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Abstract 

Biogenic reefs provide important ecological functions and services to coastal and marine 

environments, supplying high levels of biodiversity, providing refuge and foraging habitat, and 

supporting fisheries. Serpulid reefs are a relatively uncommon habitat in coastal ecosystems 

globally that provide habitat for a diverse community of organisms, and have become a target for 

conservation and management efforts due to habitat degradation and loss. Baffin Bay, Texas, USA, 

is known for exceptionally productive commercial and recreational fisheries that are thought to be 

supported by Serpulid reef benthic macrofauna, particularly during regular periods of 

hypersalinity. This study compared the functioning of Serpulid reef habitats with nearby soft 

sediment areas using quantitative faunal and food web analyses. Serpulid reefs support a unique 

benthic macrofaunal community with 191 times greater abundance, 97 times greater biomass, and 

twice the number of species than in soft sediments. In contrast to soft-sediment macrofauna, 

Serpulid reef macrofaunal abundance and biomass were not correlated with any measured water 

quality variables. Isotope compositions of both suspension and deposit-feeding macrofauna from 

both habitats (i.e. Serpulid reefs and soft sediments) were close to organic matter from the 

sediment, demonstrating connectivity and the importance of primary production in the sediment 

to both habitat types. Abundant macrofauna inhabiting Serpulid reefs likely serve as an important 

food source for sport fish and other higher trophic-level fauna, particularly in hypersaline periods 

when soft-sediment macrobenthic food resources are scarce. Given the substantial loss of Baffin 

Bay’s Serpulid reef habitat compared to historic levels, conservation actions may be warranted to 

protect and restore Serpulid habitat and food resources. The results of this study can be used to 

increase the success of such efforts. 
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1. Introduction 

Estuaries across the Gulf of Mexico are dominated by soft-sediment habitats, yet the bulk of 

benthic faunal biomass is associated with biogenic reefs (Enochs 2012, Davis 2017, La Peyre et 

al. 2019). A relatively uncommon reef type in coastal ecosystems is built by Serpulid worms 

(Serpulidae, Polychaeta) that settle on hard substrates and secrete a calcareous tube around 

themselves as they grow (Bastida-Zavala et al. 2017). In rare circumstances, millions of small (< 

2 cm) Serpulid worms can aggregate via gregarious larval settlement (Ippolitov et al. 2014), 

forming extensive reefs (Andrews 1964; Bosence 1973; Bianchi and Morri 2001). These Serpulid 

reefs supplement marine complexity by increasing the three-dimensional relief of the bottom, 

providing refuge and foraging habitat for fish and invertebrate species (Haines and Maurer 1980, 

Zühlke et al. 1998; Obenat et al. 2001), and influencing sediment and organism transport processes 

(Obenat and Pezzani 1994). Through their suspension feeding activities, Serpulid worms can also 

improve water quality and minimize algal blooms (Leung and Chueng 2017 and references 

therein).  

Baffin Bay, a secondary bay within the Upper Laguna Madre Estuary, Texas, USA, is famous 

locally for its extensive Serpulid reefs. The predominantly hypersaline conditions in Baffin Bay 

(Orlando et al. 1993) make it uninhabitable for the Eastern Oyster (Crassostrea virginica), the 

dominant reef-building species in northern Gulf of Mexico estuaries. Hydroides dianthus, a 

common Serpulid (Bastida-Zavala et al. 2017), is the only species currently building reef structures 

in Baffin Bay. H. dianthus has a wide recorded tolerance to both salinity (1-51.7) and temperature 

(3-30 °C and higher; maximum summer temperature for Baffin Bay (May 2013-March 2021) is 
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31.2 °C (Wetz unpublished data)), enabling it to successfully invade disparate waters of the world 

(e.g., Northern Yellow Sea, China, salinity 33, Dong et al. 2018; Thyrrenian Sea, Italy, salinity 13-

48, Bianchi and Morri 2001; Delaware Bay, USA, salinity 23-28, Maurer et al. 1979; Haines and 

Maurer 1980). However, sizeable Serpulid reef structures  to the extent of those found in Baffin 

Bay (last estimated at 16 km2; Brown et al. 1977) are rare and relatively understudied (Ardbear 

Lough, Ireland, <1 km2 (Bosence 1973); Ellis Fjord, Antarctica, >8 km long (Kirkwood and Burton 

1988); Delaware Bay, USA, 1 km2 (Haines and Maurer 1980); see ten Hove and van den Hurk 

1993 for review).  

The diverse and abundant benthic macrofauna that occur on Baffin Bay’s Serpulid reefs 

are potential forage for higher trophic-level animals. Therefore, the Serpulid reefs may serve as an 

important nursery area for Spotted Seatrout (Cynoscion nebulosus), with Baffin Bay hosting the 

highest occurrence of juveniles (Froeschke and Froeschke 2011), and high densities of large 

“trophy”-sized adults (McKee 2008) relative to elsewhere along the Texas coast, making Serpulid 

reefs a unique habitat that is targeted by local anglers. Similarly, commercially important Black 

Drum (Pogonias cromis), are three to six times more abundant in Baffin Bay than elsewhere along 

the Texas coast (Martinez-Andrade et al. 2005; Olsen 2014). On the contrary, benthic macrofauna 

in Baffin Bay’s soft sediments are sparse, particularly during periods of hypersalinity (Montagna 

and Kalke 1995; Rubio et al. 2018; Breaux et al. 2019), and Serpulid reefs are thought to contribute 

much of the biomass critical to supporting the exceptionally productive commercial and 

recreational fisheries (McKee 2008; Bohannon et al. 2015). However, evidence indicates that 

Serpulid reefs have been reduced in size and distribution compared to historic levels, primarily 

due to wave action, prop damage from boats, and trampling from fishermen (Hardegree 1997; 
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Tunnell et al. 2001; Smith et al. 2005; Chapman et al. 2012), and conservation actions may be 

needed to protect and restore habitat.  

Given their limited distribution and evidence of decline, there is a need to better understand 

Serpulid reef ecological structure and function to inform conservation, restoration, and 

management efforts. This study aimed to assess the importance of Serpulid reef as habitat for 

benthic macrofauna and to investigate the role of these reef-resident species as prey for 

commercially and recreationally important fish species. Comparing carbon and nitrogen isotope 

compositions of primary producers, macrofauna of known feeding modes, and fish allows for 

determining the origin of the main food sources and assessing the structure and functioning of the 

food web. Specifically, we sought to: (1) quantify differences in benthic macrofaunal communities 

between Serpulid reefs and soft sediments, (2) determine the influence of varying hydrological 

conditions on Serpulid reef benthic macrofaunal communities, and (3) investigate the role of 

Serpulid reef benthic macrofauna in the Baffin Bay food web using stable isotopes (δ13C and δ15N), 

with a focus on commercially and recreationally important fish species.  
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2. Methods 

2.1 Study Area 

Baffin Bay is a shallow (0.9 - 2.3 m), 248-km2 secondary bay of the Upper Laguna Madre 

Estuary, located in the northwestern Gulf of Mexico in a semi-arid region of South Texas, USA 

(Figure 1; Diener 1975; Tunnell et al. 2001). Serpulid reefs were last estimated in 1977 to cover 

approximately 6% (16 km2) of Baffin Bay’s otherwise soft bottom (Breuer 1957; Brown et al. 

1977). Freshwater enters the bay through several small ephemeral streams at an average rate that 

does not keep up with average evaporation rates. Residence time in Baffin Bay and the Upper 

Laguna Madre exceeds one year, much longer than any other major estuary in Texas (< 0.5 yr; 
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Solis and Powell 1999; Wetz et al. 2017). Salinity conditions in the Upper Laguna Madre, 

including Baffin Bay, are on average hypersaline (mean ± standard deviation = 35.9 ± 7.0; 

Montagna et al. 2011). Salinity in Baffin Bay specifically is generally higher and has more 

spatiotemporal variability (2013-2016 mean ± standard deviation = 41.2 ± 10.4; Montagna et al. 

2018) than the Upper Laguna Madre as a whole (2015-2017 = 39.1  ± 6.4; Breaux et al. 2019). 

2.3 Study Design 

Three Serpulid reefs (R1-R3) and three soft sediment stations (SS1-SS3) were sampled 

quarterly from June 2018 to March 2019 (Figure 1; Table S1). A fourth soft sediment station (SS4) 

was also sampled in December 2018 and March 2019 to increase spatial coverage of soft sediment 

communities. Samples were collected during sampling events for quantitative faunal community 

analysis and assessment of food web structure. Soft sediment stations SS3 and SS4 were previously 

sampled for benthic macrofaunal community analysis from 1989 to 1993 (as stations 24 and 6, 

Montagna et al. 1993; Montagna and Kalke 1995). All soft sediment stations (SS1-SS4) were 

previously sampled from 2014 to 2017 (as stations BB40, AL1, BB24, BB6, Rubio et al. 2018; 

Breaux et al. 2019).  

2.4 Water Quality 

During each sampling event, water temperature, salinity, dissolved oxygen (DO) 

concentration, and pH were measured at each station using a YSI Pro DSS multiparameter 

instrument (YSI Incorporated 2014). Measurements were taken from approximately 0.1 m below 

the water surface and 0.2 m above the sediment bottom.  
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2.5 Quantitative Fauna Analyses 

Sampling 

Three replicate pieces (approximately 3 cm3) of Serpulid reef were collected by hand at 

each of the three Serpulid reef stations. Reef pieces were immediately transferred to a 500 µm 

mesh bag to prevent loss of benthic macrofauna (henceforth “macrofauna”) that live within and 

between the worm tubes. At soft sediment stations, macrofauna were collected using a 6.7-cm 

diameter core tube (35.4 cm2 area) to a depth of 3 cm (modified from Street et al. 1997). Three 

replicate cores were collected from each station on each sampling date. All samples taken for 

quantitative analysis were preserved in 10% buffered formalin. 

Laboratory analysis 

In the laboratory, the volume of Serpulid reef samples were determined by water 

displacement, then molluscs and other hard-shelled organisms were counted and identified. 

Serpulid reef samples were then placed in 12 mol L-1 HCl for 24 hours to dissolve the calcium 

carbonate reef substrate. Organisms from Serpulid reef and soft-sediment samples were extracted 

on a 500 µm sieve, sorted using a dissecting microscope, identified to the lowest practical 

identifiable level (usually species), and enumerated. A Folsom plankton splitter was used to obtain 

a subsample of reef samples when macrofaunal abundance was too great to be practically counted. 

Dry-weight biomass measurements for both Serpulid reef and soft-sediment organisms were 

obtained for individual species or family groups after drying at 55 °C for 24 hours. Mollusc shells 

were removed with 1 mol L-1 HCl prior to drying and weighing. 

Organisms were classified by feeding mode (suspension feeder, deposit feeder, or 

predator/scavenger; Bruggeman 2020) and taxa group (e.g., Crustacea, Bivalvia, Polychaeta). 

Suspension feeders were defined as macrofauna possessing filter feeding structures that generally 
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feed on particles in the water column. Deposit feeders were defined as organisms that consume 

particulate matter in or on the sediment. Predator/scavengers were defined as carnivorous 

organisms that consume other fauna.  

Statistical Analysis 

Spearman rank correlation analyses were run between water quality variables (salinity, 

temperature, DO, pH) and both Serpulid reef and soft sediment macrofaunal abundance and 

biomass. Spatio-temporal differences in biomass-based macrobenthic community composition 

were determined using non-metric multi-dimensional scaling (nMDS) and cluster analysis (group 

average method; Clarke 1993). Multivariate analyses were performed on a Bray–Curtis similarity 

matrix on loge(x+1) transformed data using Primer 7 software (Clarke and Gorley 2015). 

2.6 Stable Isotope Analyses 

Sampling 

Surface sediment organic matter (SSOM) and suspended particulate organic matter 

(SPOM) were collected at all stations via benthic coring (3 cm deep, 35.4 cm2 area) and surface 

water collection, respectively, during each sampling event. Samples were stored on ice until 

returning to the laboratory. Triplicate Serpulid reef pieces and sediment cores were sampled at 

each station during each sampling event to collect macrofauna for stable isotope analyses using 

the same methods as for quantitative fauna analysis. The stable isotope cores were sieved in the 

field using a 500 µm mesh bag. Retained items and reef pieces were stored in containers filled 

with local water inside a cooler until the end of the field day, when they were transported to the 

laboratory.  

Fish were collected in two ways: Reef-dwelling fish (Pinfish [Lagodon rhomboides] and 

Sheepshead [Archosargus probatocephalus]) were collected from Serpulid reef stations using 
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hook and line, or speargun. Sport fish (Black Drum [Pogonias cromis], Red Drum [Sciaenops 

ocellatus], and Spotted Seatrout [Cynoscion nebulosus]) were collected through partnerships with 

commercial and recreational fishermen. Up to 15 sport fish (including at least five P. cromis) were 

collected from Baffin Bay six to eight weeks after each benthic sampling event. Pogonias cromis 

were purchased from local trotline fishermen, while tissue samples from other species (particularly 

the non-commercial species S. ocellatus and C. nebulosus) were collected from anglers at a 

recreational boat launch. Sport fish were caught in Baffin Bay, but not necessarily around Serpulid 

reefs. All fish tissue was stored on ice until returning to the laboratory to be stored at -20 °C. 

Laboratory Sample Preparation 

Water samples for SPOM analysis were sieved through a 250 µm-mesh to remove large 

zooplankton and detritus, then filtered through pre-combusted (4 hours at 450 °C) glass fiber filters 

(Whatman GF/F glass fiber filters, 0.7 mm porosity) which were then freeze dried, generally for 

24-72 hours, until dry (Labconco Freezone). Carbonates were removed from filters for δ13C 

measurements by contact with HCl fumes for 4 hours in a vacuum-enclosed system. Nitrogen 

isotope compositions were analyzed using raw filters. 

Samples of SSOM were sieved through a 500-µm mesh to remove macrofauna, large 

detritus, and large pieces of shell hash, then freeze dried and ground using a mortar and pestle. 

Samples to be analyzed for carbon were decarbonated by adding 1 mol L-1 HCl drop by drop until 

cessation of bubbling. These samples were then dried in a dry-block heater, rinsed with deionized 

water, freeze-dried and manually ground again.  

Macrofauna collected for stable isotope analyses were sieved live on a 500 µm mesh within 

24 hours of sample collection, separated by taxa, and placed in aquaria in artificial seawater for 36 

hours to allow evacuation of gut contents. For each species identified, three individuals of differing 
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size classes were reserved when possible. Soft tissues were collected from macrofauna. Mollusk 

shells were manually removed prior to stable isotope analysis. Lipids were not extracted from 

macrofauna because entire prey items are ingested by fish and therefore all tissues (including 

lipids) can be assimilated into predators (Newsome et al. 2014; Wolf et al. 2015). Mathematical 

corrections to δ13C values to account for variations in prey lipid concentrations were not used in 

this study because corrections on a large range of prey (with a large range of tissue compositions; 

Table S2) in habitat-scale assessments such as these can lead to larger biases than when not using 

any correction (Arostegui et al. 2019). Epaxial fish muscle tissue samples were removed from the 

anterior portion of the fillet. Any adhering skin, scales, or bones were removed from the tissue 

samples. Lipid removal was not needed on fish tissues prior to stable isotope analysis as C/N ratios 

(by mass) were lower than 3.5 (Table S2; Post et al. 2007). All fish and macrofauna samples were 

stored at -20 °C, freeze-dried and then ground (Retsch MM 400 ball mill) to a homogenous fine 

powder. 

Appropriate amounts of each sample type were encapsulated in tin capsules, except 

acidified sediment samples. Those were encapsulated in silver capsules (to prevent corrosion of 

the capsule by acidified material) and then packed into tin capsules (to improve their combustion 

during the elemental analysis). The surface of the filters (i.e. acidified and non-acidified) was 

scraped using flat tweezers to collect the maximum amount of SPOM and the smallest amount of 

glass fibers, to improve the quality of combustion in the elemental analyzer. Samples were 

prepared in Texas A&M University-Corpus Christi laboratories for stable isotope analysis before 

sending off to be analyzed with a Flash EA 1112 elemental analyzer equipped with the Smart EA 

option (Thermo Scientific, Milan, Italy), coupled with a Delta V Advantage isotope ratio mass 

spectrometer with a Conflo IV interface (Thermo Scientific, Bremen, Germany) at the University 
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of La Rochelle, France (Littoral, Environment and Societies Joint Research Unit stable isotope 

facility, LIENSs). Isotope compositions are reported in the δ notation as deviations from standards: 

atmospheric N2 for δ15N and Vienna Pee Dee Belemnite for δ13C using the formula: 

δ13C or δ15N =  [(𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −  1] x 1000 

where R is 13C/12C or 15N/14N. Calibration was conducted using reference materials (USGS-24, -

61, -62, IAEA-CH6, -600 for carbon; USGS-61, -62, IAEA-N2, -NO-3, -600 for nitrogen). The 

analytical precision of the measurements was <0.15‰ for carbon and nitrogen based on analyses 

of USGS-61 and USGS-62 used as laboratory internal standards. 

Statistical Analyses 

Kruskal-Wallis rank sum tests followed by multiple comparisons were used to investigate 

seasonal or spatial-related fluctuations in isotope compositions of SPOM, SSOM, macrofauna, and 

fish muscle tissue. All tests were carried out with the R software (R Core Team 2013). Multiple 

comparisons of means were completed using the pgirmess package (Giraudoux 2011). 
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3. Results 

3.1 Water Quality 

Water quality was similar at the Serpulid reef and soft sediment stations (Figure 2). Mean 

salinity decreased from 45.6 ± 3.8 (mean ± standard deviation) in June 2018 to 27.8 ± 0.7 in 

December 2018 before slowly increasing back to 28.9 ± 0.3 in March 2019. Temperature followed 

a typical seasonal pattern with a high of 29.1 ± 0.3 °C in June and a low of 14.0 ± 0.6 °C in 

December. Trends in DO concentration were also seasonal, and inversely related to temperature 

(5.7 ± 0.2 and 9.6 ± 1.1 mg L-1 in June and December, respectively). Mean pH was highest during 
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the study period in September 2018 (8.5 ± 0.0) and then decreased to a low of 7.8 ± 0.1 in March 

2019. Water quality measurements were within the range of historic averages (Bugica et al. 2020). 

3.2 Quantitative Fauna Analyses 

Mean abundance of macrofauna was 191 times greater per volume of Serpulid reef than 

the same volume calculated from the top 3 cm of soft sediment (Figure 3). Forty-three species 

occurred in Serpulid reef samples, as opposed to twenty-two taxa in the soft sediment samples 

(Table S3). Serpulid reef macrofauna were dominated in abundance by crustaceans and 

polychaetes. The most abundant taxa were the amphipod Apocorophium louisianum (formerly 

Corophium louisianum; 18,837 n L-1, 62.9% of total abundance), the polychaetes Polydora ligni 

(1601 n L-1, 5.4%), Syllis cornuta (1565 n L-1, 5.2%) and Nainereis laevigata (1203 n L-1, 4.0%), 

the tanaid Hargeria rapax (1227 n L-1, 4.1%) and the barnacle Balanus eburneus (1218 n L-1, 

4.1%). The serpulid H. dianthus (539 n L-1, 1.8%) was most abundant and temporally variable at 

station R1 (966 n L-1), with peaks occurring in September 2018 (2272 n L-1) and March 2019 (1214 

n L-1). The most abundant taxa in the soft sediment were the polychaete Mediomastus ambiseta 

(55 n L-1, 35.2%), the bivalve Mulinia lateralis (49 n L-1, 31.2%) and unidentified amphipods from 

the Ampeliscidae family (27 n L-1, 17.3%).  

Mean macrofauna biomass was 97 times greater per volume of Serpulid reef than the same 

volume calculated from the top 3 cm of soft sediment (Figure 3). The most dominant taxa by 

weight on the Serpulid reefs were B. eburneus (3968 mg L-1, 46.7% of total biomass), A. louisianum 

(1100 mg L-1, 12.9%), the bivalve Brachidontes exustus (992 mg L-1, 11.7%), unidentified 

Actinaria (485 mg L-1, 5.7%) and the polychaete Nereis riisei (433 mg L-1, 5.1%) (Table S4). The 

most dominant taxa by weight in the soft sediment were the bivalves M. lateralis (67 mg L-1, 
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77.3%) and Lyonsia hyalina (3 mg L-1, 3.7%), the polychaetes Pectinaria gouldii (8 mg L-1, 9.3%) 

and M. ambiseta (3 mg L-1, 3.1%), and unidentified Ampeliscidae (3 mg L-1, 3.1%). 

Overall, Serpulid reef macrofauna abundance increased down-estuary toward the mouth of 

Baffin Bay from R1 (18,984 n L-1) to R3 (42,132 n L-1) (Figure 3 and Figure 4). Abundance 

increased down-estuary for crustaceans (from 10,993 to 32,598 n L-1) and polychaetes (from 6,432 

to 8,068 n L-1), while bivalves decreased in abundance (from 736 to 170 n L-1; Table S3). There 

was no consistent spatial trend in macrofauna biomass among Serpulid reef stations. No spatial 

trend was observed in soft-sediment macrofauna abundance or biomass. The highest abundance of 

crustaceans (11 n L-1) was at station SS4, located closest to the mouth of Baffin Bay near the 

Laguna Madre.  

Deposit feeders were the most abundant feeding type, contributing 69,873 n L-1 (78%) of 

total abundance for Serpulid reef and 386 n L-1 (62%) for soft sediments (Table S3). Suspension 

feeders were the next most abundant in both Serpulid reef (9,289 n L-1; 10%) and soft-sediment 

(225 n L-1; 36%) stations. Macrofauna biomass was dominated by suspension feeders in both 

Serpulid reef (17.3 mg L-1; 68%) and soft-sediment (0.32 mg L-1; 91%) stations (Figure 5, Table 

S4). Deposit feeders were the next most dominant, constituting 5.8 mg L-1(22%) of total biomass 

for Serpulid reef and 0.03 mg L-1 (9%) for soft sediments. 

Macrofauna communities differed greatly between Serpulid reef and soft sediment stations 

(Figure 6). Macrofauna community composition from all stations was at least 3% similar to one 

another. Among Serpulid reef stations, macrofauna community composition was 53% similar. 

There was a change in community composition and increase in diversity at Serpulid reef stations 

moving down-estuary from R1 to R3. Soft sediment macrofauna community composition had 
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higher variability among stations and over time compared to macrofauna from Serpulid reef 

stations.  

Macrofauna abundance in soft sediments was negatively correlated with salinity (r = -

0.499, p ≤ 0.069), temperature (r = -0.473, p ≤ 0.088) and pH (r = -0.550, p ≤ 0.042; Table 1). Soft 

sediment biomass was also negatively correlated with pH (r = -0.682, p ≤ 0.007). Abundance and 

biomass of Serpulid reef macrofauna were not correlated with any measured water quality 

variables (r ≤ |0.459|, p ≥ 0.134). 

3.3 Isotope compositions 

The isotope compositions of SPOM (δ13C: -24.5‰, δ15N: 3.5‰) were more depleted than 

SSOM (δ13C: -20.8‰, δ15N: 4.4 ‰) (paired t-tests, δ13C: p < 0.001; δ15N: p = 0.029; Table 2). 

Isotope compositions of SPOM and SSOM were similar among sampling stations (Kruskal-Wallis 

tests, p ≥ 0.063; Figure 7). δ13C and δ15N values of SSOM were stable throughout the study 

(Kruskal-Wallis tests, δ13C: p = 0.652; δ15N: p = 0.491), while SPOM δ13C values decreased over 

time (Kruskal-Wallis test, p < 0.001; Table S5; Figure S1). δ15N values of SPOM peaked in 

December 2018 (Kruskal-Wallis test, p = 0.009). Algae presented relatively large ranges of δ13C, 

with means ranging from -20.5 (March 2019) to -16.9‰ (June 2018) and δ15N values, ranging 

from 3.9 (September 2019) to 6.2‰ (March 2019; Table S5). 

Serpulid reef suspension feeders had mean δ13C values ranging from -21.6 (B. exustus) to 

-19.3‰ (B. eburneus) and mean δ15N values from 5.3 (B. exustus) to 7.9‰ (B. eburneus, Table 2). 

δ13C values of B. eburneus were lower in December 2018 compared to June 2018 and March 2019 

(Kruskal-Wallis test, p < 0.001; Table S5). Otherwise, carbon isotope compositions of the three 

major species of suspension feeders (B. eburneus, B. exustus and H. dianthus) in the reefs were 

stable over time (Figure S1) and did not follow any spatial pattern. The δ15N values of these three 
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consumers were similar between stations (Kruskal-Wallis tests, p ≥ 0.391) with no clear temporal 

pattern. Serpulid deposit feeding species had δ13C and δ15N values similar to those of suspension 

feeders; mean δ13C values ranged from -20.4 (A. louisianum, Terebellidae) to -18.7‰ (Cerapus 

tubularis) and mean δ15N values ranged from 6.4 (H. rapax) to 7.6‰ (Terebellidae; Table 2). 

Carbon isotope composition of the major species of deposit feeder (A. louisianum) was stable over 

time (Kruskal-Wallis test, p = 0.182; Figure S1). Predators/scavengers had mean δ13C values 

ranging from -20.8 (Cnidaria) to -17.9‰ (Xanthidae) and mean δ15N values from 8.4 (Nereididae) 

to 10.0‰ (Cnidaria), with the upper limits of these ranges being higher than those of suspension 

and deposit feeders. 

Soft sediment suspension and deposit feeders’ δ13C and δ15N values were similar over 

space and time. Mean δ13C values of soft sediment suspension feeders ranged from -21.1 

(Pectinariidae) to -20.5‰ (M. lateralis), and mean δ15N values ranged from 5.8 (M. lateralis) to 

7.1‰ (Pectinariidae; Table 2). Deposit feeders had mean δ13C values ranging from -22.1 

(Ampharetidae) to -15.0‰ (N. vibex) and mean δ15N values ranged from 5.6 (Ampeliscidae) to 

9.7‰ (Goniadidae). Soft sediment predators/scavengers had mean δ13C values ranging from -21.8 

(Nemertea) to -19.7‰ (A. canaliculata) and mean δ15N values from 7.5 (Turbellaria) and 10.1‰ 

(Nemertea). 

Comparisons between habitats demonstrated that suspension and deposit feeders collected 

at Serpulid reef and soft sediment stations had similar δ13C values (Kruskal-Wallis test, p = 0.180; 

Figure 7). δ15N values for these two groups of primary consumers were also similar, except 

suspension feeders from the Serpulid reef which were slightly more 15N-enriched than suspension 

feeders from the soft sediment (means of 6.8 vs. 6.0‰; Kruskal-Wallis test, p = 0.026). 
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Pogonias cromis collected by commercial fishermen throughout Baffin Bay had similar 

isotope compositions to L. rhomboides and A. probatocephalus collected at Serpulid reef sampling 

stations (Kruskal-Wallis tests, δ13C: p = 0.690, δ15N: p = 0.883; Figure 7). Mean fish δ13C values 

ranged from -18.9 (A. probatocephalus) to -15.7‰ (S. ocellatus). No difference was observed 

between δ13C values of fish species (Kruskal-Wallis test, p = 0.359). Mean fish δ15N values ranged 

from 9.9 (L. rhomboides) to 13.5‰ (C. nebulosus), with C. nebulosus being more enriched in 15N 

than other fish species.  

The range of fish δ13C values overlapped those of suspension and deposit feeders from soft 

sediment and Serpulid reefs (Figure 7). The mean δ13C values of suspension (-20.7‰) and deposit 

feeders (-20.1‰) from both habitats were in the range of mean SSOM δ13C values (-21.0 to -

20.8‰) and were much more 13C-enriched than SPOM (-24.7 to -24.4‰; Table 2).  
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4. Discussion 

4.1 Biomass enhancement and Serpulid reef macrofauna 

Baffin Bay’s Serpulid reefs increase habitat complexity and support specific macrofauna 

assemblages with enriched abundance, biomass, and diversity. Macrofauna inhabiting Serpulid 

reefs occur in considerably higher densities (191x), have substantially higher biomass (97x), and 

are more diverse (2x) than those occurring in soft sediments. Macrofaunal community composition 

differed between habitat types, with crustaceans and polychaetes dominating at Serpulid reef 

habitat and bivalves and polychaetes dominating in soft sediments. While the population dynamics 

and community composition of Baffin Bay’s soft sediment macrofauna has fluctuated greatly over 

time (Montagna and Kalke 1995; Rubio et al. 2018; Breaux et al. 2019), Serpulid reef macrofauna 

communities characterized in the current study are similar to those recorded historically, in 

particular compared to the most recent and probably most comprehensive study of Serpulid reefs 
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in Baffin Bay, conducted two decades ago (Hardegree 1997). The deposit-feeding amphipod A. 

louisianum was the most abundant reef organism observed in both studies (Hardegree 1997: 71% 

of total abundance; current study: 60% overall, 70% at station R3), and the eight most abundant 

macrofauna collected in 1997 were among the most numerous (8 of the 10 most abundant species) 

in the current study. 

Whereas soft sediment macrofauna decreased in abundance with increases in salinity, 

temperature and pH, Serpulid reef macrofauna abundance and biomass were stable over time, 

indicating that they are more consistently available to higher-level consumers than soft sediment 

communities. Indeed, Baffin Bay experiences large and frequent fluctuations in water quality 

variables including salinity and pH, as well as frequent algal blooms (Cira and Wetz 2019; Cira et 

al. 2021), and numerous studies have documented the effects on soft sediment macrofauna 

(Montagna et al. 1993; Montagna and Kalke 1995; Street et al. 1997; Rubio et al. 2018; Breaux et 

al. 2019). While the role of salinity and temperature in structuring macrofauna communities is 

generally well understood (Ritter et al. 2005; Beseres Pollack et al. 2009; Palmer and Montagna 

2015; Van Diggelen and Montagna 2016), the mechanism for the response to pH is less well 

known. Fluctuations in pH can affect marine organisms in various ways including reductions in 

metabolism and growth, solubility of calcium carbonates, and bioavailability of metals (Knutzen 

1981; Guinotte and Fabry 2008), which may have contributed to variability in soft sediment 

macrofauna community.  

Although Serpulid reef macrofaunal abundance and biomass were unrelated to salinity 

fluctuations in the current study, persistent hypersalinity could have a negative effect on Serpulid 

reef macrofaunal richness, as occurs in nearby soft sediment communities (Simmons 1957; 

Montagna et al. 2002). A greater number of reef taxa were identified in the current study (43 in 
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this study versus 29 in Hardegree 1997) despite similar sampling efforts, which may be related to 

the relatively moderate salinity range in this study (monthly salinity range of 28 to 47) as compared 

to the consistently hypersaline conditions (salinity range of 40 to 65) occurring during the 

Hardegree study. In contrast, the number of reef taxa in this study (43) is comparable to that found 

in a limited study of Baffin Bay under similar salinity conditions conducted three decades ago (38 

species, Cole 1981). The proposed link between hypersalinity and decreasing Serpulid reef 

macrofauna richness is speculative, as factors such as other changes in water quality could be 

responsible. There are likely to be long-term fluctuations in Serpulid reef macrofauna communities 

over time, but community stability relative to the surrounding soft sediment macrofauna is evident 

and important to the functioning of this dynamic system. 

4.2 Role of macrofauna from Serpulid Reefs in the Food Web 

Baffin Bay supports a uniquely large P. cromis population (Olsen 2014), and Serpulid reef 

macrofauna are likely a key contributor to fish success in this environmentally stressed system. 

Isotope analyses indicate that P. cromis and other sport fish likely rely on macrofauna from both 

Serpulid reef and soft sediment habitats (directly for P. cromis, A. probatocephalus and L. 

rhomboides, and indirectly for higher-trophic level consumers like C. nebulosus). Although it is 

not possible to distinguish Serpulid reef macrofauna from macrofauna in soft sediments based on 

their isotope compositions, quantitative analyses from this and other studies demonstrate that these 

food sources are present in much higher numbers, with much greater biomass, and have less 

variability, at Serpulid reefs than in soft sediments (Montagna et al. 1993; Montagna and Kalke 

1995; Hardegree 1997; Rubio et al. 2018; Breaux et al. 2019).  

During hypersaline periods, when soft sediment macrofauna become scarce, Serpulid reefs 

likely become an essential source of macrofaunal prey for higher trophic level consumers. Breaux 
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et al. (2019) found that P. cromis diets in Baffin Bay consist primarily of deposit-feeding 

macrofauna, which were rare or absent in soft sediment habitats during high salinity conditions. 

Pogonias cromis have limited motility during hypersaline conditions, foraging primarily within 

the boundaries of the bay rather than migrating to adjacent systems (Ajemian et al. 2018; Rubio et 

al. 2018; Breaux et al. 2019). In these situations, Serpulid reefs are the primary source of 

macrofauna prey. An increased understanding of the P. cromis diet is important because up to 76% 

of annual commercial landings for the region are harvested from Baffin Bay (Olsen et al. 2018), 

and because periodic emaciation events with significantly underweight P. cromis have plagued 

this relatively small estuarine system (Olsen 2014; 2016). Additional research to estimate P. 

cromis population size and carrying capacity would help further elucidate the importance of 

Serpulid reef macrofauna to maintaining fish populations in Baffin Bay. 

While Baffin Bay’s Serpulid reefs host considerably more macrofauna than do soft 

sediments, there is a clear and strong connection between the two habitat types, with soft sediments 

playing an important trophic role. Macrofauna biomass was dominated by suspension feeders in 

both Serpulid reef (68%) and soft sediment (91%) habitats. Suspension feeders generally rely on 

food sources suspended in the water column, but in the current study their isotope compositions 

were close to those of SSOM, indicating that a large part of their food resources originate from the 

sediment, likely due to the shallow depth (average ~1 m) and predominant wind-driven mixing 

(Tunnell 2001). The role of SSOM as a food source for suspension feeders has been demonstrated 

in similarly shallow, well-mixed estuaries (Blomberg et al. 2017), and in other estuarine habitats 

such as seagrass beds, and intertidal and subtidal mudflats (Riera and Richard 1996; Lebreton et 

al. 2011; Kang et al. 2015). Our results highlight the connectivity between these two major 
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habitats: soft sediments where primary production and/or storage of this production occurs, and 

Serpulid reefs where macrofaunal consumers make this resource available to higher trophic levels.  

4.3 Implications for Conservation and Restoration  

Serpulid reefs are limited in their global distribution and at risk from anthropogenic 

disturbance yet are highly valued for their ecological and conservation importance owing to their 

high levels of biodiversity (Haines and Maurer 1980). Loss of biogenic reef structure has negative 

implications for both reef-associated macrofauna and for higher trophic level organisms foraging 

in these habitats (Kaiser et al. 1999). The only Serpulid found on the reef in the current study, H. 

dianthus, is known to exhibit gregarious settlement (Haines and Maurer 1980) and rapid growth 

(up to 66 mm yr-1; Grave 1933). However, it is plausible that H. dianthus reef-building activities 

are affected by the predominantly hypersaline conditions (Cole 1981), reducing the rate of 

biogenic reef recovery from physical disturbances, e.g., those associated with fishing activities 

(Kaiser et al. 1999). Biochemical mechanisms may also contribute to reef decline, with common 

and extreme changes in pH in the bay potentially altering calcification rates and changing the 

mechanical properties of Serpulid tubes (Chan et al. 2012; Smith et al. 2013; Díaz-Castañeda et 

al. 2019) and reducing their effectiveness against external attacks and bioerosion by predators 

(Waldbusser et al. 2011; Wisshak et al. 2012; Hossain and Rahman 2017). Additional research is 

warranted to understand how Serpulids will respond to environmental change. 

Restoration is increasingly being used as a tool to ameliorate the effects of habitat loss for 

biogenic reef builders (Jaap 2000; De Santiago et al. 2019). For habitats that are rare or limited in 

distribution, ecological knowledge is needed to promote efficient, effective, and successful 

restoration efforts (Cook et al. 2021). Although the current extent and size of Baffin Bay’s Serpulid 

reefs are unknown, observations indicate substantial reductions in habitat have occurred from the 
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16 km2 reported from surveys conducted in the 1970s (Brown et al. 1977; Hardegree 1997; Tunnell 

et al. 2001). Additional effort is warranted to update maps of Serpulid reef in Baffin Bay using 

approaches that have been successful in other systems, including lidar (Noernberg et al. 2010) and 

side-scan sonar surveys (Moore et al. 2009; Raineault et al. 2012). Our results indicate that 

Serpulid reef macrofauna abundance increased up-estuary, and that H. dianthus, the only reef-

builder in Baffin Bay, was most numerous at the furthest up-estuary station. Updated maps could 

be used in combination with these results to help select suitable locations to create restored reefs 

or protected areas to reestablish lost Serpulid habitat and food resources. Also, restoration success 

may be enhanced by selecting locations where H. dianthus are found in abundance because H. 

dianthus settlement relies on chemical cues associated with adults as indicators of habitat 

suitability (Toonen and Pawlik 1996). Additional information on hydrodynamics and larval 

dispersal could further help improve restoration planning and protected area design. The creation 

of short-term (< week) hydrodynamic transport models would be particularly useful for Serpulid 

management because H. dianthus larvae settle approximately five days after fertilization in the 

water column (Scheltema et al. 1981).   
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5. Conclusion 
We have shown that Serpulid reefs play a critical role in the functioning of the Baffin Bay 

ecosystem, supporting specific macrofauna assemblages and providing increased macrofauna 

biomass. In contrast to macrofauna from soft sediments, Serpulid reef macrofauna abundance and 

biomass were stable over time, indicating they are more consistently available to higher-level 

consumers. In periods of hypersalinity common to the bay, when soft sediment macrofauna are 

limited, Serpulid reefs likely become an essential source of prey supporting P. cromis and other 
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sport fish populations. Stable isotope analysis results demonstrate trophic connectivity between 

Serpulid reef and soft sediment habitats and highlight the importance of sediment organic matter 

as a food source for the dominant suspension feeders. Previous evidence has shown substantial 

reductions of Serpulid reef habitat in Baffin Bay compared to historic levels. Our results indicate 

that further reef degradation and loss will undoubtedly have cascading effects for higher trophic 

level organisms. Conservation actions may be needed to reestablish lost Serpulid habitat and food 

resources, and results from the current study could help in selecting suitable locations for 

restoration or protection. An improved understanding of the ecological structure and function of 

Serpulid reef habitats is important because it will increase the probability of restoration success of 

this rare and vulnerable habitat.  
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Tables 
 

Table 1. Spearman rank correlation coefficients and p-values among macrofaunal community 
measurements and water quality parameters. Analyses included four soft sediment and three 
Serpulid reef stations sampled between June 2018 and March 2019. 

723 
724 

725 
726 
727 

Habitat Variable (unit)   Salinity Temperature 
(˚C) pH 

Dissolved 
Oxygen 
(mg L-1) 

Serpulid 
Reef 

Abundance (n L-1) 
rho 
p 

0.112 
0.729 

0.046 
0.888 

0.098 
0.762 

0.056 
0.863 

Biomass (mg L-1) 
rho 
p 

-0.238 
0.457 

-0.459 
0.134 

-0.203 
0.527 

0.385 
0.217 

Soft 
Sediment 

Abundance (n L-1) 
rho 
p 

-0.499 
0.069 

-0.473 
0.088 

-0.550 
0.042 

0.389 
0.169 

Biomass (mg L-1) 
rho 
p 

-0.341 
0.233 

-0.292 
0.311 

-0.682 
0.007 

0.134 
0.648 
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Table 2. Stable isotope compositions (δ13C and δ15N, ‰) of taxa and organic matter samples 
collected from June 2018 to March 2019. SPOM = suspended particulate organic matter, SSOM 
= surface sediment organic matter.  

730 
731 
732 

Location 
Collected Sample Type Species Name n 

δ13C δ15N 
Std. Mean Dev. Mean Std. 

Dev. 

Organic matter 
SPOM 
SSOM 

25 
14 

-24.7 
-21.0 

1.6 
0.7 

3.5 
4.6 

2.4 
0.3 

Suspension Mulinia lateralis 19 -20.5 0.8 5.8 1.0 
feeder Pectinariidae 10 -21.1 0.5 7.1 1.2 

Armandia agilis 1 -21.6  7.9  

Soft 
Sediment Deposit feeder 

Ampeliscidae 
Ampharetidae 
Amphipoda 

2 
3 
1 

-19.6 
-22.1 
-20.8 

1.0 
2.2 

 

5.6 
7.7 
7.3 

0.5 
0.3 

 
Goniadidae 4 -20.9 1.1 9.7 1.1 
Nassarius vibex 1 -15.0  6.1  

Predator/ 
scavenger 

Acteocina canaliculata 
Nemertea 
Turbellaria 

2 
1 
2 

-19.7 
-21.8 
-20.9 

1.0 
 

0.4 

7.6 
10.1 
7.5 

2.2 
 

0.0 
Primary Algae 20 -18.4 4.0 5.0 1.6 

producer / SPOM 20 -24.4 1.6 3.4 1.7 
Organic matter SSOM 12 -20.8 2.0 4.2 0.7 

Balanus eburneus 36 -19.3 1.1 7.9 0.9 
Suspension 

feeder Brachidontes exustus 29 -21.6 0.6 5.3 0.6 

Serpulid 
Reef  

Hydroides dianthus 29 -21.1 0.9 7.0 0.9 

Deposit feeder 

Apocorophium 
louisianum 33 -20.4 1.2 6.5 0.7 

Cerapus tubularis 2 -18.7 1.5 7.2 1.6 
Hargeria rapax  1 -19.8   6.4   
Orbiniidae 4 -20.3 0.5 7.0 0.3 
Terebellidae 3 -20.4 0.2 7.6 0.1 
Cnidaria 6 -20.8 0.3 10.0 0.9 

Predator/ Nereididae 29 -19.7 1.2 8.4 1.0 scavenger 
Xanthidae 4 -17.9 0.8 8.5 0.7 
Archosargus 
probatocephalus 1 -18.9   11.0   

Baffin 
Bay Fish 

Cynoscion nebulosus 
Lagodon rhomboides 

13 
8 

-17 
-16.4 

1.5 
2.5 

13.5 
9.9 

0.7 
1.1 

Pogonias cromis 23 -16.8 2.8 10.2 1.7 
Sciaenops ocellatus 4 -15.7 2.8 12.2 0.6 
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Figure Captions 734 

 735 
Figure 1. Map of the Baffin Bay complex showing reef (R) and soft sediment (SS) sampling 
locations. Approximate locations of reef are derived from NOAA electronic navigation charts 
(NOAA 2018). Almost all reefs in the map are Serpulid reefs (some in the Laguna Madre are rock 
reefs).  
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 741 

Figure 2. Salinity and pH measured at soft sediment (blue) and Serpulid reef (red) stations. 
Shaded regions represent minimum and maximum salinities in each sampling period. Values 
before 2018 are plotted for reference only. 

  

742 
743 
744 

745 



39 
 

 746 

Figure 3. Abundance (top), and biomass (bottom) of fauna (n L-1) in the top 3 cm of soft 
sediment (blue) and 3 pieces (approximately 3 cm3) of Serpulid reef (red) from June 2018-March 
2019. In each boxplot, the line represents the median, x symbol represents the mean, the upper 
and lower box limits represent the upper and the lower quartile, upper and lower whiskers 
represent the minimum and maximum values (excluding outliers).  
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 753 

 754 

Figure 4. Mean abundance (top) and biomass (bottom) of major faunal groups occurring in soft 
sediment and Serpulid reef stations from June 2018-March 2019. Pie graph size is indicative of 
relative macrofaunal abundance and biomass, respectively. 
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 759 

Figure 5. Mean biomass of macrofauna by feeding type in soft sediment and Serpulid reef stations 
from June 2018-March 2019. Pie graph size is indicative of relative macrofaunal biomass. 
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 763 

Figure 6. Nonmetric multidimensional scaling plot of macrofaunal communities from Serpulid 
reef (R1-R3; triangles) and soft sediment stations (SS1-SS4; circles) from June 2018-March 2019. 
Ellipses represent 3% similarity groupings determined by cluster analysis. 
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 769 

Figure 7. Stable isotope compositions (δ13C and δ15N, ‰) of potential food sources and fish. Fish 
are shown as individual samples. All other samples are averaged by season (mean ± standard 
deviation). Sources from the Serpulid reef are represented by solid symbols and those from soft 
sediment by hollow symbols. SPOM = suspended particulate organic matter, SSOM = surface 
sediment organic matter. 
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