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Extended Materials and Methods  

Data Sources and Study Regions. The PurpleAir sensors report the mass of size-resolved particulate 45 

matter, as well as environmental parameters such as temperature and relative humidity (RH). Data from 

many of these sensors are voluntarily shared online by the owners (including the citizens, and government 

agencies like the California Air Resources Board, Bay Area Air Quality Management District and Southern 

California Air Resource Board). For this study we downloaded the 10-min average PM2.5 concentration data 

from the PurpleAir website (https://www2.purpleair.com/). For the NC 2020 case, we used data from the 50 

areas boxed by latitudes [38.77º N, 38.04º N] and longitudes [123.19º W, 121.15º W]; [38.04º N, 37.98º N] 

and [123.19º W, 121.60º W]; [37.98º N, 37.67º N] and [122.69º W, 121.90º W]; [37.67º N, 37.21º N] and 

[122.47º W, 121.36ºW] for August and September 2020 (Fig. S2). These boxes cover most of the San 

Francisco Bay Area and part of the Sacramento County. In this period, residents in this area experienced 

smoky days caused by the LNU Lightning Complex Fire, the August Complex Fire, the SCU Lightning 55 

Complex Fires, the CZU Lightning Complex Fires, and at the end of September the Glass Fire, as well as 

the massive fires in Oregon (https://www.fire.ca.gov/incidents/2020/). The same study area was used in the 

NC 2018 case, although fewer sensors were operating at that time. The study area for the SC 2020 case 

is boxed by [33.47º N, 34.50º N] and [116.85º W, 119.40º W], as shown in Fig. S3. 

 60 

Selection of Sensor Correction Models. Plantower sensors (Plantower Technology) used by PurpleAir 

measure the mass of particulate matter by measuring light scattering at 680±10 nm (1). The manufacturer 

has a proprietary algorithm to convert the light scattering signal to the mass concentration of particulate 

matter. Each sensor is also embedded with a BME 280 sensor (Bosch Sensortec) to measure the 

temperature, pressure, and relative humidity in real time. The performance of low-cost PM2.5 sensors is 65 

dependent on humidity, temperature and level of particulate matters (2–7). Many corrections have been 

proposed to convert the raw PM2.5 data (PM2.5 CF=1) measured by Plantower sensors to values consistent 

with research grade instruments. In our analysis, hourly average primary PM2.5 data measured by 16 EPA 

Air Quality Measurement Stations (AQMSs) in August and September 2020 in the study area was 

downloaded from the EPA AirNow’s API website (https://docs.airnowapi.org/). According to the California 70 

Air Resource Board (https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-

https://www2.purpleair.com/
https://www.fire.ca.gov/incidents/2020/
https://docs.airnowapi.org/
https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
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monitoring-network-report), the primary PM2.5 monitors in these sites are MetOne BAM (beta-ray 

attenuation) continuous monitors. For each EPA measurement site, we compared the data measured by 

outdoor PurpleAir sensors within 5 km (using at most 50 sensors near each EPA site to avoid data being 

skewed towards a small number of sites). We excluded outdoor sensors that (a) reporting less than 4 weeks 75 

of data. (b) had weak correlation with the EPA station’s measurement (r < 0.8) because it might be affected 

by other local pollution sources or it could be listed as an outdoor sensor by mistake, (c) reported PM2.5 

larger than 800 µg m-3 and sensors always reporting data lower than 10 µg m-3 as they were either 

malfunctioning or were operating outside of the recommended limits of detection. In total, data from 446 

outdoor sensors surrounding the 16 EPA sites were included in the correction factor evaluation. 80 

To get correction factors for converting PurpleAir sensor measurements to federal 

reference/equivalent method measurements, some studies performed a linear regression of PM2.5 

measured by the PurpleAir sensors with data from nearby EPA regulatory instruments (2), while others also 

considered the effect of temperature and relative humidity on the sensor’s performance (5, 8, 9). There are 

two main types of PurpleAir sensors available for purchase on the PurpleAir website 85 

(https://www2.purpleair.com/collections/air-quality-sensors). The PA-I sensors only have one channel 

(Plantower PMS 1003) for PM measurement. Each PA-II PurpleAir sensor has two Plantower PMS 5003 

sensors inside (Channel A and Channel B). Ideally, it is good to average the values reported by the two 

sensors and to remove some abnormal data because of sensor failures that can be captured by the 

difference of PM reported for the two channels. However, many sensors did not report PM2.5 data from 90 

Channel B, presumably because they were the indoor PA-I sensor model. To incorporate as many sensors 

(buildings) as possible in the analysis, we only used Channel A data if data from both channels are 

available. According to the evaluation by Barkjohn et al. (8), the PM2.5 concentrations reported by Channels 

A and B agree well. In line with this prior result, we compared 42 sensors with fully available Channel A and 

B data and found excellent agreement [slopes of linear fit between two channels’ PM2.5 data have IQR of 95 

(0.97, 1.06) with median at 1.01; R2 of fit between two channels’ PM2.5 are all above 0.95]. More broadly, 

we believe that many instances of abnormal data are reliably excluded by our other QA/QC procedures 

(described in “Other QA and QC” section below). The sensors report both PM2.5 CF = 1 data and PM2.5 CF 

= ATM (atmospheric) data. It is not known how the CF = 1 data are converted to CF = ATM data in the 

https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
https://www2.purpleair.com/collections/air-quality-sensors
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proprietary algorithm from the manufacturer. However, it is known that the ATM data can result in a 100 

nonlinearity for concentrations below and above around 20-40 µg m-3 (10, 11), while CF = 1 data do not 

have this problem. The PM2.5 CF = 1 data have also been shown to correlate better with the EPA federal 

reference methods or federal equivalent methods. The PM2.5 CF = 1 data were therefore chosen as the raw 

input data in our calibration.  

Seven correction methods were compared in our analysis, with their performance summarized in 105 

Table S1. Method 1 and 2 are based on linear regressions (ordinary least square method) of the EPA PM2.5 

data with the PurpleAir PM2.5 CF = 1 data (of individual sensors, not the average of all sensors within 5 km 

of each AQMS). Method 3 uses an orthogonal distance regression (ODR) with zero intercept. The Barkjohn 

et al.(9) US fire correction was based on comparison of PurpleAir measurement data with collocated federal 

equivalent methods in 7 sites across the United States affected by prescribed fires, ambient aged fires, 110 

woodstove fires and wildfires. It considers the effect of relative humidity on the measurement. A similar field 

comparison was performed by Holder et al. (3). The correction factors from these two studies were also 

evaluated here for our dataset. We also constructed a “New fit incorporating RH” correction by a multivariate 

regression of EPA PM2.5 against PM2.5 and RH measured by nearby outdoor PurpleAir sensors using data 

in August and September 2020 from the San Francisco Bay Area. In some studies, a nonlinear RH term 115 

RH2/(1-RH) was used (5, 8). However, recently it has been demonstrated that a linear term of RH can 

perform even better than the non-linear term (6). Therefore, the linear RH function is used in our “New fit 

incorporating RH” correction. Finally, using EPA PM2.5 as the response, and PM2.5 and RH reported by the 

nearby PurpleAir sensors as input, we trained a binary decision tree for regression model using the 

Statistics and Machine Learning Toolbox in MATLAB. The temperature term was not included in our 120 

correction models because it has been shown that including the temperature term can only negligibly 

improve the performance of such correction models (5, 6). The commonly used Lane Regional Air 

Protection Agency (LRAPA) correction, which uses the CF = ATM data in the correction equation (6), was 

not compared here.  

Adding a non-zero intercept to the model did not substantially improve the R2 or reduce the root 125 

mean square error (RMSE). A major disadvantage of adding such an intercept is it can lead to an 

overestimation when the PM2.5 concentration is very low. We also evaluated whether the linear regression 
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of the EPA PM2.5 data with the PurpleAir PM2.5 (CF = 1) data are sensitive to the distance threshold. Table 

S2 shows that the regression coefficients are not very sensitive to the distance threshold from 2 km to 20 

km.  130 

In ordinary least square regression, it is assumed that the independent variable is free from errors 

(13). However, this assumption may not be true for PurpleAir sensor measurements. We therefore also 

calculated the slope using orthogonal distance regression (ODR). The ODR minimizes the sum of 

orthogonal distances of the data points from the regression line (13). Using the ODR method changed the 

correction factor by only 0.01 and increased the RMSE (Table S1). Adding RH in the linear regression also 135 

only made an almost negligible improvement. We therefore chose the linear regression without intercept 

correction. In this case, the fitted correction factor is 0.53. Fig. S6 displays the hourly concentration time 

profiles of PM2.5 measured by each EPA monitor in the San Francisco Bay Area, and the average 

concentrations of PurpleAir sensors (after correction with CF = 0.53) within 5 km in August and September 

2020. They agree reasonably well with each other.  140 

It is important to note that the correction equations evaluated here are only applicable for this 

analysis, and they should not be generalized to other places and/or at other times. As shown in Holder et 

al. (3), even the correction factors for wildfire smoke from different fires in the US can differ by a factor of 

more than 2. It is also worth noting that our analysis is not heavily dependent on the exact correction factor 

because the concentration ratios are the targets. The correction factors only affected which peaks were 145 

defined as indoor source peaks. When wildfire smoke affected a region, the composition of indoor and 

outdoor PM2.5 were expected to be similar because wildfire particles dominated even in the indoor 

environments (Table 1). Therefore, it is reasonable to use the same correction for both indoor and outdoor 

PM2.5, especially we focus on the indoor/outdoor ratios, as suggested by Bi et al. (14). . 

As shown in Table S1 and Fig. S15, the binary decision tree method can improve the correlation of 150 

PurpleAir data with EPA measurements. Results from the same analysis with this correction are shown in 

Fig. S16. The trend of the result is the same as the no-correction case, but the difference between the fire 

days and non-fire days are larger, which is probably due to a non-zero intercept in the correction. 

We also performed regression for the correction of Greater Los Angeles Area sensors (SC 2020 

case). Based on linear regression of EPA monitor data with the nearby PurpleAir sensor using the same 155 
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approach as in the NC 2020 case, a correction factor of β1 = 0.58 was adopted (NRMSE = 0.42, see Figures 

S8-S9). Similar analysis has been performed by Delp and Singer (2) for San Francisco Bay Area sensors 

in November 2018. A correction factor of β1 = 0.48 was adopted in our analysis.  

 

Other QA and QC. We selected indoor sensors that had measurement value for at least 1/6 of the time 160 

(~10 days) in the two-month period considered in our study. We found 1459 indoor monitors in this region 

meeting this criterion. For each indoor sensor selected, we used its longitude and latitude to locate the 

nearest outdoor sensor. More than 2000 outdoor sensors in this region reported at least 10 days data during 

the period considered, compared with only 16 EPA Air Quality Monitoring Stations (AQMS) in this region. 

The geometric mean (GM) distance from an indoor sensor to the nearest AQMS is 6.7 km, but it is only 165 

0.21 km to the nearest outdoor sensor (Fig. S17). The substantially reduced distance allows much more 

accurate evaluation of indoor/outdoor concentration relationships. To prevent the possibility that the nearest 

outdoor sensor was located near major pollution sources, when the nearest outdoor sensor is more than 

500 m away from the indoor sensor, we required the 50th percentile concentration at this outdoor node 

when it was not affected by wildfires to be below 25 µg m-3, according to the levels and spatial decay rate 170 

of PM2.5 measured near roads (15–18). We further required the outdoor sensor to cover at least 85% of the 

time when the indoor sensor reported data. If the PM2.5 concentration measured by an “indoor” sensor is 

correlating too well with a nearby outdoor sensor (r2 > 0.8), it is likely that this sensor was placed outdoors. 

This mislabeled or dislocated sensor is therefore not used in the analysis. Fig. S18 shows an example of 

an indoor node discarded for this reason. We removed 165 “indoor” sensors from the analysis because of 175 

this problem. Another 20 indoor sensors were not considered because we could not find a nearby outdoor 

sensor that reported data for more than 85% of the time when the indoor sensor reported data. With all 

these criteria in place, data from N = 1274 indoor sensors in this region could be used. The same procedure 

was applied to data in the NC 2018 and SC 2020 cases. Negative values of PM2.5 concentration were also 

discarded. 180 

 

Decomposition of Indoor PM2.5 We separated the indoor PM2.5 from indoor and outdoor origins by 

removing short-term indoor PM2.5 peaks that were unlikely due to penetration. A very similar approach has 



 
 

7 
 

been demonstrated in previous studies by Allen et al. (19, 20). According to high time-resolution 

measurements of particulate matter in previous indoor studies, the major indoor emission processes (mainly 185 

cooking and cleaning) typically last for half an hour to an hour, and after that a longer period is needed for 

the PM2.5 perturbation to decay to less than half of its peak value (21). When these processes happen, the 

indoor level of PM2.5 was at least 30 µg m-3. We therefore selected all the peaks with half-prominence width 

(w) between 1 hour and 4 hour and prominence level above 30 µg m-3 as indoor-source peaks. It is possible 

that in some buildings the windows were opened for around an hour during the fires and created peaks that 190 

meet this criterion. Out of the 1274 buildings considered, we identified these large indoor source peaks in 

834 buildings. Buildings without such peaks might be commercial buildings without large indoor PM2.5 

sources, or the sensor in that building was placed in a location free from large indoor emissions. We 

assumed the indoor PM2.5 other than that caused by these large peaks to be infiltrated PM2.5. We 

reconstructed the infiltrated PM2.5 by linearly interpolating indoor PM2.5 concentration 3w before and after 195 

these large peaks with respect to time. The long 3w window was chosen to ensure that the indoor source 

peaks can be more thoroughly removed. For data outside of this window, the indoor concentration was 

assumed to be equal to the infiltrated PM2.5. As a QA/QC step, if the calculated non-cooking indoor 

concentration was higher than outdoor concentration, that data point was removed from the analysis. 

 200 

Mass Balance Model and Total Indoor Particle Loss Rate Constant Calculation. The indoor 

concentration of PM2.5 depends on infiltration, indoor emission, and loss. We explored the dynamics of 

indoor PM2.5 with a box model. If we assume the PM2.5 is well-mixed indoors, the mass balance of PM2.5 in 

a building can be written as:  

in
out in loss in

dCV aPVC aVC k VC S
dt

= − − +   (S1) 205 

where V is the volume of the room, a is the air exchange rate, P is the penetration factor of particles, kloss 

is the loss rate constant including deposition and indoor filtration, and S is the indoor emission rate. Cin and 

Cout are the indoor and outdoor concentrations, respectively (22, 23). Dividing by V on both sides, we can 

simplify the equation to: 

( )in
out loss in

dC SaPC a k C
dt V

= − + +
 (S2) 210 
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When the indoor and outdoor particles are in steady state, and S is small, we have: 

0 ( )in in
out loss in in

out loss

dC C aPaPC a k C F
dt C a k

= = − + ⇒ = =
+  (S3) 

where Fin is the infiltration factor. For particulate matter, Fin can be obtained from the ratio of indoor/outdoor 

concentration when there are no outdoor sources (23, 24). Another way to estimate Fin is to regress the 

indoor PM2.5 on outdoor values (25). However, this method has been shown to underestimate the infiltration 215 

factor while overestimating the indoor background (23), or produce infiltration factors outside [0,1] (14). 

Therefore, the ratio method was used for our analysis. 

During the peak of cooking-like indoor particle release events, the indoor PM2.5 resulting from 

cooking is much larger than the infiltrated smoke. When the indoor emission event is over, we assume the 

indoor source term becomes 0, and we have: 220 

( )( )
,( ) ( ) loss peaka k t tin

loss in in peak in peak
dC a k C C t t C e
dt

− + −= − + ⇒ − =
 (S4) 

Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (26). We define (a+kloss) as the total indoor 

particle loss rate constant (λt). A peak prominence of 30 µg m-3 (20 µg m-3 in the SC 2020 case to incorporate 

more peaks) was used as the threshold to find large indoor peaks that were subsequently used in the 

particle loss rate constant calculation. If windows were opened and then closed, the decay of resulted indoor 225 

PM2.5 can also be described by Equation S4. Those peaks were also included because the decrease of 

indoor PM2.5 under that circumstance can also be described by the exponential decay. The decay rate 

constant is also not substantially affected by the correction factor used because the correction factor affects 

Cin and Cin, peak in the same way. To get total particle loss rate λt = a+kloss, Equation S4 can be rewritten as:  

( )ln ( )
( )
in

t peak
in peak

C t t t
C t

λ− = −
(S5) 230 

We then linearly fitted this equation by least square method to get slope λt for the decay of each 

peak of indoor PM2.5. In this part, we no longer require the width of the peak to be above 1 hour. In this way, 

indoor PM2.5 peaks resulting from short-time window opening were also used to get λt. The 95% confidence 

interval of λt was also calculated. To ensure the exponential decay model is applicable, if the lower bound 

of the confidence interval of λt for a peak was below zero, this peak was not used as data for Fig. 5.  235 
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The decrease of indoor PM2.5 concentration can also be caused by the decrease of outdoor PM2.5 

concentration. In such cases, the assumption that incoming outdoor PM2.5 source is stable no longer holds. 

Therefore, if the indoor PM2.5 was decaying together with the outdoor PM2.5 measured by the nearest sensor 

(r2 > 0.8), this peak was excluded from the analysis. For the 1274 buildings considered in the NC 2020 

case, we observed such decay peaks in 1000 buildings. On average, 4.7 decay peaks were captured in 240 

each building in the two-month period. 

Uncertainty of the infiltration ratios and the decay rate constants 

We roughly estimated the uncertainty of the infiltration ratios of individual sensor pairs, based on the idea 

that disagreement among any two paired sensors would lead to an uncertain estimate of the ratio of 

concentrations between those sensors. Thus, we gain a magnitude estimate of the uncertainty of the 245 

indoor/outdoor concentration ratio by examining the disagreement among a large number of paired nearby 

outdoor sensors across the PurpleAir dataset in our domain. We consider two timescales: (1) the 

uncertainty of the indoor/outdoor ratios of the 10-min data, reflecting the transient noise at short time scales, 

and (2) the uncertainty of the infiltration ratio for a building over the two-month period in the analysis, 

reflecting the possible range of persistent-sensor-to-sensor bias. To do so, we first found the outdoor 250 

sensors that were used to calculate indoor/outdoor ratios. Since it is possible that the nearest outdoor 

sensor of multiple indoor sensors is the same sensor, for the 1274 pairs of sensors, there are only 784 

outdoor sensors used. For each sensor, we tried to find the nearest outdoor sensor within 1 km, which was 

successful for 775 sensors. For each pair of sensors i at time j, we calculate the ratios of xi,i/yi,j, where xi,I is 

the concentration of the ith of the 775 used outdoor sensors at time t, and yi,j is the concentration of its 255 

nearest outdoor sensor. We make Ri as: 

,1 ,2 ,

,1 ,2 ,

, ,... 
T

i i i n

i i i n

x x x
y y y

 
=  
  

iR (S6) 

 Then we concatenate the Ri array into Rall array by: 

[ ]1 2  ... T
n=allR R R R (S7) 

The uncertainty of the indoor/outdoor ratio of 10-minute data is reflected by the variation of Rall, which yields 260 

0.886, 1.005, and 1.138 as 25th, 50th, and 75th percentiles values, respectively.  
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The uncertainty of the infiltration ratio for a building over the two-month period can be roughly estimated by 

the statistics of ( )median iR , which has 0.955, 1.035, and 1.131 as 25th, 50th, and 75th percentiles values, 

respectively. Therefore, we can conclude that the uncertainty of the infiltration ratio for a building over the 

two-month period is less than ±10%.  265 

The decay rate calculation should have a very small uncertainty due to any bias in PA sensors 

because it uses measurements only from a single indoor sensor. We were fitting the decay curves of 

individual sensors by: 

( )ln ( )
( )
in

t peak
in peak

C t t t
C t

λ− = −
 (S5) 

in which Cin(t) ratios by the same sensor (especially in the same peak) should have very small uncertainty. 270 

Given the reasons stated above, we expect the exposure reduction calculations have even lower 

uncertainties because we are averaging the exposure reduction of the 1274 buildings. Assume uncertainty 

of the infiltration ratio for a building over the two-month period is 10%, the average of infiltration ratios of all 

the buildings will have an uncertainty of  10% / 1274 0.28%=  following central limit theorem. More 

conservatively, the median uncertainty of the infiltration ratio over two months, as reported for 774 sensor 275 

pairs above, was 1.035, or 3.5%. In either case, this uncertainty is quite small. We expect that the average 

exposure reduction would have a quantified uncertainty of similar or better magnitude to the I/O ratio, in 

other words, well less than 5%. Other unquantifiable uncertainties – e.g., differential or non-linear response 

of the PurpleAir to time-varying aerosol properties – add additional uncertainties that are more difficult to 

directly estimate, but we believe that these uncertainties do not fundamentally undermine the validity of our 280 

qualitative results. 

 

Building information. Property data for PurpleAir Indoor-Outdoor comparison analysis were obtained by 

matching coordinates to addresses, verifying the addresses, looking up the addresses on publicly available 

property listing services, and finally quality control of the resulting data. The latitude-longitude coordinates 285 

were obtained from the publicly available PurpleAir database formally from a PurpleAir JSON file 

(purpleair.com/json – defunct as of December 2020), now available through the official PurpleAir API 

(api.purpleair.com). The coordinates contain 6 decimal places of precision and thus are accurate to under 

http://purpleair.com/json
http://api.purpleair.com/
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10 meters, however, the placement is based on the available WiFi signal and can be edited by the sensor 

owner to be located anywhere on the map. As such, there is some uncertainty introduced into the reverse 290 

geocoding process, but since citizen scientists are interested in air quality within their own homes and 

research groups require spatial fidelity it can be assumed these coordinates are approximately correct. 

After obtaining the list of coordinates, the Google and ArcGIS geocoding engines performed 

reverse geocoding scripted using the Python library OSMnx 1.0.1 (osmnx.readthedocs.io/en/stable/). About 

38.5% of addresses in the SF Bay region disagreed between Google and ArcGIS lookups. The reasons for 295 

the disagreements are due to placement in homes leading to low confidence assigning addresses to lots 

such as on a street corner. The sensor labels and manual searches on Google Maps were used to confirm 

the address. If the sensor label contains the address or a partial address or is obvious from the Google 

Map manual search, the confidence to the matched address is high. If the reverse geocoded searches 

match, then the confidence is medium, otherwise, it is assigned low confidence. From this analysis of valid 300 

address (n=1274), 13% were assigned high confidence, 73% were assigned medium confidence, and 14% 

were assigned low confidence. For low confidence addresses, the ArcGIS address was used. 

The list of addresses was then manually inputted to Zillow, a publicly accessible website which 

offers data on homes and apartments using multiple listing services and county databases including 

building age, HVAC information, and livable area. Zillow furthermore uses existing publicly available 305 

information as well as a proprietary algorithm to derive an estimate of the current (as of December 2020) 

evaluation of the home or apartment (rent if a rental unit) termed a “Zestimate®.” If the address matches an 

apartment complex, the first listed unit was then used to find the year of construction, HVAC information, 

and a bell-weather of the typical price and area of apartments since these can vary within complexes. From 

the 1274 address, 79.5% returned the year of construction, 83.6% returned HVAC data, 76.7% returned a 310 

price estimate, and 72.2% returned the area.  Out of the 1274 buildings analyzed, 1112 (87%) buildings 

were found to be residential. Among these residential buildings, 80%, 13%, and 4% were matched to single-

family houses, condominiums or multi-family buildings, and apartments, respectively.  

As an additional sensitivity analysis, we restricted our dataset to the 87% of buildings that could 

unambiguously by ascertained to be residential. For this restricted dataset, the mean infiltration ratios on 315 

both fire days and non-fire days changed by less than 0.01. 

http://osmnx.readthedocs.io/en/stable/
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Fig. S1. A. Annual average PM2.5 concentrations in 3 Air Basins in California from 1999 to 2019 (Data 

retrieved from California Air Resource Board website https://www.arb.ca.gov/adam). The missing point is 320 

because of insufficient data available to determine the value. B. San Francisco Bay Area Air Quality Index 

(AQI) category in August and September 2020 based on 24-hour average level of PM2.5 at each EPA Air 

Quality Measurement Station. 0 - 15.4 µg/m3: Good; 15.5 - 35.4 µg/m3: Moderate; 35.5 - 55.4 µg/m3: 

Unhealthy for sensitive groups; 55.5 - 150.4 µg/m3: Unhealthy; 150.5 - 250.4 µg/m3: Very unhealthy. 

 325 

  

https://www.arb.ca.gov/adam
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Fig. S2. A. Study regions in the San Francisco Bay Area. Google Earth imagery © 2020 Google. PurpleAir 

sensors in the three boxes were analyzed together. B. Locations of all the indoor PurpleAir sensors included 

in the NC 2020 case. 330 
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Fig. S3. A. Study region in the Greater Los Angeles Area. Google Earth imagery © 2020 Google. B. 

Locations of all the indoor PurpleAir sensors included in the SC 2020 case. 

  335 
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Fig. S4. Quantile-quantile plots of mean indoor PM2.5, on the fire days (A) and non-fire days (B) against 

Weibull distribution. The reference line represents the theoretical Weibull distribution. 

 

  340 
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Fig. S5. Diel plots (local time) A. Infiltrated PM2.5 /outdoor PM2.5 on fire days and B. Infiltrated PM2.5 / outdoor 

PM2.5 on non-fire days C. Diel plot of the difference in infiltrated PM2.5 / outdoor PM2.5 (non-fire days – fire 

days). Gray shading in A & B shows the standard deviation. Data are average of all the PurpleAir sensors 

in the NC 2020 case. The difference in mean infiltration ratio between fire days and non-fire days are most 345 

apparent in the daytime, consistent with more ventilation typically occurring during daytime. 
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Fig. S6. Hourly time profile of PM2.5 concentration of the EPA monitors (black) and mean (purple) ± standard 

deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in the San Francisco Bay Area 350 

in August and September 2020. The plots only include EPA monitoring stations having at least three 

outdoor PurpleAir sensors within 5 km of them. The EPA measurement and nearby PurpleAir sensors 

measurement agree reasonably well with each other. 
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Fig. S7. Scatter plot of PM2.5 (µg m-3) of the EPA monitors and mean PM2.5 (corrected) measured by nearby 355 

PurpleAir sensors in the San Francisco Bay Area in August and September 2020. 
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Fig. S8. Hourly time profile of PM2.5 concentration of the EPA monitors and mean (purple) ± standard 

deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in the Greater Los Angeles 360 

Area in August and September 2020. The plots only include EPA monitoring stations having at least three 

outdoor PurpleAir sensors within 5 km of them. 
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Fig. S9. Scatter plot of PM2.5 (µg m-3) of the EPA monitors and PM2.5 (corrected) measured by nearby 

PurpleAir sensors in the Greater Los Angeles Area in August and September 2020 365 
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Fig. S10. Infiltration ratio of buildings in different climate zones A. on fire days (ANOVA p = 0.004); B. non-

fire days (ANOVA p < 10-3) in August and September 2020. Only climate zones with at least 10 indoor 

sensors being analyzed are included in this figure. Reference cities for different climate zones (which were 

included in our study) are: Zone 2-Napa, Zone 3-San Francisco & Oakland, Zone 4-San Jose, Zone 6-Los 370 

Angeles (LAX), Zone 8-Long Beach, Zone 9-Los Angeles (Civic Center), Zone 12-Sacramento (27). 

Infiltration ratio of residential buildings (NC 2020 case) built in different periods C. on fire days (ANOVA p 

= 0.004); and D. on non-fire days (ANOVA p < 10-3). Only residential buildings are considered in C and D. 

Buildings in Zone 12 had lower infiltration ratios than other Northern California climate zones considered. 

  375 
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Fig. S11. Infiltration ratio on fire days for cool buildings (95th percentile indoor temperature < 30ºC, N = 

142) and hot buildings (95th percentile indoor temperature ≥ 30ºC, N = 1132) in the San Francisco Bay 

Area in August and September 2020. The cool buildings have significantly lower fire-day infiltration ratios 

than the hot ones (p < 0.01), and 17% of cool buildings had extremely low infiltration ratios (< 0.1). 380 
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Fig. S12. Violin plot of total particle loss rate constant in buildings in on the fire days and non-fire days. NC 

= San Francisco Bay Area, SC = Los Angeles Area. Each violin plot shows the probability density of the 

total PM2.5 decay rate and a boxplot of interquartile range with whiskers extended to 1.5 times the 385 

interquartile range. Circles indicate the median, and horizontal lines indicate the mean. 
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Fig. S13. Diel plots (local time) of average temperature measured by PurpleAir sensors in the San 

Francisco Bay Area in August-September 2020 (A. Indoor B. Outdoor) and November 2018 (C. Indoor D. 390 

Outdoor); and in August-September 2020 in Greater Los Angeles Area (E. Indoor F. Outdoor). Gray shading 

shows the standard deviation. In the Summer 2020 cases, the difference in daytime indoor/outdoor 

temperature alternated between positive and negative values. In the NC November 2018 case, the indoor 

temperature was almost always higher than the outdoor temperature. 

  395 
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Fig. S14. Median price of homes with indoor PurpleAir sensors vs. Median Housing Price in that city, sized 

by the number of indoor sensors in that city (only showing data from cities with at least 10 buildings with 

valid indoor sensors in the NC 2020 case). PurpleAir owners live in homes with estimated average property 

values 21% greater than the median property value for their cities. 400 
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Fig. S15. A. Hourly PM2.5 measured by EPA AQMS against the linearly corrected (correction factor = 0.53) 

PM2.5 data measured by nearby PurpleAir sensors; B. Hourly PM2.5 measured by EPA AQMS against PM2.5 

measured by the PurpleAir sensors after the binary tree correction, both for data in San Francisco Bay Area 405 

in August and September 2020. This figure demonstrates the binary tree model can improve the precision 

and accuracy of the sensors. 
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 410 

Fig. S16. Binary tree PM2.5 correction case. A. Distribution of mean Indoor/Outdoor PM2.5 ratio during fire 

days and non-fire days for the buildings; B. Distribution of Infiltrated/Outdoor PM2.5 ratio during fire days 

and non-fire days for the buildings. C. Probability density distribution of total indoor particle loss rate 

constants of PM2.5 for the NC 2020 case. This figure demonstrates the binary tree correction does not 

meaningfully affect the fire day/non-fire day comparison. 415 
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Fig. S17. Distribution of distance from the indoor sensor to A. the nearest EPA air quality measurement 

station and B. the nearest outdoor PurpleAir sensor in the NC 2020 case. The geometric mean (GM) 

distance from an indoor sensor to the nearest AQMS is 6.7 km, but it is only 0.21 km to the nearest outdoor 420 

PurpleAir sensor. 
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Fig. S18. Concentration timelines of PM2.5 reported by an “indoor” sensor and the nearest outdoor sensor. 

Because the indoor concentration measured is too close to and too well correlated with the outdoor 425 

concentration, this sensor might be placed outdoors. This node was therefore not used in this analysis. 
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Table S1. Parameters and performance of 7 correction methods for the outdoor sensors in the San 

Francisco Bay Area in August and September 2020 (NC 2020 case). Parameters are for the 

correction equation 2.5, 0 1 1 2corrected CFPM PM RHβ β β= + + . RH is between 0 and 1.  

 

 
Linear 

regression 
with 

intercept 

Linear 
regression 

no 
intercept 

Linear 
regression 

no 
intercept 

(ODR) 

Barkjohn 
et al.(9) US 

fire 
correction 

Holder et 
al. (3) 

wildfire 
correction 

New fit 
incorporating 

RH 

Binary 
decision 
tree with 

RH 

β0 
[µg m-3] 3.52 n/a n/a 5.60 -3.21 3.92 n/a 

β1 0.50 0.53 0.54 0.53 0.51 0.50 n/a 

β2 n/a n/a n/a -0.084 n/a -0.80 n/a 

RMSEa [µg 
m-3] 12.2 12.6 12.6 12.8 13.9 12.2 7.7 

NRMSEb 0.48 0.50 0.50 0.51 0.55 0.48 0.39 
Regressio

n R2 0.88 n/a n/a n/a n/a n/a n/a 

R2
 of 

calibrated 
data 

against 
EPA 

reference 
measurem

ents 

0.88 0.87 0.87 0.88 0.88 0.88 0.95 

 
a. The root mean square error (RMSE, in [µg m-3]) is calculated by 

2

1

1 ( )
N

h h
h

RMSE x R
N =

= −∑ ,  

where N is the number of 1-hour PM2.5 [µg m-3] data points. xh is hourly averaged sensor PM2.5 

concentration [µg m-3] for hour h after correction. Rh is the hourly concentration of PM2.5 [µg m-

3] measured by the EPA AQMS. 

 

b. The root mean squared error normalized to the observed mean (NRMSE) is calculated by: 

h

RMSENRMSE
R

= , 

where Rh is the mean PM2.5 [µg m-3] observed by reference EPA AQMS. 
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Table S2. Corrections based on linear regression of EPA monitor PM2.5 measurements with 

PurpleAir Sensors within certain distance in the San Francisco Bay Area in August and September 

2020 (NC 2020 case). Number of sensors refer to the total number of sensors near EPA monitoring 

sites that meets the requirements described in the “Selection of correction method” section in the 

Supplement. At most 50 sensors near each EPA site were included. Parameters are for the 

correction equation. 

Distance (km) 2 5 10 20 
Number of sensors 104 442 624 750 

Intercept β0 ≠ 0 
β0 [µg m-3] 3.26 3.52 3.77 4.05 

β1 0.50 0.50 0.50 0.49 
R2 0.89 0.88 0.87 0.85 

RMSE [µg m-3] 11.5 12.2 12.7 13.5 
NRMSE 0.46 0.49 0.51 0.53 

No intercept (β0 = 0) 
β1 0.53 0.53 0.51 0.52 
R2 n/a n/a n/a n/a 

RMSE [µg m-3] 11.8 12.6 13.1 13.9 
NRMSE 0.47 0.50 0.52 0.55 
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Table S3. Median prices of homes with PurpleAir sensors compared to Home Value Index in cities 

with at least 10 buildings with valid indoor sensors in the NC 2020 case, as of December 2020. 

Prices were rounded to nearest thousand. 

 
Median price of 

homes with 
PurpleAir sensors 

Number of 
buildings with 

PurpleAir sensors 
Zillow Home Value 
Index of that city Price Difference a 

Alameda $1,143,000 18 $1,119,000 2% 
Albany $1,257,000 14 $1,170,000 7% 

Atherton $7,306,000 10 $6,579,000 11% 
Belmont $2,240,000 13  $1,902,000 18% 
Berkeley $1,616,000 93 $1,411,000 14% 
Campbell $1,344,000 11 $1,441,000 -7% 

Davis $666,000 19 $759,000 -12% 
El Cerrito $1,045,000 14 $ 1,006,000 4% 
Emeryville $822,000 11 $ 583,000 41% 
Lafayette $1,992,000 33 $ 1,499,000 33% 
Los Altos $3,653,000 35 $ 3,429,000 7% 
Los Gatos $2,264,000 22 $ 2,142,000 6% 
Menlo Park $3,645,000 32 $2,417,000 51% 
Mill Valley $1,911,000 18 $1,746,000 9% 

Moraga $1,886,000 11 $1,726,000 9% 
Mountain View $2,317,000 44 $1,851,000 25% 

Oakland $1,300,000 104 $851,000 53% 
Orinda $1,941,000 24 $2,292,000 -15% 

Palo Alto $3,594,000 47 $3,151,000 14% 
Portola Valley $3,523,000 17 $4,099,000 -14% 
Redwood City $2,196,000 35 $1,628,000 35% 

Richmond $807,000 12 $635,000 27% 
Sacramento $469,000 39 $400,000 17% 
San Carlos $2,248,000 16 $2,003,000 12% 

San Francisco $1,696,000 193 $1,400,000 21% 
San Jose $1,460,000 49 $1,141,000 28% 

San Mateo $1,919,000 28 $1,461,000 31% 
San Rafael $1,447,000 15 $1,214,000 19% 
Santa Rosa $713,000 21 $637,000 12% 

Saratoga $3,109,000 11 $3,053,000 2% 
Sunnyvale $1,654,000 31 $1,771,000 -7% 

Walnut Creek $1,414,000 21 $958,000 48% 

aPrice difference = (Median price of homes with PurpleAir sensors - Median City Home Value)/ 

Median City Home Value 
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Table S4. Mean ± standard deviation of fire-day infiltration ratios and the number of buildings with 

fire-day infiltration ratios below 0.14 or above 0.40 in cities with at least 10 buildings with valid 

indoor sensors in the NC 2020 case. 

 

City 

Number of 
buildings 

with 
PurpleAir 
sensors 

Mean ± SD of Fire-day 
infiltration ratio 

No. of Buildings with 
Fire-day infiltration 

ratio < 0.14 

No. of Buildings with 
Fire-day infiltration 

ratio > 0.40 

Alameda 18 0.19±0.09 5 1 
Albany 14 0.31±0.11 0 3 

Atherton 10 0.31±0.12 1 3 
Belmont 13 0.27±0.08 1 1 
Berkeley 93 0.27±0.10 10 13 
Campbell 11 0.24±0.13 0 2 

Davis 19 0.17±0.16 11 2 
El Cerrito 14 0.27±0.10 2 1 
Emeryville 11 0.26±0.16 3 1 
Lafayette 33 0.23±0.11 5 4 
Los Altos 35 0.33±0.19 7 12 
Los Gatos 22 0.34±0.15 2 7 
Menlo Park 32 0.27±0.12 3 5 
Mill Valley 18 0.36±0.18 1 6 

Moraga 11 0.16±0.10 4 0 
Mountain 

View 44 0.25±0.14 12 5 

Oakland 104 0.25±0.12 14 11 
Orinda 24 0.24±0.19 11 5 

Palo Alto 47 0.28±0.17 12 15 
Portola 
Valley 17 0.27±0.12 2 3 

Redwood 
City 35 0.30±0.15 8 11 

Richmond 12 0.25±0.16 4 2 
Sacramento 39 0.29±0.19 10 10 
San Carlos 16 0.20±0.10 5 1 

San 
Francisco 193 0.28±0.12 24 35 

San Jose 49 0.26±0.14 14 10 
San Mateo 28 0.26±0.11 3 2 
San Rafael 15 0.31±0.16 3 5 
Santa Rosa 21 0.31±0.15 4 6 

Saratoga 11 0.30±0.18 0 2 
Sunnyvale 31 0.22±0.15 8 7 

Walnut 
Creek 21 0.21±0.14 9 1 
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Table S5. Weibull parameters of the concentration indoor/outdoor ratios for buildings with PurpleAir 

sensors in August-September 2020 in the San Francisco Bay Area (35 µg m-3 daily average PM2.5 

concentration measured at the nearest EPA measurement site was used as the threshold for fire 

days and non-fire days). N = 1274. Unhealthy days are defined as days with daily average EPA 

PM2.5 concentration above 55.4 µg/m3.  

 Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratio 

 γ β γ β γ β 

Non-fire 
days 

4.65 1.82 1.00 1.35 1.00 1.35 

Fire days 12.4 1.50 0.45 1.26 0.30 2.00 

Unhealthy 
days 

14.9 1.40 0.34 1.19 0.26 1.74 

 
Quantile-quantile plots (SI Appendix, Fig. S4) show the mean concentration of indoor PM2.5 in all 

the buildings can be satisfactorily described by the Weibull distribution. The scale parameter and 

shape parameter of the Weibull fit are γ and β, respectively. The probability distribution function for 

x is 
1 ( / )( ) ( ) xxf x e

ββ γβ
γ γ

− −= , where x > 0. Parameters of the SC 2020 and NC 2018 cases are not 

shown here due to the small sample sizes, which are less representative of all the buildings in these 

areas at that time. 
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