— 3 cii) and, hence, only the deviatoric components of
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stresses, s, need to be considered:

ij’

-0 8. . {(2.1)

in which Uij is the total stress tensor and ﬁij is the kro-

i3 =1 for i = j, and; Gij = 0 for 1 # 3).

By following a soil element along its streamline, the

necker delta (8§

soil model thus provides the deviatoric stress path corres-
ponding to its strain path. This process is repeated along
a number of streamlines and the deviatoric stress field is
thus evaluated at as many discrete points as desired.

2.2.4 Pore Pressure-Strain Relationships

In order to evaluate the pore pressure distribution in
the s0il during steady undrained cone penetration, the excess
pore pressure, Au, is separated into two components: the
first corresponds to changes in octahedral normal total stress,

Ag and the second results from the shear deformations of

oct’
the soil, Aus (see Chapter 5):

Au = Aooct + Aug ' (2.2)

Ag is obtained from equilibrium considerations (see next

oct
section) and the shear-induced'pore pressure, Aus, is evalu=
ated by means of a new model (similar to the deviatoric stress
model) as a function of the strain path of soil elements.

2.2.5 Effective Stresses, Total Stresses and Pore Pressures

The changes in effective stresses, Agij' are evaluated
from the changes in deviatoric stresses, Asij' and the shear
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induced pore pressure, Aus:

AG,. = As

- Aus ' 6ij

Evaluation of the total stresses, Gij’ and pore pressures,

u, requires determination of the octahedral normal total (or

isotropic) stress, ¢ This is achieved by integrating the

oct’
gquilibrium equations as described in Appendix A.

The changes in pore pressure, Au, and total stresses,

Aai are given by:

jl‘

Au = Aaoct + Aus (2.4)

2.3 DISCUSSION

The strain path method is an approximate method to sys-
tematically simplify and analyze problems where the strains
are principally governed by kinematic requirements and, thus,
are not very sensitive to material properties. The expansion
of a cylindrical cavity in an incompressible cross-anisotro-
pic infinite medium represents one problem where solutions by
the strain path method are exact* because soil strains are
independent of material properties. In more complicated
problems (e.g., cone penetration in clays) where strains are
"slightly"” dependent on material properties, solutions based

on simplified strain fields are approximate. Like all

*Provided an appropriate scil model is available.
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approximate solutions, results of the strailn path method re-
quire treatment of the following:

1) The source of approximation (i.e., why is the solu-
tion approximate?) in order to provide abetter under-
standing of the reasons behind the resulting errors
and, hence answer the following questions (2) and
(3) rationally.

2) The effects of approximation (i.e., how important
are the simplifications made). This requires cri-
teria and methods to evaluate the degree of appro-
ximation,

3) The methods to improve solutions (i.e.; how to re-

duce the effects of simplifications).

1) Source 0of approximation

In the strain path method, the simplification in the
strain field is the source of deviation from exactness.*
Appendix A shows that the deviatoric stress field predicted
by means of the strain path method is the exact solution to
a cone penetration problem where a fictitious field of body

forces is applied.

2) Effects of approximation

The degree of approximation of predictions obtained

by the strain path method can be evaluated analytically by

*Provided an appropriate soil model is available.
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comparing:

a)

b)

the octahedral total normal stresses, I oot ’

-Obtained by integration along different paths

(see Chapter 6), and;

the magnitude of the fictitious body forces compared
to the stress gradients (see Appendix A).

Small fictitious body forces indicate better

results.

Ultimately, the effects of approximations and the

practical value of the method are judged by comparing predic-

tions with laboratory and/or field measurements. For example,

application of the method to cone penetration can be evaluated

by comparing:

a)

b)

the predicted vs. experimental deformations

in model tests (say), and;

the predicted vs. measured point resistance and
pore pressures at different locations {on the
tip, on the shaft behind the tip and in the so0il
around the cone) by means of field measure-
ments (see Chapter 6). However, these com-
parisons are complicated on one hand by ex-
perimental difficulties and on the other

hand by the selection of an adequate s0il

model and the appropriate soil parameters

required to perform predictions.

33



3 Methods of improving solutions

Approximate solutions obtained by the strain path
method can be improved by successive iterations on the velo-
city field until the stress field is sufficiently close to
satisfying the equilibrium requirements. A possible itera-
tive procedure consists of: a) evaluate the fictitious body
forces from the deviatoric stress field; b) estimate a new
velocity field (utilizing the same idealized material, e.g.,
an idéal fluild) after taking the fictitious body forces field
into consideration (with a negative sign), and; c) repeat the
necessary steps to evaluate a new stress field (see Fig. 2.3).

In this study, no attempt was made to establish the
validity of this iterative procedure or to prove its supe-
riority over other possible techniques. Therefore, solutions
presented subsequently correspond to an initial velocity

field without corrections (iterations).

2.4 SUMMARY

Deep steady cone penetration in clay is essentially a
"strain-controlled" problem where strains and deformations are
Primarily imposed by kinematic requirements. For this type
of problem, Baligh (1975) proposes an approximate methoed
of solution called the "Strain path method". This method is
based on concepts similar to the "stress path method" (Lambe,
1967) and consists of four basic steps: a) estimate the ini-
tial stresses; b) estimate an approximate strain field

satisfying conservation of volume, compatibility and boundary
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velocity requirements; <c¢) evaluate the deviatoric stresses
at a selected number of elements by performing laboratory
tests on samples subjected to the same strain paths or, al-
ternatively, by using an appropriate scil behavioral model,
and; d) estimate the octahedral (isotropic) stresses by in-
tegrating the equilibrium equations.

In this chapter, application of the strain path method
to deep steady cone penetration is discussed in details
(Fig. 2.3). It is recommended to estimate the velocity fields
from solution of cone penetration in simple materials (e.q..,
perfect fluid). Because of the complexity of the strain paths
of s0il elements during cone penetration, the deviatoric
stresses and shear-induced pore pressures are evaluated by
means of behavioral soil models. The deviatoric stress field
predicted by means of the strain path method is the exact*
solution to a cone penetration problem where a fictitious
field of body forces is applied. Consequently, the octahe=~
dral (isotropic) normal total stresses obtained by integra-
tion of the equilibrium equations and neglecting the fic-—
titious body forces is path dependent. Evaluation of the de-
gree of approximation of the solution obtained with the
strain path method is achieved by comparing: a) the pre-
dicted soil deformations to experimental measurements;

b} the magnitude of the fictitious body foérces to the stress

*
Provided the soil model is adequate.
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gradients; c¢) the isotropic stress fields obtained by inte-
gration along different paths, or; d) stress and pore pres-

sure predictions with laboratory and/or field measurements.
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Stress Path Method

Strain Path Method

APPLICATIONS
Surface Prchlems Deep Problems
STEPS
1., Estimate initial stresses l. Estimate initial stresses

Estimate incremental stresses

Perform stress path tests on
samples (or use adequate soil
model) to obtain strains at
selected locations.

Estimate deformations by
integrating strains

Estimate incremental strains

Perform strain path tests on
samples (or use adequate soil
model) to obtain deviatoric
stresses at selected
locations.

Estimate octahedral (isotro-
pic) stresses by integrating
equilibrium equations.

APPROXIMATION

In step 2, stresses are approximate
thus leading to strains not satis~
fying compatibility regquirements.
i.e., deformations in step 4 de-
pend on strain integration path.

In step 2, strains are approxi-
mate thus leading to stresses
not satisfying all equilibrium
conditions. i.e., octahedral
stresses in step 4 depend on
equilibrium integration path.

Figure 2.1 Comparison of stress path and strain path methods.

37




— S A S " G S S — A A . e S Sl — —
—

' / STREAMLINE
I

__’9_4

Figure 2.2 Problem geometry and coordinate system for deep steady
cone penetration.
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Figure 2.3 Application of the strain path method to deep steady
cone penetration: Flow Chart.
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CHAPTER 3

STRAIN FIELD

This chapter presents numerical solutions for the irro-
tational steady flow of an incompressible inviscid filuid
around a cone penetrometer (or pile) under conditions of
axial symmetry (i.e., properties and flow characteristics are
independent of the tangential coordinate). Distortions and
strains are obtained by superimposing the effect of a suit-
able distribution of sources and sinks to a uniform flow.
This method of solution has been described by Weinstein (1948),
Rouse (1959), Shames (1962) , and others and was used to
determine the flow around the so-called "Rankine-body" (ovoi-
dal body of revolution). Problem formulation is carried out
using Eulerian axes where field variables are expressed in
terms of coordinates fixed in space (with respect to the

cone) .

3.1 STREAM FUNCTIONS

The method of sources and sinks uses the superposition
Principle by adding the stream functions corresponding to com-
binations of sources and sinks to that of a uniform flow,

Fig. 3.1. For steady incompressible axisymmetric flow, the
stream function y(r,z) is a convenient mathematical expres-
sion describing different particle paths (streamlines)

when ¢ = const. For the sake of simplicity, sources and

sinks will hereafter be referred to as sources with a (+ ve)
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sign to indicate a socurce and a (- ve) sign to indicate

a Sink. Sources are located on the axis of the cone as

shown in Fig. 3.1. In cylindrical coordinates {(r,z), the
stream functiontbo for a uniform flow of velocity Vo parallel

to the z-axis is given by:
Yo lrsz) = - % vV r? (3.1)*

The stream function ws corresponding to a line source
of length £, with a total strength m (uniformly distributed

over its length) and located at z = Z_ is given by:

B T
vir,z) = m(1+ -2 P (3.2)*
L
in which:
o = ((z.- (zgo= a/20)% + 2212 (3.3
and of = {(z - (z_ + 2/2))% + r2}% (3.4)

The geometry of the cone penetrometer is prescribed
by a finite number of "body points" which, for simplicity
have the same z-coordinate as the line source centers,
Fig. 3.1. The stream function at the ith body point
(ri, zi) due to the superposition of the uniform velocity Vs

{at infinity) and of the n line sources (0, zk) distributed

*

Stream functions are completely defined except for an
additive constant which is herein dropped to cancel the
stream function along the streamline represented by the
negative z-axis.
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along the symmetry axis is given by:

n B 'I‘k
_ 2 ik ~ Pi
vy = -V ri+§: mk(1+_n.;__"_) (3.5)

k=1

in which Lk and m, are the length and strength of the kth

line source, respectively, and p?k and pgk are the dis-
tances of the ith body point to the end points of kth line
source. The body points are located on the boundary stream-

line and thus the stream function must vanish at their loca-

tions:
n o3 _ T
Z:mk(1+—%-k_lk)=gvorzi s i=1,2,...,n (3.6)
¢
k
k21

Equations 3.6 represent n linear equations which can be
easily solved numerically to obtain the source strengths
Mys -.., m . The stream function ¢ at any location (r,z)

is then given by the following equations:

- DB = DT
Vir,z) =-% vV r?4 2 w1+ KK (3.7)
'A
k=1 k
B 2 2%
P = [z = (2, - 2,/2))% + 2] (3.8)
oF = [z - (7, + 4,/2)? + r?2)% (3.9)
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3.2 VELOCITY FIELD AND DEFQRMED GEQMETRY

The velocity components V. and Vz in the meridiaa plane
{the third velocity component, VB' vanishes because of axial

symmetry) are determined from the stream function § by the

expressions:
1 3y 1 3y
r r 3z z r Jr

Substituting (3.7} into (3.10), we get:

n
1 z - {(z, - 2. /2) z - (z, + £./2)
E k k _x— . k_X¥ 5 .1

V= - = [
r 2 B T
T x21 k Pk °x
I lle
- _ B,-1 _ T, =1
v, =V, E 1; [(pk) (py) 7] (3.12)
k=1

Deformations are obtained from velocities by numerical
integration. A material point Mi with initial coordinates
r; and z; (far enough in front of the tip) has, at any time
t, the coordinates:

t
£ _ T T
r{ = r; + J( Vr(ri' zi) dr (3.13)
0
t t T
= T
o

Another method could have been used to determine stream-

lines by solving the implicit equation:
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bir,z) = « 3 v rg (3.15)

where y(r,z) is given by Eq. 3.7, and T is the radial coor-
dinate of the given streamline far ahead of the cone. By
varying z, and solving Eq. 3.15 for r, different streamlines
are determined for various r,- However, in order to deter-
mine strain fields, the numerical integration procedure

(Egs. 3.13 and 3.14) proved more convenient.

3.3 STRAIN FIELD

In an orthogonal cartesian frame of reference, the
components of the rate of deformation tensor, Dij {(also
called stretching tensor), are defined in terms of the gra-
dients of the velocity components, Vi, by the expression

(see Malvern, 1969):

WV, 3V,
= —_— *
Ds4 %(ij + 5;%) (3.16)

In penetration problems considered herein, this tensor can
be directly obtained by differentiating Egs. 3.11 and 3.12.
In order to determine the large strains associated with pene-
tration problems, we introduce the natural strain increment

tensor:

*
Cylindrical coordinates will later be introduced for ap-
plications to penetration problems.,
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de,, =D,., * dt (3.17)

and, for convenience, define the natural strain components

€.., at any time t by the expression:

1]
eij = fdeij = f rjij - dt (3.18),

where the integration is conducted by following the material
peint through its path along a streamline. Estimates of

the natural strains will prove very useful in visualizing the
degree of straining in the s0il due to penetration, and in
portraying the strain history of different soil elements.

3.3.1 Rate of Deformation

Using cylindrical coordinates, the non-vanishing com-
ponents of the rate of deformation tensor, Dij' in axisymme-

tric problems are given by {(Malvern, 1969):

aVr EVZ Vr
Drr = 35 # Pgz = 37 7 Dgg = :: and;
v v
- r z

Substituting Egs. 3.11 and 3.12 into Eq. 3.19, the components
of the rate of deformation tensor are obtained, Table 3.1.

3.3.2 Strain Field

Integration of Eq. 3.18 is analytically intractable and
was, therefore, performed numerically by following a stream~

line (from a starting point far ahead of the cone) and
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computing natural strain increments corresponding to small
time intervals dt. The natural strains in a soil element, at
a given time t, are then simply obtained by adding the com-
ponents of natural strain increments.

3.3.3 Computer Program

In order to compute deformations, strain-increments and
strains, a computer program was developed. A listing of this
program (written in Fortran IV) together with a description
of its use are given in Appendix B. Input data consist of
the cone geometry (half angle and radius), the cylinder length
and the number of sources over the cone and cylinder lengths
(sources are equally spaced along the cone and cylinder axes) ,
respectively. A radius of curvature can also be assigned
to smooth the cone-cylinder transition. The program first
solves the linear equations 3.6, using the elimination methoqd,
to determine the sources strength. For different streamlines,
deformations, strain increments and strains are then com-
puted using Egs. 3.13, 3.14, 3.17 and 3.19, respectively,
with the forward integration method. Special program modes
are available to check stability and accuracy of solutions.

3.3.4 Graphical Representation of Strain Paths

In axially symmetric problems, the (natural) strains

are described by four non-vanishing components: €y’ €ppt

€98 and Epp® Bearing in mind that the soil treated herein is
incompressible, the three normal strains must satisfy the

condition of no volume change:
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€ r + €2 + €ap = 0 (3.20)*

Therefore, the strain tensor can be uniquely defined
by three components (or three linearly independent combina-
tions of the components}) only. 1In order to develop a graphi-
cal representation of different states of strain and follow

the strain path of various soil elements, we utilize the

E; - space, {,, E,, E,} (Prevost, 1978) defined as:
1 2
E = g ; E,. = — (e - ¢ ) and, E, = — ¢ {3.21)
1 ZzZZ 2 I/i 6o rr 3 ‘/j rz

Figure 3.2 shows a strain point in the three-dimensional

E, - space where its distance from the origin is proportional
to the octahedral shear strain Yoot*
2 2 2% _
(E] + E; + E51° = Y2 v (3.22)
- 1 - 2 - 2 - 2
Yoct = /3[(Err Ezz) + (Ezz EB& + (EBB err)
2 1%
+6erz] (3.23)

The value of Yoot is a good measure of the level of
straining to which a soil element is subjected. Furthermore,
the strain paths of conventional strain controlled tests move

along the three axes (triaxial test along E,, pressuremeter test

*

Eg. 3.20 is applicable to infinitesimal strain. How-
ever, in view of the definition of the natural strains
£.; as expressed by Eq. 3.18 and, since D__+ D__ % D =0
(far imcompressible material, Table 3.1) E&. 3.5 is'gaso valid
for large values of Eij'
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along E,, and Direct Simple Shear test along E;, Fig. 3.2).

3.4 RESULTS

This section presents results of analyses conducted to
estimate deformations and strains in the soil caused by pene-
trometers (or piles) with cylindrical shafts having the
same diameter as the conical tip. Penetrometers with 18°
tips were analyzed using 20 sources along the cone axis and
80 sources along the cylinder axis (the cylinder length is
4 times the cone length). Penetrometers with 60° tips were
analyzed using 10 and 120 sources, respectively, and a cylin-
der length 12 times that of the cone. 1In order to achieve
numerically stable solutions, the geometry of existing Dutch
cone penetrometer with 60° tips was slightly altered by
introducing a circular arc.with a radius of curvature equal
to 3 times the cylinder radius at the cone-cylinder transi-
tion. The effect of the smooth transition between cone and
cylinder is believed to alter the deformations and strains
of the soil in its vicinity but not at some distance away.
The integration of rates of deformation was started at a
distance of 200 radii in front of the cone apex with an inte-
gration inteval initially equal to 10 radii and decreasing
to 2% of the cylinder radius ahead of the pile. From thereon,
the integration ihterval was kept constant at 2%. Further
reduction of the above integration interval showed no

noticeable change in the results.
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3,4.1 Predicted Deformations

The predicted deformation patterns around cones with
18° and 60° tip angles are shown in Figs. 3.3 and 3.4, res-
pectively. The deformed grids illustrate the magnitude and
distribution of the shear strains €y (which are the easiest
shear strains to visualize}. The sharp (18°) cone cuts its
way through the soil and causes smaller strains than the
blunt (60°) cone which causes severe straining in its
vicinity. The present analysis assumes a frictionless
soil-probe interface and, hence, is believed to under-
estimate actual soil distortions.

Figures 3.5 and 3.6 illustrate soil displacement paths,
atselected initial locations, due to cone penetration for
18° and 60° tip angles, respectively. Clearly, the soil is
monotonically deformed radially away from the cone. On
the other hand, the so0il is initially pushed down in the
direction of penetration and is then pushed up after passage
of the cone base,

3.4.2 Experimental Deformation and Comparison with

Predictions

A thorough check on the accuracy of the predicted
deformations is prevented by the lack of well controlled
experimental data. Figure 3.7 shows the deformation pattern
obtained by Rourk (1961l) due to penetration of a flat ended
model pile into bentonite (with a water content of 300%).

A rigid conical wedge of so0il located ahead of the pile can
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be easily detected. The wedge moves with the pile and has
an apex angle of approximately 90°. Soil distortions near
the pile are more pronounced than the predicted deforma-
tions for a 60° tip, Fig. 3.4,

In comparing theoretical predictions and experimental
deformations, in Fig. 3.7 we note that:

(a) The rigid soil wedge moving with the model pile
is much blunter (= 90°) than the maximum tip angle (= 60°)
analyzed herein. The analyses have shown that soil
straining increases with the cone angle; and, (b) the ex-
periments reported by Rourk were conducted in a container
made of stiff cardboard jackets with a diameter equal to six
times that of the model pile. Such close boundaries reduce
soil movements in the downward and radial directions
but have a more important effect on the stresses and penetra-
tion resistance, especially for undrained conditions.

More recently, better experimental results were re-
ported by Randolph et al. (1979). The deformed grid repro-
duced in Fig. 3.8a is obtained by jacking a "C" shaped half
closed-ended pile into one-dimensionally consolidated kaolin
against a transparent perspex wall which allows photographs
to be taken. The displacement field, displacement path, and
radial displacements in Figs. 3.8b, 3.8c and 3.84, respec-
tively, are obtained by comparing the deformed grid
(Fig. 3.8a) with the initial grid before penetration. The

accuracy of the measurements can be assessed in Pig. 3.8d
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where a scatter of +10% is observed for the radial dis-
placements. The experimental results indicate that:

(1) the general deforﬁation trends are as predicted.

In particular, the conservation of volume requirement governs
the radial displacements behind the tip. Furthermore, the pre-
dicted tendency for the particles to return to their initial
elevation after passage of the tip (Figs. 3.5 and 3.6) is

also confirmed by the experimental results shown iﬁ Fig.
3.8.c, especially for soil particles with an initial radius
r, > 1.25 R (R = pile radius), and;

(2) the measurements are not sufficiently accurate to
provide neither the displacements close to the pile axis nor
the strains at any location in the field.

A new generation of experiments is currently underway
at Cambridge University where the pile is modelled by a cylin-
der ended with a conical tip and pushed along'the axis of
a large diameter cvlinder of clay. These experiments
which include deformation measurement by the X-Ray tech-
nique and pore pressure monitoring should provide a better
experimental insight into the cone penetration problem.

3.4.3 Strain Paths

Section 3.3.3 indicates that the strain paths of soil
elements due to cone penetration can be conveniently des-
cribed in the E; strain space (Eqs. 3.21). Figures 3.9 and
3.10 show the strain path projections (in the Ei~space) of

three soil elements (located at ro/R = 0,2, 0.5 and 1.0;
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where,ro is the initial radial coordinate of the element and
R is the cylinder radius) for 18° and 60° tip angles, res-
pectively. These figures illustrate the complexity of the
strain path caused by cone penetration. Of particular in-
terest is the strain path projection on the {E,, E,} plane
which illustrate strains totally neglected by the cavity
expansion technique often used to analyse deep penetration
problems. For the sake of comparison and illustration,
Figs, 3.9 and 3.10 also show the directions and typical
magnitudes (at the end of the test) of strain paths en-
countered in common laboratory and field tests.*

Comparison of Figs. 3.9 and 3.10 reveals that the 18°
and 60° cone tips produce the same type of strains in the
soil with the latter causing much higher levels of E, and
Ej-strains. The E,;- strain (= ezz) is produced by triaxial

*
tests (TC or TE) and the E,- strain (= 2 E__) is produced

/é-rz
by the direct simple shear (DSS) test.” However, the pre-
- ) » : —];
dominant strain is the E,- strain [= G {see - err)] pro-
duced by the pressuremeter test* and hence provides some
justification for current approaches of modelling cone (and
pile) penetration by means of the expansion of a cylindrical

cavity (Esrig et al., 1977, 1978, 1979; Carter et al, 1978;

Kirby et al., 1977, 1979; etc....). Further examination of
Figs. 3.9 and 3.10 indicates that:

*
Under ideal testing conditions.
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1. Strain levels: The strains caused by cone penetra-
tion are much higher than normally encountered in laboratory
tests (= 20% in TC, TE and DSS) and in the pressuremeter test
(= 10%). Since the peak strength is reached at relatively
low strains (= 0.35% in TC,~ 10% in TE for Boston Blue Clay;
see Chapter 4) the post-peak behavior of the clay appears to
be of importance in determining cone penetration resistance;

2. Straining reversals: The permanent (residual)
strains caused by cone penetration are not monotonically
reached but all three strains {Ef E, and E,} reverse direction
after scil elements pass the base of the cone. The magnitude
of the strain reversal is significant (5 to 20% next to the
cone and can, therefore, have an important effect on both
the cone resistance and the residual stresses left in the
soil after penetration (see Chapter 4).

3.4.4 Strain Contours

*

Contours of the radial normal strain , €rr? vertical

(longitudinal) normal strain, € p¢ meridional shear strain,

* %
€., Mmaximum shear strain y = % (E:l - 53) and octahedral

rz max

shear strain, (Eq. 3.23) are given in Figs. 3.11 through

Yoct
3.15, for cones with 18° and 60° tip angles. These contours

*
These strains are the natural strains obtained by inte-
gration of the natural strain increments; Eg. 3.18.

** L] L] - L]
e, and €, are the major and minor principal strains,

respectively.
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show the magnitude and the extent of straining due to steady
cone penetration and further indicate the complexity of the
strain field around the tip.* The blunt cone (60°) causes
higher level of strains than the sharp cone (18°), especially
in the so0il ahead of the tip. On the other hand, behind the
tip, the strain contours become parallel to the shaft axis,
thus indicating that a uniform condition has been reached.
These residual strain contours which are very similar for
blunt (60°) and sharp (18°) cones are compared to strains
predicted by the expansion of a cylindrical cavity** in the
upper part of Figs. 3.11, 3.14 and 3.15. Further examination
of the strain contours shows that:

(1) The radial normal strains, err (Fig. 3.11) are
moderately tensile ahead of the cone and then become compres-
sive behind the vicinity of the cone apex. The residual
strains €rr in soil elements close to the shaft (up to a
distance of one half the shaft radius) are slightly underpre-
dicted by the cylindrical cavity expansion whereas the in-
verse occurs in soil elements further away from the axis;

{2) The vertical (longitudinal) normal strains Ezz,
shown in Fig. 3.12 are nonexistent during cavity expansion.

These strains are generally small (as compared to the radial

*

The strain field for which contours are drawn in Figs.
3.11 through 3.15 is limited to 5 R in the radial direction,
4 R ahead and 10 R behind the cone apex where most of the
large straining occurs (R = shaft radius)
**The cylindrical cavity is expanded from a zero radius
to a final radius equal to that of the cone penetrometer shaft.
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strain magnitudes in Fig., 3.11), and compressive ahead of the
cone base. A concentration of tensile e, Occurs in the
vicinity of the cone base where a sharp change in velocity
directions takes place. The vertical normal strains, €,y Te-
quire large distances behind the cone to attain residual
values (especially at some distance from the shaft). These
residual strains are positive (compressive) near the shaft,
decrease with radius, reach a minimum negative (tensile)
value and then increase again to vanish at large distances
from the shaft.

(3) The meridional shear strains, € gl shown in Fig.
3.13 are nonexistent during cavity expansion. In spite of a
frictionless soil-probe interface €ra strains are large in
the vicinity of the cone (where the soil particles experience
a change in direction of motion), are sharply reduced
after passing the cone base and, the residual values are
quite significant along the shaft, especially for the 60°
cone.

{4) Contours of maximum shear strain, Ya (Fig. 3.14)

X

and octahedral shear strain, y (Fig. 3.15) are very simi-

oct
lar and provide a good indication of the average shear strain
experienced by soil elements during cone penetration. The
residual values are virtually identical when predicted by
simple cavity expansion, except in the immediate vicinity of

the shaft where the amount of shearing is slightly larger

during cone penetration (especially for the 60° cone).
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3.4.5 Strain Rate Contours

The strength and stiffness of clays depend on the rate
of undrained shearing. Ladd et al. (1977) estimate that
the undrained shear strength measured in triaxial compression
tests on sensitive and plastic clays increases 10 % 5% per
log cycle of strain rate for typical strain rates employed in
the laboratory. Since cone penetration causes large strains
concentrated in narrow zones, an adequate estimate of the
strain rates during cone penetration is important when re-
sults are compared with laboratory tests typically sheared at
a rate of axial strain Ev = 0.5%/hr (which corresponds to
an octahedral shear strain rate +oct = 0.35%/hr)*. Using a
cone radius R = 1.78 cm (i.e., a projected area of 10 cm?},
and a penetration velocity of 2 cm/sec corresponding to the
present standard adopted for cone penetration tests (Report
of the Subcommittee on Standardization of Penetration Testing
in Europe, 1977), contours of the octahedral shear strain
rate, ?oct' are given in Fig. 3,16. The dotted areas in
Fig. 3.16 represent locations where §oct is larger than
5000%/hr. Clearly, cone penetration shears very large
volumes of soil at much higher rates than normally encountered

in laboratory strength tests.

3.5 DISCUSSION AND CONCLUSIONS

The method of "sources and sinks" of the potential theory

is utilized to predict the velocity, strain and deformation

* & .. in triaxial tests.

Yoct =/3 ° Ev
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fields caused by the deep steady penetration of cones {or
piles) with 18° and 60° tips. The principal advantage of
this prediction method is to provide analytic expressions
for the strain rates, everywhere in the soil, which can

be accurately integrated to obtain strains and deformations.
This avoids the important errors associated with differen-
tiating displacement fields to obtain the strainsf However,
the proposed method presents the following difficulties:

a) The number of possible source configurations (i.e.,
the numbe: and the locations of sources along the cone and
cylinder axes) is infinite and, therefore, numerous trials
are required to obtain an acceptable solution. Numerical
instability occurs when the sources are too closely spaced.

b) The method is best suited for slender bodies (i.e.,
sharp cones) and encounters difficulties when discontinuities
in slope away from the symmetry axis {(i.e., at the base of the
cone) are encountered. The 60° conical tip**is' probably the maximum
cone angle that can be treated by this method without the need
for a ring source located at the slope discontinuity (i.e.,
at the cone-cylinder transition). However, in the present
study, the considerable additional computational effort did
not seem justified, in view of the small expected improve-

ment in the solution.

*
As in the case of experiments where deformations are
measured and the strains are then computed.

**To obtain an acceptable solution, the 60° cone was
slightly modified by fitting a circular arc {(with a radius
equal to 3 times that of the cylinder) at the cone-cylinder
transition.
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Due to the lack of reliable experimental results, pre-
dictions cannot be evaluated accurately. However, qualita-
tive comparisons with experimental results obtained by Rourk
(1961) and Randolph-et al., (1979) indicate that the pre-
dicted deformations are reasonable.

The predicted strain paths and the strain contours re-
flect the complexity of the cone penetration process and
emphasize that: (1) no single laboratory test can adequately
impose the strain paths encountered during cone penetration;
(2} strains, stresses and pore pressures predicted by the
cylindrical cavity expansion theory can lead to important
errors because of: (a) strain reversals that take place
behind the tip and; (b) the shear strain €z and the verti-
cal (longitudinal) normal strain . which are neglected
by cavity expansion. Therefore, in order to predict the
point resistance and the stress field in the soil caused by

steady cone penetration, a comprehensive soil model (Chapter

4) is needed.
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Figure 3.7 Experimental deformation pattern in bentonite due to cone pene-
tration of a flat-ended model pile (after Rourk, 1961)
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CHAPTER ¢

DEVIATORIC STRESS MODEL

4.1 INTRODUCTION

Chapter 4 provides estimates of the complicated patterns
of displacements and strains due to deep steady cone penetra-
tion in an incompressible infinite medium. TIn order to deter-
mine the soil stresses caused by these strains and compute the
cone penetration resistance in clays, a comprehensive soil
model is'required to account for the important aspects of soil
behavior as related to cone penetration: a) complicated strain
paths including strain reversals (i.e., "loading and unloading"),
and large non-recoverable strains; b) initial and stress-induced
anisotropy; c¢) post-peak behavior; and, d) time depending defor-
mations (e.g., undrained creep and relaxation). Such a compre-~
hensive model is not available at the present time.

It is widely accepted that effective stresses control soil
behavior, and hence, many researchers advocate the use of effec-
tive stresses rather than total stresses in predicting soil be-
havior even in undrained problems (e.g., Schmertmann, 1975: Janbu,
1975). When effective stress approaches are defined in the nar-
row* sense (as is often the case in geotechnical practice), the

above statement can be misleading. Figure 4.1 shows results of

" _
i.e., given the effective stress in the soil at some

loading stage, what can be predicted?

77



Eﬁ;ﬁ * cyclic triaxial test on Boston Blue Clay (Braathen, 1966)
where both the stress difference (0, = 0;) and the mean effec-
tive stress Ebct are plotted vs. the cumulative vertical strain.
Results in Fig. 4.1 show that: a} when the loading direction
is reversed (points a,b,c, and 4 in Fig. 4.1l), the undrained modu-
lus increases drastically although the mean effective stress has
not changed significantly, and b) the points with equal incremen-
tal (or tangential) undrained modulus on the stress-strain curves
in compression loading and denoted by 1,2, and 3 in Fig. 4.1 are
associated with very different effective confinement levels
(6. ./, = 0.64, 0.43, and 0.22 at points 1,2, and 3 respectively).
Therefore, for complicated stress {or strain) histories
encountered during cone penetration, comprehensive models are re-
quired to predict the stress-strain-strength behavior of the soil.
For the particular case of undrained shearing of saturated clays,
general effective stress models (e.g., the Cam-Clay)} provide

no clear advantages over the total stress models used subsequently.

*x .
CKOU = Anisotropically consolidated (under K, conditions)

test sheared under undrained conditions with pore pressure measure-
ments.,

h%
Where the strain {or stress) history is included.
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Iwan (1967) proposes a model for the yielding behavior
of materials ahd structures based on the incremental theory
of plasticity (Drucker, 1960; Naghdi, 1960). Given the stress-
strain behavior of the material due to monotonic {increasing)
loading under simple stress systems as imposed in existing
laboratory tests (e.g., triaxial tests) the model can predict:
a) the behavior due to complicated (general) stfess {or
strain) paths (e.g., plane strain tests); and b) the behavior
under repeated loading and unloading (e.g., cyclic loading).
The attractive aspects of the Iwan model over previous incre-
mental plasticity models are:

1) the complicated material behavior can be inter-

preted by means of a collection of mechanical elements

(spring and slip elements) in parallel and/or series.

This provides valuable insight for understanding and

using the model appropriately;

2) the ability to introduce stress-induced anisotropy

(Bauschinger effects) by means of the simple kinematic

hardening proposed by Prager (1955);

3) non-elastic behavior during unloading. This

is achieved by using a collection of yield surfaces

instead of the usual single surface;

4) flexibility in adapting to more complicated material

behavior as encountered in soils, and;

5) easy adaptability to existing numerical computational
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methods (e.qg., finite element methods).

Independently, Mroz (1%967) describes a model which is
essentially identical to Iwan's with more emphasis on three-
dimensional behavior of materials rather than the one-dimen-
sional cyclic behavior. The valuable additional contributions
of Mroz are:

1) more detailed mathematical expressions and

introduction of isotropic hardening to improve the per-

formances of the model when applied to complex loading

conditions, and;

2) introduction of convenient three-dimensional strain

and stress spaces where the loading history can be more

easily visualized for plane stress problems.

In order to apply the model for predicting the undrained
behavior of clays, Prevost (1977, 1978 and 1979):

1) describes the model in the deviatoric stress space;

2) introduces initial anisotropy by considering yield

surfaces initially centered off the origin in the stress

space;

3) subdivides the strain increment into elastic and

plastic increments so that the flow rule can be inverted;

4} provides three-dimensional strain and stress sub-

spaces that are more convenient for following the loading

history in many scil mechanics problems (e.g., plane

strain and axisymmetry):

5) presents simple rules to determine the initial
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location, size and associated work-hardening moduli of the

vield surfaces from laboratory test;

6) proposes simple isotropic hardening rules to model

cyclic loading, and;

7} provides all mathematical equations necessary to im-

Plement the model into numerical computational methods.

This chapter describes the above so0il model ang
generalizes it to include most of the important factors in-
fluencing cone penetration in clays. Predictions of the model
are evaluated by means of laboratory test results on a normally
consolidated clay of médium sensitivity known as Boston Blue
Clay (BBC). Subsequently, the model is used in Chapter 6 to
Predict stress and pore pressure fields in clays due to steady

cone penetration.

4.2 MODEL DESCRIPTION

The proposed analytical model describes the anisotro-
pic, elastoplastic, path-dependent stress-strain-strength pro-
perties of inviscid saturated clays under undrained loading con-
ditions.

Strains are divided into elastic and plastic components.
Elastic strains are related to stresses assuming linear iso-
tropic elasticity and plastic strains incorporate the non-
linearity and anisotropy of the soil. Soil plasticity is
described by means of: {a) a yield condition describing the

stress states causing plastic flow; (b) a flow rule relating
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*
the plastic strains to the stresses, and; (c¢) hardening (or
softening) rules controlling the changes in the yield condi-
tion due to plastic flow.

4.2,1 Yield Condition

The undrained shearing behavior of saturated clays is not
o

affected by the octahedral normal total stress, Uoct (= -%l .
Hence, only the deviatoric components of stresses, Sij'
affect the yield condition at any level of shearing.

S19 T %19 T %33 ct (4.1)

in which ¢ is the total stress tensor and 61. is the Kro-

ij 3
necker delta (Gij =1 for i = j and Gij =0 for i # j).

For convenience, yield conditions are depicted by sur-
faces in the six-dimensional deviatoric stress space. The
model considers an arrangement of nested yield surfaces,

£ £ S externally bound by a failure surface, f

p_1, Pr
which encloses all acceptable stress states. Different shapes

1’ 2'

of the yield surfaces may be utilized. However, for the sake
of simplicity, and in order to reduce the necessary soil para-
meters to manageable levels, yield surfaces of the Von Mises

type are proposed:

) 2 (m Do (m ek (my
fm(Sij) - {%[sij uij ] [Sij aij ]} k =0
..... (4.2)

* 3
More precisely, the plastic strain increments.
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where ai?) and k(™ represent the coordinates of the center
and the size of the yield surface fm' in the stress space,
respectively. Each yield surface, fm, is therefore described
by seven parameters: six for its center location ai?)and one

for its size k(™

4.2.2 Flow Rule

The flow rule adopted by the model is the associated
normality rule of plasticity which states that: for any stress
State located on the yield surface (in the stress space), the
Plastic strain-increment vector lies along the exterior normal
to the yield surface. Applying the flow rule to the yield
surfaces described by Eq. 4.2, using linearity and isotropy for
the elastic response of the s0il, and after inversion,* the

deviatoric stress increments, dsij can be obtained in terms

of the deviatoric stresses, $;.+ and the strain increments,

ij
deij:
- . (m)
ds.. = 2Gde,. - (26 - H) E(Si' 23y (s - o™y g
i3 15 A R ke ~ %kg 1
. (4.3)

in which G is the elastic shear modulus,

'y (ZG)_’]_l is the elasto-plastic modulus and Hé

— ty T
H = [(H!)
is the plastic modulus of the soil.

A plastic modulus Hé is associated with each vyield

*
Inversion of the flow rule is made possible by the pre-

sence of the elastic part of the strain increment (Prevost,
1974y,
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surface. Therefore, by following an incremental procedure one
can visualize the regions enclosed by the failure surface,

fp' in stress space as divided into a finite number of sub-
regions where the elasto-plastic modulus, H&, is constant
(e.g., the stress-strain curve of a triaxial test is sub-~
divided into linear segments where the changes in slope occur
when the stress point reaches a new yield surface).

4.2.3 Hardening Rule

Soils harden or soften with shearing. In order to ac~
count for strain hardening (or softening) and t0o incorporate
the effects of 1oading—unloading-reloading,* the model uses
a combination of isotropic and kinematic hardening (or
softening) rules which depend on the plastic flow undergone by
the soil. During the course of plastic flow, the yield sur-
faces are translated (i.e., ai?) changes in the stress space
by the stress point, without changing in form) and they conse-
cutively touch and push each other according to hardening

LE
rules which prevent them from intersecting.

*The terms "loading" and "unloading" are generalized to
three dimensional problems by stating that the s0il experiences
loading and unloading when the stress point is moving away
or toward the center of the current yield surface, respec-
tively.

* *

Overlapping of the subregions defined by the yield
surfaces would create zones of multivalued plastic moduliand
hence cause numerical and {more importantly) conceptual dif-
ficulties.
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The size of the yield surface k(m), and its associated plas-
tic modulus, Hé are allowed to vary according to stress {or
strain) history. The rules governing the translation of the
vield surfaces in the stress Space are an integral part of
the model, whereas, the rules describing changes in k(™

and H& have to be adapted to the soil at hand.

4.2.4 Model Limitations

Prior to undrained shearing the initial location and
size of each yield surface, which are determined from experi-
mental test results, are only applicable to problems where the
s0il has experienced the same strain (or stress) history (i.e.,
Same consolidation history). This implies that: a) results of
isotropically consolidated undrained test cannot be used to
predict the undrained response of a soil element consolidated
under Ko—condition {(with KO# l); b) so0il elements with dif-
ferent stress histories (i.e., different overconsolidation
ratios) require separate tests to determine the necessary
model parameters, and; ¢) the behavior of soil elements where
Principal stress directions vary during consolidation cannot be
treated because of the limitations of classical laboratory

tests to duplicate the loading history.

4.3 MODEL IMPLEMENTATION

4.3.1 Deviatoric Stress Subspace

In three-dimensional problems, a stress state is des-
cribed by six independent components. However, since the sum

of the deviatoric normal stresses vanishes (Sij = 0) it is
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sufficient to use five components to identify deviatoric
stress states (i.e., use a 5-dimensional space to map devia-
toric stress states). In many laboratory and field tests,
loading conditions can be reduced to two-dimensional condi-
tions, e.g., axial symmetry or plane strain, in which

o =0 or Opy = O = 0 (see Fig, 4.2 for definitions).

%2z re Yy ¥z
In such simpler cases (including cone penetration), it is pos-
sible to map the deviatoric stresses in a 3-dimensional space

with coordinates s, defined as:

3 V3

s = P Syi S, = Py (s, = sg)s S = 3 s, (4.4)
3 /3

5, = 3 S;i S, = Y (8 = 80 8 = /I s, (4.5)

In the 8;—space, the yield surface fm becomes a sphere
with equation;

(m)
{Zls; - o, 12}F = k™ =0 (4.6)

in which aim) and % (™ are the center coordinates and the

radius of the yield surfaces fm’ respectively. The distance
from the origin to any point in the Si-space is proportional
to the octahedral shear stress Toct and,thus provides a good

measure of the level of shearing:
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2 2 2% -
[s1 + s, + 53] v Toot (4.7)
1 2 2 2 2
Toct = ;[‘Uxx T Oy O, )t (o, - Ogx)? + 602 1%
ceee.{4.8)

The associated strains Ei(=E1' Ez and Ea) are defined
such that the rate of work per unit volume of s0il is ex-

Pressed as:

dw = sij deij = zsi dEi {4.9)

From Eqgs. 4.4, 4.5 and 4.9, the associated strains are res-

pectively given in cartesian and Ccylindrical coordinates by:

1 2
El = EZZ' E2 = '—/“3_- (ny - Exx)? E3 = E EXZ f4.10)
and

1l ' 2
EI = € .0 E2 = ;5 (eee - Err): E3 = ;% erz (4.11)

The flow rule in Eq. 4.3 becomes:

(m) 3

3H S. - .

ds, = 3GdE, - (3¢ - —5 o 2 (s, -a™)4e, (412
1 2 [k 12 =1 J J ]
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4.3.2 Parameters Describing the Initial Yield Surfaces

Prior to undrained shearing, the sizes and locations
of the spherical yield surfaces reflect the initial aniso-
tropy of the clay. In most cases of interest, initial ani-
sotropy develops during deposition and subsequent consolida-
tion under one-dimensional straining condition thus leading
to symmetry about the vertical z-axis (i.e., cross-aniso-

tropy). The yield surfaces are, therefore, initially cen-

{m)

3 = 0, for any m, Fig.

tered along the §,-axis (a;m) =
4.2.b). In order to determine the model parameters des-
cribing the initial yield surfaces, stress-strain curves of
Ko-c0nsolidated undrained triaxial compression and extension
tests are utilized as illustrated in Fig. 4.3. During tri-
axial testing, the stress point travels along the 5, -axis
and, therefore, the yield surfaces remain centered on the

S -axis. The elastic shear modulus is obtained from the
initial slope of the steeper stress-strain curve (in general
that of the compression test) which is equal to 3 G.* The
stress=-strain curves for compression and extension are then
subdivided into a finite number of palirs of linear segments
with equal slopes (see Fig. 4.3). The starting points of the
mth segments along the compression and extension sides pro-

vide the upper and lower intersections of the spherical yield

surface fm with the Sl—axis, respectively. These two points

*
Assuming that Poisson's ratio v = 0.5 for undrained
loading.
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of intersection completely define the initial location and
size of the yield surface fm (i.e., a:m) is equal to the
average ordinate and, k(m) is equal to half the distance be-
tween the two points). The common slope of the two corres-
ponding segments equals 3/2 Hm* and hence determines the
elasto-plastic modulus Hm associated with fm'

4.3.3 Pre-Peak Behavior

During undrained shearing, soils develop a "stress-
induced" anisotropy which depends on the stress system im-
posed. In the model, this behavior 1is accounted for by the

translation (aim)change) and the decrease in size (k
the yield surfaces during the process of plastic flow. The
rules governing changes in the yield surfaces affect the pre-—
dicted behavior significantly and, represent a cornerstone

of any model.

Figure 4.4 illustrates the translation of yield surfaces
during the process of plastic flow as outlined in Section
4.2.3, and provides the equations needed to compute the
center displacement vector da(m) as a function of the stress
point displacement vector ds. These equations are similar
to those given by Prevost (1978) after assuming that the

size of the current yield surface fm does not change during

translation. The simplified equations obtained by neglecting

*
For triaxial loading, Eq. 4.3 reduces to:

d(og_ - Ox) = (3/2) - Hm + 4 €,

Zz
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second order terms and given in the above article are not
recommended, for they may lead to overlapping of the yield
surfaces.

In order to account for the reduction in plastic modu-
lus, Hﬁ, during the process of plastic flow, the following
rule 1s adopted herein. The plastic modulus Hé associated
with the vield surface fm is reduced from its initial value
H&o to a limiting wvalue Haz when and only when the current
yvield surface is outside fm.* Vvariation of Hé between its

initial and limiting values 1s arbitrarily approximated by:
| e . - . N lﬂ‘ 1 1O
Hm Hm exp( Am lm), Hm < Hm < Hm (4.12)

in which Am is an experimental constant and lm is the

generalized (or equivalent) plastic strain given by:

= 2 4P P X%
A f (3 aef; aek) (4.14)

in which 4 eEj is the plastic strain-increment tensor. In-
tegration in Eg. 4.14 is carried out along the strain path
after the stress point has passed the yield surface fm. The
experimental constants Han and A in Eg. 4.13 are determined

from cyclic laboratory tests in which the plastic modulus

HA associated with the yield surface fm is utilized several

*

This implies that the plastic modulus H' associated with
the yileld surface fm remains unchanged until Phe stress point
reaches fm+l'

90



times and where, therefore, its variation can be observed.

4.3.4 A New Model for Post-Peak Behavior

Normally consolidated Boston Blue Clay (BBC), that will
be subsequently modelled, exhibits a very pronounced strain-
softening behavior when sheared in triaxial (or plane strain)
compression under undrained loading, following (one dimen-
sional) Ko*consolidation. TO describe this behavior, Pre-
vost (1978) proposes to use an isotropic softening rule where
the yield surfaces do not change their position in stress
space but all decrease in size simultaneously and by the
same amount. However, upon reaching large strains, the
strength reduction in the triaxial extension (TE) mode of
failure becomes unrealistic (negative strengh!).* Therefore,
a more realistic softening rule is introduced herein:

a) the failure surface fp remains at all times cen-
tered on the 5,~axis and, thus, is completely defined by its
two intersections with the S,-axis which are the end points
of a diameter of the sphere f_;

P

b) the intersection of £ with the negative §,-axis

P
remains fixed. This implies that after the peak strength
has been reached in a triaxial extension test, plastic flow
pProceeds at a constant deviatoric stress;

C) the reduction in radius k(p) of the failure surface

*Available triaxial extension test results on BBC sug-
gest a perfectly plastic behavior once the peak strength has
been reached.
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f, from its initial value k, P} to its limiting value kP ”

is approximated by:

(pP) - 1 {P) P) _ (P, - .
k (Ap) = k2 + (ko kn )| exp { Ap Ap} (4.15)
in which Ap is an experimental constant and Ap is the
"yielded" generalized (or equivalent) plastic strain given
by:

- 2 P P X%
AP = /(3 deij deij) (4.16)

in which deij is the plastic strain-increment tensor. 1In-
tegration in Eq. 4.16 is carried out along the strain path
if and only if the stress point lies on fp. Thus, re-
duction in size of fp takes place only when the so0il has
reached the failure state. The experimental constant Ap is
determined from the post peak stress-strain curve of a mono-
tonic triaxial compression test:

d) the new location of the stress point, after appli-
cation of a strain increment deij is determined according
to the associated flow rule; i.e., the stress point moves
to the point of the sphere f_ where the inside normal is

P
parallel to and has the same direction as the plastic strain-

increment vector degj, and;

*Note that kép) is directly obtained from the strength
in the TE mode of failure.

92



e) together with the radius reduction of the failure
surface fp, all the yield surfaces remain tangent to fp
at the current stress point and decrease in size by the same
relative amount. Thus, at any time, the current radius k(m)

is given as a function of the initial radius kém) by:

k(™ (P

= H m = l' 2; « s 0wy (p - 1) (4-1?)
(m) {pP)
ko ko

and the coordinates aT (i 1, 2, 3) of the center of fm are
given as a function of the stress point coordinates

S, (i =1, 2, 3) by:

1
(m) (p)
S, - a’ S. - a.
i i _ i i . = -
P N ¢ ;o m=1,2, ..., (p-1) (4.18)

4.3.5 Computer Program

The soil model described above was incorporated in a
computer program oded in FORTRAN IV) which is listed and
explained for the user in Appendix C. Input data consist of:
the initial yield surfaces parameters (Fig. 4.3); the elas-
tic shear modulus G; the parameters describing changes in
vield and failure conditions (to be used in Eqs. 4.13 and
4.15); the initial location of the stress point (i.e., ini-
tial deviatoric stresses) and; the loading sequence in terms
of successive strain increment vectors. For each strain in-
crement vector, the program computes the corresponding

deviatoric stress increments, modifies the vield surfaces
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and prints the value of updated deviatoric stresses.

4.4 MODEL EVALUATION

This section evaluates the performance of the proposed
model by determining the required soil parameters from
Eﬁ;ﬁ triaxial tests, predicting the response in Eﬁ;ﬁ Plane
Strain and Direct Simple Shear tests, and comparing the pre-
dictions with measurements obtained from laboratory tests.
Results of Eﬁ;ﬁ cyclic triaxial tests are utilized to de-
termine the parameters describing the reduction in plastic
moduli of the soil upon loading reversal. A discussion of
the model capability in describing the anisotropic clay
behavior under undrained conditions is then presented.

4,4.1 Model Parameters

The so0il considered in this section consists of normally
consolidated Boston Blue Clay (BBC) which is a fairly sensi-
tive marine illitic clay. Over the last decade,extensive field
and laboratory tests were conducted on this clay at MIT.
Laboratory tests reported herein were conducted from batches
of resedimented BBC which were prepared by consolidating
a clay slurry.* The preparation procedure provided a fairly
uniform source of clay with strength and consolidation . pro-
perties similar to those of natural Boston Blue Clay {Ladd
et al., 1971). Typical properties from numerous batches that

were used over a four year period were:

*Detailed procedures of slurry preparation and consoli-
dation are given in Appendix B of Ladd et al. (1971).
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Liguid Limit = 41 + 2%

Plastic Limit = 20 £ 2%
Plasticity
Index = 21 £+ 3%

a) _Parameters for monotonic loading. Figure 4.5

Presents the results of two EE;U triaxial compression tests
and four extension tests on samples of resedimented Boston
Blue Clay normally consolidated to various levels of ver-
tical consclidation stress Evc' The stress-strain curves ob-
tained for the two compression tests are virtually identical

after the deviator (shear) stresses (o, - Uh) are divided by

v
Evc' This indicates that the clay exhibits a normalized

behavior and hence enable significant generalizations to be
made. Typically, the peak strength is reached at very low
strain level (ev = 0.35%) and the clay strain-softens sig-

nificantly such that its shearing resistance at large strain

[t

levels (above €, 10%) becomes less than under the initial

R,mconsolidation condition.

On the other hand, the results of four triaxial exten-
sion tests (Fig. 4.5) exhibit significantly higher scatter
than the compression tests. The difficulties in performing
and interpreting extension tests might represent one cause of
this scatter. Furthermore, no satisfactory explanation could
be reached by Ladd and Varallyay (1965) for the unusual ob-
served effect of rate of shearing: fast stress-controlled

tests yielded slightly lower strengths than slower strain-

controlled tests. In all extension tests, necking of the
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samples was observed at vertical strains in the range of
5 to 7%.

The two solid lines in Fig. 4.5 are the idealized stress-
strain relationships fitting the experimental data of tri-
axial compression and extension tests by means of the mathe-
matical expressions of the proposed model. In the subse-
gquent derivations and applications, the normalized stress-—
strain behavior (with respect to Evc, the principal vertical
effective stress at the end of consolidation) exhibited by
normally consolidated Boston Blue Clay will be fully utilized.
Normalized properties of clays which is the basis of the
SHANSEP* method are presented and discussed by Ladd and Foott
(1974) and Ladd et al. (1977).

The initial configuration and associated moduli of the
yield surfaces were determined by following the procedure
outlined in Fig. 4.3. The parameter Ap in Eg. 4.15, des-
cribing the strain-softening behavior was obtained by fitting
Eg. 4.15 to the experimental post-peak stress-strain curves
from Eﬁ;ﬁ triaxial compression tests.

b) Parameters for repeated loading. In the

laboratory results discussed above, the s0il is subjected to
monotonic loading and, therefore, the yield surfaces are
utilized before any change in their size and associated
plastic moduli occurs. Chapter 3 indicates that strain re-

versals take place during cone penetration. One important

*
SHANSEP is an acronym for Stress History And Normalized
Soil Engineering Properties.
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feature of the proposed model is its ability to predict soil
behavior under loading-unloading conditions.

Braathen (1966) performed a series of cyclic CK U
triaxial tests on normally consolidated Boston Blue Clay with
highly repeatable results. Figure 4.6 presents the stress-
strain curve (open circles) of one of his tests {randomly
selected). 1In this figure, the normalized deviatoric stress,
(o, - ch)/avc, is plotted against the generalized (or equi-
valent) plastic strain which, in the case of a triaxial test,
is the sum of the absolute value of the vertical strain in-
crements, dev.* The solid line in Fig. 4.6 represent the
idealized behavior obtained from the model after adjusting
by successive trials the parameters Am and H&E in Eq. 4.13.
In order to reduce the number of parameters, the following
simplification was made: the parameter Am describing the
rate of reduction in modulus and the ratio H!/H'® which re-
presents the maximum amount of softening of the plastic
modulus H& are common to zll yield surfaces (m = 1, 2, ..,p-1).
The idealized curve in Fig. 4.6 fits very well the experi-
mental data for the first four loading stages. The agreement
is not as good for the remaining leading stages especially

during compression loading (stages 5 and 7 in Fig. 4.6).

*
For practical purposes, @ ef., the elastic part of the
total strain increment, can be negiected and, therefore

P .
dEij deij
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However, the normalized deviatoric stress is very well pre-
dicted at the end of any lcoading stage.

Table 4.1 summarizes the necessary values of the model
parameters for predicting the behavior of normally consoli-
dated BBC subjected to various loading paths.

4.4.2 Stress-Strain-Strength Predictions

a) Plane strain tests. Figure 4.7 compares

predictions of the model {solid lines) with Eﬁ;ﬁ plane strain
compression and extension test results on norrally consoli-
dated resedimented BBC. The predicted strength in the com-
pression mode of failure is approximately 8% too high, but
the rate of post-peak strain-softening is very well predicted.
In the extension mode, the predicted soil response is too
"stiff" up to a vertical strain of 1% and then reaches a
lower strength than measured. However, after conducting an
extensive program of plane strain tests on resedimented BBC,
Ladd et al (1971) conclude that: (a) the plane strain
apparatus used to obtain the results in Fig. 4.7 yields reli-
able data for compression tests, and; (b) stress-strain data
in the extension mode are not reliable for vertical strains

*

larger than 3 + 1 percent. In view of test limitations, the

predictions of the model in Fig. 4.7 apvear gquite reasonable.

b) Direct Simple Shear tests. The interpretation

of Direct Simple Shear (DPSS) test results is very challenging.

*

At larger strain, testing errors due to side fric-
tion and sample necking lead t¢ measured strength values that
are too high.
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Ideally, the test should develop a condition of uniform pure
shear strain in the sample under conditiosns of no volume
change(i.e., Mohr circle of strain centered at the origin).
However, due to possible relative slippage between the clay
sample and the upper and lower caps, and the lack of comple-
mentary shear stresses on the vertical sides of the speci-
men, strains and stresses are not uniform throughout the
sample. Furthermore, for soils, the strain and deviatoric
stress increment vectors are not necessarily coaxial and,
thus, a pure shear strain increment will not, in general,
produce a pure shear stress increment. Prevost and Hoeg
{1976} have investigated stress and strain distributions for
an isotropic, elastic material tested in a direct simple
shear mode of deformation by extending the work of Roscoe
(1953) in considering boundary slippage. They found that
relative slippage at the contact between the soil specimen
and top and bottom caps (if it occurred), together with the
lack of complementary shear stresses on the vertical sides
of the sample greatly alter the distributions of shear and
normal stresses and prevent the ideal condition of constant
volume to take place during the test. To account for the
difference between the maximum and the average horizontal
shear stresses acting on the sample, Prevost and Hoeg (1976 )
propose to increase the measured average shear stress value by

10% for estimating the maximum horizontal shear stress.
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A more rigorous interpretation of the DSS test requires
three-dimensional drained analyvsis of the soil specimen to-
gether with an anisotropic soil model in terms of effec-
tive stresses with adequate modelling of the soil-cap inter-
face slippage. Such a model is not available and is ex-
pected to be much more complicated that the one evaluated
herein. Therefore, the results of DSS tests presented
hereafter must be considered in light of the many uncertain-
ties in interpreting test results.

Stress-strain curves for three Eﬁ;ﬁ—DSS tests per-
formed on normally consolidated resedimented BBC are plotted
in Fig. 4.8. 1In this figure the normalized apparent (or
average) horizontal shear stress, Th/EVC, is plotted against
the apparent engineering shear strain Yh'* The solid line is
predicted by the model for a pure shear strain state (and no
volume change) after reducing the shear stresses by 10% as
recommended by Prevost and Hoeg (1976 . )to account for stress
nonhomogeneities within the sample. Clearly, even after this
10% reduction, the predicted stress strain curve is too stiff

at low stress levels and leads to a higher strength (by

20 + 5%) as compared to the test results.

* . .
Note that Yp = 2 €yg 7 where €z is the tensorial

shear strain which is utilized in the theoretical derivations
of this chapter.
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4.4.3 Strength Anisotropy

This section evaluates the capabilities of the proposed
model in predicting undrained strength anisotropy. Figure
4.9 shows the normalized deviatoric stress path of CK U

*
triaxial, plane strain and pressuremeter tests located
in the ({8,, S8,} plane (S, = 0). Figure 4.10 offers similar

plots for the direct simple shear test* with a stress path
located in the {SI, 83} plane (S, = 0). It is worth noting
that the model predicts that the deviatoric stress path for
the ideal pressuremeter test (expansion of a cylindrical
cavity) can be deduced directly from that of the ideal
direct simple shear by a 90° rotation about the S1_ axis,
Also shown in Figs, 4.9 and 4.10 are f; and f;, the peak .
and residual spherical failure surfaces, repectively, whose
sizes are determined from the TC and TE tests.

a) Peak strength. At large straining levels the

contribution of elastic strains is small and the plastic
strain increments deij are nearly equal to the total strain

increments deij . Consegquently, the associated flow rule
utilized by the proposed model implies that at failure
(peak strength), the total strain increment vector is normal
to the failure surface fp. Therefore, the location of the

stress point on the failure surface fg can be directly

*
Under idealized conditions.
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determined when the direction of the line tangent to the
strain path at failure is known. Table 4.2 gives the pre-
dicted peak strengths of classical tests (for which the
idealized strain paths are linear) as a function of the peak
strengths in triaxial compression and extension failure modes.
Predicted vs. measured peak undrained shear strengths of
available laborateory tests on normally consolidated rese-
dimented BBC are summarized in Table 4.3.

In order to further evaluate the capabilities of the pro-
posed model in describing undrained peak strength anisotropy,
we consider the class of failure modes under plane strain con-
dition(i.e., deyy = 0) with linear strain paths. These
failure modes can only be partially‘investigated in the
laboratory with plane strain compression, plane strain exten-
sion and direct simple shear tests, until directional shear
tests (successfully performed on sands, Arthur et al., 1977)
are performed on clays to provide results covering the
complete range of plane strain modes of failure. Field
applications of such modes of failure are numerocus (e.g.,
bearing capacity of strip footings, stability of embankments
and excavations,...).

Failure under plane strain condition (dgyy = 0) leads

to the following equations (Prevost, 1979):

g -a a{p) 2 k(p] 2
[(2—F) - —— ] + ¢2_= [——] (4.19)
2 2 xz /3
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and g = - (4.20)

The Plane Strain Compression (PSC) and Plane Strain Extension
(PSE) peak strengths are related to the radius k(p) and

the center coordinate afp) of the failure surface fg by:

a(p) K (P) afp) x (P)
s, (PSC) = L ¢+ —; s (PSE) = = -1 4+ —— (4.21)
2 /3 u 2 Y3
Combining Egs. 4.19 and 4.21:
{(p)
g, = s._(PSC) g. - s {PSE) k
[_2 u _ X u P+ 12 = [— )2 (4.22)
2 2 Xz /3

Davis and Christian (1971) developed one of the most general
models to describe the undrained strength anisotropy of clays.

At (peak) failure the in-plane stresses satisfy:

o_ = s _{PSC) o_ - s (PSE) , a?
(= L - X u ] + — 12 = a? (4.23)
2 2 b2 X2

in which a and b are two experimental constants given by:

s _{PSC) + s_(PSE) b s (45)
a = “ L and — = u (4.24)
2 a [s, (PSC) - su(PSE)]k

in which su(45) is the measured undrained shear strength with
the major principal stress at failure inclined 45° with the
vertical (z-axis). Comparing Egs. 4.22 and 4.23 it
becomes clear that the description of undrained strength

anisotropy implied by the proposed model is equivalent to
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that of Davis and Christian when:

x (P)

a=b=— (4.25)
/3

The strength anisotropy described by the proposed model is,
therefore, less general than Davis and Christian's strength
model simply because the former utilizes two strength values
(su(PSC) and su(PSE)) whereas the latter utilizes three
(su(PSC), su(PSE) and su(45)).

Using Eq. 4.22 together with the stress transformation

laws, the following equation is obtained:

k(P 5 Ol!(p) 3 o (P)

= — ——cos 28 + [1 - —

—_ 1 : 21k
S.g e ) ) sin 28)*] 7%} (4.26)

in which Sue = ls(clf - oaf) is the undrained shear strength

for plane strain loading (c:'ieyy = 0) and 6 the angle between

the major principal stress at failure (Ulf) and the verti-

cal (z-axis). Substituting the values corresponding to fp

in Table 4.1 into Eg. 4.26, the variation of sus/Elc as a

function of 8 for normally consolidated BBC is obtained and

represented by the solid line in Fig. 4.11. Also shown in
Fig. 4.11 {dashed line) 1is the variation of (sz)f/glc

where is the shea~ stress acting on the horizontal

(sz}f
plane at (peak) failure. The common pnint of the two curves
corresponds to a state of pure shear in terms of stresses

=1 }, whereas the extremum of the horizontal stress

(sz max

curve (B8 = 34.74°) corresponds to a state of pure shear
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in terms of strains. The latter situation would be repro-
duced in a DSS test with perfect boundary conditions im-
posing complementary shear stresses along the vertical sides
and allowing no slippage at the specimen-cap interface. The
strength in case of pure shear in terms of strains (maximum
shear stress at failure) is slightly higher than the hori-
zontal shear stress measured during the test. In order to
compare strength anisotropy predicted by the proposed model
and the Davis and Christian model, strength plots are pre-
sented in Fig. 4.12. These strength plots consist of a
polar representation where the radius is equal to suefalc
and the angle with the horizontal axis is equal to 29.

The outer circle {dashed line) describes the strength vari-
ation predicted by the proposed model and the dotted area
covers a range predicted by Davis and Christian model de-
pending on two limiting assumptions for interpreting the DSS
test. 1In the first assumption, the measured horizontal shear
stress at failure during a DSS test equals the maximum shear
stress acting on the soil specimen (i.e., pure shear in

terms of stresses) and consequently 8 = 45°, whereas in the
second assumption & = 30° corresponding to ¢ = 30° for BBC
(Azzouz, 1977). Results in Fig. 4.12 indicate that the peak
undrained shear strength predicted by the proposed model for

0) between PSC and PSE

plane strain modes of failure (deyy

is generally higher than that prediced by Davis and Christian.
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b) Residual strength. The residual strength of

the soil after significant shearing is believed to be im-
portant in penetrations problems which cause very large
straining levels in the soil (see Chapter 3). Unfortunately,
classical laboratory tests impose limited deformations (and,
therefore, limited strains) and, hence, can provide little
reliable information regarding residual strength. However,
the post-peak behavior in triaxial tests appears to support
the proposed hypotheses that the residual strength is identi-
cal for any mode of failure (i.e., isotropic) and equal to the

strength in the triaxial extension test.

4,5 SUMMARY AND CONCLUSIONS

This chapter describes the soil model proposed by
Iwan, Mroz and Prevost and evaluates the model by comparing
predictions with laboratroy tests on mormally consoclidated
resedimented Boston Blue Clay under various undrained shear
conditions. For plane strain conditions, the model pre-
dicts the same peak strengths obtained by the Davis and Chris-
tian (1971) elliptical model in the special case when the
ellipse degenerates into a circle.

The model is extended herein by means of a strain-
softening rule to describe the post peak behavior of clays.
The rule is based on the assumption that, in the triaxial ex-
tension mode of loading, the clay behaves as a perfectly

plastic material once failure has occurred. The stress-strain

106



behavior of the clay subjected to monotonic loading is
modelled by a hardening rule which reduces the plastic

moduli associated with each yield surface as a function of the
magnitude of plastic flow, and the necessary parameters are
evaluated by means of cyclic triaxial test.

Based on comparisons between predicted and measured
stress~strain~strength behavior of normally consolidated re-
sedimented Boston Blue Clay, the following conclusions are
reached:

1) the model predictions for plane strain compressicn
and extension tests are reasonably good, especially in des-
cribing the post-peak behavior;

2) the simple softening law to model repeated loading
leads to good simulation of cyclic triaxial tests, and;

3) the model lacks flexibility to describe accurately
intermediate modes of failure (e.g., Direct Simple Shear, cy-
lindrical cavity expansion, etc., ...). Although the DSS
test is difficult to interpret and results of "true" tri-
axial test simulating cylindrical cavity expansion (e.g.,
Kirby and Esrig, 1979) are scarce, it is apparent that the
model overestimates the strength for these two modes of
failure.

Improvements in the strength prediction capabilities of
the model could be easily achieved by considering yield sur-

faces of more general shapes (e.g., ellipsoids or spheroids).
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However, this requires reliable stress-strain curves for

*
general loading conditions that are not presently available
and hence, the additional complications arising from a more

sophisticated model do not appear justifiable at the present

time.

»
Directional shear and true triaxial tests on clay are
presently being conducted at M.I.T.
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1. Elastic Shear Modulus

G/C = 182.479
veC
2. Initial Yield Surfaceg {Spheres)
Yield_Surface Center ILocation Radius Elasto-Plastic
Number (m) ~— m — Moduips
m o, /Gvc k /ch Hm/O‘Vc
1 0.4874 0.0244 239 649
2 0.4429 0.0942 166.263
3 0.3999 0.1630 110.842
4 0.3625 0.2218 73.895
5 0.3338 0.2675 49.263
6 0.3087 0.3066 32.842
7 0.2895 0.3370 2]1.895
8 0.2726 0.3629 14.596
9 0.2595% 0.3830 9.731
10 0.2480 0.3999 6.487
11 0.2388 0.4127 4.325
12 0.2304 0.4234 2.883
13 0.2237 0.4313 1.922
14 0.2177 0.4379 1.281
15 0.2129 0.4429 0.854
le 0.2088 0.4471 0.570
17 0.2056 0.4503 0.380
18 0.2030D 0.4530 0.253
19 0.2010 0.4550 0.169
20 0.1995 0.4565 0.113
21 0.1987 0.4573 0.050Q
22 0.1980 0.4580 0.000
3. Change in Plastic Modulus (Eq. 4.13).
Rate of Decrease in Plastic Modulus Am = 25.0
g M=1,2,.2,22
Limiting (Minimum) Plastic Modulus HY ‘/HI;I" =  0.10
4, Strain_ Softening; Post-Peak (Eq. 4.15}
Rate of Decrease in Radius Ap = 10.55
o . P = _
Initial Radius k /a = 0.458
e Ve
Limiting (Minimum) Radius kép) /o, = 0.260

Table 4.1

Consolidated Resedimented Boston Blue Clay (KO
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Numerical Values of the Model Parameters for Normally

= 0.537)
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Normalized

Test Strength Predicted Measuread
Uv - ch (1)
Triaxial compression — - 0.328
20
ve
g, -0
1
Triaxial extension h _.v L 0.130
20
vC
g -O'h
Plane strain A4 0.363 0.335
compression 2
vC
Gh - Gv
Plane strain extension — 0.165 0.175
2q
vc
Direct simple shear :ﬁl(“) 0.23&2) 0.200
Gvc
0’ -_
. . r " % (3)
Cylindrical cavity — 0.264 0.210
expansion 2 ovc

(1)

Test used for obtaining model parameters.

prediction exactly matches the measured value.

(2)

(3}

Complete testing information not available.

() Apparent strength.

Therefore, the

After a 10% reduction to account for non-homogeneity of
stresses during the test (Prevost and Hoeg, 1976).

Value from true triaxial test quoted by Kirby and Esrig, 1979.

Table 4.3 Predicted vs. Measured Undrained Shear Strength of
Laboratory Tests on Normally Consolidated Resedi-
mented Boston Blue Clay.
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cumulative vertical strain during CK U triaxial test on
normally consolidated Boston Blue Clay.
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—— Modified Yield
Surface fp,,

Initial Yield
Surface fn,

Translation of fp

(m)
ddi = Fi * d'.l.

(mel)
k ( {me1),
where  p; = T (i -o¢;'™) - (s; - ¢ Y
du = -L—(B'-\/Bz-AC);
A= op?,
B = pi.le¢;-S;-ds;); and
C = 2dS;-($j- xj) +ds?

Translation of fj, j=1,..., (m-1)

Si" o(.,'“). ..... ss-—-—-_' - cxi(j)s ..... :si ‘Of.i(m)
k“) i ) i fm)

Figure 4.4 Translation of yield surfaces.
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116



*AeT) ontd uU03SOd PSJUSWIPSSSI PaIPPTIOSUCD AT [RWIOU U0
3593 TPIXRTI} OF[O4AD pauTelpun ue JI0J S8AIND UTRIIS-SSSI3S POZTIRIPT pPUP Paansesy §°y sanbrg

% ‘143p1f= X Nivils Q3azivyanae

Gt 81 Ge (0T gl ]| S 0
AN B A B B A B BN B B | AN BN S S B S B B S p | B B B m s e S S s ek B +O-
20~
<.
o
o © g 0 0 o o] 0
o ° pezi{oap| ° P3.NSDaN ——+© a
oo a 20 o]
-
° \ Y ° % Oﬂ.ﬂ
o — 0
llllllll.l.ll.l.l.ll.ll.llllll
o o © !
Al 90
1 L il 1 1 @— 1 1 1 L 1 L i 1 1 _@— | [ L 1 1 1 @_ 1 § . _© L _@_ “E.e mo

aboys Butpoo O
(9961) Usyi00Ig WOoLy SiNsai |59

117



08 T T . T T
' Fye W 8
Symbal | Test (Kg feni? K¢ [%‘i %)

CKoUC-8| 3.80 0.552 29.5 1]
CKpUL-10| 3.06 0.%3 30.4 100

07

gm0 |eo0

CKQUE-IO] 3.98 0.497 | 309 95
CRGUE-II| 3.97 0.521 30.8 98
06 cx,u:zzl 424 C.449 | 300 100
) % _
o5} & $ Pradicted
o Y

o4}t o .

NOTES: ~ Test results from Ladd et ai, {(971)
- Pradicted curve ore obtained from the
proposed model after determing soil
paramaters from results of trigxial tests.

P90 aoapgy g o 8 o g

Eg
. LTS
Quaestionable i
extension data; ;—-r % =
Ladd et ol (1971) | . ) , " .
0 | 2 3 4 5 6 7 8 9 10 1 2

VERTICAL STRAIN (E,l, %

Figure 4.7 Predicted and measured stress-strain curves for undrained
plane strain tests on normally consolidated resedimented
Boston Blue Clay.

118



“fe1) enid uo3sod pIjuUsWIPSSSI Pa3epTITOSUGY AlTRUIOU UC
s31se] Jesyg STAWTIS J03ITQ POUTRIPUT 0T SIAIND UTBIlS~-558I35 paansesul pue pajoTpaad g'y aInbrg

% ‘2 NIVMIS YVIHS ONIY33NION3

- = S 8 L 9 S v € z ! 0
1 T ) T T _ :
0z 00’8 ron-_._oxo a
¥ 0g 10e | I0E-rPuD 4
982 co'v |20z-Pwy; ©
o, ITRYA )
no\n ¢ ok..bx ysap [0QWAS
10
g u)h
0 H:
ﬁuq 0 ] 0 (@] @]
v O 8
v vB 0 8 0,0, 0vvev g 20
° ° © © o o o o o o o
{14/ %G = 2) 2.6 ‘siobpa g ppo] Wosy s§Nsd) 453 — .
(9461 ‘BI0H PUD sOASug ) sessaus Jo Kisusbowoyuou 1oy
HUNG3ID ) SSeNS JDRYS PaOIpRId Ui OF PAIGAD S| UCHINPRI %,0f b ‘(S4S9} (OIXDLY WOl
si9jdwoind (10s Buisn) jepow pasodosd ay; j0 subsw 4Aq POUIDIQO 20 SUOHIPIH—' STLON
L | | 1 } | | | ) { ( o

119



TR

(¥s-F3)

pautexpun 103 auetd (Zg

*Ae1D sn1g uojzsog PRRUSUTPasal pojepTlosuod ATTewIou uo s3soi
‘18) ay3 ut syzed sseajs OTAOJRTASD POlOTIpPaId 6"y sanbtg

1391 Imawunssaay

suD|g

go-1+
10np1s
Tood| S
S'0--1 1ONPiIsey /..r‘ yoed
L@
W.Mm - s0 omo mo «.*o 1o ro- 2o co- - s0- so-
m LUrIENS
i NSaf
ro4
d
zh
1onpysey
d
of
E 1S3 uoIUNXI uDHS
NDod

1581 uDissaudwoe] wielS suDplg
V8L UDIBURINT  |OINDII)

189 UoissRIdwO) |DINDLI)

dd
384
08d

al

L

120



u_-.w

X2,

0= %g

psuterpun 03 suetd ($5'15) 8y3 ur sy3zed ssex3s oTIOIRTASD pe3oTpRId

*ARTD SNTHE UO3ISOE PIjUSUWTPSSII PajepITOSUcD ATTRWIOU UO 3683

0Ty =3anbrg
£0-1
{onpisay
¥0oog
zo-+
1o-+
90 e0 0 €0 N,.O _”O .._On c0- £0- .v..O: n_.Oo 0“0|
) . - [ ionpisay, _ . )\ | . | . _ _
o+
o
yoeo i 20+
onpis
£0 1DOnpisay
& @y
69 "
fo1 1
n.o:«
L\@ oy Joays wjdwig o ggQ
w.ﬂ;- I189]  UOISURIXT |DIXDI) 3L
11 ss9.d
yoog L UOISSPIdWOD  |DIXDIA) 3
"z %
s ¢ g

121



04 r : T . . T .
“wl 8 o,
: If
,t‘:.:]'b APsc g
5 Sug
B o &VC
.E.'||b" X
w
o
3 03
< Pure Shear
L {in terms of €)
!; 7
/ Pure Shear
§ / {in terms of o)
i/ /
w
x /
P {
“ 02
. , \
W / \
3 / \\ > PSE
d
2 L_(r,,), \
2 ’ &VC \
~ \
N /
£ l \
x ’I \\
2 / \
- I \
» { \
3 I
{ \
t L 1 L 1 1 1 i I \l

0
O 10 20 30 40 50 60 70 80 90
INCLINATION OF o, WITH VERTICAL, 8°

Figure 4.11 Predicted strength anisotropy for plane strain loading.

122



"STepoOU JUSISIITP AQ pelorpaad

£0

20

Adoxjostue yjzbuails ureils sued

2Ty aanbtyg

To

S58S JO SULE Ul

Joeys ind o} spuodsesiod St =8
wipaisS JO  SWa9y ul

Joays wnd o) spuodseuiod PLPE = g

Ha o d(M2) o spuodsaisno g = 8

peioaibou &.0 58 §$Q ui seiysusbowoyuoN : SILON

ybuang ani) (g}

LY.

{(0Sdi"s

tyibuelis weupddy ()

......lr-ll.-l.'l.l.-..

(oPLPE =8)

2020
2o
920

S62°0| 1€2°0 | 0020
§G2°0| 0020 0020
v9Z20 | 1B2'O| #9200

SL1'0
GL10
G9i0

SEE0
SEC0
€9€0

T vondwnssy paunsoapy
I uondwnssy  painsoapy
udloipasd (spow pesodoiy

g

g
o

q

(21 M

u_ah Osu_b —ﬁub ¥
o

oy
b

550 3sd

J5d

82c

€0

1 ucidwnssy ’
/
/

/!
I'4
7/

Ve
/A1 wondwnssy
20 \\
-~

~
e

\
- uolaipesd |apo pasodoig

123



CHAPTER 5

PORE PRESSURE MODEL

This chapter reviews methods for predicting the excess
pore pressures generated by undrained shearing of saturated
clays. A new analytical model to estimate the pore pressures
during undrained straining of clays (e.g., during pile or cone
Penetration} is proposed and evaluated by comparing predictions

with laboratory test results.

5.1 REVIEW QF PORE PRESSURE PREDICTION METHODS

5.1.1 Stress Theories

In order to predict the excess pore pressure,fu, during
undrained loading of soils, Skempton (1954) proposes an expres-—
sion for Au in terms of the changes in principal stresses Ao,

and Acg :

du = B[AG;+ A(A0, - Ac,)] (5.1)

where A and B are POrXe pressure parameters.

The B parameter relates the increase in pore pressure to
an all around (isotropic) increase in total stress. For satur-
ated clays, where the skeleton compressibility is very large

compared to the water compressibility, the B parameter equals
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unity and Eq. 5.1 reduces to:

Au = Ao, + A(Ao; - Ac,) {5.2)

3

The A parameter relates the increase in pore pressure to
an increase in the stress deviator (or principal stress dif-
ference), A(c1 - %). For a linearly elastic isotropic material,
loaded in triaxial compression, A = 1/3, and in triaxial exten-
sion, A = 2/3. The variation of A with vertical strain,ev,,
during a Eﬁ;ﬁf triaxial compression test on normally consoli-
dated resedimented Boston Blue Clay (BBC) is shown in the lower
part of Fig. 5.1*. The A parameter, initially equals 1/3,
reaches a value Af 2 .50 at peak strength and then increases
indefinitely as the stress deviator approaches its consolida-
tion value (i.e., Ao, - 03) = 0). Figure 5.1 clearly indicates
that, for saturated clays, the A parameter expressed by Eq. 5.2
cannot be used without difficulty in predictions involving
strain softening of the soil. In addition, the A parameter,
for a given soil type, is very sensitive to the initial and the
applied stress systems. Despite these shortcomings, and per-
haps because of simplicity in concept and computation, A is the
pore pressure parameter most widely used.

Henkel and Wade (1966) recognized that Eq. 5.2 does not adequately
separate the contributic.. of isotropic and deviatoric stress

increments to the excess pore pressure during undrained shear

*See Chapter 4 for information on resedimented BBC.
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of saturated clays, and expressed Au in terms of increments of

stress invariants*:

* %
ha = AUOCt + a ATOCt (5.3)
where :
o - % {0 + 0 4+ o) (5.4);
oct 3 1 2 3 ’
T = 1 [{c ~0)2 + (¢ -0 )%+ {0 -0 )2]Lﬁ
oct 3 1 e 2 3 1 3

and A denotes the difference between the present and initial
(at end of consolidation) values. The major advantage of the
pore pressure parameter "a" in Eq. 5.3 is that it equals zero
for a linearly elastic isotropic material subjected to any
kind of loading and, hence, describes the tendency of the soil
to change in volume (if drained) when subjected to a pure
shear (deviatoric} loading condition. Furthermore, a is much
less sensitive than Skempton A parameter to the applied stress
system for soils. However, as illustrated in Fig. 5.1, a

initially equal to zero, reaches a value a 0.35 at peak

f o

*In an earlier publication (1960), Henkel expressed Au
in terms of invariants of stress increments but later, based on
experimental evidence, abandoned this approach.

**Henkel and Wade (1966) define the octahedral shear
stress as 3 At in Eq. 5.5 and, therefore, write a/3 At

instead of a A?gt in Egq. 5.3. oct
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strength and then increases indefinitely as the octahedral
shear stress approaches its consolidation value (i.e.. AToct = ().
This indicates that, for saturated clays, similarly to Skempton
A parameter, the a parameter expressed by Egq. 5.3 cannot be
readily used in predictions involving strain softening of the
soil.

Henkel equation (Egq. 5.3) is, therefore, better suited
for estimating excess pore pressures in stress-controlled
problems where soil elements are subjected to general loading

conditions but, only up to a strain level where no significant

softening has occurred.

5.1.2 Strain Theory

Vaid and Campanella (1974) performed a comprehensive pro-
gram of triaxial and plane strain undrained tests with pore
pressure measurements on normally K0 - consolidated Haney clay?*
specimens trimmed from block samples. For both triaxial and
plane strain conditions, they investigate four total stress

paths: compression loading (Ac > 0, Ao g), compression

1 £

unloading (Ac = 0, Agc < 0), extension loading (Ag = 0,
1 3 1

Aca > 0) and extension unloading (Ac < 0 Ag =0)- In order
1 3

to make a valid comparison between triaxial and plane strain
results, all specimens were initially normally consolidated

under Ko conditions to the same vertical effective stress,

*Canadian clay with PT = 18% and sensitivity = 6-10,
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Evc = 6 kg/cm?, Figure 5.2.a compares the pore pressure change,
Au, versus axial strain during triaxial and plane strain shear
and, illustrates the importance of the total stress system on

Au,  On the other hand, when the change in octahedral (or mean)
normal stress,Acoct, is eliminated and the pore pressure change

due to shear alone, aus, is plotted, Fig. 5.2.b, much more con-

sistent results are obtained.

Aus = Au - Aoo (5.6}

ct

Figure 5.3.b indicates that:

(1} For a given type of test (triaxial or plane strain)
and a given mode of shearing (compression or extension)&uS is
independent of the total stress path (loading or unloading);
i.e., the shear induced pore pressure,Aus, is only a function
of the stress path. This important result indicates that for
a saturated clay sheared under undrained conditions,ﬁuS can be
predicted in terms of strains independently of the mean (or
octahedral normal) stress level:

(2) in the compression mode,AuS is virtually the same
for triaxial and plane strain tests*. In the extension mode,
Au is slightly larger (= 10%) for plane strain than for
triaxial test and, finally;

(3) in extension tests, Aus develops earlier (at a faster

*Vaid and Campanella (1974) do not mention how Ao, (total
stress increment normal to the no displacement plane) was ob-
tained in order to evaluateAcO t(in Eg. .6). However, it is
probable that ag, was measuredtﬁy means of a total stress cell
as in the MIT plane strain device.
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rate with strain) than in compression tests, but the limiting
Au

values are approximately equal (ﬁ—g = 0.33 - 0.37).
ve

5.2 EFFECT OF LOADING REVERSAL ON PORE PRESSURES

Lo (1961} performed undrained stress-controlled cyclic
tests on normally isotropically consclidated Fornebu clay* where
the vertical stress was increased (or decreased) in steps.
Sufficient time was allowed between steps for the deviator
stress and the pore pressure to reach equilibrium values.
Therefore, each test consisted of a series of undrained incre-
mental creep tests performed at various stress levels. Figure
5.3 shows the principal stress difference (or deviator stress)
and pore pressure vs. axXial strain; and pore pressure vs.
principal stress difference for one of Lo's tests (Test number
2).

Comparing Figs. 5.3.b and 5.3.¢, it is clear that the
pore pressure is better correlated to strain than to principal
stress difference during these repeated loading tests. 1In
fact, the pore pressure appears to be uniquely related to strain
when the applied stresses are maintained for a long period of
time after each load increment (or for very slow rate of
loading). Unfortunately, strain controlled cyclic test results

on Boston Blue Clay presented subsequently do not confirm this

*Norwegian clay with PI = 34 * 6, Sensitivity = 2-4.
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unique relationship between pore pressure and strain in strain-
controlled cyclic tests, Furthermore, changes in octahedral
normal stress, ﬁqoct' associated to changes in principal stress
difference,ﬂ(oI - o!),vary for different loading conditions

and, thus, similar relationship for other applied stress systens
is not warranted.

Figure 5.4.b shows the excess pore pressure Au vs. vertical
strain, €y ¢ during a Eﬁ;ﬁ'cyclic test* on normally consolidated
resedimented Boston Blue Clay (Braathen, 1966) and indicates
that in contrast to the results reported by Lo (1961} Au is
very sensitive to strain (or stress) history and exhibits a
very complicated behavior. Variation in the shear induced pore
pressure, Aus, with vertical strain (Fig. 5.4.c}) exhibits a
somewhat simpler behavior and indicates that:

a) When the shearing direction is changed from compression
to extension (a,c and e in Fig. 5.4.c), the rate of shear
induced pore pressure generation increases drastically;

b) When the shearing direction is changed from extension
to compression (b and d in Fig. 5.4.c), the shear induced pore
pressure,Aus, first decreases and then increases to reach,
asymptotically, the curve corresponding to a monotonic {com-

pression) loading (dashed line in Fig. 5.4.b and c¢), and;

*This is the same test described in Chapter 4 (see Figs.
4.1 and 4.6); the loading history during the test is illust-~
rated by means of total and effective stress paths (Fig. 5.4.a).
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¢} The curves of Aus vs. vertical strain during extension
shearing (ab, cd and ef in Fig. 5.4.c) appear to tend toward a
common asymptotic value, (ﬂus%mm’

Results of triaxial compression tests, subjected to
straining reversal, reported by Bishop and Henkel (1953) are
presented in Fig. 5.5, Although they plot the total excess
pore . presSsure, AU, comparison of Figs. 5.4.a and 5.5.a gualit-
atively confirms the above remarks on Aus

In summary, a review of existing methods for predicting
the increments in pore pressure, Au, that develop in saturated
clays due to undrained shearing, indicates that Au should be
divided into two components {(Henkel, 1960, Henkel and Wade, 1966) : the
increment in the meantotalstress;ﬁobct,which is controlled by
equilibrium considerations in each particular problem; and
the shear induced pore pressure, Aug, caused by the soil tend-
ancy to dilate (or contract} upon shearing.

The prediction of Ausdepends on the type of problem at
hand:

(a}) in stress—-controlled problems {(e.g., flexible footing

on top of a half-space) where the stress increments can be

estimated reliably, Au can be determined knowing Henkel "a"

parameter and the octahedral shear stress T ., {Eq. 5.5); and
(b) in strain controlled problems (e.g., cone

penetration, pile driving) where strains in the scil can be

estimated more reliably than stress-increments, ﬁus should be
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predicted by means of a model relating Aug to the strain

history. Such a model is described below.

5.3 PROPOSED PORE PRESSURE PREDICTION MODEL

This section presents a new analytical model for predicting
the shear induced excess pore pressure, ﬂus (Eq. 5.6), gener-
ated in a normally consclidated saturated clay by undrained
shearing. The model is incremental and anisotropic and, can
predict Aus for general strain paths (various shearing modes

as well as loading - unlocading).

5.3.1 General Description

The incremental shear induced excess pore pressure,
d(Avg.}, is expressed as a function of the octahedral shear

strain increment,dYo by the expression

ct’

dh(u ) = V2 - I(e;9) « lay (5.7)

oct|

where the scalar function I, which controls the rate of shear
induced pore pressure, depends on strain history and, the

octahedral shear strain, Y given by

oct’

3

=—[{e ~e )P 4+ (e —€ )% + (g ~¢ )%
1 2 2 3 3

Therefore, Aug can be estimated by integrating Eq. 5.7 along
the strain path once the function I is determined. 1In order
to describe the funtion I, the strain space (Eij) is divided

into a finite number of regions where T is constant. These

132



regions are limited by surfaces gnlcorresponding to a rate of
shear induced pore pressure generation Im. For simplicity,
the surfaces g are described in the gijspace by the equation:

{m)

= 2

m

- gfm) -

)

where Bi? and p are the center coordinates and the size of
the surface - respectively.

During loading, the surfaces gﬁlwhich are reached by the
strain point (traveling along the strain path) are translated
remaining tangent to each other at the strain point. The rules
governing the translation of the surfaces g are identical to
those presented in Chapter 4 so that the surfaces do not change
in size and never intersect each other (see Fig. 5.6). The
rate of shear induced pore pressure generation, Im’ associated
to the surface Im is independent of the relative magnitude of
the strain increment components {i.e., independent of the dir-
ection of the strain increment vector) and, of the strain history
when the soil had been only subjected to monotonic loading.
Upon loading reversal* (unloading), all Im are reduced from

their initial wvalue Im to an updated value I; described from

the expression:

*By definition, loading reversal occurs when the strain
increment vector is pointing towards the interior of the
current surface.
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((Aus)max - Adug

(A2 fhax

I -
m

) I& (5.10)

in which (Aus):lax and Aus are the maximum and current shear
induced pore pressures, regpectively. Since the model will
only be applied to strain paths involving at most one loading
reversal (cone penetration problem), the variation of Aus for
more general cyclic straining is not needed herein.

Application of the model, therefore, requires knowledge
of the initial location and size of the surface (Bi?)and pm)
and of the maximum shear induced pore pressure, (Aus)m » Which

ax

are determined experimentally as explained later.

5.3.2 Model Implementation

Although the model can readily be applied to general

strain paths where the six strain components, Eij’ vary, the
following derivations are limited to the 3-dimensional E, - space
described in detail in Chapters 3 and 4. The Ei- space is very
convenient for visualizing the strain paths of classical labor-
atory tests (triaxial, plane strain and direct simple shear)

and field tests (pressuremeter, cone penetration) under ideal-
ized conditions. The strains Ei( = El, E2 and E3) are respect-

ively given in cartesian and cylindrical coordinates by:

* (Au )max Which is the asymptotical value of Aug, after
strain red%rsgi, will be defined later in this chapter.
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_ - _ . - 2
BT fgp0 Fe T /j(EYY xx) 7 Es = 5 Cxz (5.11)
and
_ ] _ 1 _ . _ 2
E, =€,,i E, = 3(589 arr), E, = - €ryp (5.12)

"In the E, - space, the proposed surfaces 9, are spheres

described by the equation:

L [E. - sim)]z -p2 =0 (5.13)

. 1l
1

)

2
m
in which Bim and P, are the center coordinates and the radius
of the sphere I respectively. The octahedral shear strain,

¥ , is equal to:
oct

=1 - 2 - 2 _ 2 2 1%
Yoct = 3 [lexx Eyy} * (Eyy €22 F (€42 Exx) F 6 exz]
. . . cee-(5.14)
After substituting Egs. 5.11 into Eq. 5.14
1 2 2 21%
= — E - 15
Yoot = 5 1By T BT 2] (5.15)
and Eg. 5.7 becomes:
= * 2 2 2 5. 16
a(4u,) I, |a [E1 +E % E3]| { )

Prior to undrained shearing, the sizes and locations of the
spheres Im reflect the initial anisotropic behavior of the clay.
In most cases of interest, initial anisotropy develops during
deposition and subsequent consolidation under one-dimensicnal

straining conditions, thus, leading to symmetry about the
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vertical z-axis (i.e., cross-anisotropy). The surfaces I
are, therefore, initially centered along the E1 -axis
(Bim) = Bim) = 0, for any m).

In order to determine the model parameters describing
the initial spheres 9qr Curves of (AuS/Evc) vs. axial strain
from Ko-consolidated undrained triaxial compression and exten-
sion tests are utilized as illustrated in Fig. 5.7. During
triaxial testing the strain point moves along the El-axis

and, therefore, the spheres I remain centered on the E -axis;:
1

furthermore, Eq. 5.16 simplifies to:

dfau) = 1 ]dEll =I |de

n | (5.17)

zz
The two curves for compression and extension are then
subdivided into a finite number of pairs of linear segments
with slope of opposite sign and the same absolute value. The
starting points'of the mth segments along the compression
and extension sides provide the upper and lower intersections
of the sphere I with the El-axis, respectively. These two
points of intersection completely define the initial location

m)

{
and size of the sphere I (i.e., Bi is equal to the average
ordinate and P is equal to half the distance between the
two points}. The common absolute value of the slope of the

two corresponding segments equals L and, hence, determines

I
m
the rate of pore pressure generation Im associated to I
{Au )
The value of —23%Xjgs ohtained from results of cyclic
Ive

triaxial tests as illustrated in Section 5.4.
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5.3.3 Computer Program

The pore pressure mcdel described above was incorporated
in a computer program {(coded in FORTRAN IV) which is listed and
explained for the user in Appendix D. Input data consists of
the initial spheres radii P ordinates, Bfm), and associated
rate of pore pressure generation, I and of the parameters
(Aus)maxian:to predict unloading (if any). The strain path
to be followed is input by means of successive strain incre-
ment vectors. For each strain increment vector, the program
computes the corresponding deviatoric pore pressure increment,

modifies the sphere configuration and prints the value of the

updated deviatoric pore pressure.

5.4 EVALUATION OF THE PORE PRESSURE MODEL

5.4.1 Model Parameters

The so0il considered in this section consists of normally
consolidated Boston Blue Clay (BBC)} described earlier in sec-!

tion 4.4.1.

Figure 5.8 shows results of CK U triaxial compression
and extension tests performed on normally consolidated BBC
with different vertical consolidation stresses. These results
exhibit little scatter (less than 12%), thus confirming that
A u, can be normalized with the vertical consclidation effective
stress Evc' In order to facilitate the determination of the
model parameters (as outlined in Fig. 5.7), each set of exper-

imental data points is fitted with an hyperbola. The hyperbolae
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for compression and extension vield the same asymptotic value

aus

(=)
OVC lim
develops the same shear induced pore pressure in triaxial com-

= 0.43. This means that at large strains, the clay

pression and extension.
The maximum value of the shear induced excess pore

pressure, (Au_) developed after straining reversal,is

s'max’

evaluated from the resultgs of cyclic triaxial tests presented

(Aus%ax
in Fig., 5.4.c. For BBC, ——=—2X_ g.54 proved to be a reason-

o
able value in the three cyclizctriaxial tests with similar
stress paths reported by Braathen (1966).

Numerical values of the model parameters for normally
consolidated resedimented BBC are tabulated in Table 5.1. The

equationt necessary for computing Aug in classical laboratory

tests are \given in Table 5.2.

5.4.2 Pore Pressure Predictions

Plane Strain Tests

Figure 5.9 compares predictions of the model (solid lines)
with results of Eﬁgﬁ'plane strain compression and extension
tests on normally consolidated resedimented BEC. Changes in
the octahedral total normal stress, Acoct during these tests
are evaluated from the measured values of the three normal
total stresses as tabulated by Ladd et al (1971).

In compression tests, the predicted shear induced pore
pPressure Aus, (Fig. 5.9.a) is approximately 10% higher than

measured, whereas, in extension tests, Aus (Fig. 5.9.b) is
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mostly within the scatter of experimental data.

Direct Simple Shear Tests

In order to compare the predicted and measured pore pres-
sures, Au{ = Aooct + Aus), in a DSS test, two problems arise:

(1) the change in the octahedral total normal stress, Aooct'

in the experiment cannot be determined from measurements and;
(2) the stresses and strains are not uniform throughout the
sample. Therefore, simplifying assumptions are required.

Based on the detailed discussion of the DSS test in
Chapter 4, Au is predicted in the following manner:

{1} Stresses and strains are assumed to be uniform within

the soil sample which is sheared in a pure shear mode in

terms of strains (idealized testing conditions);

(2) Aus is predicted with the proposed model by following

a strain path located along the E3—axis (i.e., de,, = de . =
dayy = (0, dExz#O); and,

*
(3) ﬁooct is evaluated by means of the deviatoric stress

model of Chapter 4.

Figure 5.10 shows the predicted and measured values of Au
vs. the engineering shear strain, y. Predictions compare
reasonably well with measurements up to y = 8% but are lower
at higher strains (=25% at vy = 30%). Such accuracy is considered
reasonable in view of the uncertainties associated with inter-

pretation of the experimental results.

*During a DSS test AC = As + 80, = 0; i.e.,

Ao = —ﬂszz (AsZ = devig%oric Zfrain increment).

oct z
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Cyclic Triaxial Tests

Figure 5.11 compares the predicted shear induced pore
pressures to measurements obtained in a Eﬁ;ﬁ'cyclic triaxial
test on normally consolidated BBC (described earlier, Fig. 5.4).
Since the model can predict one unloading branch only, pre-
dictions are evaluated for the unloading performed at vertical
strain levels €v= 1.2%, 3.6% and 8.3%, in Figs. 5.11.a, b and
¢, respectively.

Predictions of Aqsduring unloading for €, = 1.2 and 3.6%
(Figs. 5.11.a and b) are virtually identical to the measured
values. Furthermore, Aus during the last unloading (Fig. 5.1lc)
is slightly underpredicted (#15%) at first but the agreement

is very good after the sample has been subjected to signif-

icant extension strain.

5.5 SUMMARY AND CONCLUSIONS

A review of existing methods for predicting the excess
pore pressure, Au , generated during undrained shearing of
clays indicates the need for a new method to predict Au caused
by the very complicated strains associated with cone penetra-
tion (variable principal strain directions with large strains
and strain reversals). A method is proposed to predict Au in
strain controlled problems. Following Henkel's approach, Au
is divided into two components: a) Agoct due to changes in

confinement and b) Aus caused by the tendency of the soil to
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to dilate (or contract) due to pure shear loading. The first

component, Ag is obtained from equilibrium considerations

oct’
and, the second component, Aus, is evaluated by means of a
new analytical model.

The model can predict Aus for anisotropic clays subjected
to general straining conditions (with rotation of principal
strain direction) and one unloading. For monotonic leoading,
all model parameters can be obtained from results of Ef;ﬁ
triaxial compression and extension tests. For unloading, the
model requires an estimate of the maximum (or limiting) Aus
which can be obtained from results of laborabory tests in-
cluding straining reversal.

A comparison between the predicted and measured pore
pressures during plane strain compression and extension and
in direct simple shear tests indicates good agreement in spite
of the difficulty in evaluating ﬁgoct during these tests.
Furthermore, the predicted pore pressures during unloading

are very close to measurements cbtained from CK, U cyclic

triaxial tests.
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Rate of Pore
Sph:re Lszgtizn Radjus bPressuFe
Generation
{m} °
" Bl pm Irn
1 0.0 0.0 55.0
2 -0.0006421 0.0006421 43.37736
3 -0.0008770 0.0008770 38.2448%9
4 =0.0011675 0.0011675 33.0952¢
5 -0.0015227 0.0015227 28.111354
6 -0.0019544 0.0019544 23.44749
7 -0,0024771 0.0024771 19,20351
8 -0.0031096 0.0031096 15. 44683
9 -0.0025968 0.0051542 12,20514
10 ~0.0014419 0.0081677 9.47457
11 -0.0006395 0.0112320 7.22698
12 0.0010294 0.0156636 5.41752
13 0.0022827 0.0203056 3.99169
14 0.0047507 0.0269504 2.89127
15 0.0067247 0.0340986 2.05902
16 0.0104657 0.,0442845 1.44189
17 0.0136211 0.0555129 0.99303
18 0.0194399 0.0715036 0.67270
19 0.0245783 0.0895362 0.44828
20 0.0338714 0.1152752 0.29392
21 0.0424176 0.1449294 0.18962
22 0.0576643 0.1874405 0.12040
23 0.0722062 0.2374262 0.07524
24 0.09790923 0.3095063 0.04628
25 0.1232521 0.3959293 0.02B03
26 0.1677816 0.5214342 0.01671
27 0.2130503 0.6747632 0.00981
28 0.2923348 0,8992079 0.00568
29 0.37525013 1.1784196 0.00322
30 0.5203211 1.5906991 0.00181
31 0.6761177 2.1126571 0.00100
32 0.948B651 2.8904875 0.00055%
33 1.2492010 3.8922077 0.00029
34 1.7760948 5.3994725 0.00016
35 2.3702142 7.3729410 0.00008
3e 3.4153561 10. 3719029 0.00004
37 4.6213929 14.3636664 0.00002
38 6.7513929 20.4918094 0.00001

Maximum Normalized Shear Induced Pore Pressure (Eq. 5.10}

(Aus)max

[+

vc

= .54

Table 5.1 Numerical values of the model parameters for normally
consclidated resedimented Boston Blue Clay.
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Figure 5.1 Pore pressure behavior during CK U triaxial test on normally
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Initial Location
of Surface g,

Translation of g

dB™ = pidu

where g fg'_"'l (E;- Bl(m)) - (E; _Bi(m),;
m
dp = --{-(Bf\/az-AC):
A= uf,
B = F'i(Bi(m)' Ei - dEi); and
cC = 2dsi(Ei-ﬁi)+¢Ei2

Translation of gq;, j=1,..., (m-1)

Figure 5.6 Surfaces translation.
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CHAPTER 6

PENETRATION PORE PRESSURES
IN

BOSTON BLUE CLAY

6.1 INTRODUCTION

The primary objective of this chapter is to estimate
the pore water pressures in the soil during cone penetration
because they are essential for the rational interpretation of
the consolidation that takes place after penetration stops.
Rellable estimates of penetration pore pressures are difficult
to achieve because of two major factors:

1) Uncertainties in the mathematical model simulating
s0il behavior and, in particular, the parameters
describing the in situ properties of a given
s0il. Chapters 4 and 53 present the proposed models
to predict stresses and pore pressures during un-
drained shearing of clays, provide the parameters
describing normally consolidated Boston Blue Clay
and show that the models lead to reasonable predic-
tions of selected laboratory test results, and:

2} Uncertainties in the method of analysis. Due to the
complexity of the mechanism of steady cone penetra-
tion, only approximate solutions can be obtained by

the strain path method described in Chapter 2.
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In view of these uncertainties and with the ultimate cbjec-

tive of interpreting the decay of pore pressures in Boston Blue

Clay (BBC}, the chapter treats the following subjects:

1)

2)

The pressuremeter test in a soft BBC are compared to
predictions of the proposed models in normally conso-
lidated BBC are compared to predictions of other models
and to experiemntal results of self-boring pressuremeter
tests. Since the analysis of pressuremeter tests in~
volve much fewer uncertainties than the more difficult
penetration process, these comparisons thus focus on the
adequacy of the soil models used and the importance of
the model parameters selected to perform field predic-
tions in BBC; and

cone penetration in the same BBC deposit. The strain
path method (Chapter 2) is used to predict stresses and
pore pressures during steady quasi-static penetration

of 18° and 60° conical tips in normally consolidated
BBC. For these predictions, strains during penetration
are approximated by the fields corresponding to a per-
fect fluid (Chapter 3) and soil hehavior is described by

the soil models in Chapters 4 and 6. The predicted cone
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resistance, dor and pore pressures at different loca-
tions on the cone are then compared to experimental
results and limitations of the strain path method

are discussed.

6.2 EXPANSION OF CYLINDRICAL CAVITIES AND THE

PRESSUREMETER TEST

This section presents a detailed treatment of the pres-
suremeter test to check the adequacy of: a) the proposed
soil behavior models, and; b) the parameters selected on the
basis of laboratory test results on resedimented Boston Blue
Clay in predicting the field performance in the soft BBC deposit

at the Saugus, Massachusetts site (Baligh et al., 1978, 1980).

Predictions are made for the idealized conditions
associated with the undrained expansion of a (vertical) cylin-

drical cavity from a finite radius, in an incompressible soil.

€.2.1 Proposed Solution

a) Stregs-Strain Curves

*
In order to predict the undrained expansion curve

*The expansion curve of a pressuremeter test relates
the internal cavity pressure (i.e., dr) to the dimensionless
volumetric expansion of the cavity, AV/V_; where AV = in-
crease in volume and V0 = initial volume of the cavity.
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of an idealized pressuremeter test in clay, the following are
required:

1) The initial horizontal stress:

= a -+ i .
%ho Ko Ovo u, before expansion, and;

g_ -0
2} The shear stress (—5————9) at various strain levels
2

when the soil is deformed under plane strain condi-

tions, i.e., dez = 0 and der = - dee

This will enable the determination of g, and 04 in the soil
during cavity expansion. However, the predicticon of pore
pressures requires that, in addition, the shear induced

pore pressures, the initial vertical stress ovo(= Gvo + uo)
and its variation,éka. during expansion be estimated. This
could be achieved by knowing

1) the shear induced pore pressure Aus(= Au - Aooct)and;

2) the deviatoric vertical stress sz[= o, - doct

_ 1 . .
Uoct = -5(0r + 04 + Uz)] at various strain levels

when the soil is sheared under plane strain condi-

tions (dez = 0).

Therefore, comprehensive predictions including
stresses and pore pressures during cavity expansion require
three stress-strain relationships:

a) (o, - Ue)/Z: b) s,, and; ¢) Aug.

The solid lines (labelled #1) in Fig. 6.1 present

these three relationships for normally consolidated BBC
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assuming normalized behavior with respect to the vertical
consolidation stress, Evc' The dependence of the normalized
shear stress (Ur —09)/26§c and the normalized vertical
deviatoric stress, sz/Evc on the radial strain sr(= -se)
are derived from the deviatoric stress model in Chapter 4
using the parameters in Table 4.1 derived from laboratory
tests on normally consolidated resedimented BBC. The rela-
tionship between the normalized shear induced pore pressure,
Aus/Evc, and ¢ _ is obtained form the pore pressure model of
Chapter 5 using the parameters in Table 5.1 also based on
laboratory tests on normally consolidated resedimented BBC.
For normally consolidated resedimented Boston Blue Clay,
Fig. 6.1 indicates that the soil model in Chapter 4 predicts
that:
1) The shear stress-strain relationship of the soil in
a pressuremeter mode is the same as in a direct simple
shear mode of shearing (Fig. 4.8). The peak undrained
shear strength, su/Evc [= (o0, - oe)/ZEvc at failure],
equals 0.26 at a radial strain e, = 4.4% before
significant strain softening takes place;
2) the "residual" undrained shear strength,
(su/Evc)residual equals 0.15 and is asymptotically
reached at "large" strains {(in excess of €. = 20%);
and;
3) the vertical deviatoric stress, Sz/a;c' initially
equal to 0.31 (corresponding to KO = 0.537), de-

creases during undrained shear to 0.13 at the peak
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undrained shear strength (er = 4,4%) and eventually
vanishes at large strains. When s, = 0, the vertical
stress, G, equals the octahedral stress, S JRA which

i.e., o_ =0 =

equals the average of o, and ¢ z oct

8

(o, + ce)/2.

r
'b) Predictions in normally consolidated Boston Blue Clay

Predictions of stresses and pore pressures during cy-
lindrical cavity expansion are determined numerically {Levadoux,
1980). Integration of the radial equilibrium equation begins at
a radius equal to 200 times the initial radius of the cavity
(r = ZOORO) where conditions at infinity are imposed: c, = E#o + ugi

and Op = Oy = KOE&O + ug. Using approximately 105 intervals (i.e.,
106 nodal points)}, the interval length equals lORO at r = 200R0 and
decreases with l/[r—Ro) to provide better resolution in zones of
hggh stress gradients near the cavity wall. At each nodal point,
the natural radial strain, €t is calculated and the corresponding
values of (ar - ce)/2, s, and &us are evaluated by means of the
curves labelled #1 in Fig. 6.1. The solution accuracy is checked
by increasing both the ocuter boundary radius and the number of
intervals. Parametric studies show a maximum discrepancy of 0.1%

between the computed stresses, and therefore, the grid described

above 1s considered adequate.
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Figure 6.2 presents predictions of radial and vertical
total stress and excess pore pressure distributions in the

soil (normally consolidated BBC) surrounding a pressuremeter

av

Vo

Results in Fig. 6.2 illustrate the progressive shearing of the

at different levels of expansion, (= 0.5, 2, 10 and 100%).

soil during a pressuremeter test. When the volumetric strain

of the cavity, %! s reaches high levels, stresses and pore
o

pressures approach values predicted for the expansion from

zero radius (Azzouz et al.,, 1980). The solid lines inFig. 6.3 show
the predicted radial stress, O s and excess pore pressure, Au,

at the cavity wall versus the volume increase of the cavity
AV

Vo )

6.2.2 Existing Solutions

Carter et al. (1978) employ the finite element technique
to analyze the expansion of a cylindrical cavity from an
initial radius Ro using the "modified Cam-Clay" model for soil
behavior (Roscoe and Burland, 1968; Schofield and Wroth, 1968).
Table 6.1 presents the model parameters selected by Carter
et al. to simulate a so0il with "properties similar to those of
Boston Blue Clay" (X, k, €ng’ M). Based on these parameters,
and the meodified Cam-Clay model described by Roscoe and Burland
(1968), Kavvadas (1979) computed: 1) the equivalent input
parameters obtained from more conventional ocedometer and tri-
axial tests [CR, RR, E(TC) and 9(TE)}, and; 2) the predictions

of Ko and S4 shown in the first column of Table 6.1 assuming

a Mohr-Coulomb failure envelope.
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The modified Cam-Clay model generally overpredicts Ko'
Accordingly, Carter et al. use a more realistic value of
Ko = 0.55 for normally consclidated BBC in their analyses.
The second coclumn in Table 6.1 presents the equivalent para-
meters and the predictions of the model used by Carter et al.
(1978) as determined by Kavvadas (1979) assuming an extended
Von. Mises failure envelope.

Comparing the soil parameters selected by Carter et al.
{1978) with measured values for normally consolidated BBC in
different laboratory tests (third column in Table 6.1) we
note that:

1) the compression ratio CR (or alternatively i) is

underestimated by 20 to 50%;

2) the recompression ratio is within the range of varia-
tion of experimental results and is therefore rea-
sonable;

3) the friction angle in triaxial compression, ¢ (TC)
is underestimated by 3° (i.e., M is low). This is
probably necessary in order to predict reasonable
strengths at large strains because the modified
Cam-Clay model cannot simulate the observed strain
softening behavior.

4) the friction angle in plane strain compression,

9 (PSC), is grossly overestimated by about 10°.The
Mohr-Coulomb criterion predicting ¢(PSC)

= $(TC) = 30° (see first column in Table 6.1)
therefore appears more reascnable than the
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extended Von Mises failure criterion.
5) the undrained shear strength for K, consolidated
triaxial compression and extension tests are identi-

cal and equal to 0.295 E&c' Although this value

only slightly underestimates the measured strength
in the compression mode (by 10%), it greatly over-
estimates that in the extension mode (by 127%);

6) the undrained shear strength for Ko-consolidated
plane strain test is independent of the loading
direction and equals 0-343vc. This provides a very
reasonable estimate of the measured strength in
plane strain compression test but much too high
estimated strengths for plane strain extension
(94% too high), direct simple shear (70% too high)
and pressuremeter loading mode (62% too high) tests.

The stress-strain curves pertinent to cylindrical cavity

expansion in normally consclidated BBC and predicted by Carter
et al. (1978)* are plotted in Fig. 6.1 (curves #2). For illus-
tration, the stress strain curves of an idealized elastic
(G/Evc = 25, v = 0.5) perfectly-plastic (su/Evc = 0.34)
material are also plotted in Fig. 6.1 (curves #3). A compari-

son of curves number 2 and 3 in Fig. 6.1 indicates the very

*

These curves are backfiqured from the predicted stress
distributions predicted by Carter et al. (1978 for the expan-
sion of a cylindrical cavity from zero radius.
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small difference in soil behavior (during expansion of a cy-

lindrical cavity) predicted by the modified Cam-Clay and

the very simplistic elastic perfectly-plastic models.

When compared to the proposed models (curves #1} the

modified Cam-Clay predicts:

1)

2)

3)

3)

higher value of su/Evc (0.34 vs. 0.26) and no strain

softening;
a softer response at small strain levels;
a faster decrease in s, with strains such that

s =0 [i.e., o, = %(cr + 09)] at about e_ = 3%,

z r

and;

smaller values of the shear induced pore pressure

Aus when €, > 2%.

Finally, the radial stress, d_r and the excess pore pres-

sure, Au, at the cavity wall predicted by Carter et al. are

shown by the dashed lines in Fig. 6.3. Compared to the pro-

posed model, the Cam-Clay predicts:

1)

2)

AV
a softer response {{(o_ - uo}/Evo vs. V;] at low

expansion levels caused by the lower stiffness at
small strains (see Fig. 6.1);

a very similar limiting pressure. The limiting pres-
sure reached at high %E is identical to the radial
stress at the wall of g cavity expanded from zero
radius. Azzouz et al., 1980, show that Cam-Clay and

the proposed model predict similar radial stresses at

the cavity wall because the compensating effects of
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i) the lower stiffness at small strain levels and

ii) the higher strength predicted by Cam-Clay, and;

3) lower excess pore pressures (approximately half when
%E = 10%) because of the lower predicted shear
o]

induced pore pressures (see Fig. 6.1).

In summary, the comparison of expansion curves predicted
by the‘proposed and Cam-Clay models in Fig. 6.3 clearly indi-
cate that even though the two models predict significantly
different_stress—strain curves in the pressuremeter mode of
deformation (Fig. 6.1) the resulting expansion curves exhibit
very little difference. This emphasizes the difficulty of
back figuring the "material stress~strain curve"” from ex-
perimental expansion curves: small experimental errors can
cause large errors in the back figured stress-strain curve.

6.2.3 Evaluation of Predictions

Ladd et al. (1979) present results of an extensgive pressure-
meter testing program conducted in Boston Blue Clay at Saugus,
Massachusetts. Results of two tests performed with the French
self-boring pressuremeter PAFSOR at depths 83.2 and 103.2
feet are plotted in Fig. 6.4. The expansion curves for the
two tests are very close even though one of the tests (closed
circles} was conducted after a full loading-unloading cycle

*
had been preformed. The expansion curve predicted by the

*
The loading-unloading cycle consisted of increasing

%! to 2.8% and then decreasing it back to 0.

o
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proposed model ({in 6.2.1) is represented by the solid line
in Fig. 6.4. The prediction considers a loading stage up

to %E = 16.2% followed by an unloading stage until

o
o.-u, = 0. The large discrepancy between predicted and mea-

r
sured pressuremeter results is obviocus. A fair agreement can be
reached if the shear resistance (Ur - ce)/2 in Fig. 6.1

is multiplied by a factor of 2.08 at all (er) strain levels.

A number of investigators have noted that the pres-
suremeter test overestimates the undrained shear strength of
clays compared to laboratory tests (Baguelin, et al., 1978;
Ladd et al., 1979%). Ladd et al. (1979) provide a number of
possible causes for this important problem resulting from dif-
ferences between the actual test and the idealized conditions
assumed in the theoretical analyses. These assumptions are:

(1) The surrounding soil is homogeneous and saturated.

(2) The stress-strain relationship for the soil is not

affected by variations in strain rate.

(3} Insertion of the probe is accomplished without
disturbing the soil.

(4) The test is performed under undrained conditions;
i.e., expansion occurs at a sufficiently rapid rate
to preclude any drainage.

{5) The length to diameter ratio of the cell is suf-
ficiently large to satisfy the plane strain condition

(1.e., no vertical strain).
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The poor aqreemeﬁt between the predicted and measured
expansion curves in Fig. 6.4 is probably due to a combination
of all these assumptions and possibly, the estimated stress
strain curve (Fig. 6.1) as well. However, the most signi-
ficant causes for discrepancies are believed to consist of
four categories: 1) non-cylindrical expansion; 2) partial
drainage; 3) rate effects, and; 4) slight overconsolidation
of the.élay.

1) Non-cylindrical expansion

For practical reasons, pPressuremefter tests are
conducted by expanding a cylinder of finite length whereas
predictions assume an infinite cylinder length. Guard cells
are sometimes used tominimize the undesirable end effects in
the test but, additional complications have limited their
application in practice. End effects can be crudely assessed
by assuming the experimental expansion curve to be bounded
by the expansion pressures for cylindrical and spherical
cavities. In an elastic perfectly-plastic material subjected
to an initial isotropic stress, Oy the incremental spherical
cavity pressure {above oo} is 33% higher than that of a
cylindrical cavity. For more realistic conditions (Ko initial
stresses, anisotropic soil), the spherical expansion pressure
is difficult to estimate because the problem becomes two
dimensional (i.e., strains and stresses do not exhibit spheri-

cal symmetry).

Lajier et al. (1975) investigate the influence of length
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to diameter ratio (L/d]* in laboratory pressuremeter tests
performed on dry sand. Results of 32 tests on samples pre-
pared at two relative densities (DR = 55 and 95%) and six
confining pressures indicate that: a) the L/d ratio has no
significant effect on the measurement of the pseudo-elastic
modulus, E, and; b) the L/d ratio has a marked effect on
measured limit pressure, Pp- Laier et al., (1975) propose
a correction curve to account for the finite pressuremeter
length. This curve which is independent of relative density
and overconsolidation ratio indicates that the limit pres-
sure, p;. obtained from a pressuremeter with L/d = 7.5 is
twice that predicted with L/d + « .** However, the validity of
these results for undrained cavity expansion in clay is doubt-
ful.

Recently, Ghionna et al., (1979), conducted in situ
pressuremeter tests in normally consolidated Portoe Tolle
clay for L/d ratios of 2 and 4. Their results show that the
undrained shear strength, Su’ back figured from tests withL/d=2
(as in PAFSOR tests) is approximately 50% higher than that

back figured with L/d = 4. However, Ladd et al.{1979)

*

Laier et al., utilized pressuremeters with two guard
cells with lengths equal to that of the measuring cell; i.e.,
L = 3% where & = measuring cell length.

xR
Typical L/d used in pressuremeter tests are 2 in

PAFSOR and 6 in CAMKOMETER equipments.
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present results of CAMKOMETER (L/d = 6) and PAFSOR (L/d = 2)
pressuremeter tests in Boston Blue Clay which show no notice-
able difference in limiting pressures. Furthermore, results
they obtain in the upper overconsoclidated BBC with the same
PAFSOR equipment (L/d = 2) show less discrepancy between the
extimated and measured strengths of the soil.

2) Partial Drainage

Pressuremeter tests are typically performed at a
strain rate e = 1.0%/min* and thus require 10 to 20 minutes
to perform. During expansion, pore pressures develop due to
the increase in isotropic compression and due to the shearing
of the soil. However, pore pressures also dissipate as soon as
gradients take place, i.e., immediately after expan-
sion starts. Dissipation of excess pore pressures repre-
sents partial drainage which tends to increase the shearing
resistance of soft clays. Faster dissipation takes place
when gradients are high (near the cavity wall) and when the
501l is pervious and stiff (high drained bulk modulus).

Clarke et al.(1979) present results of a regular
pPressuremeter in soft silty clay with pore pressure measure=-
ments (ét the cavity wall) followed by a holding test where
the volume of the cavity is held constant. Expansion required

approximately 14 minutes and stopped at ¢ = 10% when the

*
The strain e represents the ratio of the radial movement
of the pressuremeter membrane to its initial radius; e = AV

Yo
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excess pore pressure Au = 100 kN/m2. Fourteen minutes
later, Au decreased to 40 kN/m? . This clearly indicates
that significant pPore pressure dissipation must have al-
ready occurred at the end of the expansion stage.

The effects of pore pressure dissipation on the
expansion curve are difficult to assess because the increase
in strength and the rate of dissipation depend on the effec-
tive stresses during consolidation. Prediction ¢of these
effective stresses require very complicated soil models beyond
present capabilities.

3) Strain-Rate Effects

The stress-strain relationship for clays sheared
under undrained conditions is strain-rate dependent. Labora-
tory tests performed by Taylor (1943) on Boston Blue Clay and
reported by Bishop and Henkel (1962) show an 1ll% increase
in S4 when the strain rate is increased from 0.0083 %/min
(= 0¢.5%/hour)y to 0.5%/min, i.e., about 60 times.

Although comprehensive experimental data on strain-
rate effects are not available, it is generally believed that
an increase in strain rate leads to an increase in undrained
shear resistance of the soil at all strain level (Ladd
et al., 1977). However, results recently obtained by Hight
et al. (1979) show that the effects of strain-rate on the
shearing behavior of a sandy clay can exhibit opposite
trends, depending on the overconsolidation ratio (OCR) of

the material: at low OCR (< 4), the undrained shear
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resistance increases with increasing strain rates whereas,
at high OCR (> 4) the inverse is true. Nevertheless, in the
slightly overconsolidated BBC where the pPressuremeter tests
plotted in Fig. 6.4 were conducted, little doubt exists

that an increase in strain-rate causes an increase in the
undrained shear resistance.

The strain rate in the soil during a pressuremeter
test varies inversely with the square of the radial distance
to the cavity axis. Therefore, even if expansion takes place
at a constant rate, the  strain-rates in the soil vary signi-
ficantly. A soil element near the cavity wall will typically
be subjected to a strain-rate two orders of magnitude larger
than in Eﬁgﬁ triaxial tests (év = 0.5%/hour) but an element
at a radius 10 times larger will be subjected to the same
strain-rate.

Prevost (1976) proposed a simplified formula to
describe the undrained stress-strain-time behavior of clays
under axisymmetric loading conditions. He then showed that
strain rate effects can greatly influence the stress-strain
curve backfigured from the expansion curve of a pressuremeter
test. 1In particular, even if the clay is strain-hardening,
the stress-strain curve derived from constant strain-rate
Pressuremeter tests conducted at conventional testing rates
can exhibit strain-softening behavior because of strain rate
effects.

In summary, strain rate effects ¢complicate the
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interpretation of the expansion curve obtained from undrained
pressuremeter tests. However, in normally consolidated BBC,
they are not believed to have a dominant influence ©n the
exXpansion éurve (especially the limiting pressure).

4) Overconsclidation of the Clay

Because of availability of laboratory tests re-
sults on normally consolidated BBC, the predictions in Fig.
6.4 are obtained for an overconsolidation ratio (OCR) of
unity. Recent consolidation test results on high quality
samples (Ladd, et al., 1979) indicate that at depths 83.2
and 103.2 feet where the pressuremeter tests in Fig. 6.4 were
conducted, the overconsolidation ratio of the clay is in the
range: OCR = 1.25 - 1.35. Possible causes of overconsolida-
tion in the deep clay include erosion, lowering of water
table elevation, desiccation during clay deposition, or
aging, i.e., guasi-consolidation or precompression as defined
by Leonards and Altschaeffl (1964} and Bjerrum (1967), respec-
tively.

The increase in undrained shear strength due to
overconsolidation can be estimated from results of Eﬁ;ﬁ
direct simple shear tests on Boston Blue Clay given by Ladd
et al., 1977. At QCR = 1.3, Sy increases by 25% compared to

OCR = 1.
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6.2.4 Summary and Discussion of Pressuremeter Studies

Bearing in mind that the primary objective of this
chapter is to estimate pore pressures during cone penetration
in Boston Blue Clay (BBC), the pressuremeter studies presented
above were conducted in order to: 1) check the proposed
soil behavior models to be used in analyzing the more com-
plicated problem of cone penetration, and; 2) evaluate the
adequacy of the soil parameters obtained from laboratory
tests on normally consolidated BBC to predict field perfor-
mance.

Results of these studies indicate that:

1) Predictions of cylindrical cavity expansion curves

obtained by the propeosed model described in Chapter
4 are fairly close to predictions determined by
Carter et al., (1978) using the Cam-Clay model

(see Fig. 6.3) even though the relevant stress-
strain behavior of the two models differ signifi-
cantly (see upper diagram in Fig. 6.1). This is
due to the compensating effects of the lower moduli
at small strains and the higher strength exhibited
by the Cam~Clay as compared to the proposed model.

2) The proposed models in Chapter 4 and 5 predict much

higher pore pressures during cavity expansion than
the Cam-Clay model (see Fig. 6.3). This dif-

ference is basically due to the shear induced pore
Pressure Aus which is underestimated by Carter et

al., (see lower diagram in Fig. 6.1).
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3)

The proposed model* significantly underpredicts

the self-boring pressuremeter expansion pressures

performed at depths 83.2 and 103.2 ft when the model

parameters are determined from laboratory test
results on resedimented normally consolidated BBC.

Matching of field measurements can be obtained by

approximately doubling the estimated in situ

shearing resistance of the soil (e.g., increasing
su/6§0 from 0.264 to 0.549, Fig. 6.4). Consolida-
tion tests on high quality samples indicate that the
clay at that depth is slightly overconsolidated

(OCR = 1,3) which justifies a 25% increase in the

selected strength for field predictions. The re-

maining discrepancy (75% of the estimated strength)
might be explained by:

a) inadequacies of the predictive model based on

laboratory test results on normally consolidated

BBC. These inadequacies can be due to:

- the OCR of the clay is actually higher than
1.3 and hence the in situ strength is higher
than estimated. This would, however, leave
the field vane strengths inexplicably low.

- The in situ clay has a significantly different
behavior from the resedimented BBC used to

determine the model parameters. In particular,

*
To be used in the analysis of cone penetration.
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b)

the in situ clay has very high peak shear
strength and/or initial stiffness that

affect pressuremeter (and cone Penetration)
results but is not detected by the field

vane test. This proposition is supported by
the more sensitive behavior of the in situ clay
(as detected by consolidation tests and sug-
gested by the low salt concentration in the pore
water) but is hard to evaluate or even prove
satisfactorily.

Strain rate effects which tend to underestimate
the fileld strength measured by pressuremeter
(Or cone penetration) tests performed at

higher rates than laboratory tests.

differences between the actual pressuremeter

test and the idealized conditions assumed in theore=-

tical analyses. The most significant differences

in the BBC tests shown in Fig. 6.4 are believed to

be:

the limited length to diameter ratio (L/@ =2

in PAFSOR equipment used) which might introduce
important end effects (i.e., deviations from
idealized one dimensional cavity expansion
solutions) and hence increase the measured
expansion pressures,

Partial drainage associated with local
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consolidation and strengthening of the clay during

expansion.

6.3 STRAIN PATH PREDICTIONS DURING CONE PENETRATION

The strain path method described in Chapter 2 is now
applied to predict stresses and pore pressures during deep
steady cone penetration in normally consolidated Boston
Biue Clay.

6.3.1 Problem Geometry and Solution Technique

The problem of cone penetration in a cross-anisotropic
material exhibits axial-symmetry about the vertical axis of
the cone. It is, therefore, sufficient to determine soclu~
tions (stresses and pore pressures) in a meridional plane;
i.e., any vertical plane containing the vertical axis.

Figure 6.5 illustrates the geometry adopted to solve
the cone penetration problem by means of the strain path
method. Stresses and pore pressures are determined at
selected soil elements (15594 locations) as they move along
streamlines around the cone following the strain paths
described in Chapter 3. Streamlines are identified by their
radial location far ahead of the cone, r,- Analyses are per-
formed using 46 streamlines to cover the soil mass between
r, = 0.01 R and r, = 150 R in the radial direction and,
2z == 200 R and z = 15 R in the vertical direction (R is the
radius of the shaft). Chapter 3 describes the procedures
followed to determine the streamlines and the locations of

soil elements by integrating the assumed velocities. For a
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steady cone penetration velocity Vo' the time increment, At,
for integration equals 10(R/V0) at z = - 200 R, decreases
with 1/z and, reaches 0.1(R/Vo) at 2 2 - 10 R. Table 6.2
describes the streamlines (ro) and the boundary conditions
used in the analyses.

6.3.2 Deviatoric Stress Paths

Following the strain path imposed by cone penetration
(Chapter 3), the deviatoric stress path of each soil ele-
ment is computed by means of the soil model in Chapter 4.

The deviatoric stress space {51' S, 33} described in
Chapter 4 provides a convenient illustration of the type
and degree of shearing to which so0il elements are subjected.

Figure 6.6 shows the deviatoric stress path of an element
of normally consolidated BBC initially at a radial distance
r, = 25 R from the axis of a 60° cone. For comparison,
the deviatoric stress paths corresponding to the idealized
Direct Simple Shear (DSS) and Pressuremeter (PR} modes of
shearing* are also drawn in Fig. 6.6; they are located in the
planes 5, = 0 and, S, = 0, respectively. Figure 6.6
indicates that cone penetration subjects the soil to a very
complicated mode of shearing which consists of a combination
of Triaxial Compression (along S, = axis), DSS and PR modes.
However, the end point of the deviatoric stress path in

Fig. 6.6 (representing the state of stress of the element

*According to the model in Chapter 4.
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far behind the tip) 1is cleose to the deviatoric stress path
of the pressuremeter test.
Figures 6.7 and 6.8 show the projections in the
{Sl , S2 , Sa} space of the deviatoric stress paths of
two elements, initially located at r, = R and r, = 25 R,
due to penetration of 18° and 60° cones, respectively.
Comparing results in Figs. 6.7 and 6.8 we note that:
a) the deviatoric stress path of a soil element
at some distance from the cone axis (rg, = 25 R) is
virtually independent of the cone angle, and;
b) an element near the axis (ro = R} is initially
sheared in a triaxial compression mode. Its deviatoric
stress path then follows a trajectory that is signifi-
cantly dependent on the c¢one angle. However, the final
deviatoric stress state shows little effect of cone
angle.

6.3.3 Extent of Failure

Figure 6.9 presents the predicted contours of the octahe-

* %
dral shear stress , Toct’ and the extent of failure during

Toct is a good measure of the level of shearing in
soil (see Chapter 4).

xR
A soil element is said to have reached failure when
its associated stress point in the deviatoric stress space

lies on the failure surface, fp (see Chapter 4).
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steady penetration of 18° and 60° cones in normally consoli-
dated BBC. For comparison, predictions during expansion of
a cylindrical cavity (from zeroc radius) using the same
soil model are also shown at the top of Fig. 6.9. The
cavity expansion solution is extensively used to study the
shaft resistance of piles (e.g. Esrig et al., 1977) and
corrésponds to the limiting stresses at very large expansion
levels in a pressuremeter test under idealized conditions.
Figure 6.9 shows that:
1) cone penetration causes shearing over a much
larger volume of soil than cavity expansion in spite of
the strong similarities between the strain path of
soil elements in the two problems (see Figs. 3.9 and
3.10);
2) the size of the failure zone behind the cone is
relatively independent of the cone angle and is signi-
ficantly larger than predicted by cavity expansion
(6.5 R compared to 3.4 R);
3) the strain softening behavior incorporated in the
seil model causes a) the boundary of the failure zone
(represented by the dotted line) to pass through points
where Toet COntours change sharply in direction and,

b) the peak values of Toct 2F€ located at some distance
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from the cone or the shaft behind it, and;

4) the extent of failure ahead of the blunt cone tip

(where the soil is subjected to a triaxial compression

mode Of shearing) is larger than ahead of the sharp

tip (7.1 R vs. 4.8 R). However, the results of 18°
and 60° cones exhibit strong similarities outside the
failure zone, especially if the origin of z-coor-
dinate is located at mid-height of the cone instead

of the tip.

This is illustrated by Fig. 6.10 showing the contours
of the shear stress Tps obtained for 18° and 60° cone
angles. The dashed line represents the contours of
Yoct = 2% and approximately defines two zones: an inner
zone where so0il elements are subjected to intense shearing
and an outer zone where shearing is more moderate., We
note in Fig. 6.10 that: a) outside the dashed line,
the cone angle has little effect on the results; b) ahead
of the cone, negative** shearing takes place because
s0l1l elements near the axis (small r) are pushed down-
wards with respect to the outer elements (large r). On the

other hand, behind the cone tip, shearing is reversed bhe-

cause conservation of volume requires elements near the

* -1 2 N 2 a2 2 1%
Toct = 3 [(ep = €p)° + (eg =~ €07 + (e, - €,)" + el ,l
* &

See sign convention in Fig. 6.10.
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cone to be pushed upwards with resnect to the outer
elements, and; ¢) the shear stress Tygp vanishes behind the
cone, This is a reminder that the strain rates used in
determining the deviatoric stresses correspond to an

ideal fluid for which ;rz vanishes along the shaft

(frictionless boundary).

6.3.4 Isotropic (Octahedral) Total Stresses

The deviatoric stresses presented above were directly
obtained by means of the deviatoric soil model described
in Chapter 4 for the estimated strain paths corresponding
to an ideal fluid (Chapter 3). Since the soil treated
herein is incompressible, octahedral ({isotropic) stresses,
Ooct’ cannot be estimated from soil behavior models but
must be determined from equilibrium considerations. Values

of ¢ are necessary to estimate the pore pressures during

oct
cone penetration.

In the axisymmetric cone penetration problems, equi-
librium in the radial (r) and vertical (z) directions can

be written in the form (see Appendix 2):

o0 as as 5 -8

oct - . - r _ rz L g

ar fr(r'z}i fr{rfz) ar az r (5.1.&)
a0 9s s s

oct _ . e -tz __z __rz

32 fz(rlz}l fz{raz) = 3T 3z " (G.I.b)

The functions fr(r,z) and fz(r,z} are known once the
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deviatoric stresses are determined. Hence, integration of
Egq. 6,1.a {or Egq. 6,1.b) satisfies equilibrium in the
r-direction {(or z=direction) and Oyct €N be determined for
every soil element. However, the value of Ioct depends

on the integration path unless

5 {f.(r,2))} = &= {f_(r,2)) (6.2)

This condition can only be satisfied if the strain paths
are compatible with the model used to determine the
deviatoric stresses; i.e., the strains are determined

from "exact" solutions (given a so0il model) rather than the
approximate strains corresponding to an ideal fluid.

a} Influence of Integration Path

In order to assess the effect of integration paths on
Toct and thus evaluate the approximations caused by the
simplified strain paths, the equilibrium egquations were in-
tegrated along two paths described in detail in Appendix E.
These paths are believed to provide reasonable bounds on

o) . In the first path, integration is carried out along

oct
*

isochronic lines which are predominantly horizontal (i.e.,

close to the r-direction). In the second path, integration

is carried out along streamlines which are predominantly

vertical (i.e., close to the z-direction).

Isochronic lines are the (initially) horizontal lines
after deformation caused by cone penetration (see Figs.
3.3 and 3.4).
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Figures 6.11 and €.12 show the octahedral (isotropic)
stresses, Ooct’ obtained by means of the two integration
paths for different soil elements (initially located at
various radii, ro/R, from the axis) due to penetration by
18° and 60° cOnes, respectively. Results in Figs. 6.11
and 6.12 indicate that:

" 1) The two integration paths give the same general
trends at most locations ahead Of the cone base

{(or z < ~5R,say}. In this zone, streamline integra-

tion (dotted lines) overpredicts (O ar = uo)/Evo by 15

to 60% for the sharp 18° cone and 15 to 35% for the

blunt 60° cone;

2) behind the cone base (or z > 3R, say), stream-

line integration predicts unrealistic drops in Yoot
at some radii (ro = 0.1R and ry, = 5R in Figs. 6.11
and 6,12}, and;

3) using the same integration path, the cone angle
has little effect on Yoct in the soil located at some
distance from the cone (ro > 5R, say), provided the
origin of coordinates in taken at midheight of the
twO cones.

b) Choice of an Integration Path

The results in Figs. 6.11 and 6.12 clearly show that
the approximations in the strain path method lead to de-
viatoric stresses that, upon integration, yield an isotro-

pic stress field significantly dependent upon the
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integration path. It is thus appropriate to identify the
deviatoric stress mostly responsible for the path dependency
of integration and, select an integration path minimizing
its effects.

The shearing strains corresponding to an ideal fluid
(and used in these predictions) are believed to generally

overestimate the shear strains, during cone penetra-

Yyz?
tion in clay. This is because of the lack of shearing
resistance in a perfect fluid. Furthermore, in the devia-
toric model, the predicted variations in shearing stresses,
T _,¢ are controlled by the variations in Yz (or, more
precisely in ;rz) and can, therefore, be unrealistic.
This can be seen by the contours of Ty in Fig. €.10.
Consequently, the meridional shear stresses, L (especially
behind the cone base) ,are believed to be the main cause
for the integration path dependency observed in Figs. 6.11
and 6.12.
Furthermore, an examination of the equilibrium egua-
tions (Egs. 6.l.a and 6.1.b) and Fig. 6.10 indicates that:
a) when integration is conducted along isochronic

lines little variation in the z-coordinate takes

place (except at small distances from the cone axis),

as

Biz is generally small (except in the immediate
vicinity of the tip) and hence the effect of
Tep (5 srz) on the octahedral stresses, Ooct ! 18 small
and;
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b) when integration is conducted along streamlines,

(07 is dominated by Trg because (1) streamlines are

oct
nearly vertical and hence Uoct is determined (except

at elevations close to that of the tip), principally

by fz, Eq. 6.1.b and (2), the function fz depends on both
3s

2
g and --—E.._
rz ar

that, according to Fig. 6.10, can be large.
In summary, predictions of the meridional shear

stresses, Tz based on strains c0rresponding to an ideal

fluid can involve significant errors and are believed to

be the main cause for the path dependency of the octahedral

normal total stress, ¢ . However, when integration is

oct
carried out along isochronic lines (which are predominantly
horizontal) the effect of T, on Toct is minimized and hence
more reliable estimates of oot aT€ obtained.

Accordingly, predictions of total stresses and pore
pressures presented subsequently are determined by means
of isochronic integration.

6.3.5 Total Stresses

Based on the isochronic integration path, the pPredicted
contours of radial and vertical total stresses, o, and
G during steady cone penetration in normally conscolidated
BBC are given in Figs. 6.13 and 6.14, respectively. The

dashed line represents the contour of = 2%, For com-

Yoct
parison, the results obtained for the expansion of a cylin-
drical cavity (from zero radius) using the same so0il model

are shown in the upper diagrams. Figures 6.13 and 6.14
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indicate that:
1 outside the dashed line, which has a typical
size of 4.5R, the cone angle has little effect on the
results. 1In this outer zone; (a) soil elements lo-
cated near the axis ahead of the cone are subjected
to an increase in both o, and oL (with Aoz > aor)
following a triaxial compression mode of shearing
(Ao = Aoe}, and; (b) far behind the cone, a steady
condition is approached where O, and o, are slightly
higher than predicted by the cavity expansion solution;
2) inside the dashed line the effect of cone angle
is more pronounced. In this inner zone: (a} soil
elements located close to the 60° cone face are sub-
jected to higher values of o, and o, than the 18°
cone, and; b) far behind the cone base and near the

shaft, g, and o, are smaller than predicted by cavity

expansion.

The variations in total stresses, Opr 99 and o, along a
streamline initially located at a radial distance ry, = 0.01R
(i.e., practically on the centerline), are shown in Figs.
6.15 and 6.16 for 18° and 60° cones, respectively. In the
outer zone, the effect of cone angle is negligible but a
significant gradual increase in all three stresses takes
place as the cone is approached. 1In the inner zone, the
stresses go through three distinct phases:

1) Ahead of the tip, stresses increase sharply but
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remain in the same order, o, >(crr = 09).

.2) Along the cone face, the stresses are more or
less uniform and: (a) change their relative order to
become o, > 0, > 0y as predicted by cavity expansion;
(b) the difference between the stresses is small, i.e.,
the state of stress is close to isotropic with little

‘deviatoric component and; (¢) the magnitude of the
stresses is higher than predicted by cavity expan-
sion; and depends on the cone angle; stresses are
higher for the blunt (60°) than for the sharp (18°)
cone,

3) Behind the cone base, the stresses decrease
sharply within a distance of 5R and reverse their rela-
tive order to become o, > Og > Op- A steady state
appears to be approached 10 to 15R behind the cone

base where the stresses are less than those predicted

for the expansion of a cylindrical cavity.

The dashed lines {(curves ) in Figs. 6.15 and 6.16
represent the variation of the octahedral shear stress,
Toct’ for a soil element near the axis. As the cone tip
is approached, the shearing strains become very large and
the shearing resistance of the soil drops sharply to its

residual strength (i.e., minimum strength) at about 0.S5R

ahead of the cone tip.
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6.3.6 Pore Pressures

The pore pressures generated in the clay due to steady
cone penetratioﬁ, Au,are the sum of two components:
(a) the increase in octahedral normal total stress, Aooct'
and; (b} the shear induced pore pressure, &us.

Figure 6.17 presents the predicted contours of Aus

for steady penetration of 18° and 60° cones based on the

model in Chapter 5. These contours show that:

1) Aus is relatively small (compared to the changes
in isotropic stress Adoct)' and;
2) behind the cone bhase, predictions of Aus are

very close to cylindrical cavity solutions (upper
diagram in Fig. 6.,17) even at small distances from the
shaft. The cone angle has some effect on Aus in the
immediate vicinity of the shaft (about 2 radii).
Figure 6.18 shows the predicted contours of the
excess pore pressure, Au (= Aus + Aooct)' during steady
penetraticn of 18° and 60° cones in normally consolidated
BBC. The results in Fig. 6.18 show that:
1) The excess pore pressures, Au, are significant
even at large distances from the cone.
2) In the outer zone (Yoct < 2%), we note that:
a) the cone angle has little effect on Au, and;
b) far behind the cone base, Au is higher than
predicted by the cavity expansion solution.

3 In the inner 2zoOne (Yoct > 2%) we note that:
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a) in the vicinity of the cone face, the con-
tours are nearly spherical (especially for
the 60° cone) and are affected by the cone
angle. The 60° cone gives higher values of
Au (au/Evo slightly higher than 2), and;

b} behind the cone base, Au decreases sharply
and reaches values that are not strongly af-
fected by the cone angle and are lower than
predicted by cavity expansion.

6.3.7 Effective Stresses and Hydraulic Fracturing

Hydrofracture takes place in a soil when the pore
pressures become large enough to cause negative effective
stresses. Cracking can then take place and hence increase
the effective permeability of the soil. Hydrofracture due
to cone penetration must therefore be considered if the
pore pressure decay (after penetration stops) is to be used
in estimating the consolidation properties of the soil.

The effective stresses, o,. in any soil element can

1]
be written as:

- _ = _ ;
933 Gij + Aoij Au Gij (6.3)

Using Eq. 6.3 requires separate estimates of Acij and Au
which are relatively large compared to Eij' Small
errors in these guantities can lead to negative effective

stresses and thus predict that hydrofracture takes place

{Massarch & Broms, 1977). However, Fq. 6.3 canalso be



written as:

oij = gij + ﬂsij - Aus Gij {(6.4)
in which
Asij = Acij - Agoct éij

This equation avoids the aforementioned problem and
in fact predicts the effective stresses Quring cone penetra-

tion without requiring the determination of ¢ (which

oct
depends on the integration path; see Section 6.3.4).

The predicted contours of radial and circumferential
effective stresses, Er and Ee are presented in Figs. 6.19
and 6.20, respectively. We note in these figures that Er
and 66 remain positive everywhere in the field. The radial
effective stress, Er, is, however, greatly reduced along
the cone shaft. This implies that measurements of pore
pressures and lateral stresses along the shaft ¢of driven
pile whould yield very close values. On the other hand,

the circumferential effective stresses, o vary very

e r

little (0.25 Ev < g. <« 0.50 EVO in most of the field,

o} 8

Fig., 6.20).

In order to investigate hydrofracture, it is necessary
to evaluate the minor principal effective stress, Es'
in the soil. Results indicate that 53 reaches a minimum
value of 0.15 and 0.12 Evo along the shaft and at approxi-
mately 8R behind the base of 18° and 60° cones, respectively.
This means that the strain path method predicts (with a sub-~

stantial safety margin) no hydrofracture during cone pene-

tration (or pile driving) in normally consolidated BRBC.
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6.4 COMPARISON WITH FIELD MEASUREMENTS

In this section, the predicted normalized excess pore
pressures {needed for linear consolidation studies) are checked
by means of field measurements. In addition, predictions of
cone resistance, q and pore pressures, u, are compared to in

situ test results obtained in the BBC deposit at Saugus, Mass.

6.4.1 Field Measurements

Figure 6.21 shows the soil profile at Saugus, Mass. as de-
termined by conventional laboratory tests. The clay between
depths 25 and 75 feet is clearly overconsolidated with an OCR
decreasing from 7 to 1.4. Below 75 ft the clay is reasonably
uniform with an OCR = 1.3 +0,1,

Figure 6.22 shows the undrained shear strength of the clay
obtained by different methods. Because of sample disturbance,
results of unconfined (U) and unconsolidated-undrained (UU)
tests exhibit significant scatter (s, = 0.4 +0.2 kg/cmz),
without a clear trend with depnth. The peak SHANSEP strengths
are based on results of laboratory tests on resedimented BBC
and on the OCR profile in Fig. 6.21. The field strength for
embankment stability was backfiqured from an induced embankment
failure extending to a depth of 75 ft using the SHANSEP pro-
files (Azzouz and Baligh, 1978). The field vane strength from

four holes exhibits less scatter and shows a variation
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with depth which is consistent with the OCR profile (and
hence the SHANSEP strengths and the field strength pro-
files).

Baligh et al. {1978) present extensive cone penetra-
tion results at the same site,including 9. and u measure-
ments for cones with different geometries. Figure 6.23
éhows typical profiles of 9. for a 60° cone and u at the
tip of an 18° cone. This figure combines the results
of 3 tests for both 9. and u and illustrates the good
repeatability of the measurements. Figures 6.24 and 6 .25
present the penetration pore pressures obtained at dif-
ferent locations along 18° and 60° cones, respectively,
after eliminating the scatter in the results caused by the
natural variability of the soil.

Figure 6.26 compares penetration pore pressures mea-
sured on the shaft behind an 18° cone with those mea-
sured behind enlarged 18° and 60° cones. Results in Fig.
6.26 indicate that:

1) after a distance of about 5 diameters behind the

cone base, the pore pressures on the shaft of the re-

gular (unenlarged) 18° cone appear to reach a constant

value (u)sh, Fig. 6.26.a;

2) the pore pressures behind the enlarged 18° cone,

Fig. 6.26.b, are practically egual to (u)sh below a

depth of 60 ft and slightly less in the upper stiff

deposit, and;
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3) the pore pressures behind the enlarged 60° cone,

Fig. 6.26.c, are slightly higher than the enlarged 18°
cone and closer to (u)sh.
6.4.2 Normalized Excess Pore Pressure Distributions

The primary objective of this report is to estimate
pore pressures in the soil during cone penetration as they
represent the initial conditions for the consolidation that
takes place after penetration stops.

Linear consolidation analyses regure estimates
of the relative (or normalized) distribution of excess
pore pressure, Au(= u = uo), in the so0il rather than the
absolute values of Au which are more difficult to predict.
This section compares the predicted and measured excess
pore pressure fields in the s0il when normalized with res-—
pect to the excess pore pressure on the shaft, (Au}sh, at
a sufficiently large distance behind the cone
[(ﬁU)Sh = (u)Sh - u, 1.

Figure 6.26a presents measured values of (u)s behind

h
an unenlarged 18° cone. Unfortunately, similar measure-
ments behind a 60° cone are not available. However,
Figs. 6.26b and ¢ strongly suggest that (u)Sh is not very
sensitive to the cone angle. Therefore, in order to

normalize experimental results, behind the 60° cones

(u)sh
were assumed to be the same as the 18° cone in Fig. 6.26a.

This assumption tends to underestimate (u)sh behind 60° cones.

The solid lines in Fig. 6.27 show predictions of
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Au/(ﬂu)sh in a soil element initially located very close

to the axis of 18° and 60° cones according to the strain
path method and based on properties of resedimented normally
consolidated BBC (OCR =-1). Values of Au are the same as
in Fig. 6.18 and the excess pore pressure on the shaft,
{ﬁu)sh is taken as the predicted value of Au at a distance
14R behind the cone tips. Figure 6.27 also shows the mea-
sured values of Au/(Au)Sh at the Saugus site obtained at
depths 45 £+ 5, 60 £+ 5 and 85 + 5 ft which correspond to
approximate overconsolidation ratios OCR = 3 + 0.4,

2 + 0.3 and 1.3 + 0.1, respectively. Values of Au are
directly obtained from the results in Figs. 6.24 and 6.25.
The uncertainty band of experimental results represents

the range of Au/{Au)Sh within a 10 ft layver centered at the
required depth after neglecting “small scale" variability
in Au and (Au)sh. A more accurate band of uncertainty in
Au/{Au)sh should include all the scatter in Au and (au)sh
due to inherent soil variability. Figure 6.23 presents the
scatter in u due to soil varilability when the porous

stone is located at the tip of an 18° probe, If included
in Fig. 6.27, this scatter would be represented by a band
in the Au/(Au)sh plot equal to + 0.31, 0.25 and 0.18,

about the same mean, at depths 45, 60 and 85 ft, respec-

*
tively.

»*
Assuming that {ﬂu)sh has no scatter.
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Fiqure 6.27 indicates that:

1) the measured values of the normalized excess pore
pressure Au/(Au)Sh vary very slightly with overcon-
solidation ratio (1.3 < OCR < 3), and;

2) the predicted distributions of Au/(Au)Sh based
On properties of resedimented normally consolidated
BBC (OCR = 1) are very close to the measurements. This
important result means that consolidation analyses
based on the predicted distributions of Au/(ﬁu)sh can
be used to interpret dissipation records obtained in
the BBC deposit at Saugus, Mass., below a depth of

45 ft (OCR <« 3).

Attempts to extend this result to the upper stiff
deposit above a depth of 40 ft was not successful because
of the large scatter in measurements of u (due to inherent
soil variability, see Fig. 6.23) as compared to the small
average values of u in this layer. When Au (= u - uo)
and(Au)sh are small, scatter makes the measured values Of
Au/(Au)Sh quite unreliable.

In order to check the predicted penetration pore pres-
sures at some distance from the cone, measurements of u in the
soil around the cone are required. Such measurements
are very difficult to obtain in situ because of: a) the
interference between the measuring device and soil deforma-

tions, and; b) the uncertainties in alignments which can
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introduce significant errors in the estimated radial dis-

tances. Attempts to perform such measurements in BBC by

means of two piezometers were unsuccessful, Baligh & Leva-

doux, 1980. Therefore, using the analogy between cone penetration and
pile installation, predictions of ﬁu/(Au)sh in the so0ll are
compared with measurements conducted around a cylindrical

pile (21.9 cm in diameter) jacked into Champlain Clay

(Roy et al,, 1979)}.

The measurements are quite consistent and reliable
and, because ¢©f the small size of the piezometers (Geonor
M- 600) compared to the pile,* are hopefully less sensitive
to the errors mentioned above (piezometer-soil interaction
and alignment). Furthermore, the excess pore pressure
measured along the shaft of the pile (Au) = 23;0 is very
close to that measured in BBC behind piezometers
(= 2.1 Evo, see Fig. 6.26).

Figure 6.28 compares the predicted radial distribu-
tion of excess pore pressure at a sufficiently large dis-
tance (r =14R) behind 18° and 60° cones during penetration
in normally consolidated BBC to measurements in Champlain
Clay. Results in Fig. 6.28 show that:

1) the predicted radial distributions of pore pres-

sures behind 18° and 60° are almost identicalj;

2) the agreement between predictions and measurements

is remarkable, in view of (a} the approximations in the

*the pile diameter is about 6.5 times that of the
piezometer.
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strain path method, (b) the uncertainties in the field
measurements (in particular at small radii) and especially,
(c) the difference in behavior between BBC (OCR = 1) used
for predictions and the Champlain Clay (OCR = 2) where
measurements are made.

Results in Fig. 6.28 are very encouraging since they
suggest that the normalized excess pore pressure distribu-
tioﬁ during pile driving is not very sensitive to soil
type or stress history (OCR). This is further supported by
the results in Fig. 6.29 showing that measurements in Cham-
plain Clay are not unique but are similar to other clays
of different types and stress histories. The properties
of the different clays are described in more detail in

Table 6.3

In summary, the two-dimensional {(axisymmetric) nor-
malized excess pore pressure distribution around cones
(or piles) predicted by the strain path method compares
very well with field measurements (a) at different loca-
tions along the cone for a wide range of overconsolidation
ratios (1.3 < OCR < 3) and (b) in the radial direction far
behind the tip. These distributions appear, therefore, suf-
ficiently accurate to perform dissipation analyses which
will hopefully be applicable for a wide variety of clays

with OCR < 3.
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6.4.3 Cone Resistance and Pore Pressures

a) Cone Resistance

The cone resistance, 9. is the force per unit area
required to push the cone and i1s related to the total

stresses (tractions) acting on the cone face by the expres-

sion:
q=l f(s cos § + s_sin §) da (6.5)
C 2 t n :
TR
2
where Sh and S, are the normal and tangential components

of the surface traction vector on the cone face; 2§ is
the cone angle; A is the surface area of the cone

(A = 7 R?/sin &) and; R is tﬁe radius of the cone base
(and of the shaft).

In the strain path solutions presented earlier, the
strain rates were determined assuming the s0il to behave
as an ideal fluid with no shearing resistance. This,
together with the so0il model (described in Chapter 4)
obeying the normality rule of plasticity, leads to negli-
gible values of S, On the cone face.* Therefore, predic-
tions of 9. obtained by integrating the total stresses
derived from the strain path method represent "smooth”

cone solutions. In order to introduce the effects of shear

stresses on the cone face and predict d. for "rough" cones,

*
and along the shaft behind; see Fig. 6.10.
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we note that when the surface tractions Se and s, are
uniform on the cone face and equal to T and o, respec-

tively, Eq. 6.5 becomes:

q. = —— + g (6.6)

¢ tan §

and hence the shearing stresses on the cone face in-
creases the cone resistance by t/tan §. Predictions of
d. for "smooth™ and "rough" cones can, therefore, be es-
timated as follows:

1. Smooth cone:

Integrate the total normal stress on the cone
face obtained from the strain path solutions
(see Figs. 6.13 and 6.14).

2. Rough cone:

= T
(qc)rough = (90) gmooth * (6.7)
tan §
where T = average shear stress acting on the

cone face

14

residual undrained shear strength

of the so0il

R

0.15 E@o for the model in Chapter 4.

Rigorously speaking, the predicted stress fields
apply to normally consolidated resedimented Boston Blue
Clay (Table 4.1) and hence 9. (and u) can only be estimated
for this type of clay. Unfortunately, the BBC at the

Saugus site, Fig. 6.21, is nowhere normally consolidated.
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Between depths 25 and 75 ft, the OCR decreases from 7 to
1.3 and below 75 ft OCR = 1.3. Consequently, compari-
sons with measurements at the Saugus site require extra-
polation of q, {(and u) predictions to different values
of OCR. An approximate method is described below.

Using the classical bearing capacity expression for
deep foundations (Terzaghi, 1943; Skempton, 1951) we write

the cone resistance:

9e = Nc Su t %o (6.8)
Noting that 90 ~ %vo + u, and setting o = Su/dvo' Eg. 6.8
becomes:
q. - u
A= = aN_ + 1 (6-9)
%vo

Table 6.4 presents values of a obtained from labora-
tory tests on resedimented normally consolidated BBC and
indicates that, depending on the mode of consolidation
and undrained shearing, Gyc can vary between 0.155 and
0.34. This illustrates the difficulty of defining and
estimating a cone factor Nc, Eg. 6.9. However, the exis-
tence of an N, factor which is independent of the overcon-

solidation * of the clay allows interesting extrapolations

*
If Nc is significantly dependent on OCR, the use-
fulness of "'Eq. 6.8 becomes highly gquestionable.
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*
to various OCR to be made. Assuming Nc to be independent

of OCR, Eq. 6.9 enables estimates of the normalized cone

q. - u
resistance in the overconsolidated clays (-Eér——g) to
| de = Uy Ovo OC
be made from the predicted values (———=)
%0 NC
g, —u V] q. - u
0
( c_ ). =€ [ (—=—22) - 1] + 1 (6.10)
%o oC Cne L NC

Table 6.4 presents values of aoc/aNC for BBC at different
OCR's. For OCR < 4 the effect of the mode of shearing on
aOC/QNC is not very significant** and values are close to
the approximate expression proposed by Ladd et al., (1977)

* &k &
based on results of direct simple shear tests on clays

oc

a

= (OCR)°-® (6.11)
NC

Using the ratios aOC/o:NC obtained from direct simple
shear tests as a reasonable average for different modes of
shearing, Table 6.5 presents predictions of (q, - uo)/EQO
for "smooth" and "rough” cones (26 = 18° and 60°) at dif-
ferent OCR (= 1, 1.3, 2, and 3) according to Eqs. 6.7 and

6.10. Figure 6.30 compares predictions with the estimated

*Baligh and Vivatrat (1979) show that the variation of
No for a 60° cone between depths 40 and 100 ft (OCR = 3.5
to 1,3} at the Saugus site using the "field" strength is
relatively small (N_ = 10 + 2). The "field" strength is
backfigured from an~embankment failure together with the

SHANSEP strength profile.
**As compared to its effect on Gucr Say.

* %%
Including BBC.
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range of measured values reported by Baligh et al. (1978).
The estimated ranges (dashed areas in Fig. €.30) are
obtained by drawing the envelopes representing the
average + one standard deviation* of the measured values
for 18°, 30° and 60° cones over a 10 ft layer. Results in
Fig. 6.30 indicate that:

1} the "smooth” cone solutions give reasonable

estimates of d. for the 60° cone but are too low for

the 18° cone. More importantly, "smooth cone” pre-

dictions contradict measurement trends regarding the

effect of cone angle, and;

2) the "rough®™ cone solutions give reasonable

estimates of 95 for 18°® and 60° cones at low OCR

but underpredict qc(18°) and overpredict qc(60°)

at OCR = 3 + 0.4, This suggests that "rough" cone

solutions are more realistic and that extrapolations

N
to high OCR's is not possible.

The predicted resistance of 18° and 60° "rough" cones
is plotted versus depth in Fig. 6.30. This figqure pro-
vides a better assessment of predictions by showing the

scatter in measurements. The overall agreement

*
Due to scatter caused by inherent soil variability.

%* W
Most probably due to the assumptions that N_ is

independent of OCR and/or that friction on the con& face
is also independent of OCR.
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between predictions and measurements is gocd. In particu-
lar, predicted and measured values are virtually iden-
tical at depths 70 + 10 and 115 + 10 feet. The changes

in [qc(18°) = q,(60°)] below a depth of 75 feet, where the
clay is generally classified as "uniform” (OCR = 1.3 + 0.1),
illustrate the sensitivity of q. to local soil variations
which cannot be accounted for by predictions.

b) Pore pressures

Section 6.4.2 shows that the distribution of the
normalized pore pressures, Au/(Au)Sh along the cone and
the shaft behind it are well predicted by the strain path
solutions (Fig. 6.27). It is therefore, sufficient to
compare predicted and measured excess pore pressure along
the shaft,” (Au)_, .

Solutions obtained for resedimented normally consoli-
dated BBC (OCR = 1) yield (Au)sh/Evo = 1.0 + 0,05 for both
18° and 60° cones. On the other hand, field measurements
in the soft clay (below denth 75', OCR = 1.3 + 0.1} give
(Au)sh/Evo = 2.0+ 0.1 i.e., about 100% higher than pre-
dicted. Interestingly, pressuremeter results discussed
earlier (Sec. 6.2.4) were also underpredicted by the same
s0il model by roughly the same degree. Had the in situ

OCR of the clay been used (OCR = 1.3), prediction of Aush

*
Or at any other location on the cone.
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would increase by about 25%. The remaining discrepancy
can be due to: 1) the difference in behavior between re-
sedimented BBC and the in situ clay. This includes the
shear strength and the undrained stiffness (especially)
at low strains and, 2} strain rate effects dis-

cussed earlier in Sec. 6 .2.3. However, it is important to
note that changes in soil parametergs to improve predictions
of pore pressures will increase the predicted cone resis-
tance, P and hence upset the good predictions in Figs.
6.30 and 6.31 by overpredicting 9, in the soft deposit
below 75 £t (OCR = 1.3), esvecially for the 60° cone.

A more complete analysis of pore pressures during
penetration in the stiff upper deposit (OCR > 2) is ex-
pected to encounter less difficulty in simultaneously pre-
dicting cone resistance and pore pressure measurements.

In this upper deposit, the pore pressures are not as
high compared to the cone resistance [see u(tip) in

Figs. 6.25 and g_ in Fig. 6.23 for 60° cones].
c

6.5 SUMMARY AND CONCLUSIONS

This chapter consists of 3 parts:

In Part 1 pressuremeter studies are conducted to
check the soil behavior models (Chapters 4 and 5) and the
adequacy of soll parameters estimated from laboratory tests
on resedimented BBC. The predicted expansion curves are
close to Cam-Clay results (determined by others for BBC)

even though the stress-strain curves of the two models
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differ significantly. This is due to the compensating
effects of the shear modulus at low strains and the shear
strength of the clay.

Comparison of the predicted expansion curves with
pressuremeter tests results in the soft BBC {(depths 83.2
and 103.2 ft at the Saugus site) show that matching of
field measurements requires doubling of the estimated
shear resistance of the so0il. Part of this discrepancy
(about 25%) is due to overconsolidaticon of the in situ
clay (OCR = 1.3) neglected in pPredictions. The remaining
discrepancy (75%) can be due to: 1) simplifications made in
theoretical analyses and/or the formulation of the soil
model (e.g., end effects, partial drainage, strain rate
effects,...etc.) and/or;2) inadequacies in soil model para-
meters as described by the shear strength and/or shear
modulus at small strain levels. The latter is very dif-
ficult to estimate reliably from conventional laboratory
tests and is believed to represent a major reason for
underpredicting field measurements (Azzouz et al., 1980).

In Part 2 of this chapter, the same soil model, with
appropriate parameters for normally consolidated BBC, is
incorporated in the strain path method (Chapter 2) to pre-

dict the normalized excess pore pressures in the so0il

during deep steady penetration of 18° and 60° cones. In spite

of uncertainties resulting from the simplified nature of strain path
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resulting from the simplified nature of strain path
analyses, comparisons of predictions with extensive field
measurements of pore pressures at different locations on
the cone and the shaft behind it shows excellent agreement
for both the 18° and 60° cones and, surprisingly, in the
overconsolidated BBC as well (OCR < 3). Further comparisons
with pore pressure measurements obtained by others in the
s0il surrounding a jacked pile in Champlain Clay also

show surprisingly close agreement. Since the measure-
ments in Champlain Clay exhibit strong similarities with
other clays, this suggests that predictions

of the normalized excess pore pressure distribution in the

s0il is not very sensitive to the clay type or its overcon-
solidation ratio (for OCR £ 3). This hypothesis is impor-
tant because, if true, it enables valuable generalizations

to be made. In particular, results of linear consolida-

tion analyses based on this normalized excess pore pres-
sure distribution can be applied to a wide variety of
clay deposits to estimate their coefficient of consoli-
dation.

In Part 3 of this chapter predictions of cone resis-
tance, S and penetration pore pressures,-u, based on the
same solutions in Part 2 are compared with field measure-
ments in BBC. Good agreement of dc is achieved for 18°
and 60° cones for OCR < 3 provided that the overconsolida-

tion of the clay and the friction at the cone-soil
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interface are accounted for. On the other hand, predic-
tions of u are significantly underestimated in the soft
BBC deposit below 75 ft (OCR = 1.3) as in the case of the

pressuremeter test data obtained in this clay.

207



{6L6T ‘sepeawvd IDJJR) T2pouw Aet D=uen
Oyl JO CUOTYIITPIIL. pUL SIOILLRINC TODOL: T°'9 vIGVL
. «  aeeys sTdmps 39215p 1°4) @y o00z'0 (s) O¥E°0 ZIE"0 (s) 0TE°0 (v) 962°0 (s50) *"o/8
. . saymmaaneeazd 1°%0 (y 0120 (s) O¥E'0 Z1E0 hrg £72°0 (1) 952°0 ) *"pyns
qi%usa3s y¥ed vopsusaxs upells suerd *uD (my S$L1'0 (s) OYED TIE"D sy OTE°0 ) u.mu.a auwmvn:m\_..m
303198 ywad copesaidess uyeils auwid %uo tn) SEECO {s) O¥E‘D TIe'o (s) 0TC'0 (+) 962°0 Gm.:o..mxam
y1Busais wwad uorsuwixe Terxerza 0% () OET°0 (s) S6Z°0 0iz°0 ts) Y9T°0 95270 mnta.—.m\.._m
§Iua1ie yead uorsestdmon [RILEFII DOND () BIED (s) S6T°0 oLz'o (s) $6Z°0 0£2°0 . Autgm\sm
(@) «O% (s) =8°E¥ (c) +87EY »00 -0t @sd)¢
(s1s93 1°x) wo13) £3IMbFLG0 XM I¥ ) ¥ (s) »8°EY (c) =97EY 20t o0¢ (s
Gar) »0% = .S€ () «S78Y (v) «570Y o0t WO (ane
i1 pearpioRuOS ATLvwATE £5°0 - 05°0 290 19°0 £29°0 1s'o () %
. eTasTpead
v
L3FnbiTq0 tvw aw (i)  »E€ #0F «0E # 0 «0t uph
Ga.qlou aw) _”n__-..o.-ons /3= ¥4 O7Iv1 uoysesidwoysa $0°G¢ -~ §70°0 ZEO° D 000°'0 €00 000 {s) W
(91 T="2 24} nhbmun...nﬂ\udl 40 033va uoysseidmen €00 ¥ {10 0910 0eT'0 0510 11 {s) W
sinjswrivd anduy
JuaTvarnbe
- ez - e - w 3
"% opIw1 por #amss [wap3pa0 Feyen o3 JuITEAFnbE - 9T°1 9T°T 91T 91" 1 i
(1) 3301 388 1gIRLIVUR UY PIED INBA - §570 [T §5°0 11 9] (+) oa
FUCTIFUIIIP IS - - - 0t »0E )
(z)erou wasm - 0T 1 0z'1 - - |
duj *sa 2 ‘punogea jo sdorm - £0°0 000 €0 0 0070 *
dug “sa ® ‘upfaza a3 jo adoys - ST 0 €1°0 s1°0 st'o X
h””u ””““”A JEINNle Eirlaac) STIsTER EReT i)
(BL6T) 'T® 3w ydyopuwy (8951) puwiamg puw eoomwoy
(2)  ‘(ae61) “1v 3@ ae3amp () .

291



Table 6.1 {cont.)

DEFINITIONS
1/2
o1 R St S
(1) q = - ((0,-0,)"+ (9,~0)"+ (0,0} ;920

l_ a— — —_— — —
(2 '3(01+ O, 03); O1s Oy, Oy are major intermediate and minor

I

principal effective stresses (Bi > Eé > 03)

- E-U o —
(3) ¢ = arCSin:l-f---:§£ or _}f = 1+Si?i = N¢ ; subacript f refers to
0’1f+03f Oq 1-sing
failure (according to a fallure criterion)
) s = LE3f
u 2
NOTES

(1) Assuming Mohr-Coulomb failure criterion:
. E-is independent of failure mode
® The yield surface is an ellipse .with an associated flow rule, but,
at failure, viclates incompressibility requirement

(2) Assuming Extended Mises criterion:

q
en=-1L
Pg
e M is evaluated from triaxial compression test (Eé=53)

EkTC) = arcsiu(é%%)

e The yield surface is an ellipse with an associated flow role:

. . . = _ 1= =
therefore, in plane strain failures UZf = 2(Ulf+02f)

(3) For M =1.2 we have:

0.671
0.627

® neglecting elastic strains: ko

e without neglecting elastic strains: ko

(») K is the bulk elastic modulus: K = Ei%;ﬁl

2{14+V)
3(1-2V)

We assume'g = and Vv = 0.3



(s)

(%)

()

(e)
(9)
(19)

(1)
(12)

Table 6.1

2.3) 2.3k

ey ° B = TFe)

CR =

E(TE) = arcsin (33-%)

arcsin(ll)

5(Psc)= ®(psE)” /3

Assuming _éf = %(E +0,,.)

Numerically evaluated

Numerical computation of Eif’ a

Table 4.3

After Ladd et al. (1971)

{cont.)

£ yilelded that c

28293 2f
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Table 6.2 Streamlines and boundary
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initial radial distance of the streamline from the axis

Iesses
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stresses used in the analyses.
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Figure 6.1 Comparison of predicted stress-strain curves for CK U
undrained expansion of a cylindrical cavity in normally

consclidated Boston Blue Clay.
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Figure 6.3 Comparison of predicted pressuremeter expansion curves
in normally consclidated Boston Blue Clay.
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Figure 6.5 Solution to cone penetration in clay: problem geometry.
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Figure 6.7 Predicted deviatoric stress paths along two streamlines during

steady penetration of an 18° cone in normally consolidated
Boston Blue Clay.
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Figure 6.13 Predicted contours of normalized radial total stress, ¢,
during steady cone penetration in normally consolidated
Boston Blue Clay (18° and 60° tips).
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Figure 6,14 Predicted contours of normalized wvertical total stress, J_,
during steady cone penetration in normally consclidated
Boston Blue Clay (1B® and 60° tips).
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Figure 6.17 Predicted contours of normalized shear induced pore pressure,
Au_, during steady cone penetration in normally consolidated
Boston Blue Clay (18° and 60° tips).
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Figure $6.18 Predicted contours of normalized excess pore pressure, Au,
during steady cone penetration in normally consolidated
Boston Blue Clay (18° and 60° tips).
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Figure 6.19 Predicted contours of normalized radial effective stress,
0 _, during steady cone penetration in normally consolidated
Boston Blue Clay (18° and 60° tips).
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Figure 6.23 Cone resistance and pore pressure during penetration
(from Baligh and Vivatrat, 1979).
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Figure 6.24 Penetration pore pressures at different locations on an
18° conical tip (from Baligh et al., 1978).

238



00
25

50
T

10.0

PORE PRESSURE , u (kg/cm? or TSF)

15.0

|

1

\‘ | d=38cm r | _

|
\
-
|
\ \
\
'\
‘ \ 3.2d
\

\
\
\
\ \
\
|
\
\

40

e

o),
o

‘

ug”

DEPTH, ft
@
O

\
\
\
i
1
\
|\
\
“ O-Vg \
\
1

|00

\
1
\
|
\
\
\
\
|
\
]

120 '

} |

Figure §.25 Penetration pore pressures at different locations on a
60° conical tip (from Baligh et al., 1978},

239



S9TA3oWORD JUSADIFTIP UITH Souod putyaq ssansssad oxod uoTjeazsuad oz°'9 sanbrg

*(BL6T ’*Te 32 ybrTed woiy)

02l
(2 (9 (D
w |
ol |
ot X
| @ ! --—-—00I
| ] 1
O
.0 _O:
. |
A
|
- — |M!.|47 --- 408
L ]
o
[ ]
o]
»
diL 8l °g /
. D —ot 09
Q
dil 09
o qw. .
P8P ™
M s /
o Oov
Pt'S bt
Q
] t o®
—a - L
: *llgz
00l oG 0 0's 0 oS 0
was/by 'n INNSS3INd IHMO4 NOILVHLI3IN3d

[4

3 '"H1d30a

240



"ARTD anig uo3lsog uT uoTjeajzsusd Apeels HUTIND S9UCD L9 pue 8T
Buote sainssead azod $SaDXs PeZTTRUIOU JO SUCTINGTIISTP TeuTpniTHUCT PRINSESW "SA pajorpaid

LZ°9 sanbtg

o¢

T T T T A ml
3NO2 ,09 3ANOD 8
- — ml
O - -
| —H0
sl i
H— o=
| dg _
2 j
_ Ol -
i g.E1900 10! }¢ H=B=
HOITYS WOH4 SLINSIN 1S3) )
rossi | G¥Se o _ |
£0%2 $309 v r Sl \ -
rosg CICH F) b T@EI.
T4} , S i
#20 Hid30 | 108MAS . fk.n.u ! i i L ]
LA o ql ol S0 0] 0 G0 o) gl o¢ Ge O¢c

HS(NV)}/nY  3UNSS3Yd I¥OJ S$SSIDXI Q3ZITVWHON

241



n

—
L]

O
@

1%
»
¥

o
N
T

l r
(Au)SH Au

o
o0
T
T
T
m
Q
3]
q
m
o
@®

[ ]
-
2
3

NORMALIZED EXCESS PORE PRESSURE, Au/(Aulgy

1 |
S 10 20 50
NORMALIZED RADIUS, r/R

Figure 6.28 Predicted vs. measured radial distribution of normalized
@Xcess pore pressure during steady cone penetration in

clay.



BUTATIP ®17d 03 @np sdeld juszszyip 07 ""g/ny 6z°9 ‘Big
¥/4 'SNIQYd Q3ZIYWHON
00l 0s 02 Ol S 4 |
T 1 1
PRULUODUN () eUOD OINQ (2) eupa platd () @Dﬂ m ﬁ ' iﬁn_o.vi_n_o -}
ws s [gpol] 6 |
Pt nn..‘m L log | I | W M - ‘w i.—.
ol es (H| 6| 2 H
or | e za| Q| 4 A H+
{€) > - . —
Sy _ | of £
w___n.n 2t japz] O o ®
9 (02|, € |v | @] a|% ow v
(1} o|e i . v
S| e s | O 2 O v 7
> 8
o2lgz| 9 | O Aa .«
91 | oz M- p z v
of'|f2| £ | @ zZ| + O “H -
O e _NHM ¢szl s |+ | o |y »
. m
9 ge 0| ¥ ¥
oh 02 om = qQ I = . ﬂ
. =
(n 1| v .m._.
8 72 Ol B “
o) | ¢z | o | = o | 2 + O
9 2 : -
(0 (W s 0
0
NS L) mm 1 & |
s | 1d | " fuwo0|>8| 2| ¢
— »
3s| ® g N
= }le9H
L1t i ] l

[Tv] [4N] [+ 3] -4
= = o o
Ohp/(s)'ng 3IHNSSIHD IHOH SSIOX3I Q3IZITTYWHON

o
o

<.
W\

9°¢

243



18 30

PREDICTIONS MEASUREMENTS
A~ ——-4A SMOOTH CONE
ESTIMATED
@——8 ROUGH CONE % RANGE
10 T T T 1 T T T T 9
TEST RESULTS FROM BALIGH
9l et al. (1978) 8
8t 17
Q¢ ~VUg T -6
Tvo
6 5
5 14
4 |- 13
3 12
oL ol
I + 40
0 | | ] 1 i { | |
0 Pt } 90

CONE ANGLE 28, DEG.

Figure 6.30 Comparison of predicted and measured cone resistances

in Boston Blue Clay.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

(1) Cone penetration testing provides a superior soil ex-
ploration technique to establish stratification, determine vari-
ability, and perform soil identification; especially if pore pres-
sures generated by cone pentration are measured in addition to
cone resistance (Baligh et al. 1980).

(2} Due to the complicated nature of cone penetration, re-
search is needed to interpret test results and hence estimate en-
gineering properties of the soils for predicting foundation perfor-
mance and conducting foundation designs. Past research at MIT con-
centrated on estimating the undrained shear strength of clays
(Baligh et al. 1978). This report is primarily aimed at estimat-
ing the pore pressures during cone penetration.

(3) Additional interesting aspects of this study include:
a) the applicability of cavity expansion approaches to deep pen-
etration and pile installation problems; b) the likelihood of
soil hydrofracture due to pile installation; c¢) the generaliza-
tion of a deviatoric stress model and the evaluation of its
capabilities in predicting the undrained behavior of Boston
Blue Clay in various laboratory shearing tests; d) the deve-
lopment and evaluation of a shear induced pore pressure model
for clays subjected to undrained lcading along general strain
paths; and, e) a comparison between predicted and measured
results of self-boring pressuremeter tests in Boston Blue Clay

to compare laboratory vs. field behavior of clays.
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(4) The pore pressures, u, generated in the soil by steady
cone penetration are important because a} they represent the ini-
tial conditions for the dissipation that takes place when penetra-
tion is interrupted, and b) they provide insight intec the mech-
anism of cone penetration and hence enable better interpretation
of the test results.

(5) Penetration pore pressures, u, are difficult to predict
because of the complicated behavior of soils; the large strains
and the complicated strain paths to which the soil is subjected;
and, the boundary conditions at the cone-soil interface.

(6) Deep cone penetration in clays is an axisymmetric two-
dimensional steady state problem which is essentially strain-
controlled, i.e.,, strains and deformations in the soil are pri-
marily imposed by kinematic requirements. For this type of
problem, Baligh (1975) proposes an approximate method of
solution called the "strain path method" consisting of four
basic steps: a) estimate the initial stresses; b) estimate
an approximate strain field satisfying conservation of volume,

compatibility and boundary velocity requirements; c¢) evaluate
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the deviatoric stresses at a selected number of elements by
performing laboratory tests on samples subjected to the same
strain paths or, alternatively, by using an appropriate soil
behavioral model, and; d) estimate the octahedral {isotropic}
stresses by integrating the equilibrium equations.

Chapter 2 describes the application of the strain path
method to deep steady cone penetration in clays and indicates
the need to develop: a) A method for estimating approximate
velocity fields and hence compute deformations and strain paths
of the s0il during cone penetration; b) Appropriate models to
determine the deviatoric stresses and the shear induced pore
pressures corresponding to these strain paths <¢) A method to
estimate octahedral stresses by integrating the equilibrium
equations and hence determine cone resistance and penetration
pore pressures (See Figure 4.3).

{7) Predictions of velocities, strains and defofmations
in saturated clays due to steady cone penetration. are conducted
in Chapter 3, assuming that the soil offers no shearing resist-
ance (i.e., behaving like an ideal fluid) 'utilizing the method
of "sources and sinks" of potential theory. The principal ad-
vantage of this prediction method is to provide analytic

expressions for the strain rates, everywhere in the soil, which
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can be accurately integrated to obtain strains and deformations.
This avoids_the important errors associated with the more
obvious method of differentiating measured displacement fields
to obtain the strains.

Results obtained for 18° and 60° cones indicate that:
a) Strain paths caused by cone penetration are very complicated
and cannot be imposed by any one of the existing laboratory
tests; b) Cone penetration shears the soil at much higher rates
and to much higher levels of strains than common laboratory
tests; and c¢) Significant strain reversals take place behind
the cone base. This, together with shearing strains neglected
by (one-dimensional) expansion theories (Erz and ezz) raises
serious questions regarding the applicability of cavity expan-
sion solutions to penetration problems {cones and piles).

Finally, Chapter 3 shows reasonable agreement between the
predicted soil deformations and model test results. More
accurate experimental results are, however, needed.

(8} In order to determine the shear (deviatoric) stresses
in the soil, a comprehensive model is required to account for
the important aspects of soil behavior as related to cone
penetration: a) complicated strain paths including strain re-
versals (i.e., "loading" and "unloading"), and large non-recov-
erable strains; b) initial and stress-induced anisotropy

c) post-peak behavior, and; d) time-dependent deformations
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e.g., undrained creep and relaxation).

At the present time such a model is not available.
However, the deviatoric stress model introduced by Iwan (1967)
and Morz (1367); and applied to soils by Prevost (1977),
accounts for most of the above factors except for the time-
dependént (viscous) behavior of clays. The model is described
in Chapter 4 and is extended by means of a new strain-soften-
ing rule describing post~peak stress-strain behavior in order to
predict a more realistic behavior. Furthermore, based on
theoretical considerations, the model is shown to predict,
under plane strain conditions, the same peak strengths obtained
by the Davis and Christian (1971) elliptical model in the
special case when the ellipse degenerates into a circle.

Using soil parameters from triaxial tests on normally
consolidated resedimented Boston Blue Clay (BBC), the model
predictions are evaluated in Chapter 4 by comparisons with
other laboratory test results.

These comparisons show that:

a) Reasonably good predictions are obtained
in plane strain compression and extension
tests, especially in describing the post-

peak behavior;
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b) The simple softening law describing
repeated loading leads to good agree-
ment with results of cyclic triaxial
tests, and;
c) The model lacks the necessary flexi-
bility to accurately describe inter-
mediate modes of failure, e.g., Direct
Simple Shear (DSS), cylindrical cavity
expansion, etc., ... . Although the
DSS test is difficult to interpret and
results of "true" triaxial test simulating
cylindrical cavity expansion (e.g., Kirby
and Esrig, 1979) are scarce, it is appar-
ent that the model slightly overestimates
the strength for these two modes of failure.
Improvements in the strength prediction capabilities of
the model could be easily achieved by considering yield sur-
faces of more general shapes (e.g., ellipsoids or spheroids).
However, this requires reliable stress-strain curves for general
loading conditions that are not presently available and hence,
the additional complications arising from a more sophisticated

model do not appear justifiable at the present time.
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(9) A review of existing methods for predicting the excess
pore pressure, Au, generated during undrained shearing of clays
indicates the need for a new method to predict Au caused by
the very complicated strains associated with cone penetration
(variable principal strain directions with large strains and
strainlreversals). A method is proposed in Chapter 5 to pre-
dict Au in strain-controlled problems. Following Henkel's
approach, Au is divided into two components: a) Acoct due to
changes in confinement and b) Aus caused by the tendency of the
soil to dilate (or contract) due to pure shear loading. The

first component, Aco is controlled by equilibrium considera-

ct’
tions and, the second compenent, Aus, is evaluated by means of
a new analytical model.

The model can predict Aus for anisotropic clays subjected
to general straining conditions (with rotation of principal
strain direction) and one unloading. For monotonic loading,
all model parameters can be obtained from triaxial tests. For
unloading, the model requires an estimate of the maximum (or
limiting) Aus which can be obtained from results of laboratory
tests including straining reversal.

A comparison between the predicted and measured pore
pressures during plane strain compression and extension and

in direct simple shear tests indicates good agreement in spite

of the difficulty in evaluating Aooct during these tests.
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Furthermore, the predicted pore pressures during unloading are
very close to measurements obtained from cyclic triaxial tests.
(10) Chapter 6 conducts cylindrical cavity expansion
studies to evaluate the adequacy of the deviatoric stress model
(Chapter 4), the shear-induced pore pressure modei (Chapter 5)

and the soil parameters estimated from laboratory tests on
resedimented BBC by comparisons with other models and in situ
measurements during pressuremeter tests.

The predicted expansion curves are close to Cam-Clay
results (determined by others for BaC) even though the stress-
strain curves of the two models differ significantly. This is
due to the compensating effects of the shear modulus at low
strains and the shear strength of the clay. Additional results
show that, for cavity expansion problems, simple soil models
(e.g., the bilinear or the hyperbheclic models) can provide as
reliable predictions as the sophisticated models (e.g., the
Cam-Clay and the proposed models) provided appropriate soil
parameters are selected.

Comparison of the predicted expansion curves with pressure-
meter tests results in the soft BBC (depths 83.2 and 103.2 £ft.
at the Saugus site) show that matching of field measurements
requires doubling of the estimated shear resistance of the soil,
Part of this discrepancy (about 25%) is due to overconsolida-
tion of the in situ clay (OCR = 1.3) neglected in predictions.

The remaining discrepancy {(75%) can be due to: 1) simplifications
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made in theoretical analyses and/or the formulation of the

soil model (e.g., end effects neglected in pressuremeter
analyses, partial drainage, strain rate effects, ...etc.)
and/or; 2) inadequacies in soil model parameters as described
by the shear strength and/or shear modulus at small strain
levels. The latter is very difficult to estimate reliably from
conventional laboratory tests and is believed to represent

a major reason for underpredicting field measurements.

{11) Based on the strain path method, the strain paths
estimated in Chapter 3, the deviatoric stress model in
Chapter 4, the shear-induced pore pressure model in Chapter 5,
and the soil parameters obtained from laboratory tests on
normally consolidated resedimented BBC, Chapter 6 predicts the

normalized excess pore pressures in the soil during deep steady

penetration of 18° and 60° cones.

In spite of uncertainties resulting from the simplified
nature of strain path analyses, comparisons of predictions with
extensive field measurements of pore pressures at different
locations on the cone and the shaft behind it shows excellent
agreement for both the 18° and 60° cones and, surprisingly,
in the overconsolidated BBC as well ( OCR < 3}). Further com-
parisons with pore pressure measurements cbtained by others in
the soil surrounding a jacked pile in Champlain Clay also show
surprisingly close agreement. Since the measurements in

Champlain Clay exhibit strong similarities with other clays
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(see Fig. 6.29), this suggests that predictions of the

normalized excess pore pressure distribution in the soil is

not very sensitive to the clay type or its overconsolidation
ratio (for OCR < 3). This hypothesis is important because,

if true, it enables valuable generalizations to be made. In
particular, results of linear consolidation analyses (performed on
the basis of this normalized excess pore pressure distribution)
can be applied to a wide variety of clay deposits to estimate
their coefficient of consolidation.

(14) Predictions of cone resistance, A and penetration
pore pressures, u, based on the strain path method are com-
pared in Chapter 6 with field measurements in BBC. Good
agreement of q_ is achieved for 18° and 60° cones for OCR < 3
provided that the overconsolicaticn of the clay and the friction
at the cone-soil interface are accounted for. On the other
hand, predictions of u are significantly underestimated in
the soft BBC deposit below 75 ft (OCR = 1.3) as was the case

of the pressuremeter test data obtained in this clay.
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APPENDIX A

STRAIN PATH METHOD ~ EVALUATION OF TOTAL STRESSES

A.1 SPATIAL INTEGRATION OF EQUILIBRIUM EQUATIONS

In axisymmetric problems, the equilibrium equations in terms of total

stresses are:

30, . aTrz . Op = Ug s R0
or oz r
{A.1)
= RE-RTEY
in which:
r = radial coordinate
z = vertical coordinate
o, = radial total stress
oe = circumferential total stress
o, = vertical total stress
Ty = radial shear stress acting on the vertical plane
R = radial body force
and, 2 = vertical body force

When the z - axis is aligned with the vertical direction (positive upwards),
the body forces are; R = 0; 2= Y {Yt = total unit weight of the
clay). In deep quasi~static steady penetration, the radius of the cone

{(or pile} is small and the effect of gravity (Yt} on eqguilibrium near
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i *
the tip is negligible and equations A.l become:

aor . &&z . a, - 08 — o
ar 3z r
(A.2)
aTrz N aUz + Tre -0
dr o9z 4

Dividing total stresses into deviatoric and octahedral (or isotropic)

stresses:
Op © Sy * Toct
g, =8, +0
& & Toet (A.3)
0z - Sz * 0oct:
Tez ~ B2
and substituting Eqs. A.3 into Egs. A.2, we get:
aooct - - as'r N asrz N Sr " SB
ar or o0z r (A.4)
acroct - . aSr.'z _ aSz _ Sz
oz or dz r

In the strain path method described in Chapter 2, the right hand
"side of Eq. A.4 can be determined from the deviatoric stress soil model
knowing the strain path of the soil element. The octahedral stress can
then be computed by integrating Eq. A.4 along a path starting at a loca-
tion where the octahedral stress (Uoc ) is known {i.e., in the far

t’o

field) and utilizing:

ag 1o
oct oct
d ooct = 3T dr + o dz {A.B)

*

For example, a cone penetrometer (or pile} pushed to a depth of
100 ft in soft clay induces a change in isotropic stresses approximately
equal to the total overburden stress at that depth.
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where dr and dz are the radial and vertical coordinate increments be-
tween two consecutive points on the integration path.
Appendix F provides description and computer codes for a numerical

integration scheme applied along two different sets of integration paths.

A,2 IMPLICATIONS OF USING AN APPROXIMATE STRAIN FIELD

Since the strain path method is based on an approximate strain
field, it is not surprising that the resulting stresses are also approxi-

mate. This is reflected by the fact that the partial differentials of

Obct do not satisfy the relation:
— (Efg.g_t.) = E... ( acoc‘:) (A 6)
3z 3r ar 3z i

In other words the right hand side of Eg. A.5 is not a total differential
and integration with Eq. A.S is path dependent.
More insight into the approximations associated with the strain

path method may be gained by recognizing that any material can be forced

to follow any strain field (satisfying the boundary and compatibility

requirements) as long as an appropriate body force field is superimposed.
The deviatoric stresses obtained by the strain path method in the case
of deep steady cone penetration are, therefore, the exact solution to
the stresses experienced in the soil subjected to both the boundary
displacements (at the scil-instrument interface) and an appropriate
field of fictitious body forces.

Substituting Egs. A.3 into Egs. A.l we cbtain:
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{ 9) - {R} (A 7.a)

80oct

3z T ar a3z

Z . L2 iz} (A.7.b)

in which {R} and {z} are the fictitious body forces. These two equations
relate, at any point in space, the known deviatoric stresses to three

unknowns: ¢ {rR} anda {z} . rThis indeterminancy of order one, there-

oct’
fore, indicates that an infinite number of body force ({R} and {8}) and
isotropic stress (Uoct) fields can be found to satisfy Egs. A.7. For

field, the body forces {R} and

example, given a sufficiently smooth et

{z} can be evaluated directly by means of Egs. A.7 to achieve equili-

brium.,

A,3 EVALUATION OF ACCEPTAELE BODY FORCE FIELDS

The fictitious body force fields in the problem of cone penetration are
of interest for two reasons: a) to compare at a selected number of points
the magnitude of these body forces to the stress gradients and, thus
assess their effect in the overall solution, and; b) to develop an itera-
tive procedure in order to improve the approximate velocity field and
therefy, obtain a more accurate solution.

Because of the indeterminancy in the problem, it is necessary to
arbitrarily assign predetermined variation in one of the three unknowns:

o {R} , and {2} . A method for evaluating acceptahle body force

oct'
fields consists of:
1) Integrate Eg. A.7.a with {R} = 0 along radial lines (dz = 0}.

The resulting oot field satisfies equilibrium in the radial
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direction (Eq. A.7.a);
2) Evaluate at every point the required fictitious body force
{ z} so that the isotropic stress Ooet previously obtained and
the deviatoric stresses satisfy equilibrium in the z direction;
i.e., solve Eq. A.7.b for {7} .
An equivalent method consists of first assuming {2} =0, integrating
Eq. A.7.b along vertical lines (i.e., dr = 0) and finally evaluate {R}
by means of Eg. A.7.a.
Integration along radial (dz = 0) or vertical (dx = 0) lines is
more complicated than the methods of integration along isochrenic
and streamlines presented in Appendix E. Indeed, such an integration
first requires interpolation of the deviatoric stresses along straight

(radial or vertical) lines.
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APPENDIX B

ESTIMATION OF STRAINS AND DEFORMATIONS

DURING CONE PENETRATICN - COMPUTER PROGRAM

B.1 PROGRAM DESCRIPTION

This computer program utilizes the theoretical developments
presented in Chapter 3 to compute strains and deformations for incom-
pressible, irrotational and inviscid flow around a conical tip attached
to a cylindrical shaft during steady cone penetration. The program is
coded in FORTRAN IV (double precision) and is intended to be used in
an interactive mode (e.qg., MULTICS or CMS, with Honeywell or IBM
systems, respectively}. At each input stage, the user is prompted
for the next data to be entered and usage of the program is, therefore,

self-explanatory.

B.1.1 General Input

At the beginning of each new problem, the user must provide:

a) the cylinder radius;

b) the half cone angle;

c) the ratio of the cylinder to the cone length;

d) the radius of curvature at the cone-cylinder transition;

e) the number of sources* uniformly spaced over the cone length;
£) the number of sources* uniformly spaced over the cylinder

length, and;

*
The total number of sources along both segments should not exceed 200.
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g) a printing control parameter:

0; no printing

1: only final results are printed

2; detailed output
h) a storage control parameter:
= 0, no storage
# 0, parameter gives the unit number for storage

All the variables are expressed in F10.3 format.

B.1.2 Sources Strength Evaluation

Once the input phase has been completed, the coordinates of the
body points and of the sources centers are computed and stored. Evalua-
tion of the sources strength (Chapter 3) is then accomplished by
solving the system of linear equations (Eqs. 3.6) with the elimination
method. Three modes of operation are then available.

B-1.3 Modes of Operation

The first mode of operation (MODE = ?) is used to exit the pro-~
gram when computations are completed; the next two modes (MODE = 1,2)
are intended for checking stability and accuracy of the solution and;
the last mode (MODE = 3) is invoked to carry out computations of de-
formations, strain increments and strains, along one streamline at a
time,

a) MODE =1

The program computes valueg of the stream function Y¥(r,z),
using Eq. 3.7, at a fixed z-coordinate, for a radius varying from

0 to RMAX (in increments equal to DELR}.
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b) MODE = 2

The streamline corresponding to a given value of the stream
function Y(r,z) is located in the interval {ZMIN, ZMAX} at equal
DELZ increments by solving for r in the implicit Eq. 3.15 by successive
trials.

c) MODE = 3

The streamline is defined by the coordinates (RO, Z0O) of the
particle (to be followed along its path) at time T = 0. Numerical in-
tegration of velocities and rates-of-deformation is first carried out
(without printing) with a decreasing time increment proportiomal to
|1/z| up to a time equal to TMIN. The time Interval is then reduced
to DTF and the following quantities are printed at the end of each time
interval: relative time, 2z and r coordinates, strain increment com-
ponents (der , de_ deee and derz) and, natural strain components

r ZZ

(Err’ €22° Fo0 and erz)'
Changing the mode of operatiomn i1s achieved by setting
Z > 1000, XPSI = 0, or RO = 0 when the present mode is equal to 1, 2,

or 3, respectively.
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B.2 PROGRAM LISTING
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APPENDIX C

ANISOTROPIC UNDRAINED STRESS-STRAIN MODEL

~ COMPUTER PROGRAM

C.1 PROGRAM DESCRIPTION

This computer program utilizes the anisotropic undrained stress-
strain model presented in Chapter 4 to compute the deviatoric stresses
along an arbitrary strain path for axisymmetric or plane strain problems.
The program is coded in FORTRAN 1V {double precision).

The input phase consists of two parts:

1. Information specifying the model parameters and the initial condi-
tions. This includes:

a) the initial radius and the center coordinates of each
yield surface along with the initial plastic modulus and
a maximum allowable equivalent strain associated to it:

b} the elastic shear modulus;

c) the parameters governing changes in size and in plastic
moduli of the yield surfaces during plastic flow;

d) the initial deviatoric stresses, and;

2, Information defining the strain path to be followed. This is
achieved by specifying a series of deviatoric strain increment
vectors.

For each deviatoric strain increment vector, the program performs

the following steps:
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(1}
(2)
(3)
(4)

(5)
(6)

Check the loading directionm.

Subdivide the strain increment vector into vectors cor-
responding to the maximum allowable equivalent strain, if
necessary.

Compute the deviatoric stress increment vector and update
the deviatoric stress vector.

Check if the stress point has crossed the next yield
surface.

Update the yield surface parameters.

Print the natural strains, the deviatoric stresses, the
current yield surface number and the number of intermediate

steps, at the end of each strain increment.
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C.2 USER'S MANUAL

C.2.1 MODEL PARAMETERS (UNIT = 5)

CARD 1 (215
Note Columns Variable Entry
(1) 1-5 IN Device number for strain inerement input
(2) 6j10 NY Number of yield surfaces
CARD 2 (6F10.3)
Note Columns Variable Eantry
1-10 XG Elastic shear modulus
(3) 11-20 AM Value of Am (Eq. 6.13)
(3) 21-30  XLRAT  Value of H'*/H'’ (Eq. 6.13)
31-40 XKOP Radius of the initial failure surface
41-50 XKLP Radius of the residuzl failure surface
51-60 AP Value of Ap (Eq. 6.15)
NOTES:

(1) 1IN is equal tc 5 when the strain increments are input
in the same data set.

(2) NY < 50

(3) The same value is used for all the yield surfaces.
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CARD 3,4,....,(NY + 2) (6F10.3)
Note Columns Variable Entry
1-10 XA(L,1) First center coordinate of the Ith yield surface
11-20 XA(I,2) Second " " oo " "
21-30 XA(1,3) Third " " "wow " "
31-40 XH(D) Initial radius of the Ith yield surface
41-50 XH(I) Initial plastic modulus of the Ith yield surface
1) 51-60 SMAX(I) Maximum equivalent strain increment to be
used 1in one step
CARD (NY + 3) (4710.3)
Columns Variable Entry
1-10 SI1G(1) Initizl value of S,
11-20 S1G(2) " vt S, Or S__
21-30 SIG(3) " e 8gq OF &
31-40 SIG(4) " "o s., OF 8,
NOTE:
(1) When this field is left blank, the program automatically

sets SMAX(I) = 0.0001.
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C.2.2 STRAIN PATH INPUT (UNIT = IN)

*
CARDS 1, 2,.... {4F10.3)

Note Columns Variable Entry

(1) 1-10 DST(1} de
ZZ
(1) 11-20 DST(2) de or de
rr xx
(1) 21-30 DST(3) deee or dEYY

31-40 DST(4) de__ or de
rz Xz

NOTES :

{1) The following equation must be satisfied:
DST(1) + DST(2) + DST({3) =0
The program automatically stops after the last card has

been read.
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C.3 PROGRAM LISTING
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APPENDIX D

SHEAR INDUCED PORE PRESSURE MODEL FOR ANISOTROPIC CLAYS

- COMPUTER PROGRAM

D.1 PROGRAM DESCRIPTION

This computer program utilizesg the anisctropic shear induced pore
pressure model developed and presented in Chapter 5 to compute the shear
Induced pore pressures along an arbitrary strain path for axisymmetric
or plane strain problems. The program is coded in PORTRAN IV (double
preciaion).

The input phase consists of two parts:

1. Information specifying the model parameters. This includes:

a) the initial center coordinates and the radius of each sphere
along with the rate of shear iInduced pore pressure generation
and a maximum allowable equivalent strain associated to it, and;

b) the maximum shear induced pore pressure that is reached
asymptotically in case of unloading, and;

2. Information defining the strain path to be followed. This is
achieved by specifying a series of deviatoric strain increment
vectors.

For each deviatoric strain increment vector, the program performs
the following steps:

(1) Check the loading direction.
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(2)

(3)
(4)
(5)
(6)

Subdivide the strain increment vector into vectors cor-
responding te the maximum allowable equivalent strain, 1f
necassary.

Compute the shear induced pore pressure Increment.

Check 1f the strain point has crossed the next sphere.
Relocate the appropriate spheres.

Print the natural strains, the shear induced pore pressure,
the number of the sphere currently used and the number of

intermediate steps, at the end of each strain increment.
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D.2 USER'S MANUAL

D.2.1 Model Parameters (UNIT = 5)

CARD 1 (215)

Note Columns Variable Entry

(1) 1-5 NYP Number of surfaces {spheres)
(2) 5-10 IN Device number for strain increment input
CARD 2 (F10.3)

Note Columms Variable Entry

3 1-10 UMAX Maximum shear induced excess pore pressure

NOTES:

(1) NYP < 50,

(2) 1IN 1s equal to 5 when the strain increments are input in
the same data set.

(3) See definition of (Aus)MAX in Section 7.3
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CARD 3,4,....,{NY + 2) (6F10.3)

Note Columns Variable Entry

1-10 XA(L, L) First center coordinate of the Ith

sphere
11-20 XA(T,2) Second center coordinate of the Ir'h sphere

21-30 XA(IL®) Third center coordinate of the Ith aphere

31-40  XKP(I)  Radius of the I'" sphere

41-50 XI1(D) Rate of shear induced pore pressure generatlion

assoctiated to the Ith

aphere
(1) 51-60 PMAX(I) Maximum equivalent strain increment to be used
in one step

D.2.2 Strain Path Input (UNIT = IN)

CARDS 1,2,....% (4¥10.3)

Note Columns Variable Entry

(2 1-10 DST(1) dezz

(2) 11-20 BST(2) derr or dsxx
(2> 31-40 DST(4) derz or dexz
NOTES:
(1) When this field is left blank, the program automatically
sets PMAX(I) = 0.001.
(2) The following equation must be satisfied:

DST(1) + DST(2) + DST(3) = 0
*  The program automatically stops after the last card has been read.
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D.3 PROGRAM LISTING
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APPENDIX E

DETERMINATION OF TOTAL STRESSES FOR THE

CONE PENETRATION PROBLEM

E.l INTRODUCTION

This appendix describes a numerical method for obtaining the field
of octahedral total normal stress, Goct from the field of deviatoric
stresses, Sij' hy integrating the equilibrium equations. The strain
path method leads, in general, to a total stress field which does not
satisfy total stress equilibrium and thus, integration of the equilibrium
equations is path dependent (see Appendix A). 1In order to assess the
path dependency, integration is performed by two methods: the first method
performs integration along isochronic lines,* whereas the sgsecond performs
integration along streamlines. Comparison of results obtained by the
two methods will provide valuable information in order toevaluate devia-
tions form total stress equilibrium. The computer programs necessary to

perform numerical integration according to the two methods are listed at

the end of this appendix.

E.2 METHOD OF SQLUTION

The total stress equilibrium equations in cylindrical coordinates for

the case of axial symmetry without body forces are given by:

* -
An isochronic line is the locus (at a given time} of particles

initially located on an horizontal line (normal to the shaft axis).
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+
1)
o

or * 3z r
{E.1}

ag ag g
rz z rz

ar iz r

o+
(]
(=]

The total stress oij can be expressed in terms of the deviatoric stress

sij and the octahedral total normal stress ooct by:

953 T %13 T Yoct (E.2)

Substituting Eq. .2 into Egs. E.l and rearranging terms, the equilibrium
in the radial (r} and vertical (z) directions at any point, in the de-

formed geometry, are given by:

80oct - 33r _ asrz - S se
ar ar 9z r
(E.3)
acoct - asrg_ _ asz _ srz
dz ar dz r

Figure E.1 illustrate the two integration paths. When integration is
per formed along isochronic lines (Fig. E.l.a) the value of Ooct is known
in the far field (r » «) and integration proceeds in the direction of
decreasing r. On the other hand, when integration is performed along stream-
streamlines (Fig. E.l.b) the value of Ooct is known in the far field

(z » -~ @) and integration process in the direction of increasing z.
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In both methods, a central difference iterative integration

scheme is used. The value of the octahedral stress at point Mk+1'

k+r . k :
(Goct) , is obtained from {Uoct) by means of the equation:

FTe) ag
k+1 k oct act .
(Goct) (Goct) + or dr + oz dz (E.4)

o :led
s , t . . .
in which 320 and g:t are the partial derxivatives of the octahedral

stress evaluated at point C_ (see Fig. E.l} and dr and dz are related

k
to the coordinates of the points Mk and Mk+1 by:

(E.5)

E.3 ISOPARAMETRIC ELEMENT AND

INTERPOLATION FUNCTIONS

Evaluation of the various terms in Eg. E'.3 at location Ck in
Fig. E.1 is carried out by considering a nine node isoparametric ele-
ment, shown in Fig. E.2, similar to that used in some finite ele-
ment formulations (e.g., Bathe and Wilson, 1976).

The basic procedure consists of expressing the element coor-
dinates and field functions in the form of interpclations using the

natural coordinate system (s,t) of the element. The coordinates

interpolations are given by:

ris,t) = L hi(s,t) . k. s z{s,t) = L hi(s,t) . zi (E.6)
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in which hi(s,t) are the interpolation functions given in Table E.1,
and r, and z, are the physical coordinates at node i.

The isoparametric element shown in Fig. E.2 consists of nine
nodes (1 through 9) where the values of the deviatoric stresses,
sij' are known and of 4 nodes (a, b, ¢ and d) where the right hand sides
of Egs. E.3 are numerically evaluated. The relative locations of the
points Mk' Mk+1 and Ck (in Fig. E.1) in the isoparameteric element are
given in Table E.2 as a function of the method of integration
utilized.

The parabolic interpolation of a field function g in terms of its

values 9; at node (i =1, 2, ..., 9} is given by:

gls,t) = ):hi(s,t) g, (E.7)

After partial differentiation with respect to s and t, Egq. .7 leads to:

3gis,t) 3hi(5;t)
3s 3s "9y
(E.8)
dg(s,t) Bhi(s,t)
3t 5t 9i
In order to obtain the partial derivatives of g in terms of the
physical coordinates, the chain rule of differentation is used:
d9g 9g d9s 3g 3t
3z - 3s 9z | 3t 9z
(E.9)

3g dg 3s 9g ot
3r EE-§E'+ 3t or
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This equation can be written as:

g ag
3z - o8
= [J] !} (E.10)
9g dg
ar at

in which [3] ! can be readily evaluated by inversion of the Jacobian

operator [J] given by:

%2 3r
ds 9s

[(J] = {F.1l1)
% or
Jt It

In summary, evaluation of the partial derivatives of the octahedral

total normal stress Uo at point C, proceeds as follows:

ct k

1) evaluate sr, Sg4 srz and r at Ck {fa, b, ¢, or 4 in Fig. E.2}
using Eqs. E.6 and E.7 together with the known values of the parameters
at the 9 adjacent nodes and the numerical values given in Table E.3.a;

2} evaluate and invert the Jacobian at Ck {(Eg. E.11);

3} evaluate the partial derivatives with respect to s and t

of S.r S, and S,z at Ck using Egs. E.8 and the numerical values given
in Table E.3.a and b, and ;
30 acrz 90 90

r re z .
4) evaluate 32’ 3z ' Br and 3% using the results of 2)

and 3) and Eq. E.10.

299



E.4 COMPUTER PROGRAMS: LISTINGS

E.4.1 Integration along Isochronic Lines
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E.4.2 Integration along Streamlines
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i 9y %9y 99
Is ot
1 1 1
1 71_ st (1+s) {1+t) 2 t(1+t) (1+2s) ry s(l+s) (1+2t)
) 1 1 1
-3 at(l-s) (1+t) iy t(1+t) (1-2s) - E s{1l-s) (1+2t)
1 1 1
3 2 st({l-s) (1-t) 2 t(1-t) (1-2s) Y s(1-s) (1-2t)}
1 1 1
4 -2 st(l+s} {1-t) vy t(1-t) (1+2s} - 2‘ s{1+s) {1-2t)
5 % £(1-s?) (1+8) | - 3 st(1+t) -;- (1-s2) (1+2t)
1 5 1 s
6 -5 s({1-s) (1-t°) -3 (1-t°) (1-2s) st (1-s)
1 2 1 2 .
7 -3 t(1-5%) (1~-t) gt (1~t) -3 (1-s%) (1-2t)
g 1 2 1 2
0 s(1l+s) (1-t*) 2 (1-t“) {(1+2s) - st {l+s)
9 (1-s7) (1-t2) - 28(1-t?) - 2 t(1-s?)
Table E.1l Interpolation Functions and Their Derivatives




Method of Integration Mk Mk+1 Ck

along isochronic lines 9 7 d

along streamlines

outmost streamline 5 1 a
central streamline 9 8 b
inmost streamline 7 4 c

Table E.2 Relative Location of the 9 Node Isoparametric
Element for Different integration Methods
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a}

Node
g1 gz g3 gu 5 qs g? ga gg
3| -1 3
a 3 a 0 0 7 0 0 0 0
1 3 3
b 0 4] - = = =
0 0 0 3 0 8 3
1 3 3
c 0 0 5 8 8] 0 ] 0 aQ
1 3 3
d ) 0 - = =
Q0 0 8 0 3 0 2
]
b Sg
} e
Node
gl 92 93 gq 95 gs q? 98 99
a 1 0] 0 o -1 0 0 0 0
b O 0 0 0 0 0 0 1 -1
c ¢ 0 0 1 0 4] -1 0 0
1 1 3 3 3 3
d 16 16 16 16 N 0 8 0
g
c) e
Node
g1 92 ga 9“ gs 95 97 gs gg
2| -3 L 3. 2 1 3 |_3 {_3
a 16 16 16 16 ) 2 8 2 2
1 1 3 3 3
b 6 | 16 6 | " 16 g 0 8 0 0
. 3| L 2 |_.2}.3|_1]_2{ 3 3
16 16 16 16 8 4 8 4 2
d 0 0 0 0 0 0 -1 0 1
Table E.3 Values of Interpeclations Functions and

Their Derivatives at the Nodeg of Interest.
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NOTE: Point coordinotes are indicated in parentheses

Figure E.2 Isoparametric element.
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