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Abstract Dry deposition of ozone is an important sink of ozone in near‐surface air. When dry deposition
occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing
crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding
ozone's impact on human health as an air pollutant and on climate as a potent short‐lived greenhouse gas
and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone
dry deposition estimates require knowledge of the relative importance of individual deposition pathways,
but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate
understanding of ozone deposition processes by synthesizing research from fields such as atmospheric
chemistry, ecology, and meteorology. We critically review methods for measurements and modeling,
highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our
unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals
process understanding not yet included in widely used models. If coordinated with short‐term field
intensives, laboratory studies, and mechanistic modeling, measurements from a few long‐term sites would
bridge the molecular to ecosystem scales necessary to establish the relative importance of individual
deposition pathways and the extent to which they vary in space and time. Our recommended approaches
seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air
quality, ecosystems, and climate.

Plain Language Summary The removal of tropospheric ozone at Earth's surface (often called dry
deposition) is important for our understanding of air pollution, ecosystem health, and climate. Several
processes contribute to dry deposition of ozone. While we have basic knowledge of these processes, we lack
the ability to robustly estimate changes in ozone dry deposition through time and from one place to another.
Here we review ozone deposition processes, measurements, and modeling and propose steps necessary to
close gaps in understanding. A major conclusion revealed by our review is that most deposition processes
can be fairly well described from a theoretical standpoint, but the relative importance of the various
processes remains uncertain. We suggest that progress can be made by establishing multiyear measurements©2020. American Geophysical Union.
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Key Points:
• Ozone dry deposition through

pathways other than plant stomata
is critical for describing the total
terrestrial ozone sink

• Process‐level knowledge of ozone
deposition pathways is missing from
the models used to quantify
deposition impacts on the Earth
system

• Long‐term ozone flux and related
measurements are key for
establishing relative importance of
individual pathways
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of ozone dry deposition at a limited set of sites around the world and coordinating these measurements with
laboratory and field experiments that can be integrated with theory through carefully designed modeling
studies.

1. Introduction

Dry deposition, or removal at the Earth's surface, is a primary sink of ozone in the troposphere where ozone
is an air pollutant, greenhouse gas, and central to the atmospheric oxidative capacity. Ozone dry deposition
occurring through plant stomata (the pores on leaves controlling gas exchange) damages plants. While the
potential for ozone dry deposition to influence air quality, ecosystems, and crop yields has been recognized
for decades (e.g., Hosker & Lindberg, 1982; Reich, 1987; Rich, 1964; Turner et al., 1973), mechanistic under-
standing of ozone dry deposition is incomplete. Figure 1 illustrates processes contributing to ozone dry
deposition and how changes in ozone dry deposition impact tropospheric chemistry, air quality, ecosystems,
and climate. In this review, we synthesize knowledge of controlling processes, review measurement and
modeling approaches, and recommend approaches to close knowledge gaps.

To undergo dry deposition, atmospheric turbulence transports ozone close to a given surface and then ozone
must move through the quasi‐laminar boundary layer around that surface. The rate of ozone uptake by a
particular surface depends on the surface's properties. Ozone dry deposition occurs not only through stoma-
tal uptake (Rich et al., 1970) but also through other nonstomatal deposition pathways including uptake by
leaf cuticles (Rondón et al., 1993; S. Sun, Moravek, Trebs, et al., 2016), soil (Garland & Penkett, 1976;
Turner et al., 1974), snow (Helmig, Bocquet, et al., 2007; Helmig, Ganzeveld, et al., 2007), water
(Gallagher et al., 2001; Helmig et al., 2012), and man‐made surfaces (Shen & Gao, 2018). Both surfaces with
high‐destruction rates (e.g., vegetation) and spatially extensive surfaces with low destruction rates (e.g.,
snow and water) are relevant to the tropospheric ozone budget and large‐scale ozone pollution (Clifton,
2018; Ganzeveld et al., 2009; Hardacre et al., 2015; Helmig, Ganzeveld, et al., 2007).

Quantifying stomatal ozone uptake is not only important for estimating ozone removal but also for under-
standing the plant response to ozone. Stomatal ozone uptake injures plants by generating reactive oxygen
species that can induce cell death and lesions and thus accelerate senescence (Ainsworth et al., 2012;
Fiscus et al., 2005). Reactive oxygen species also impair photosynthetic enzyme activities, enhance respira-
tion, and interfere with carbon allocation (Ainsworth et al., 2012; Fiscus et al., 2005). Ozone injury to plants
alters terrestrial carbon and water cycling (Arnold et al., 2018; Franz et al., 2017; Hoshika et al., 2015;
Lombardozzi et al., 2015; Oliver et al., 2018; Sadiq et al., 2017; G. Sun et al., 2012; Yue & Unger, 2014), which
influences boundary‐layer meteorology (J. Li et al., 2016, Li, Mahalov, et al., 2018; Sadiq et al., 2017; Super
et al., 2015) and climate (Kvalevåg & Myhre, 2013; Sitch et al., 2007) and increases surface ozone due to a
reduced stomatal ozone sink (J. Li et al., 2016, Li, Mahalov, & Hyde, 2018; Sadiq et al., 2017; S. S. Zhou
et al., 2018).

Numerical simulations of tropospheric ozone, including high ozone pollution episodes and background
ozone levels, are sensitive to model descriptions of ozone dry deposition (Anav et al., 2018; Beddows
et al., 2017; Bela et al., 2015; Campbell et al., 2019; Clifton, 2018; Emberson et al., 2013; Falk & Søvde
Haslerud, 2019; Helmig, Ganzeveld, et al., 2007; Hogrefe et al., 2018; Huang et al., 2016; J.‐T. Lin
et al., 2008; M. Lin et al., 2017, 2019; Matichuk et al., 2017; Silva & Heald, 2018; Solberg et al., 2008;
Tang et al., 2011; Val Martin et al., 2014; Vautard et al., 2005; Vieno et al., 2010; Walker, 2014; Wild,
2007; A. Y. H. Wong et al., 2019). However, many widely used ozone dry deposition schemes do not
represent processes mechanistically or capture observed spatiotemporal variations (Clifton et al., 2017;
Kavassalis & Murphy, 2017; Pleim & Ran, 2011; Silva et al., 2019; Silva & Heald, 2018; Travis & Jacob,
2019). Among models, differences are twofold to threefold in estimates of ozone dry deposition for a
given location (Hardacre et al., 2015; Schwede et al., 2011; Z. Wu et al., 2018; A. Y. H. Wong et al.,
2019) and in estimates of the global annual tropospheric ozone loss through dry deposition (Hardacre
et al., 2015; Stevenson et al., 2006; Wild, 2007; Young et al., 2013, 2018). Understanding of the contribu-
tion of individual deposition pathways to ozone dry deposition is incomplete but key for building
mechanistic representation in the large‐scale models used to quantify the effects of ozone dry deposition
across Earth systems from hourly to centennial time scales.
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Below, we address the following questions:

1. What approaches are currently used to measure and model ozone dry deposition?
2. What is current understanding of the processes controlling ozone dry deposition based on theory,

observations, and modeling?
3. What major knowledge gaps and uncertainties exist with respect to (1) and (2)?
4. How can we most rapidly advance knowledge of ozone dry deposition and its impacts on air quality,

vegetation, and climate?

We examine stomatal, leaf cuticular, soil, and snow deposition pathways, as well as turbulent transport and
fast ozone loss through ambient chemistry. Not only is fast chemistry important for building understanding
of ozone dry deposition from ozone flux measurements, but it also leads to formation of secondary aerosol
precursors (e.g., Bouvier‐Brown et al., 2009; Kurpius & Goldstein, 2003). To limit the scope of our review,
we do not cover transport through the quasi‐laminar boundary layer adjacent to surfaces. However, the mag-
nitude of quasi‐laminar transport can widely vary among model parameterizations, and thus, uncertainty in
this process may be nonnegligible (e.g., Brutsaert, 1979; Massman, 1999, 2004; Schuepp, 1993). Differences
across models (e.g., Choudhury & Monteith, 1988; Jensen & Hummelshøj, 1995, 1997; Massman, 1999;
Wesely & Hicks, 1977), the impacts of canopy structure, turbulence, and leaf properties (e.g.,

Figure 1. Processes contributing and related to terrestrial ozone dry deposition and its impacts on tropospheric chemistry, air pollution, ecosystems, and climate,
both directly (red and blue arrows) and indirectly (purple boxes and arrows; e.g., through changes in tropospheric ozone). Yellow arrows indicate that
carbon and water cycling connect the local impact of ozone plant damage to global impacts on climate. Processes included on the left‐hand panel in white boxes are
reviewed in this paper; downward black arrows represent ozone deposition pathways. Figure illustrated by Simmi Sinha.

10.1029/2019RG000670Reviews of Geophysics

CLIFTON ET AL. 3 of 62



aerodynamics, morphology, and presence of water) on transport (e.g., Cook & Viskanta, 1968; Daudet et al.,
1999; Stokes et al., 2006), and scaling from leaf to canopy should be emphasized in future research. While in
this review we discuss the deposition pathways considered to be most important for terrestrial ozone dry
deposition impacts on tropospheric chemistry, air quality, and vegetation, we emphasize that better
understanding of ozone dry deposition to other terrestrial surfaces, such as urban surfaces, lakes, rivers,
branches, and leaf litter, is needed.

2. Measuring Ozone Dry Deposition
2.1. History of Measurements and Survey of Current Data Sets

Methods for field measurement of ozone dry deposition have been available since the 1950s (e.g., Regener,
1957). In the 1950s and 1960s, ozone dry deposition was typically measured using gradient methods during
short campaigns (e.g., Galbally, 1971). By the 1970s, the eddy covariance (EC) approach—the preferred
approach for measuring turbulent fluxes (Hicks et al., 1989; Meyers & Baldocchi, 2005)—became possible
with fast ozone analyzers deployed on masts and towers (e.g., Wesely et al., 1978) and aircraft (e.g.,
Lenschow et al., 1980). Growing recognition of the importance of biogeochemical cycles led to workshops
in the late 1970s and 1980s recommending research priorities for fluxes of ozone, carbon dioxide, and other
constituents (Georgii, 1989; Hicks et al., 1980; Hosker & Lindberg, 1982; Lenschow & Hicks, 1989). In parti-
cular, a 1987 workshop on trace gas and particle fluxes recommended that future studies “span both diurnal
and seasonal cycles” and investigate “surfaces of importance to global budgets” (Lenschow & Hicks, 1989).

Likely as the result of momentum in the research community and support from funding agencies, the num-
ber of sites with ecosystem‐scale ozone fluxes increased from the late 1980s into the next decade (Figure 2).
The first annual record of continuous hourly ozone and carbon dioxide EC fluxes began in the early 1990s at
Harvard Forest in the northeastern United States (Munger et al., 1996; Wofsy et al., 1993). However, empha-
sis on ozone dry deposition in the community waned around the millennium, as evident from stabilizing
number of sites with measurements after the mid‐1990s (very low numbers after 2014 may reflect the time
needed to report and analyze data).

Sites with ozone fluxes primarily reside in Europe and North America (Figure 2), indicating a paucity of
knowledge on ozone dry deposition for most parts of the world. More consistent emphasis on ozone fluxes
in Europe (Figure 2) may reflect regional initiatives to quantify the impact of ozone on ecosystems.While the
observational record captures a variety of land use/land cover (LULC) types, most data are for crops and

Figure 2. No growth in the number of sites that measure ozone fluxes since the mid‐1990s as shown by the number of sites
per year with ozone flux measurements from 1985 to 2019. Table A1 in Appendix A contains the full list of ozone flux
data sets and relevant details. In brief, included data sets are for terrestrial surfaces and represent the ecosystem scale (both
flux gradient and eddy covariance fluxes). Not all data sets reported are in the peer‐reviewed literature, some are included
following personal communication.Most sites included do not have a full year of data for a given year (e.g., 57 out of 114 sites
have two months of data or less). Very low numbers after 2014 may reflect the time needed to report and analyze data.
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forests (Figure 3), and the data sets for particularly undersampled LULC types tend to be very short term (i.e.,
days) (Table A1 in Appendix A).

Advancing understanding of ozone dry deposition requires synthesizing knowledge and testing hypotheses
across ozone flux data sets. However, current knowledge does not reflect a meta‐analysis of all, or even the
majority, of data sets in Table A1. While Table A1 provides a record for future studies to identify potentially
available ozone flux data, the lack of a central archive limits efforts to analyze multiple records. Differences
in instrumentation, a lack of coordinated protocols across data sets, and in some cases missing complemen-
tary measurements also limit the utility of older data and meaningful syntheses across records.

Despite the common emphasis in the 1970s and 1980s on the need to establish long‐term flux observations
for gases like ozone and carbon dioxide, ozone flux data lag far behind carbon dioxide flux data in the num-
ber, data set length, and diversity of sites. Carbon dioxide fluxes are available for around 900 sites for over
7,000 combined site years of data, including many sites with more than a decade of data (Chu et al.,
2017). In contrast, only 114 sites have ozone fluxes, only 11 sites have more than 5 years of data, and none
exceed 15 years (Table A1). There are likely different needs in terms of carbon dioxide versus ozone flux data,
but gaining a robust understanding of interannual variability and trends in ozone dry deposition and accu-
rately interpreting the observational anomalies challenging current understanding require long‐term data.
The recent National Academies of Sciences, Engineering, and Medicine (NASEM, 2016) report on The
Future of Atmospheric Chemistry Research also emphasizes the need for long‐term fluxes of reactive gases
and aerosols.

One issue impeding ozone EC measurements is the fast ozone analyzers meeting the stringent criteria of
the EC technique are generally resource intensive to operate. The lack of simple reliable analyzers may
in part explain why ozone EC measurements have been limited to research groups with atmospheric
chemistry and physics expertise while the ecological community widely adopted carbon dioxide EC,
catalyzing the development of a larger network. Motivating the development of new measurement
techniques and an observational network is also challenging for an interdisciplinary subject such as
ozone dry deposition.

A misconception that the mechanisms controlling ozone dry deposition are well understood may have also
contributed to ozone fluxmeasurements losing luster. While the literature widely states that stomatal uptake
governs ozone dry deposition over physiologically active vegetation (e.g., Baldocchi et al., 1987; Bauer et al.,
2000; Erisman et al., 1994; Mills et al., 2018; Potier et al., 2015), observationally based estimates of the
stomatal fraction of ozone dry deposition show a codominant role for deposition through nonstomatal
pathways (Figure 4) with stomatal uptake as 45% of the total on average.

Figure 3. Land use/land cover types represented in ozone flux data sets. Long‐term data are defined as more than 5 years of annual records. Table A1 contains the
full list of data sets.
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Not only is nonstomatal uptake nonnegligible, but it is also highly variable. Observationally based studies
illustrate unexpected variations in nonstomatal deposition in diel cycles (Coe et al., 1995; Rondón et al.,
1993) including over soil and snow (Fumagalli et al., 2016; Helmig, Cohen, et al., 2009; Stella, Loubet,

Figure 4. The stomatal fraction of ozone dry deposition aggregated from estimates from field sites in previous literature.
The number of data points in each composite is to the right of the respective box and whiskers plot. Not all data sets
reporting spring, summer, fall, or winter stomatal fraction estimates provide an annual estimate, and thus, the annual
estimate is lower than the estimate for each season. The bottom of the box is the 25th percentile of the data, middle
is the median, and the top is the 75th percentile. The error bars indicate maximum and minimum values not considering
outliers (red symbols). Outliers are defined as values >1.5× the interquartile range of the 25th to 75th percentiles. Sites
and references included are Auchencorth Moss (Fowler et al., 2001), Bergamo (Gerosa et al., 2003), Bily Kriz (Juráň et al.,
2019; Zapletal et al., 2011), Blodgett Forest (Ducker et al., 2018; Fares, McKay, et al., 2010; Goldstein, 2003; Kurpius &
Goldstein, 2003), Bondville (L. Zhang et al., 2006), Braunscheig (Mészáros, Horváth, et al., 2009), Bugacpuszta (Horváth
et al., 2017), Burriana (Cieslik, 2004), Cadenazzo (Bassin et al., 2004), Cala Violina (Cieslik, 2009), Camp Borden (Fuentes
et al., 1992), Castelporziano (Cieslik, 2004, 2009; Gerosa et al., 2005; Gerosa, Finco, Mereu, Vitale, et al., 2009,Gerosa,
Finco, Mereu, Marzuoli, et al., 2009; Fares et al., 2014; Hoshika et al., 2017; Savi & Fares, 2014), California Ozone
Deposition Experiment cotton (Grantz et al., 1997), California Ozone Deposition Experiment vineyard (Grantz et al.,
1995), Comun Nuovo (Bassin et al., 2004; Cieslik, 2009), Cuatro Vientos (Cieslik, 2004), Diepoholz (El‐Madany et al.,
2017), Flanders (Neirynck et al., 2012), Gilchriston Farm (Coyle et al., 2009), GLEES Brooklyn Lake (Zeller & Nikolov,
2000), Grignon (Stella, Personne, et al., 2011; Stella et al., 2013), Hartheim (Joss & Graber, 1996), Harvard Forest (Clifton
et al., 2017; Ducker et al., 2018), Hyytiälä (Altimir et al., 2006; Ducker et al., 2018; Launiainen et al., 2013; Rannik et al.,
2012; P. T. Zhou et al., 2017), Ispra (Cieslik, 2004), Kaamanen (Tuovinen et al., 1998), Kane Experimental Forest (L. Zhang
et al., 2006), Klippeneck (Cieslik, 2004), Kranzberger Forst (Nunn et al., 2010), La Cape Sud (Stella, Personne, et al., 2011),
Le Dézert (Cieslik, 2004), Les Landes (Lamaud et al., 2002), Lincove (Fares et al., 2012), Lochristi (Zona et al., 2014),
Central Plains Experimental Range (Massman, 1993), Nashville (L. Zhang et al., 2006), Niwot Ridge (Turnipseed et al.,
2009), Polder Piloto de Sarazola (Pio et al., 2000), Ramat Hanadiv Nature Park (Q. Li, Gabay, et al., 2018), Rhineland‐
Palatinate (Plake, Stella, et al., 2015), Rivox (Coe et al., 1995), S. Pietro Capofiume (Cieslik, 2004, 2009), San Rossore
(Hoshika et al., 2017), Sand Flats State Forest (L. Zhang et al., 2006), Sand Mountain (L. Zhang et al., 2006), Sinderhoeve
(Van Pul & Jacobs, 1994), Speulderbos (Dorsey et al., 2004), Ulborg (Mikkelsen et al., 2004), UMBS Prophet (Hogg, 2007;
Hogg et al., 2007), Viols‐en‐Laval (Cieslik, 2004), and Voghera (Cieslik, 2004, 2009; Gerosa et al., 2007).
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et al., 2011; Stella et al., 2019), year‐to‐year variability (Clifton et al., 2017; Rannik et al., 2012), after rain and
dew (Fuentes et al., 1992; Potier et al., 2015), and spatially (Clifton et al., 2019; Godowitch, 1990; Lenschow
et al., 1981; Mahrt et al., 1995; Wolfe et al., 2015). Measurements also show that ambient chemistry with
unmeasured biogenic volatile organic compounds (BVOCs) influences ozone flux observations (Goldstein
et al., 2004; Kurpius & Goldstein, 2003; Wolfe et al., 2011).

Unconstrained variations in ozone dry deposition challenge the ability to attribute changes in tropospheric
ozone to other processes (e.g., sources) accurately. Capturing unexpected variability with ozone flux records
allows the community to build hypotheses about controlling processes, target laboratory and field measure-
ments (Altimir et al., 2006; Fuentes & Gillespie, 1992; Fumagalli et al., 2016; Pleijel et al., 1995; Potier et al.,
2017; S. Sun, Moravek, Trebs, et al., 2016; S. Sun, Moravek, von der Heyden, et al., 2016) and build mechan-
istic models (e.g., Potier et al., 2015).

Mechanistic modeling is fundamental for interpreting observed ozone fluxes because the ozone flux inte-
grates many different processes, and techniques to isolate individual processes are limited. For example, iso-
lating nonstomatal deposition and fast in‐canopy chemistry from the ozone flux strongly relies on residual
analysis, leading to uncertainty in variations and the relative importance of a given process. Together with
the statistical power provided by long‐term data, mechanistic modeling also informs ozone dry deposition
schemes, which currently rely on poorly constrained empirical relationships (e.g., Tuovinen et al., 2004;
Wesely, 1989; L. Zhang et al., 2002).

2.2. Measurement Techniques

Here we review approaches for measuring ozone dry deposition. We discuss EC, flux gradient, modified
Bowen Ratio, chamber, and isotopic methods. We detail the fast ozone analyzers needed for EC because
their cost, maintenance requirements, and limited availability may thwart efforts to measure dry deposition
through ozone EC, the most fundamental and direct method for measuring turbulent exchange (e.g., Hicks
et al., 1989; Meyers & Baldocchi, 2005).

2.2.1. Micrometeorological Approaches
We start with the Reynolds‐averaged mass continuity equation for ozone at a given location under turbulent
conditions (e.g., Stull, 1988) to elucidate the strengths and limitations of a vertical turbulent ozone flux
measurement representing ozone dry deposition.

∂O3

∂t
¼ − u

∂O3

∂x
þ v

∂O3

∂y
þ w

∂O3

∂z

� �
−

∂u′O′

3

∂x
þ ∂v′O′

3

∂y
þ ∂w′O′

3

∂z

 !
þ PO3−LO3−DepO3

: (1)

O3 is ozone concentration; u, v, and w are wind velocity in longitudinal (x), lateral (y), and vertical (z) direc-

tions;PO3 is chemical production of ozone;LO3 is chemical loss of ozone; andDepO3
is dry deposition of ozone.

Overbars represent temporal averages, and primes represent fluctuations from the temporal average.

In the absence of both subsidence (w ¼ 0 ) and horizontal advection of ozone u
∂O3

∂x
¼ v

∂O3

∂y
¼ 0

� �
,

equation (1) simplifies to

∂O3

∂t
¼ −

∂FO3;z

∂z
þ PO3−LO3−DepO3

: (2)

We now refer to the vertical turbulent flux of ozone (w′O3′) asFO3 ;z. Integrating equation (2) from the ground
to the height of measurement (h) yields

∫
h

0
∂O3

∂t
dz ¼ −∫

h

0

∂FO3;z

∂z
dz þ ∫

h

0PO3dz−∫
h

0LO3dz−∫
h

0DepO3
dz; (3)

where

∫
h

0

∂FO3;z

∂z
dz ¼ Fh

O3 ;z−F
0
O3 ;z:
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Fh
O3 ;z represents the ozone flux at h, and F0

O3 ;z represents ozone flux at the ground. The community

frequently assumes that Fh
O3 ;z represents ozone dry deposition beneath h:

Fh
O3 ;z ¼ F0

O3 ;z−∫
h

0DepO3
dz: (4)

For this assumption to be valid, equation (3) demonstrates two additional conditions need to be satisfied (or
the contributions from each term quantified adequately).

The first condition is negligible ambient ozone chemistry below h ∫
h

0PO3dz ¼ ∫
h

0LO3dz ¼ 0
� �

. This is not

always true; we further discuss this in section 4.5.

The second condition is stationary ozone concentration on the time frame of the averaging operator

∫
h

0
∂O3

∂t
dz ¼ 0

� �
. Storage, or ozone temporarily accumulating within the canopy (i.e., between the ground

surface and h), violates this condition. Estimating storage requires ozone concentration measurements at
different heights in the canopy (the number of heights needed depends on how much ozone changes verti-
cally). An assumption inherent to using one concentration profile is that the location represents the ecosys-
tem sampled by the vertical turbulent flux measurement. This assumption has been shown to be limited for
carbon dioxide (e.g., Nicolini et al., 2018).

Storage is considered to be nonnegligible in forest canopies. Not many studies give estimates of ozone storage,
but storage tends to overestimate ozone dry deposition in forests during morning and underestimate during
evening, with the influence averaging out over a day (e.g., Finco et al., 2018; Munger et al., 1996; Rummel
et al., 2007). Specifically, the bias is <20% at Harvard Forest (Munger et al., 1996) and Bosco Fontana in
Italy (Finco et al., 2018) but may be ~50% at a tropical forest in Reserva Biológica Jarú (Rummel et al., 2007).
2.2.1.1. Eddy Covariance
Ozone EC systems are usually custom built by research groups and require atmospheric chemistry and
physics expertise (e.g., Weinheimer, 2006). Because there is no formal recipe for their design, we present
necessary considerations for ozone and refer the reader to previous reviews on EC (e.g., Aubinet et al.,
2012; Lee et al., 2004).

A first consideration is to measure the vertical wind velocity and ozone concentration at a frequency high
enough to resolve the full range of eddies contributing to vertical transport. In particular, the ozone analyzer
has to be sufficiently accurate to resolve concentration variability due to turbulence (10–60 Hz) but also
ambient chemistry, which may require a faster measurement. Instrument frequency responses can be
evaluated by comparing spectra and cospectra for ozone with those for heat and momentum. Derivation
of transfer functions based on the cospectra enables correction for any loss of high‐frequency contributions
(e.g., Aubinet et al., 2012; Lee et al., 2004).

Current ozone analyzers used for EC are based on chemiluminescence, or light production via chemical
reaction, due to their fast response times. While there is a method to correct ozone fluxes measured with
an ultraviolet (UV) photometric ozone analyzer, the empirical correction is large, and random uncertainty
in the daytime ozone flux is 60% (Wohlfahrt, Hörtnagl, et al., 2009). Reported frequency response corrections
from fast ozone analyzers typically range from 5% to 30% (Bauer et al., 2000; Keronen et al., 2003; Horváth
et al., 2017; Munger et al., 1996; Plake, Stella, et al., 2015; Zhu et al., 2015).

A second consideration is that duration of the averaging interval must be long enough to sample the slowest
turbulent eddies contributing to exchange but short enough that ozone concentration remains stationary.
Sampling or random error may be an important contribution to uncertainty in ozone EC. For example,
the sampling error ranges from 23% to 33% for one analyzer during different time periods at five sites in
the eastern United States (Finkelstein & Sims, 2001) and from 10% to 20% with another analyzer at
Hyytiälä in southern Finland (Keronen et al., 2003; Rannik et al., 2009).

Third, there are not currently open‐path fast‐response ozone analyzers. High instrument flow rates are thus
needed to minimize residence time in measurement volumes and ozone loss in the sample stream due to
reaction with walls or other compounds, as well as achieve a turbulent flow, which reduces attenuation in
the tubing (Lenschow & Raupach, 1991). When the required flow rate is too high for the analyzer to
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accommodate, excess flow can be pulled through a bypass pump. For pressure‐sensitive analyzers (e.g.,
when the reaction required to detect ozone is sensitive to pressure), linking the bypass flow to a pressure
controller may be necessary to maintain constant pressure at the analyzer inlet.

Chemiluminescence analyzers vary by reagent phase: gas, solid (“dry”), and liquid (“wet”). While chemilu-
minescence analyzers have fast response times and high sensitivity, they can be expensive (gas) or need
frequent maintenance and calibration (dry and wet), adding labor costs and down time. Gas chemilumines-
cence leverages the reactions between ozone and ethene (e.g., Desjardins et al., 1995; Droppo, 1985; Duyzer
et al., 1983; Munger et al., 1996) or nitric oxide (NO) (e.g., Bariteau et al., 2010; Eastman & Stedman, 1977;
Pearson, 1990; Stedman et al., 1972). While several gas chemiluminescence analyzers were commercially
available in the past, to our knowledge, there is only one currently available (Table 1).

Dry chemiluminescence uses a solid dye that emits light upon reaction with ozone. Not requiring toxic (e.g.,
NO) or flammable (e.g., ethene) compressed gases, dry chemiluminescence is advantageous over gas chemi-
luminescence. Dry analyzers also can be smaller and only require low power due to the physical configura-
tion of their electronic components and the pumps or fans used to sample air. A coumarin solid dye, which
emits a blue light upon reaction with ozone, is typically used for dry chemiluminescence (e.g., Muller et al.,
2010). The photomultiplier tubes for detection of blue light are less expensive than the ones for red light
needed for other common gas or dry chemiluminescence techniques. A dry analyzer used to be offered by
Gesellschaft Für Angewandte Systemtechnik (GFAS) (Güsten et al., 1992; Güsten & Heinrich, 1996).
Several groups made or used GFAS clones (e.g., Bauer et al., 2000; Coyle, 2005; Coyle et al., 2009; Cros
et al., 2000; Finco et al., 2018; Kurpius et al., 2002; Mészáros, Horváth, et al., 2009). Currently, there are three
dry analyzers commercially available, including one GFAS clone (Table 1).

Disadvantages of dry chemiluminescence include degradation of dye‐impregnated discs (i.e., loss of ozone
sensitivity) such that they need regular replacement (e.g., every few days). There is a 12% daily mean differ-
ence between ozone fluxes from a GFAS and a GFAS clone at Easter Bush in southern Scotland (Muller
et al., 2010), suggesting analyzer performance and disc stability may be sources of uncertainty in ozone flux
data. A new disc preparation method extending disc field stability is described in Ermel et al. (2013) who
show high ozone sensitivity can be maintained over threefold more disc ozone uptake. An extended disc sta-
bility means measurements can proceed either for longer without maintenance or in higher ozone environ-
ments with similar maintenance.

A second ozone analyzer, which can be a commonly used UV absorbance instrument, is always necessary in
dry chemiluminescence setups to account for the changing disc sensitivity. Different techniques to calculate
an absolute signal can lead to substantially different ozone fluxes, as shown bymeasurements at Easter Bush
(Muller et al., 2010) and a Chinese wheat field (Zhu et al., 2015).

Wet chemiluminescence employs organic liquid dye that emits light upon reaction with ozone (e.g.,
Drummond et al., 1991; Keronen et al., 2003; Ray et al., 1986; Zona et al., 2014). In principle, wet chemilu-
minescence is a relative measurement (because the dye degrades), but with a substantial amount of liquid
reagent in the bottle used for measurement, it can be considered absolute. The dye does need to recirculate
(usually via a peristaltic pump), however, and recirculation often fails when the bottle is not close to full
(Keronen et al., 2003). Depending on ozone concentration at the site, the bottle may only need to be refilled
every few months to keep it near full though (Keronen et al., 2003).

Table 1
Commercially Available Fast Ozone Analyzers

Manufacturer or
research group Model Type

Response time
(approximate) (Hz) References

Enviscope GmbH Schnelle Ozon Sonde Solid 10 Zahn et al. (2012) and Zhu et al. (2015)
Sextant FOS Solid 10 Stella et al. (2012) and Q. Li, Gabay et al. (2018)
Ecometrics Chemiluminescence Ozone

Fast Analyser
Solid 10 (GFAS clone) https://www.ecometrics.it/

cosa‐facciamo/338‐2/, date of access
10 July 2019

Ecophysics CLD88 Gas (NO) 10 https://www.ecophysics‐us.com/atmospheric‐
research‐products, date of access 10 July 2019
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The need for long‐term ambient ozone concentration measurements not requiring much maintenance has
driven the market toward instruments inherently too slow for EC. More robust and economical fast analy-
zers not requiring frequent maintenance or involving toxic or flammable consumables or compressed gases
will enable more ozone ECmeasurements and thus faster progress toward improved understanding of ozone
dry deposition.
2.2.1.2. Flux Gradient
The flux gradient technique requires determining the eddy diffusivity for ozone and the ozone concentration
at two heights above a surface. Commonly used slower ozone instruments (e.g., UV absorbance) are ade-
quate for this technique, likely making the technique more affordable and simpler than ozone EC.
However, the flux gradient method has several limiting assumptions. For example, it assumes K‐theory
and often eddy diffusivity for ozone (Ko3 ) equals eddy diffusivity for sensible heat. K‐theory (or first‐order
closure; e.g., Stull, 1988) assumes transport only occurs down the local mean gradient, but organized turbu-
lent motions can transport material up‐gradient (or countergradient).

Fh
O3

¼ −Ko3
∂O3

∂z
: (5)

The eddy diffusivity for sensible heat can be calculated by employing Monin‐Obukhov Similarity Theory
(MOST) (Businger et al., 1971; Högström, 1988). However, MOST does not hold in the roughness sublayer
above vegetation (Raupach, 1979), which can extend higher than double the vegetation height (e.g.,
Cellier & Brunet, 1992; Harman & Finnigan, 2007; Thom, 1975). Most observed gradients are located below
this height. Additionally, ozone is reactive, and ambient chemistry may perturb the ozone gradient so
assuming the eddy diffusivity for ozone is equal to that for heat is not always valid (Fitzjarrald &
Lenschow, 1983; Lenschow, 1982; Vilá‐Guerau de Arellano & Duynkerke, 1992).

Using a single analyzer with switching or moveable inlets to sequentially sample concentrations at different
heights for the ozone gradient measurement is preferred over separate analyzers for the different heights
because the latter requires effort to eliminate biases between the analyzers. However, when the measure-
ments are not simultaneous (i.e., one analyzer is used at multiple heights), then the gradient needs to be
stable over the time required to obtain measurements at both heights. Otherwise, there needs to be a correc-
tion for sequential sampling.

Inferring accurate ozone fluxes using the flux gradient technique is also challenging because ozone
differences between the two heights may be very small and challenge the resolution and accuracy of
the instrument (Businger, 1986). Maximizing the vertical distance between top and bottom heights to
get larger differences helps (Arya, 2001), but both measurements must be in the surface layer with
comparable footprints. Comparison of ozone EC and gradient fluxes over several ecosystems suggests
fluxes and vd from the flux gradient technique may be biased and not represent variations accurately
(Duyzer & Westrate, 1995; Loubet et al., 2013; Mikkelsen et al., 2000; Muller et al., 2009; Z. Y. Wu
et al., 2015).
2.2.1.3. Modified Bowen Ratio
The approach commonly called the modified Bowen Ratio technique (Businger, 1986) is also used to infer
ozone fluxes from an ozone concentration gradient (e.g., Leuning et al., 1979; Leuning, Unsworth, et al.,
1979; Mayer et al., 2011). The Bowen Ratio approach assumes similar turbulent diffusivities of ozone and
of a reference quantity (i.e., another scalar, such as carbon dioxide), so the ozone flux can be calculated by
a simple scaling of the flux of the reference quantity (“ref”):

Fh
O3

¼ Fh
Ref

∂O3
∂z

∂Cref
∂z

: (6)

The concentrations of ozone and the reference quantity Cref
� �

are frommeasurements at the same heights in

the surface layer. The modified Bowen Ratio technique may be advantageous over the flux gradient techni-
que because the modified Bowen Ratio technique does not directly require turbulent diffusivity estimates.
While commonly used ozone UV absorbance instruments are likely adequate for this technique, this
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method requires detection of likely small gradients in ozone and the reference quantity. Previous work sug-
gests substantial biases (50–100%) in ozone fluxes estimated with the modified Bowen Ratio technique with
carbon dioxide fluxes relative to ozone EC at Harvard Forest (Z. Y. Wu et al., 2015).
2.2.2. Chamber Methods
Chamber methods are employed to isolate ozone uptake to foliage, soil, water, and other surfaces in the field
(Almand‐Hunter et al., 2015; Altimir et al., 2002; Fumagalli et al., 2016; Gut et al., 2002; Horváth et al., 2006;
Kaplan et al., 1988; Kirkman et al., 2002; Meixner et al., 1997; Pilegaard, 2001; Remde et al., 1993; Tong et al.,
2011; Unsworth et al., 1984; Wieser et al., 2012). However, previous work largely focuses on soil NO emis-
sions (e.g., Gut et al., 2002; Horváth et al., 2006; Kaplan et al., 1988; Kirkman et al., 2002; Meixner et al.,
1997; Remde et al., 1993) or plant responses to ozone (e.g., Tong et al., 2011; Wieser et al., 2012) rather than
ozone deposition processes.

For an open chamber, air is generally drawn into the chamber, and the ozone concentration difference
between the inlet and outlet is measured with a slow ozone instrument. The uptake rate to the surface is deter-
mined from the concentration difference, the known flow rate into the chamber, and volume of the chamber.

We emphasize the value of chamber methods for gaining mechanistic understanding of ozone dry deposi-
tion (e.g., Altimir et al., 2006; Fumagalli et al., 2016). However, we note that chamber footprint is small
(i.e., on the order of a meter or less), chambers modify microclimate, and ozone chemistry may occur in
the chamber air or with chamber walls and tubing (Breuninger et al., 2012; Pape et al., 2009). In the field,
multiple chambers are necessary to account for inhomogeneity across a wider area (e.g., the footprint of
a flux tower) as well as understand the robustness of observed dependencies on environmental conditions.

The strength in using chamber measurements to separate the canopy portion of the ozone flux from the
ground ozone uptake (see equation (4)) (e.g., Duyzer et al., 2004; Finco et al., 2018; Rummel et al., 2007)
or to serve as a surrogate to ozone EC (Almand‐Hunter et al., 2015; Plake, Stella, et al., 2015) hinges on
the ability to obtain an estimate spatially representative of the ecosystem, to remove the effects of turbulent
transport modified by the chamber, and to estimate in‐canopy turbulent transport and the contribution from
fast ambient chemistry to the ecosystem‐scale ozone fluxes.
2.2.3. Isotopic Methods
Isotopic experiments in the laboratory and field may be able to pinpoint the primary sites of ozone surface
reactions and thus improve understanding of ozone deposition pathways (Subke et al., 2009; Toet et al.,
2009). Subke et al. (2009) present a method for adding 18O into an electric discharge ozone generator and
using a silica gel to separate 18O ozone from 18O O2. However, 18O from the generated ozone leads to 18O
enriched water vapor as well as other gases (e.g., O2) that do not necessarily remain on a surface, complicat-
ing estimates of deposited ozone (Toet et al., 2009). The authors conclude that better understanding of the
reactions determining loss of 18O ozone into other gases is needed for this technique to be useful for con-
straining ozone deposition pathways.

3. Modeling Ozone Dry Deposition Using Resistance Networks

We present common resistance network approaches for parameterizing ozone dry deposition in models
considering vegetation as one big leaf and in models considering vertical variation in plant canopy structure.
In general, resistance network approaches have many strengths. For example, resistance approaches
are appropriate for modeling at different scales, simple, and adaptable, and allow for representing
individual processes.

For big‐leaf models, we describe both single‐ and dual‐surface models. Dividing the negative ozone flux at

height h Fh
O3

� �
by the ozone concentration at that height (O3h) gives the ozone deposition velocity (vd), a

simple measure of the efficiency of ozone dry deposition:

vd ¼ −
Fh

O3

O3h
: (7)

The simplest possible resistance network for vd is the single‐surface big‐leaf model (Figure 5a), which lumps
all surfaces to which ozone deposits into a single surface:
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vd ¼ ra þ rb þ rcð Þ−1: (8)

ra is the bulk aerodynamic resistance; rb is the bulk quasi‐laminar boundary‐layer resistance; and rc is the
bulk surface resistance for the single‐surface model. Due to the need to separate stomatal from nonstomatal
deposition for modeling ozone impacts on plants, rc in a single‐surface big‐leaf model is typically modeled in
the following way, with the assumption that stomatal and the bulk nonstomatal surfaces are at the same
height in the canopy:

rc ¼ 1
rstom þ rmeso

þ 1
rns

� �−1

: (9)

rstom is the resistance to uptake of ozone through diffusion into stomata; rmeso is the resistance to ozone reac-
tion inside the leaf; rns is the resistance to all nonstomatal deposition pathways. Often, a residual rns is
inferred using ozone fluxes and complementary micrometeorological measurements (i.e., to infer ra, rb,
and rstom) with this single‐surface big‐leaf approach.

The dual‐surface big‐leaf model (Figure 5b) considers two surfaces for dry deposition. In the context of a
plant canopy, the two surfaces represented are typically leaves and soil, with all leaves considered to be at
one height.

vd ¼ ra þ 1
rb;leaf þ rstom þ rmeso

þ 1
rb;leaf þ rcut

þ 1
rac þ rb;soil þ rsoil

� �−1
 !−1

: (10)

rb,leaf is the resistance associated with transfer in the quasi‐laminar boundary layer around leaves; rstom and
rmeso are as defined for the single‐surface big‐leaf model; rcut is the leaf cuticular resistance to ozone uptake;
rac is the resistance associated with atmospheric transport through the canopy air space; rb,soil is the resis-
tance in the quasi‐laminar boundary layer around soil; and rsoil is the resistance to ozone uptake by soil.

The big‐leaf resistance network structure varies across different dry deposition schemes. For example,
Wesely (1989) consider a bulk quasi‐laminar boundary layer resistance for soil and leaves, which is added
in series with the bulk ra, whereas Massman (2004) consider different quasi‐laminar boundary layer resis-
tances for soil versus leaves.

One big‐leaf modeling shortcoming is that there is no consideration of vertical variation in leaf properties
and functioning (e.g., in response to canopy attenuation of solar radiation). Multilayer resistance models
(Figure 5c)—where surface resistance (rsurf) is calculated at each level of the canopy (z) below canopy height
(hc)—are designed to address this issue:

Figure 5. Resistance networks for modeling ozone dry deposition. Circles and diamonds show where ozone concentration is needed as input for a given network.
For the diamonds, the ozone concentration is typically assumed to be zero. Rectangles indicate resistances. (a) shows a big‐leaf single surfacemodel, (b) shows a big‐
leaf dual surface model, and (c) shows a multilayer resistance model.
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rsurf zð Þ ¼ 1
rb;leaf zð Þ þ rstom zð Þ þ rmeso zð Þ þ

1
rb;leaf zð Þ þ rcut zð Þ

� �−1

if z≤hc; (11)

rsurf zð Þ ¼ 1
rb;soil þ rsoil

� �−1

if z ¼ 0: (12)

To calculate vdwith this approach, the above rsurf parameterization needs to be embedded into a model con-
sidering ozone turbulent transport among canopy layers and between hc and h. Turbulent transport could be
simulated with a resistance approach or more explicitly.

Most ozone dry deposition schemes deployed in regional and global models use big‐leaf approaches.
Multilayer resistance approaches exist (e.g., Duyzer et al., 2004; Fares et al., 2019; Ganzeveld et al., 2002;
Launiainen et al., 2013; Meyers et al., 1998; Potier et al., 2015; Wolfe & Thornton, 2011; P. T. Zhou et al.,
2017) but mostly are used in single‐point models for interpreting field observations rather than modeling
regional‐to‐global ozone dry deposition. An advantage of the multilayer approach is that the ozone continu-
ity equation can be calculated at every height and thus the influence of in‐canopy chemistry (e.g., Ashworth
et al., 2015; Wolfe et al., 2011) or turbulence (e.g., Chang et al., 2018; Patton et al., 2016; Pyles et al., 2000)
explicitly resolved. We refer to the approach where the ozone mass continuity equation is solved at each
height as a multilayer canopy model. To our knowledge, in‐canopy chemistry has never been explicitly
considered in a big‐leaf framework although empiricism in model development may have led to implicit
inclusion (Wolfe et al., 2011).

4. Theory, Models, and Observations of Terrestrial Ozone Deposition Pathways
and Related Processes

We review ozone dry deposition to plant stomata (section 4.1), leaf cuticles (section 4.2), soil (section 4.3), and
snow‐covered surfaces (section 4.6). We also review turbulent transport (section 4.4) and ambient chemistry
(section 4.5), presenting these sections before the section on deposition to snow‐covered surfaces due to our
focus on turbulence and chemistry in plant canopies. In all sections, we discuss modeling and measurement
techniques. For sections on deposition to cuticles, soil, and snow‐covered surfaces, we synthesize understand-
ing of these processes based on laboratory and field observations and theory. For sections on stomatal
deposition, turbulence, and fast ambient chemistry, we highlight advances in understanding pioneered by
the fields of plant physiology/ecology, boundary‐layer meteorology, and atmospheric chemistry, respectively,
and identify steps needed to advance knowledge of the process as related to ozone dry deposition.

4.1. Stomata

Stomata are the pores on plant leaves regulating gas exchange between the atmosphere and vegetation.
Accurate estimates of the stomatal ozone flux (Fstom) are key for interpreting ozone flux observations and
assessing ozone plant damage. Fstom is estimated by dividing the ambient ozone concentration outside the
leaf (O3leaf) by the sum of several resistances:

Fstom ¼ �O3leaf

rb;leaf þ rstom þ rmeso
: (13)

rb,leaf is the resistance to transport through the quasi‐laminar boundary layer between the leaf and outside
air; rstom is the resistance to gaseous diffusion through stomatal pores; and rmeso is the resistance to ozone
reaction inside the leaf. The inverse of rstom is stomatal conductance (gs). While a mesophyll resistance
(i.e., rmeso) is the conventional way of describing that reactions destroying ozone within the leaf may limit
Fstom, ozone is not primarily destroyed inside the leaf by reactions with the mesophyll tissue. Despite rmeso

being a misnomer, we retain the terminology for consistency with previous work (e.g., Wesely, 1989).

Observational approaches and prognostic models for rstom are typically for water vapor. To obtain an esti-
mate of the resistance to ozone diffusion through stomatal pores, rstom for water vapor is multiplied by
the ratio of the diffusivity of water vapor in air to the diffusivity of ozone in air. The current estimate of this
ratio is 1.61 (Massman, 1998). The assumption inherent to this approach is proportionality between ozone
diffusing inward through stomata and water vapor diffusing outward. One limitation of this assumption is
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that collisions between ozone and water vapor molecules may lead to an error of 4–10% in estimates of the
stomatal ozone flux (Uddling et al., 2012).

A widely used assumption is that reactions inside the leaf do not limit stomatal ozone uptake (i.e., negligible
rmeso). While some laboratory studies (Laisk et al., 1989; Omasa et al., 2000; S. Sun, Moravek, von der
Heyden, et al., 2016; Wang et al., 1995) and themodeling study of Plöchl et al. (2000) suggest this assumption
holds, the findings of other laboratory studies and the modeling study of Tuzet et al. (2011) suggest other-
wise. In particular, laboratory findings of nonlinear relationships between stomatal uptake of water vapor
and stomatal uptake of ozone (Eller & Sparks, 2006; Fares et al., 2007; Fares, Park, et al., 2010; Loreto &
Fares, 2007; Tuzet et al., 2011) may imply nonnegligible resistance to ozone reaction inside the leaf.
Nonetheless, separating ozone destruction inside the leaf from gs, cuticular ozone uptake, and gas‐phase
ozone loss is challenging. We recommend future studies further investigate ozone destruction inside the leaf
and its influence on stomatal ozone uptake.

In the rest of this section, we highlight common observational constraints on gs (section 4.1.1) and prognos-
tic gs models (section 4.1.2). We discuss leaf, tree, and ecosystem‐scale observational approaches. Note we
say observational constraints or approaches because gs is not typically measured directly. For prognostic
gs modeling, common mechanistic and empirical approaches are highlighted. We also review how the sto-
matal ozone sink may influence itself through ozone plant damage (section 4.1.3).
4.1.1. Measuring Stomatal Conductance at Leaf, Tree, and Ecosystem Scales
Leaf‐level observational constraints typically inform mechanistic and empirical prognostic gs models. Leaf‐
level gs is inferred from a leaf diffusion porometer or gas exchange system, which record changes in humidity
or maintain constant water vapor to infer transpiration. To obtain gs, transpiration is divided by the vapor
pressure deficit between the substomatal cavity of the leaf and porometer chamber. To calculate vapor pres-
sure deficit, the air inside the leaf is assumed to be saturated. A recent study using carbon and water isotopes
challenges this assumption, finding subsaturation in two conifer species under moderate to high atmo-
spheric vapor pressure deficit and a resulting bias in the inferred gs (Cernusak et al., 2018). Whether subsa-
turation inside the leaf occurs more broadly is unknown.

Ecosystem‐scale observational gs constraints are often used for directly interpreting ozone turbulent flux
measurements and estimate the ecosystem‐scale stomatal ozone uptake. We discuss multiple methods of
inferring ecosystem‐scale gs because we recommend using multiple independent approaches to quantify
ecosystem‐scale gs due to uncertainties across approaches. Ideally, agreement among approaches would
be used to draw robust conclusions.

The first ecosystem‐scale method employs water vapor EC fluxes and is the most popular method for esti-
mating the ecosystem‐scale stomatal ozone uptake. In this method, water vapor fluxes are inverted assuming
Fick's law to obtain a surface conductance for water vapor. The intricacies of this method, described below,
result in several ways of applying it (e.g., Gerosa et al., 2007).

The surface conductance for water vapor is not exactly gs because surface conductance includes contribu-
tions from in‐canopy turbulent transport of water vapor (Baldocchi et al., 1987; Baldocchi et al., 1991;
Paw U & Meyers, 1989; Raupach & Finnigan, 1987) and evaporation from soil and vegetation (Baldocchi
et al., 1987; Baldocchi &Meyers, 1998; Raupach & Finnigan, 1987) in addition to gs. The contribution of eva-
poration is undesirable in estimating stomatal ozone uptake because evaporation is not directly related to
ozone dry deposition. While advances with respect to the ecosystem‐scale transpiration fraction of evapo-
transpiration (e.g., Stoy et al., 2019) will help estimates of surface conductance more strictly represent gs,
there is still the issue that surface conductance includes the contribution of turbulent transport of water
vapor through the canopy. Assuming similar in‐canopy concentration profiles of ozone and water vapor,
the contribution of in‐canopy turbulence to the surface conductance may be desirable in an ecosystem‐scale
estimate of gs. However, the safety of the assumption of similar ozone and water vapor in‐canopy profiles
and thus transport needs to be evaluated.

Inverting the water vapor EC flux via Fick's law for surface conductance requires an ecosystem‐scale esti-
mate of water vapor inside the leaf. The assumption for estimating this is that leaf air is saturated, which
may be problematic as suggested by leaf level measurements (e.g., Cernusak et al., 2018), and requires an
estimate of ecosystem‐scale leaf temperature (more commonly, canopy skin temperature). Because canopy
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skin temperature constraints are not usually available, most inversion approaches include an approximation
depending on sensible heat flux, which can be (and previously had to be) inferred from the surface energy
budget (i.e., by subtracting the ground heat flux and latent heat flux from net radiation). Not only does
the lack of surface energy balance closure in EC measurements (Foken et al., 2010; Wilson & Baldocchi,
2000) suggest errors in inferring sensible heat flux from energy balance, but including latent heat flux in
an equation for latent heat flux introduces circularity (Wohlfahrt, Haslwanter, et al., 2009). Modern sensible
heat fluxmeasurements avoid the need to estimate sensible heat flux, and thus, methods that incorporate the
measured sensible heat flux should be used over methods that estimate the sensible heat flux. New canopy
skin temperature measurements (e.g., Kim et al., 2016) may lead to even more accurate estimates of
surface conductance.

Ecosystem‐scale fluxes of other gases should be used to complement ecosystem‐scale gs estimates fromwater
vapor fluxes (e.g., Clifton et al., 2019). Carbon dioxide fluxes can be used to constrain gs through empirical or
semiempirical modeling (see section 4.1.2) but require uncertain estimates of respiration (e.g., Wehr et al.,
2016) to infer net photosynthesis. Carbonyl sulfide fluxes (e.g., Whelan et al., 2018) are used to validate an
empirical gs model for Harvard Forest (Wehr et al., 2017; Wehr & Saleska, 2015) based on findings that they
represent ecosystem‐scale gs (Commane et al., 2015). Whether this approach transfers readily from Harvard
Forest to other locations remains to be established.

Sap flow measurements on individual trees can also be useful for estimating the stomatal ozone flux (Fares
et al., 2012; Goldstein, 2003; Matyssek et al., 2004; Nunn et al., 2010; Wieser et al., 2003, 2006) because sap flow
isolates transpiration's contribution to the total water vapor flux. However, constraining ecosystem‐scale gs
with sap flow requires nontrivial scaling from individual trees to the ecosystem. At a mixed forest in
Europe, the stomatal fraction of the ozone flux from sap measurements is 42% lower than inverting
ecosystem‐scale water vapor fluxes (Nunn et al., 2010). While differences may be due to evaporation from foli-
age and soil influencing the inversion of ecosystem‐scale water vapor flux, uncertainties in sap flow measure-
ments and scaling techniques (e.g., Poyatos et al., 2016)may also contribute to differences between approaches.
4.1.2. Modeling Stomatal Conductance
The most popular prognostic gs models in dry deposition schemes are empirical and closely adhere to the
Jarvis (1976) multiplicative approach (e.g., Emberson, et al., 2000; Wesely, 1989). In the Jarvis approach, a
prescribed maximum gs is multiplied by several factors, and each factor is a function of a particular environ-
mental condition. The conditions may be meteorological or biophysical (e.g., soil moisture and leaf age). The
Jarvis type of model is informed by leaf level and sometimes ecosystem‐scale observational gs constraints
(e.g., Büker et al., 2007, 2012; Kelliher et al., 1995).

An increasingly common method for prognostic gs modeling is coupling gs with net photosynthesis (Anet)
(hereafter, Anet‐gs model), providing an estimate of carbon dioxide exchange across stomata driven by the
carbon supply and demand for photosynthesis. In anAnet‐gs model, gs is modeled according to a relationship
withAnet (Miner et al., 2017; S. C. Wong et al., 1979) that varies with somemetric of humidity, as constrained
by leaf‐level data (Ball et al., 1987; Leuning, 1995; Medlyn et al., 2011). Recent work assigns a physical basis
to this relationship by reconciling mechanistic and empirical approaches with optimization theory for max-
imizing carbon gain and minimizing water loss (Cowan & Farquhar, 1977; Y. S. Lin et al., 2015; Medlyn
et al., 2011). However, whether stomata function optimally as assumed under this particular theory is uncer-
tain (e.g., Buckley & Mott, 2013; C. Lin et al., 2018; Sperry et al., 2017; Wolf et al., 2016; S. Zhou et al., 2013).

In general, whether modeled through empirical or mechanistic prognostic approaches, gs is calculated for a
single leaf and scaled to the ecosystem by multiplying leaf‐level gs by leaf area index (LAI) or using canopy
scaling factors or a multilayer canopy or resistance model. It is uncertain which scaling approach best
estimates gs.

While some dry deposition schemes employ Anet‐gs models (Charusombat et al., 2010; Clifton, 2018;
Hollaway et al., 2016; M. Lin et al., 2019; Ran et al., 2017; Val Martin et al., 2014), the Jarvis type of model
remains ubiquitous (e.g., Emberson, et al., 2000; Hardacre et al., 2015).Anet‐gs models are more closely based
on physiological principles, but the simplicity, adaptability, and computation efficiency of the Jarvis
approachmake it attractive for many applications. However, the Jarvis approach requires tuning for the eco-
systems and environmental conditions represented, and its success is limited by dearth of data for many
ecosystems (e.g., tropical forests) and conditions. Nonetheless, Anet‐gs models are semiempirical in that
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they require one to a few parameters to be defined (Franks et al., 2018; Y. S. Lin et al., 2015; Medlyn et al.,
2011; Miner et al., 2017). Both model types are typically tuned with leaf‐level data due the historical lack of
ecosystem‐scale data. Recent efforts to tune models with ecosystem‐scale measurements (e.g., J. Li, Duan,
et al., 2018; Raoult et al., 2016), such as latent heat and carbon dioxide fluxes, can complement leaf‐level
approaches by allowing for insight into what happens at larger scales.

To evaluate the strengths and weaknesses of prognostic gs models in simulating stomatal ozone uptake, the
community would benefit from better understanding of model sensitivities to parameters and variables as
well as their physiological realism. For example, connections between gs and soil moisture and the ability
of models to capture such connections (e.g., Anderegg et al., 2017; Bonan et al., 2014; Kennedy et al.,
2019; Verhoef & Egea, 2014; S. Zhou et al., 2013) may be critical for capturing stomatal ozone uptake.
4.1.3. Ozone Damage to Plants, as Relevant for Stomatal Uptake of Ozone
Ozone damage to plants may lead to myriad ecosystem responses. Here we focus on the direct influence of
ozone on gs and thus stomatal ozone dry deposition.

Stomatal ozone uptake changes gs through both short‐term and long‐term responses. In the short term, sto-
matal ozone uptake decreases gs by changing guard cell turgor pressure and signaling pathways (Freer‐
Smith & Dobson, 1989; Hassan et al., 1994; Maier‐Maercker & Koch, 1991; Manes et al., 2001; Mills et al.,
2009; Torsethaugen et al., 1999).

In the long term, the mean gs response to stomatal ozone uptake across plant physiological studies is a
decrease (Lombardozzi et al., 2013). However, both gs increases and decreases are observed. For example,
stomatal ozone uptake can lead to reduced photosynthetic efficiency, which increases internal carbon diox-
ide and signals stomatal closure (Calatayud et al., 2007; Farage et al., 1991; Herbinger et al., 2007; Manes
et al., 2001; Noormets et al., 2001; Paoletti & Grulke, 2005; Reich, 1987). On the other hand, stomatal ozone
uptake can lead to gs increases in the long term through decreased sensitivity to abscisic acid (Mills et al.,
2009), which alters stomatal cell ion exchange (Manes et al., 2001; Torsethaugen et al., 1999), and the col-
lapse of epidermal cells surrounding guard cells (Hassan et al., 1994), which can lead to sluggish stomatal
responses to external stimuli (Freer‐Smith & Dobson, 1989; Maier‐Maercker & Koch, 1991; Manes et al.,
1998, 2001; McLaughlin et al., 2007; Paoletti, 2005; Paoletti & Grulke, 2010). Stomatal ozone uptakemay also
cause early and a more rapid onset of senescence (e.g., Ainsworth et al., 2012), which reduces gs through
growing season length and physiologically active LAI.

Two types of model parameterization allow for stomatal ozone uptake to influence itself. In the first type, a
response integrated across several physiological processes is used to parameterize impact of ozone on a sin-
gle physiological process (Clark et al., 2011; Sitch et al., 2007; Yue &Unger, 2014). For example, the observed
effect of stomatal ozone uptake on plant biomass or crop yield may be equated to the ozone impact on photo-
synthesis in models and parameterized accordingly, and thus, any impact on stomatal ozone uptake is due to
ozone's parameterized impact on photosynthesis (e.g., Sitch et al., 2007).

The second type of model considers the ozone impact on the same physiological process considered in the
observational evidence (Ewert & Porter, 2000; Deckmyn et al., 2007; Lombardozzi, Levis, et al., 2012;
Lombardozzi, Sparks, et al., 2012; Lombardozzi et al., 2015; Martin et al., 2001; Tao et al., 2017). For example,
Lombardozzi et al. (2013) investigate the effects of cumulative stomatal ozone uptake on gs versus photo-
synthesis with a meta‐analysis of published chamber data. Finding differing observed effects on the two pro-
cesses, consistent with other work (e.g., Koch et al., 1998; Paoletti & Grulke, 2010), Lombardozzi et al. (2013)
parameterize the effect of the cumulative stomatal ozone uptake on each process separately.

Another difference across models parameterizing ozone damage with stomatal ozone uptake is whether
damage is tied to the instantaneous or cumulative stomatal ozone uptake. There are a fewmodels, most com-
monly for crops, considering both instantaneous and cumulative stomatal uptake (Emberson et al., 2018;
Ewert & Porter, 2000; Tao et al., 2017). Plant damage is often assumed more closely related to cumulative,
rather than instantaneous, stomatal ozone uptake (Ducker et al., 2018; Massman et al., 2000; Matyssek
et al., 2004).

Stomatal ozone uptake does not account for plant abilities to cope with the oxidative stress that ozone causes
(i.e., detoxify). Detoxification ability controls the plant sensitivity to ozone and thus determines the ozone
plant injury (e.g., Matyssek et al., 2008; Musselman et al., 2006). Detoxification is often simulated by
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assuming a constant threshold of stomatal ozone uptake below which damage does not occur due to detox-
ification. Detoxification is highly uncertain andmay vary with environmental variables and come at a cost to
the plant (U.S. EPA, 2006; Ainsworth et al., 2012; Ainsworth, 2017; Musselman et al., 2006; Matyssek
et al., 2008).

Current knowledge of the effects of stomatal ozone uptake on gs at large scales (e.g., ecosystem or region) is
largely based on scaling up leaf‐level effects (Massman et al., 2000; Matyssek et al., 2008). Limited leaf‐level
data (e.g., most data are for temperate species) and lack of clear response across existing data sets (e.g.,
Lombardozzi et al., 2013) limit the fidelity of given empirical parameterization. In general, large‐scale
responses to stomatal ozone uptake are poorly understood and not widely evaluated given the paucity of
observational constraints on ozone damage at larger scales. Understanding ecosystem abilities to detoxify
is sorely needed to pinpoint stomatal ozone uptake's influence on itself.
4.1.4. Main Takeaways
1. Water vapor EC fluxes are typically used to constrain ecosystem‐scale gs, but multiple independent obser-

vational approaches are needed and ideally agreement among them would be used to draw robust
conclusions.

2. Anet‐gs models represent current mechanistic understanding, but how much Anet‐gs models improve gs
estimates over widely used empirical approaches is uncertain.

3. Identification of the key parameters to which prognostic gs models are most sensitive and an understand-
ing of the physiological realism of modeled sensitivities are needed.

4. Ecosystem‐scale constraints on stomatal ozone uptake and the ecosystem's ability to detoxify are missing
but key for understanding the influence of stomatal ozone uptake on itself.

4.2. Leaf Cuticles
4.2.1. Controls on Ozone Dry Deposition to Leaf Cuticles: Field, Modeling, and
Laboratory Evidence
The following synthesis suggests aqueous heterogeneous chemistry is the primary mechanism controlling
ozone dry deposition to leaf cuticles. Direct constraints on cuticular ozone uptake are slim but insightful.
For example, ozone and carbon dioxide leaf uptake measured with chambers at Hyytiälä provide strong evi-
dence for a dependence of cuticular ozone uptake on relative humidity (Altimir et al., 2006). A laboratory
study that induced stomatal closure in young trees by treating leaves with abscisic acid also shows increases
in ozone uptake with relative humidity (S. Sun, Moravek, Trebs, et al., 2016) (Figure 6). Increases in cuticu-
lar uptake with humidity suggest aqueous ozone‐destroying chemistry on the cuticle; liquid surface films
form when humidity increases because there is absorption of water to the leaf surface, capillary condensa-
tion, or deliquescence of deposited particles (Burkhardt & Eiden, 1994; Burkhardt & Hunsche, 2013;
Eiden et al., 1994).

Several field studies report increases in inferred nonstomatal uptake over vegetation with relative humidity,
providing evidence that aqueous surface chemistry on leaves may be important at ecosystem scales (Altimir
et al., 2006; Clifton et al., 2019; Lamaud et al., 2009; Q. Li, Gabay et al., 2018; Neirynck & Verstraeten, 2018;
Rannik et al., 2012; L. Zhang et al., 2002). However, at some field sites, nonstomatal uptake increases with
humidity at high humidity but decreases with humidity at low humidity (Coyle et al., 2009; Hogg et al.,
2007). This diverging behavior may reflect a change in the mechanism controlling cuticular uptake with
thermal decomposition dominating at lower humidity (Coyle et al., 2009; Grøntoft et al., 2004; Pöschl &
Shiraiwa, 2015). In general, the degree to which ecosystem‐scale nonstomatal uptake estimates represent
cuticular uptake is uncertain because other processes, such as ozone uptake by soil and ambient chemistry,
cannot always be discounted. Additionally, imperfect estimates of stomatal deposition and transport imply
at least some error in residual nonstomatal deposition estimates.

A recent review of ozone dry deposition to building surfaces concludes the influence of relative humidity on
ozone uptake is uncertain (Shen & Gao, 2018). It may be that only some ozone‐destroying surface reactions
are expedited in water films and water films only form easily on some surfaces. Increased cuticular uptake at
higher humidity may also be associated with stomatal exudation of reactive compounds when leaves are wet
(Potier et al., 2017). For example, water around stomata can act as a bridge into saturated stomatal pores
(Burkhardt, 2010), and stomata may leach ascorbate compounds into the water on the cuticle. If ozone
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destruction on cuticles is limited by ascorbate flowing out of stomata when leaves are wet, then a fundamen-
tal question is how much leakage occurs.

In their laboratory study examining ozone uptake to aluminum, stainless steel, beeswax, and hydrocarbon
wax, Cape et al. (2009) find an Arrhenius‐like dependence of ozone uptake on temperature and suggest a role
for thermal decomposition of ozone when ozone deposits to leaf cuticles. There is some field evidence for this
hypothesis in dry conditions, as discussed above. However, increases in temperature only lead to small
increases in ozone uptake to building surfaces (Shen & Gao, 2018). In general, thermal decomposition of
ozone on a given surface depends on the surface area and activation energy, which varies across materials
(e.g., Cape et al., 2009). Whether thermal decomposition plays a role in governing cuticular ozone uptake
needs to be better understood.

While light‐mediated ozone destruction on cuticles received attention in previous reviews on ozone dry
deposition (e.g., Fowler et al., 2009; Ganzeveld et al., 2015; Tuovinen et al., 2009), evidence for the impor-
tance and occurrence of this pathway is minimal. In brief, Coe et al. (1995) find a diel cycle in nonstomatal
deposition inferred from field measurements. The hypothesis that photochemistry on the leaf surface causes
this diel cycle is given attention on the basis of Rondón (1993), an unpublished laboratory study. A more
recent laboratory study finds similar cuticular ozone uptake for light and dark conditions (S. Sun,
Moravek, Trebs, et al., 2016), suggesting cuticular uptake is unlikely to be related to photochemistry.

High vd after rain and dew observed in field studies is often attributed to increases in cuticular uptake
(Altimir et al., 2006; Finkelstein et al., 2000; Fuentes et al., 1992; Grantz et al., 1995, 1997; Lamaud et al.,
2002; Potier et al., 2015; Turnipseed et al., 2009). Increases in ozone dry deposition on wet leaves in the
laboratory (Fuentes & Gillespie, 1992) and in a field chamber experiment after spraying the grass in the
chamber with water (Pleijel et al., 1995) are also attributed to increases in cuticular uptake. While there
are fairly consistent increases in vd over vegetation after rain and dew across field studies (Table 2), whether
observed responses truly indicate changes in cuticular uptake remains an open question. For example, there
may be changes in gs after rain (e.g., Clifton et al., 2019) or emissions of highly reactive species
that influence the observed ozone flux (e.g., Altimir et al., 2006; Clifton et al., 2019; Turnipseed et al., 2009).

4.2.2. Composition of the Leaf Cuticle
Composition of the cuticular surface likely determines ozone reactivity. Cuticular composition and thus
reactivity may reflect deposited aerosols, the cuticular wax itself, and/or compounds exuded from the plant,
but the relative importance of each source of reactivity is uncertain and may vary in space and time.
Different wetting mechanisms may alter cuticular composition and thus ozone uptake. For example, rain
may wash leaves of compounds (e.g., Xu et al., 2017; L. Zhang et al., 2019) with which ozone can react.
Deliquescent salts on cuticles may also increase ozone solubility compared to pure water (e.g., Rischbieter
et al., 2000). Below we discuss evidence for each source (deposited aerosols, cuticular wax, and exuded

Figure 6. Differences in cuticular ozone flux to Quercus ilex leaves treated with various compounds (a–e) and abscisic acid to induce stomatal closure in the
laboratory. (a) is for clean leaves, (b) is for leaves exposed to outdoor air, (c) is for leaves treated with inorganic compounds, (d) is for leaves treated with humic acid
solution, and (e) is for leaves treated with chloride/bromide solution. Cuticular ozone fluxes are shown as a function of relative humidity (RH). Error bars
represent the random error calculated according to S. Sun, Moravek, von der Heyden, et al. (2016). Figure is adapted from Figure 6 of S. Sun, Moravek, Trebs, et al.
(2016) with permission. © 2016. American Geophysical Union. All Rights Reserved.
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compounds) contributing to ozone reactivity. We find that the dominant reactivity sources on cuticles needs
to be established.

Depending on leaf size and shape, up to 50 μg cm−2 of aerosols can accumulate on leaves (Burkhardt, 2010;
Popek et al., 2013; Sæbø et al., 2012). In the laboratory study of S. Sun, Moravek, Trebs, et al. (2016), ozone
uptake is highest for leaves either exposed to outdoor air or sprayed with a solution containing major
inorganic components of typical continental aerosols relative to the other treatments (Figure 6), suggesting
cuticular uptake through reaction with deposited aerosols may be important. However, evidence from
kinetic studies on soot, mineral dust, and proxies for organic aerosols shows rapid declines in ozone uptake
after high initial uptake (Chapleski et al., 2016; Disselkamp et al., 2000; Hanisch & Crowley, 2003;
Karagulian & Rossi, 2006; McCabe & Abbatt, 2009), implying persistent ozone uptake requires sustained
aerosol deposition to cuticles. The exception is uptake by organic photosensitizers (e.g., humic acid) in light
(D'Anna et al., 2009; Jammoul et al., 2008).

Cuticular waxes mostly contain compounds derived from long‐chain fatty acids unreactive with ozone but
can contain unsaturated compounds (Buschhaus & Jetter, 2012; Jetter et al., 2006; Yeats & Rose, 2013) reac-
tive with ozone. Clean cuticles have low but nonnegligible ozone uptake at relative humidity higher than
40% (Figure 6), but there is negligible cuticular uptake on the same species for lower humidity (S. Sun,
Moravek, Trebs, et al., 2016) as well as on different species at 65% relative humidity (Omasa et al., 2000).
While Fares et al. (2007) suggest negligible cuticular uptake by two tree species in their laboratory study,
stomatal uptake does not fully explain ozone uptake for one of the species. Whether some species' waxes
provide substantial ozone sinks, and whether this changes with environmental conditions like humidity,
is unclear.

Compounds exuded by the plant, whether the compounds are sorbed BVOCs or organic compounds lea-
ched out of stomata, may contribute to ozone reactivity on the cuticle. Laboratory evidence and mechan-
istic modeling suggest that ascorbate leaching out of stomata on wet leaves may be an important
contributor to ozone reactivity for some plant species and phenological states (Potier et al., 2015, 2017).
Laboratory studies show conflicting evidence as to whether sorbed BVOCs may be an effective cuticular
ozone sink. For example, high cuticular uptake due to reaction with sorbed α‐pinene on waxes is not
supported by Cape et al. (2009), but exuded terpenoids efficiently react on the cuticle with ozone in
Jud et al. (2016).
4.2.3. Modeling Ozone Dry Deposition to Leaf Cuticles
Models for ozone dry deposition to cuticles are largely empirical and stem from sparsely available laboratory
and field measurements. Many models include only LAI and a tuning factor (e.g., Massman, 2004). Several
models distinguish deposition between wet and dry cuticles, but there are differences across models in the
direction of the simulated response. For example, Wesely (1989) prescribes a lower cuticular deposition
when leaves are wet, but L. Zhang et al. (2002) prescribe higher cuticular deposition when leaves are wet.
Some models include a dependence on relative humidity (Altimir et al., 2004; Clifton, 2018; Lamaud
et al., 2009; Stella, Personne, et al., 2011; L. Zhang et al., 2002), which may represent the effect of thin water
films on leaves.

We use mechanistic modeling to explore strengths and weaknesses of the simple approaches outlined above.
The mechanistic equation for resistance to deposition through heterogeneous reaction of ozone on dry cuti-
cles (rcut,dry) (s m

−1) in a big‐leaf approach follows

rcut;dry ¼ 1
1
4Kd

ffiffiffiffiffiffiffiffiffiffiffi
8RTleaf
πMO3

q
f dryLAI

: (14)

Kd is the cuticular deposition coefficient (unitless), which is a measure of the probability that ozone reacts
upon contact with the cuticle; R is the universal gas constant (8.314 J mol−1 K−1); Tleaf is leaf temperature
(K); MO3 is the ozone molecular mass (0.048 kg mol−1); fdry is the dry fraction of the leaf (unitless); and
LAI is leaf area index (m2 m−2). The model expressed by equation (14) simulates collision and reaction of
a gas with a surface analogously to heterogeneous chemistry in the atmosphere (e.g., Jacob, 2000). While
Kd is challenging to infer at the ecosystem scale, the model expressed by equation (14) is structurally simple
and relatable to existing approaches.
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For the resistance to deposition to wet cuticles (rcut,wet; s m
−1) from either thin water films or droplets from

rain or dew, Potier et al. (2015) present a physically based model based on the diffusion‐reaction equation.
We derive a form of this model in Appendix B and review its physical underpinnings. The following model
represents ozone dissolution in the water on a cuticle and reaction with compounds in the water in a
big‐leaf approach:

rcut;wet ¼ 1

kCCH ΓaqDO3;aq tanh Γaqδd
� �

1−f dry
� �

LAI
: (15)

kccH is the dimensionless Henry's law constant for ozone; Γaq ¼
ffiffiffiffiffiffiffiffiffi
κaq

DO3;aq

q
; κaq is the first‐order reaction rate of

ozone in the water mixture on the leaf (s−1); DO3 ;aq is the ozone diffusivity in water (m2 s−1); and δd is the
thickness of the wetness on the cuticle (m).

Representation of reactivity on a cuticle is likely critical to model cuticular ozone dry deposition accurately.
The fastest gain in understanding will likely happen when knowledge from studies on plant physiology and
aerosol dry deposition is leveraged for information about cuticular composition (e.g., cuticular wax,
deposited aerosols, and compounds exuded from stomata) and changes in time and space.

As is, this model's utility in representing ozone uptake by wet cuticles at large scales hinges on whether input
variables can be estimated adequately (e.g., δd and κaq). We recommend exploring the model parameter
space (e.g., rcut,wet sensitivity to different inputs).

For both dry and wet cuticular deposition modeling, whether one‐ or two‐sided LAI should be used depends
on the source of wetness and reactivity as well as whether the plant has stomata on a single side of the leaf or
both sides (i.e., if the model considers stomatally exuded compounds to be an important source of reactivity).

Ozone destruction on cuticles may decrease stomatal ozone uptake (Jud et al., 2016; Kanagendran et al.,
2018), and thus, there may be interactions between stomatal and cuticular deposition. While the theoretical
modeling of Jud et al. (2016) indeed shows cuticular ozone uptake reduces stomatal ozone uptake, the the-
oretical modeling of Altimir et al. (2008) shows stomatal ozone uptake is only reduced by unrealistically high
cuticular ozone uptake. Because interactions between stomatal and cuticular uptake challenge assumptions
underlying current modeling frameworks representing pathways as independent (e.g., Altimir et al., 2008;
Jud et al., 2016), a better understanding of such interactions is warranted.
4.2.4. Main Takeaways
1. Most field and laboratory studies support aqueous heterogeneous chemistry dominating cuticular ozone

uptake, but there may be a role for thermal decomposition of ozone on cuticles, especially at low
humidity.

2. The observed dependence of cuticular uptake on relative humidity likely represents surface water films
promoting aqueous chemistry.

3. Representation of reactivity on a cuticle is likely critical to model cuticular ozone dry deposition
accurately.

4. We derive models for mechanistic representation of ozone dry deposition to cuticles. We recommend
further exploration of these mechanistic cuticular deposition models and their ability to represent uptake
at large scales.

4.3. Soil
4.3.1. Controls on Ozone Dry Deposition to Soil: Field, Modeling, and Laboratory Evidence
While a dominant pathway for ozone dry deposition to soil is considered to be reaction with unsaturated car-
bon bonds in soil organic material (e.g., Sorimachi & Sakamoto, 2007), mean daytime vd of ~0.1 cm s−1 from
a short‐term field campaign in the Sahara Desert suggests ozone reaction with soil organic material is not the
only soil deposition pathway (Güsten et al., 1996). It is possible thermal decomposition of ozone occurs on
soil surfaces or gas‐phase loss of ozone in soil pore spaces occurs through reaction with NO or BVOCs.

Evidence from eight field studies (Table 3), including one field chamber study (Fumagalli et al., 2016), and
four laboratory‐based studies (Aldaz, 1969; Sorimachi & Sakamoto, 2007; Toet et al., 2009; Turner et al.,
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1973) suggests soil moisture inhibits ozone uptake by limiting diffusion through soil pore spaces. Decreases
in soil ozone uptake with increasing soil moisture suggest moisture reduces surface area available for
reaction with ozone, overriding any effect of moisture promoting heterogeneous chemistry (e.g., as
observed on leaf cuticles). Indeed, employing the isotopic method discussed in section 2.2.3 to constrain
ozone uptake by soil versus soil pore water, Toet et al. (2009) show ozone deposition to soil pore water is
a substantial fraction of soil ozone uptake at 60% soil moisture but much lower than ozone uptake by soil
at 30% soil moisture where it is only a small fraction of the total (<10%).

Short‐term observed ozone EC fluxes above bare agricultural soils and a semiarid plain in Europe show
an exponential decrease in soil ozone uptake with near‐surface relative humidity (Stella et al., 2019)
stronger than the relationship with soil water content for at least one of the sites (Stella, Loubet,
et al., 2011). Stella, Loubet, et al. (2011) hypothesize surface relative humidity better indicates the water
molecules on the ground preventing ozone from entering soil, relative to soil water content at a shallow
depth. Stella et al. (2019) suggest variation in the relationships between soil ozone uptake and near‐sur-
face relative humidity among the six sites examined is caused by soil clay content because clay is a
structural indicator of available surface area (e.g., Hillel, 1980) and clay modifies the amount of water
in soil. In particular, regression analysis suggests the magnitude of soil uptake increases with soil clay
content, but soil uptake decreases more quickly with surface relative humidity in soils with more clay
content (Stella et al., 2019). Whether these findings hold more generally needs to be established.
4.3.2. Modeling Ozone Dry Deposition to Soil
Ozone dry deposition to soil is often constant in large‐scale models, sometimes varying by LULC type and
season (e.g., Wesely, 1989). Most studies creating models for soil ozone dry deposition use short‐term
data. Massman (2004) compiles resistances to ozone dry deposition to soil (rsoil) inferred from observa-
tions, suggesting 100 s m−1 for dry soil and 500 s m−1 for wet soil. Later site‐specific work defines similar
empirical models (Bassin et al., 2004; Clifton et al., 2019; Fares et al., 2012, 2014; Mészáros, Horváth,
et al., 2009), but studies more directly isolating rsoil support stronger dependencies on soil moisture
(Fumagalli et al., 2016) or surface relative humidity (Stella, Loubet, et al., 2011; Stella et al., 2019).
Whether simple models accurately capture rsoil magnitude and variability on a variety of scales is
uncertain. Uncertainty may stem in part from a lack of observational constraints on rsoil
spatiotemporal variability.

To better understand processes governing soil ozone uptake and provide a roadmap for more robust empiri-
cal modeling, we present a moremechanistic model of rsoil (derivation in Appendix B). Themodel represents
ozone reaction with surfaces in soil and gases in soil pore spaces:

rsoil ¼ AKd
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s
þ∑

i
KXi;O3Xi;soil

 !
η−θð ÞτDO3

� �" #−1
2

: (16)

A is surface area on which ozone dry deposition occurs per unit volume of the porousmedia (m2m−3);Kd is a
measure of the probability that an ozone molecule reacts once it comes into contact with the surface (unit-
less); R is the universal gas constant (8.314 J mol−1 K−1); Tsoil is soil temperature (K);MO3 is the ozone mole-
cular mass (0.048 kg mol−1); KX ;O3 is the rate coefficient (ppmv s−1) for chemical ozone destruction in soil
pore spaces by gas species Xsoil (ppmv); η is the volumetric air‐filled soil pore space when completely dry
(m3 m−3); θ is volumetric soil moisture (m3 m−3); τ is the soil tortuosity factor (0 < τ < 1; unitless; a measure
of how many paths ozone can take in soil); and DO3 is ozone diffusivity in air (m2 s−1).

The utility of this model in representing soil ozone uptake hinges on whether (i) all relevant processes are
represented accurately and (ii) model input variables can be estimated adequately. In terms of (i), the model
assumes neither obstruction to transport into soil nor any thermal decomposition or aqueous ozone reaction
in soil. Based on mechanistic modeling, we suggest the contribution of thermal decomposition may be
important (see Appendix B). The results of Toet et al. (2009) also imply aqueous ozone reaction in soil at
low soil moisture may dominate.

In terms of (ii), most of the inputs likely require a fair amount of parameterization and thus are uncertain.
We should be able to leverage understanding of some input variables and parameters from the fields of soil
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physics and chemistry. We recommend sensitivity analyses with the model expressed in equation (16) to
identify the parameters and variables driving modeled variations under different conditions.

We also recommend more measurements of soil ozone uptake to constrain the observed driver(s) of soil
ozone uptake under a given environmental condition and further parameterize and evaluate the model
expressed in equation (16). Our synthesis indicates capturing ozone's ability to diffuse into and through soil
pore spaces is key. Models should thus consider soil moisture as a limiting factor. Useful constraints on soil
ozone uptake include ozone EC fluxes at heights in the lower canopy and over bare soil and chambers on the
ground (e.g., Finco et al., 2018; Launiainen et al., 2013; Stella et al., 2019).
4.3.3. Main Takeaways
1. Observations suggest soil moisture decreases ozone uptake by soil, hindering ozone's ability to diffuse

into soil and through soil pore spaces.
2. The dominant pathway for soil ozone uptake is likely reaction with organic matter, but the contributions

of thermal decomposition, aqueous chemistry, and reaction with gaseous compounds in soil cannot
currently be discounted.

3. We derive a model for mechanistic representation of ozone dry deposition to soil. We recommend
reconciling mechanistic and empirical modeling approaches and additional observational constraints
on soil ozone uptake both in terms of longer data sets and representation of more ecosystems.

4.4. Turbulence

Atmospheric turbulence is generated by either shear or buoyancy forces, and complex surface elements (e.g.,
vegetation) drive stronger andmore variable turbulence enhancing contact between air parcels and surfaces.
Turbulence moves air and transports ozone‐rich air parcels toward the surface and thus is fundamental to
ozone's ability to deposit. Correlations between friction velocity and vd or ozone flux (El‐Madany et al.,
2017; Fares et al., 2014; Lamaud et al., 2002; Neirynck et al., 2012; Van Pul & Jacobs, 1994) indeed suggest
turbulent transport is an important, and sometimes limiting, driver of ozone dry deposition.

Over vegetation, turbulent eddies of size similar to the canopy drive most of the exchange between the
canopy and atmosphere, as well as among canopy layers (e.g., Gao et al., 1989; Patton & Finnigan, 2013).
Fluid flow interacting with a canopy is hydrodynamically unstable, which produces eddies observed as com-
binations of sweeps of air from above the canopy penetrating into the canopy and bursts of air ejecting
canopy air into the atmospheric surface layer above (e.g., Finnigan et al., 2009; Raupach et al., 1996).
These bursts and sweeps facilitate uptake of trace gases and also lead to segregation of air masses in the
canopy (e.g., Dupont & Patton, 2012; Patton et al., 2016; Steiner et al., 2011; Thomas & Foken, 2007).

Transfer of trace gases from the surface layer to the surface is typically modeled with MOST, an empirical
formation based on dimensional analysis that accounts for atmospheric stability influences on near‐surface
turbulence and holds in the inertial sublayer. Different empirical formulations of MOST may contribute to
differences among air quality models in simulated vd under stable conditions (Toyota et al., 2016).

There are substantial limitations to modeling approaches utilizing MOST to simulate canopy‐atmosphere
exchange. The underlying assumptions of MOST fail in the roughness sublayer above a plant canopy that
can extend up to two to three canopy heights (e.g., Cellier & Brunet, 1992; Harman & Finnigan, 2007;
Thom, 1975). Recent observations at the Amazon Tall Tower Observatory suggest the roughness sublayer
above the forest merges directly into the mixed layer and does not even form the inertial sublayer where
MOST is valid (Dias‐Júnior et al., 2019). Another issue is many forest canopies reside in hilly or mountainous
terrain, but MOST assumes horizontal homogeneity.

Multilayer canopy models are typically limited in simulating vertical exchange among canopy layers, but
simulated turbulence in these models influences the canopy distribution of ozone and thus dry deposition
and ambient chemistry. Most multilayer canopy models employ K‐theory (Ashworth et al., 2015; Bryan
et al., 2012; Ganzeveld et al., 2002; Stroud et al., 2005; Wolfe & Thornton, 2011; P. T. Zhou et al., 2017), which
does not realistically simulate turbulence in a complex canopy environment. Some multilayer canopy mod-
els (Bryan et al., 2012; Stroud et al., 2005; Wolfe & Thornton, 2011) include near‐field approximations
(Makar et al., 1999), which leverage the Lagrangian perspective of dispersion in a canopy outlined by
Raupach (1989). However, near‐field parameterizations are designed for neutral stability conditions, and
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their utility hinges on whether observed wind profiles and turbulence statistics can be prescribed (Harman&
Finnigan, 2008).

The multilayer canopy model described by Bonan et al. (2018) with the Harman and Finnigan (2007, 2008)
analytic roughness sublayer mixing scheme shows potential for prognostic simulation of canopy vertical
exchange. While the Harman and Finnigan (2007, 2008) scheme relies on K‐theory, its introduction of a
length scale associated with the turbulent eddies produced by wind shear at the canopy top incorporates
the influence of countergradient transport. Bonan et al. (2018) find that the Harman and Finnigan (2007,
2008) scheme improves simulation of friction velocity and ambient temperature at several forest and grass-
land sites. With amultilayer canopy large eddy simulation (LES)model explicitly resolving turbulence above
and in a forest canopy, Patton et al. (2016) show atmospheric stability exerts a control on vertical exchange at
the top of the canopy through the structure of the atmospheric boundary layer, suggesting roughness sub-
layer parameterizations consider the effect.

The representation of in‐canopy turbulence is also limited in big‐leaf dry deposition schemes. For example, in
theWesely (1989) scheme, there are two resistances to in‐canopy turbulence, one for lower‐canopy deposition
and the other for soil uptake. Wesely (1989) defines a simple model based on solar radiation and slope of the
terrain for the former and prescribes constants that vary with LULC type and season for the latter.

Later big‐leaf schemes (e.g., Clifton, 2018; Emberson, et al., 2000; Erisman et al., 1994; Paulot et al., 2018;
Pleim & Ran, 2011; L. Zhang et al., 2002, 2003) do not include deposition to the lower canopy and adopt
or modify a model employing LAI, friction velocity, and canopy height based on 6 days of afternoon ozone
fluxes over a corn field (Van Pul & Jacobs, 1994) for turbulent transport to the ground. As mentioned, several
studies indeed find friction velocity as a driver of variation in ozone dry deposition (El‐Madany et al., 2017;
Fares et al., 2014; Lamaud et al., 2002; Neirynck et al., 2012). However, a site‐specific model like Van Pul and
Jacobs (1994) may not capture variability in the resistance to canopy turbulence across different landscapes
and boundary‐layer conditions. For example, daytime transport timescales near the ground over a grassland
constrained with radon and thoron isotopes are 50% too low with the Van Pul and Jacobs (1994) model
(Plake & Trebs, 2013). In general, multilayer canopy LES models offer an opportunity to explore how turbu-
lent transport influences ozone dry deposition and refine parameterizations.

While most observational constraints on canopy turbulence are from sonic anemometers above the canopy,
some recent studies employ sonic anemometers at multiple vertical or horizontal locations (e.g., Finco et al.,
2018; Fuentes et al., 2016; Patton et al., 2011) to advance understanding of canopy turbulence and its impact
on vertical exchange of trace gases. For example, Finco et al. (2018) use multiple sonic anemometers and fast
ozone analyzers in the vertical at Bosco Fontana to pinpoint the distribution of ozone sinks in the canopy.
Using profile measurements of ozone concentrations and turbulence statistics at a tropical forest, Freire
et al. (2017) suggest the ozone concentration profile is primarily a function of turbulent mixing, although
the authors only consider a single depositional sink for the entire canopy. Isotopic measurements of thoron
and radon also offer constraints on turbulent transport near the ground in a plant canopy (Plake & Trebs,
2013), which may be useful in interpreting ozone flux measurements (e.g., separating ozone dry deposition
to soil from canopy sinks).
4.4.1. Main Takeaways
1. Turbulence is inherently fundamental to ozone's ability to deposit.
2. Constraints on turbulent transport are useful for interpreting observed ozone fluxes and establishing the

relative importance of a given deposition pathway.
3. Current models for turbulent transport used to estimate or interpret measurements of ozone fluxes may

not capture the magnitude or variability of transport accurately.
4. Explicitly resolving above‐ and in‐canopy turbulence in models such as LES should be used to improve

current turbulent transport parameterizations.

4.5. Fast Ambient Chemistry

While ambient chemistry is not technically ozone dry deposition, fast ambient chemistry influences
observed ozone fluxes. We emphasize fast here because the timescale over which ambient chemistry oper-
ates is central to its influence on ozone fluxes. The rule of thumb is chemical reactions below the measure-
ment height (hereafter, “in canopy”) must occur on timescales equivalent to or faster than the canopy
residence time determined by turbulent transport to influence the ozone flux.
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Timescales for turbulent transport (τtrans) and chemical reactions (τchem) can be compared via the
Damköhler number (Da; Damköhler, 1940; Lenschow, 1982; Lenschow & Delany, 1987; Vilá‐Guerau de
Arellano, 2003; Vilá‐Guerau de Arellano & Duynkerke, 1992):

Da ¼ τtrans
τchem

: (17)

IfDa is greater than 1, then chemistry can be a major influence on observed ozone fluxes; ifDa is between 0.1
and 1, then the influence of chemistry should be moderate, while if Da is less than 0.1, then turbulent trans-
port dominates, and the influence of chemistry should be negligible. IfDa= 1, then segregation (i.e., the spa-
tial separation of reactants in the canopy by organization in turbulence) becomes a factor depending on the
source (and likely sink) distributions of the reactants (e.g., Patton et al., 2001). However, Da does not always
present an accurate picture of chemistry's influence on ozone fluxes; multilayer canopy modeling shows
chemistry slower than turbulence (e.g., Da = 0.03) still alters the ozone flux (Wolfe et al., 2011).
Nonetheless, Da helps to establish which reactive gases are involved in chemistry relevant to interpreting
ozone fluxes.

In considering fast ozone loss through reaction with NO, it is important to consider NO‐NO2‐O3 chemistry,
which occurs on the timescale of turbulence (Duyzer et al., 1983; Van Aalst, 1982) and consists of the
following reactions:

R1 O3 þ NO→NO2 þ O2;

R2 NO2 þ hν→NOþ O 3Pð Þ;
R3 O2 þ O 3Pð Þ→O3:

Reaction with NO leads to a permanent ozone sink when NO2 is oxidized to higher nitrogen oxides (Min
et al., 2012, 2014; Turnipseed et al., 2006; Wolfe et al., 2009) or taken up by stomata (Delaria et al., 2018;
Bakwin et al., 1990; Plake, Stella, et al., 2015; Rummel et al., 2002) and serves as a temporary reservoir if
NO2 is photolyzed and ozone is reformed. In a shaded forest canopy, photolysis of NO2 (i.e., R2) is
expected to be low. In general, the effects of R1 on ozone fluxes are usually small (Kramm et al.,
1995; Plake, Sörgel, et al., 2015; Rannik et al., 2009; Stella et al., 2012; Vuolo et al., 2017) because there
is typically much more ozone than NOx (=NO + NO2). However, some studies suggest R1 accounts for a
nonnegligible influence on observed ozone fluxes (Dorsey et al., 2004; Finco et al., 2018; Lamaud et al.,
2009; Neirynck & Verstraeten, 2018; Rummel et al., 2007), especially at night when there is relatively
high NOx.

The contribution of NO‐NO2‐O3 chemistry to observed ozone fluxes can be estimated with ozone, NO,
and NO2 fluxes at two heights (Finco et al., 2018; Fitzjarrald & Lenschow, 1983; Lenschow & Delany,
1987; Vilá‐Guerau de Arellano et al., 1993). An empirical technique only requiring flux measurements
at one height (Duyzer et al., 1995) has also been used (e.g., Plake, Sörgel, et al., 2015; Stella et al.,
2012; Vuolo et al., 2017). This empirical technique assumes flux divergences of NO, NO2, and ozone
are logarithmic with height, but the theoretical basis for this assumption is lacking. Both techniques
may be limited with respect to key assumptions: first‐order closure and negligible influence from other
in‐canopy chemical reactions. More explicitly resolving interactions between in‐canopy turbulence and
ambient chemistry (e.g., through LES modeling) will allow for stronger constraints on the influence of
fast chemistry on ozone fluxes.

Some sesquiterpenes, such as β‐caryophyllene and α‐humulene, and monoterpenes, such as α‐terpinene,
react very quickly with ozone (Calogirou et al., 1999; Shu & Atkinson, 1994; Yee et al., 2018) and constitute
a permanent ozone sink. Reactions of these compounds with ozone may account for a nonnegligible fraction
of the observed ozone flux (Bouvier‐Brown et al., 2009; Fares, McKay, et al., 2010; Fares et al., 2012;
Goldstein et al., 2004; Holzinger et al., 2005; Helmig et al., 2006; Kurpius & Goldstein, 2003; Jardine et al.,
2011; Wolfe et al., 2011). However, the ability to constrain the relative contribution of chemistry is limited
by a lack of comprehensive isomer‐resolved BVOCmeasurements and uncertainty in rates for reaction with
ozone (Bouvier‐Brown et al., 2009; Goldstein et al., 2004; Shu & Atkinson, 1994; Yee et al., 2018).
Sesquiterpenes are difficult to measure due to their low volatility, which leads to underestimates from the

10.1029/2019RG000670Reviews of Geophysics

CLIFTON ET AL. 26 of 62



loss on sampling lines and instrument surfaces, and to their low concentrations, which require sensitive
detection and/or lower time resolution methods.

Supporting evidence for the influence of highly reactive BVOCs on observed ozone fluxes is largely based on
observations and modeling at Blodgett Forest in the Sierra Nevada Mountains of California. Evidence
includes (i) a dependence of observed ozone fluxes on air temperature consistent with monoterpene emis-
sions from vegetation (Kurpius & Goldstein, 2003; Fares, McKay, et al., 2010), (ii) similar enhancements
in ozone fluxes andmonoterpene concentrations following forest thinning (Goldstein et al., 2004), (iii) direct
measurements of oxidation products (Holzinger et al., 2005), and (iv) multilayer canopy modeling (Wolfe
et al., 2011). Constraints on highly reactive chemistry at other sites, in combination with large‐scale model-
ing, are needed to understand the large‐scale impact of ambient ozone loss through reaction with highly
reactive BVOCs on observed ozone fluxes.

Substantial soil emissions of highly reactive sesquiterpenes are observed at an Amazonian forest
(Bourtsoukidis et al., 2018). While measurements at other locations are needed to understand whether this
phenomenon occurs elsewhere, neglecting a soil source of highly reactive BVOCs in interpreting ozone
fluxes may lead to an overemphasis of the role of other processes.

In‐canopy ambient chemistry impacts not only ozone but also other molecules. Reactions between ozone
and highly reactive BVOCs may account for observed emission of oxidized organic species from the canopy
(Alwe et al., 2019; Choi et al., 2010; Holzinger et al., 2005; Schobesberger et al., 2016) and subsequent second-
ary organic aerosol formation (Bouvier‐Brown et al., 2009; Buzorius et al., 1998; Farmer et al., 2011;
Goldstein et al., 2009; Wolfe et al., 2011), production of the hydroxyl radical (Faloona et al., 2001; Kurpius
& Goldstein, 2003), and emission of reactive nitrogen oxides (Farmer & Cohen, 2008; Wolfe et al., 2009).
Fluxes of oxidized organic and inorganic compounds may provide observational constraints on the location
and mechanism of chemical influences on observed ozone fluxes.
4.5.1. Main Takeaways
1. Fast ambient chemistry confounds ozone dry deposition estimates from ozone flux observations.
2. Observed colocated fluxes of ozone and highly reactive compounds and models resolving their in‐canopy

distributions and fluxes are needed to estimate the influence of fast chemistry on ozone fluxes.
3. Analytical challenges and uncertain reaction rates limit knowledge on the contribution of highly reactive

BVOCs to observed ozone fluxes.

4.6. Snow‐Covered Surfaces

Ozone deposition velocities over snow are typically low relative to the other terrestrial surfaces considered in
this review but are highly uncertain. The range of observed vd over snow from both field and laboratory
studies is −3.6 to 1.8 cm s−1 with most of the data from 0 to 0.1 cm s−1 (Figure 7).

The slowest observed vd are over polar snowpack (both glacial and sea ice), suggesting ozone uptake to snow‐
covered landscapes is not primarily controlled by snow presence. While ozone destruction by snow grains
may be slow, the transport of air through snowpack (a porous medium with high surface area) to the bottom
(Helmig, Bocquet, et al., 2007) occurs on timescales of minutes to hours, allowing ozone destruction through
reaction with surfaces within or underneath the snowpack. Snow‐covered forests exhibit the fastest vd
relative to other snow‐covered surfaces, followed by snow‐covered grassland and soils (Figure 7).

Hypothesized or identified pathways for ozone dry deposition over snow‐covered surfaces include reaction
with organic or humic trace impurities, black carbon (Albert et al., 2002), and halogens (Peterson &
Honrath, 2001). Based on snowpack chemical and transport modeling, reaction with bromine (Thomas
et al., 2011) and formic acid in the aqueous phase (Murray et al., 2015) may be ozone deposition pathways
for snow on glacial ice. In environments where vegetation protrudes from the snow, ozone uptake by
biological materials may be the determining ozone sink.

For seasonally deep snowpack at midlatitudes, snowpack insulates the ground, promoting relatively warm
and moist soil conditions that foster soil microbial processes resulting in a steady production and emission
of NO. For example, interstitial air is enriched in NO by a factor of up to ~100 compared to the air above the
surface at Niwot Ridge (Helmig, Seok, et al., 2009). Snowpack reaction between ozone and NO under low
light conditions when NO2 photolysis does not occur may be a primary route for ozone loss in this type of
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environment. Currently, there are no observations of ozone dry deposition over snow‐covered permafrost
soils. Such observations may help establish vd over snow‐covered soils without the contribution of ozone
reaction with NO.

Ozone deposition velocity over snow‐covered surfaces also exhibits a diel cycle, with maximum values in the
afternoon (Helmig, Cohen, et al., 2009; Neirynck & Verstraeten, 2018). The processes driving the diel cycle
are uncertain.

Most models apply a constant resistance for ozone dry deposition to snow regardless of environmental
conditions and the substrate underneath the snowpack. As evident from vd variability for snow‐covered
surfaces (Figure 7), a single resistance does not describe ozone dry deposition over myriad snow‐covered
environments accurately. A more comprehensive parameterization likely requires accounting for
dependencies on snow conditions, chemical snow properties, and substrate underneath snowpack.
Variability in observed vd for a given LULC also emphasizes the need for observational constraints.

A range of approaches has been used to study ozone fluxes over snow, including observing ozone decay in
chambers filled with snow (Aldaz, 1969; Galbally & Roy, 1980), the flux gradient technique (Bocquet
et al., 2011; Colbeck & Harrison, 1985; Helmig, Cohen, et al., 2009; Neirynck & Verstraeten, 2018; Z. Wu
et al., 2016), EC (Stocker et al., 1995; Zeller & Hehn, 1996; Zeller & Nikolov, 2000), and near‐surface vertical
profiles measured with an automated elevator system (Van Dam et al., 2010).

Figure 7. Range of ozone deposition velocities observed or inferred from observations over snow‐covered surfaces. The
vertical order of symbols reflects the year of the publication featuring the data (we impose small y axis shifts for
multiple years with publications). Colors indicate land use/land cover type underneath the snow. Symbols without color
indicate unspecified underlying land use/land cover type or laboratory measurements. Error bars are the range of reported
values, except for the forest point with 0.017 cm s−1 for which the error bars are one standard deviation. Numbers
represent the value of the error bar cutoff by the x axis range. Figure is adapted from Helmig, Ganzeveld, et al. (2007).
Data included are laboratory studies (Aldaz, 1969; Galbally & Roy, 1980) and field studies from Mawson, Antarctica
(Galbally & Allison, 1972), Mt. Buller, Australia (Galbally & Allison, 1972), Illinois (Wesely et al., 1981), Lancaster,
England (Colbeck & Harrison, 1985), Camp Borden (Padro, 1993; Padro et al., 1992; Z. Wu et al., 2016), GLEES Brooklyn
Lake (Zeller, 2000; Zeller & Hehn, 1995, 1996), Central Plains Experimental Range (Stocker et al., 1995), Ice Camp
Narwahl (Gong et al., 1997), Alert, Canada (Hopper et al., 1998), Arctic (Helmig, Bocquet, et al., 2007), Bruneck in the
Southern Alps (Cieslik, 2009), Summit Greenland (Bocquet et al., 2011; Helmig, Cohen, et al., 2009), Flanders (Neirynck &
Verstraeten, 2018), and Horsepool in the Uintah Basin (unpublished).
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Low snowpack ozone fluxes challenge instrument resolution and thus uncertainty needs to be considered.
Snow cover promotes thermal inversions in the surface layer that weaken turbulence and limit the applicabil-
ity of micrometeorological techniques for fluxmeasurements. Methods formeasuring ozone in air withdrawn
from snowpack are highly sensitive and promising for constraining the controls on and strength of ozone
snowpack sinks (Bocquet et al., 2007; Helmig, Bocquet, et al., 2007; Seok et al., 2015; Van Dam et al., 2015).

Several studies report negative vd over snow‐covered surfaces, suggesting emission from the surface
(Galbally &Allison, 1972; Zeller &Hehn, 1996; Zeller &Nikolov, 2000). Relatively large negative vd in earlier
work has not been reproduced recently (Figure 7), bringing up the question of whether older findings are
influenced by earlier experimental approaches with higher uncertainty. We recommend emphasizing newer
relative to older measurements due to the improvement of EC instrumentation and refinement of data‐
analysis protocols.

Recent high‐resolution ozone fluxmeasurements show consistently negative (but relatively small) nighttime
vd at Summit in Greenland with increasingly negative values toward summer (Helmig, Cohen, et al., 2009).
Snowpack is not a location of ozone production: Ozone in snowpack interstitial air is generally depleted
compared to above the surface (Albert et al., 2002; Bocquet et al., 2007; Helmig, Bocquet, et al., 2007;
Peterson & Honrath, 2001; Seok et al., 2015), and ozone is always destroyed in snow chamber experiments
(Aldaz, 1969; Bottenheim et al., 2002). However, ozone production in the poorly mixed layer right above
snowmay occur following the accumulation of ozone precursor emissions from the snowpack and enhanced
irradiance from snow (e.g., Crawford et al., 2001; Cristofanelli et al., 2018; Helmig et al., 2008; Legrand et al.,
2009, 2016).
4.6.1. Main Takeaways
1. There is strong variability in observed vd over snow‐covered surfaces.
2. Accurate modeling of ozone dry deposition to snow‐covered surfaces requires better understanding of

dependencies on underlying substrate, snow conditions, and meteorology.
3. We recommend emphasizing relatively newer measurements due to the improvement of EC instrumen-

tation and refinement of data‐analysis protocols.

5. Simulating Ozone Dry Deposition in Regional and Global Models

Most ozone dry deposition schemes used in regional and global models employ big‐leaf resistance networks
(section 3) and rely on lookup tables for component resistances and changes with season and LULC type
(e.g., Simpson et al., 2001; Wesely, 1989; L. Zhang et al., 2002). While environmental conditions (e.g.,
temperature or surface wetness) sometimes modify lookup values, there is rarely mechanistic representation
of processes in dry deposition schemes. Incomplete process representation limits the fidelity of these
schemes in simulating ozone dry deposition impacts on air pollution, ecosystems, and climate.

Wesely (1989) is the basis of many large‐scale models' dry deposition schemes. The Wesely (1989) scheme
was designed to represent regional and seasonal average conditions. However, observations from very short
time periods at only a few field sites informed Wesely (1989) as well as later schemes (e.g., L. Zhang et al.,
2002), calling into question whether climatological vd is represented accurately in these schemes. There is
also hardly an emphasis on vd variations on timescales other than seasonal or diel (e.g., daily and interann-
ual) in past scheme development, limiting our understanding of variations in ozone pollution.

Despite the similar structure of commonly used dry deposition schemes, vd varies strongly across models
(Bela et al., 2015; Herwehe et al., 2011; Hardacre et al., 2015; Park et al., 2014; Z. Wu et al., 2011). For exam-
ple, monthly vd varies by ±20% across models in the Task Force on Hemispheric Transport of Air Pollution
(HTAP) ensemble (Figure 8). Because most HTAP models identify as employing Wesely (1989), substantial
intermodel variation emphasizes the need to critically assess the implementation of a given scheme as well
as input uncertainty (e.g., LULC distribution). Strong vd variability across models leads to uncertainty in the
tropospheric ozone budget (Wild, 2007) as well as model estimates of ozone pollution (e.g., Hogrefe et al.,
2018; Walker, 2014) and plant damage.

Substantial vd differences also occur among different ozone dry deposition schemes (Schwede et al., 2011;
A. Y. H. Wong et al., 2019; Z. Wu et al., 2018). For example, there are twofold to threefold vd differences
among five schemes all driven by the same forcing data at Borden Forest in Canada (Figure 9). There are also
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large differences in summer interannual variability and 30‐year trends in
vd across four schemes implemented in one global atmospheric chemistry
model (A. Y. H. Wong et al., 2019). Studies comparing schemes in depth
(Schwede et al., 2011; Z. Wu et al., 2018) illustrate a variety of processes
and parameters contributing to intermodel differences.

Improved understanding of parameter and process uncertainty in indivi-
dual dry deposition schemes (Charusombat et al., 2010; Cooter &
Schwede, 2000; Mészáros, Zsély, et al., 2009; Silva & Heald, 2018;
Simpson et al., 2003; Tuovinen et al., 2001; Tuzet et al., 2011) is needed
and will inform vd differences and similarities across models. We recom-
mend archival of model diagnostics oriented toward processes and
LULC types (see Figure 10) in multimodel comparison efforts because
such diagnostics allow pinpointing the causes of intermodel similarities
and differences.

Model ozone dry deposition evaluation typically consists of comparing
simulated and observed seasonal vd averages or diel cycles with observa-
tions at sites with ozone fluxes (Centoni, 2017; Clifton, 2018; Hardacre
et al., 2015; Silva & Heald, 2018; Val Martin et al., 2014; Z. Wu et al.,
2018). Some observed climatological features are captured by current
schemes. For example, the modified Wesely (1989) scheme in GEOS‐
Chem captures diel cycles and seasonality at various sites relatively well

but does not capture the vd spatial distribution (Silva & Heald, 2018). However, in general, skill varies by
model and site, and there is poor understanding of the processes leading to similarities and differences
between models and observations (Centoni, 2017; Hardacre et al., 2015; Silva & Heald, 2018; Val Martin
et al., 2014; Z. Wu et al., 2011).

Ozone flux data sets used for model evaluation typically span a couple of months at maximum. However, vd
varies by a factor of 2 across 11 years of observations at Harvard Forest, which is not captured by the mod-
ifiedWesely (1989) scheme in GEOS‐Chem (Clifton et al., 2017). Strong unreproducible vd interannual varia-
bility suggests model evaluation with a single year of observations is inadequate. We recommend

Figure 8. Variation in ozone deposition velocity across an ensemble of glo-
bal models, most of which identify as using the Wesely (1989) scheme.
Latitudinal averages per three degrees latitude band are shown. Gray lines
indicate individual models participating in the Task Force on Hemispheric
Transport of Air Pollution (HTAP)model intercomparison. Red circles show
the multimodel average. Figure is from Hardacre et al. (2015).

Figure 9. Variation in simulated ozone deposition velocity across single‐point models all driven by the same forcing data from Borden Forest in Ontario, Canada.
Figure is adapted from Figure 1 of Z. Wu et al. (2018) with permission. © 2018. The Authors and Her Majesty the Queen in Right of Canada. This article has been
contributed to by U.S. Government employees, and their work is in the public domain in the United States. This is an open access article under the terms of the
Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly
cited, the use is noncommercial, and no modifications or adaptations are made.
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emphasizing multiyear averages from long‐term ozone flux data sets over short‐term data sets for climatolo-
gical vd evaluation.

Ozone flux data sets are limited to homogeneous terrain (e.g., Wesely & Hicks, 2000), so models are uncon-
strained for complex terrain. Given that the theories underpinning current parameterizations assume hori-
zontal heterogeneity, models likely perform poorly over complex landscapes.

Future work should evaluate model performance not only in terms of climatological seasonal and diel cycles
of vd but also spatiotemporal variability and relationships with meteorological and biophysical parameters.
For example, observations suggesting a weak dependence on LAI (Clifton et al., 2017, 2019; Mahrt et al.,
1995; Wolfe et al., 2015) may imply the strong LAI sensitivity in many models (Charusombat et al., 2010;
Schwede et al., 2011; Silva & Heald, 2018) is exaggerated. However, whether observations generally suggest
a weak dependence on vegetation density is unknown; some work suggests a strong dependence (e.g.,
MacPherson et al., 1995). The most insightful model evaluation relies on process‐oriented relationships
yet to be identified from a meta‐analysis of observations.

Only a few studies probe the roles of deposition processes driving model biases (e.g., Tuovinen et al., 2004; Z.
Wu et al., 2018). Most studies largely assume stomatal uptake drives variations in vd. We emphasize the con-
tribution of nonstomatal deposition (Figure 4) should be considered in model evaluation. We recommend
developing and archiving model diagnostics oriented toward processes (Figure 10). Isolating simulated vd
for a specific LULC type from the grid‐box average (Figure 10), which combines multiple LULC types, is also
helpful for more direct comparison with observations (e.g., Paulot et al., 2018; Silva & Heald, 2018). For eva-
luation with such diagnostics to be most instructional, a firm grasp on the relative roles of individual ozone
deposition pathways and the mechanisms responsible for differences across LULC types as gleaned from
observations is needed.

In general, differences between site and model environmental variables (e.g., meteorology or soil moisture)
and observational uncertainty confound model evaluation (Cooter & Schwede, 2000; Schwede et al., 2001;
Silva & Heald, 2018; Tuovinen et al., 2001; Z. Wu et al., 2018). To reduce the impact of differences between
site and model variables on model evaluation and thus separate input uncertainty from process and para-
meter uncertainty (e.g., Z. Wu et al., 2018), we recommend driving standalone schemes with observed

Figure 10. Model diagnostics for process understanding of simulated ozone deposition velocity (vd) as illustrated by regio-
nal monthly daily mean vd for the InterMountain West United States at the beginning and end of the 21st century under
RCP8.5 (a climate and emissions scenario designed for the Coupled Model Intercomparison Project 5, or CMIP5), as
simulated by the NOAAGFDL atmospheric model version 3 (AM3) with dry deposition calculated in the land component
of the model (Clifton, 2018; Paulot et al., 2018). Colors indicate contributions from deposition pathways (top panel) and
land use/land cover types (bottom panel). The order of the labels on the legend reflects the order in which the corre-
sponding vd contribution is included on the figure.
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variables representative of the flux‐tower footprint. Given more observational constraints on the processes
controlling observed vd, driving models with flux‐tower data will allow identification of realistic and
robust schemes. Otherwise, as is the case for modeling at regional‐to‐global scales, agreement with
observations may stem from incorrect contributions from the various deposition pathways.

6. Remaining Gaps and Recommendations for Future Work

Ozone dry deposition intersects multiple fields, including atmospheric chemistry, plant physiology/ecology,
and boundary‐layer meteorology, all with distinct research questions on the subject (e.g., Hosker &
Lindberg, 1982). While ecologists aim to quantify stomatal ozone uptake and understand the ensuing
damage to plants, atmospheric chemists aim to quantify ozone deposition velocity over different surfaces
and understand the impact of ozone dry deposition on tropospheric chemistry and composition.
Identifying current measurement techniques, modeling, and available data as well as assessing and advan-
cing knowledge on ozone dry deposition requires bridging across distinct research communities.

Current understanding of ozone dry deposition is largely based on only a few ozone flux data sets, many of
which only span short time intervals. It is generally uncertain which aspects of observed ozone dry deposi-
tion are specific to a given site versus represent the broader region or LULC type or are climatological versus
episodic. Our top recommendation is establishing key field sites with long‐term ozone EC fluxes. The highest
priority complementary measurements depend on the specific question ranked as most important (Table 4).
If robust evaluation of variability across sites is a desired outcome of future field studies, then a coordinated
approach across sites is needed to ensure consistency across measurements.

We also recommend that older data sets be revisited in order to build on the deeper mechanistic understand-
ing revealed by our synthesis here. Our efforts to document ozone flux records since 1985 identifies over 100
sites with measurements. A central archive of ozone fluxes along with complementary data would facilitate
broad synthetic meta‐analyses and hasten progress toward robust scientific advances. Quantifying
uncertainty in data, particularly with respect to random and systematic errors associated with measurement
technique, is essential when synthesizing information across data sets. We suggest holistic examinations of
older data sets will lead to new knowledge of the processes and conditions driving ozone dry deposition on
different temporal and spatial scales.

Because there are only a handful of sites with long‐term ozone flux records and many no longer measure
ozone fluxes, we emphasize that continued support of current and past sites and establishment of new
long‐term sites are fundamental to advance knowledge. Because ozone dry deposition is closely related to

Table 4
Recommendations for Ecosystem‐Scale Field Measurement Setups Including Ozone Eddy Covariance Flux and Ozone Concentration Profiles, Organized by the
Scientific Question Determining the Highest‐Priority Measurements

Scientific question Other measurements (long term) Other measurements (short term)

What is the contribution of stomatal
uptake to ozone dry deposition?*

Water vapor flux, carbon dioxide flux,
friction velocity

Other independent tracers of stomatal
conductance (e.g., carbonyl sulfide flux)
and canopy skin temperature

What is the contribution of leaf cuticular
uptake to ozone dry deposition?

Humidity, leaf/canopy wetness, leaf area
index, dew point temperature, precipitation,
same as * to obtain residual ecosystem‐scale
nonstomatal conductance

Chamber fluxes for ozone around branches
including tracers of stomatal conductance
to isolate cuticular uptake and composition
of cuticles

What is the contribution of soil uptake
to ozone dry deposition?

Soil moisture and temperature, same as * to
obtain residual ecosystem‐scale
nonstomatal conductance

Lower canopy ozone fluxes, fluxes of NO, NO2,
and highly reactive BVOC emission from soil,
chambers measuring ozone uptake by soil,
and soil properties (e.g., organic content,
clay content, porosity, and hydraulic conductivity)

What is the contribution of chemistry in the
canopy air space to ozone dry deposition?

NO and NO2 fluxes, highly reactive BVOC
fluxes, same as * to obtain residual
ecosystem‐scale nonstomatal conductance

Fluxes of oxidation products

How do snow‐covered surfaces influence
ozone dry deposition?

Horizontal and vertical extent of snow cover,
snow age

Snow impurities and NO content of snowpack
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carbon and water exchange and associated conditions (e.g., ambient humidity and soil organic content),
science will progress most rapidly when ozone fluxes are added to sites already well characterized in terms
of carbon and water cycling and boundary‐layer meteorology.

For both future short‐term campaigns and long‐term monitoring, we recommend measuring ozone flux
through ozone EC. That the fast ozone analyzers required for ozone EC either require frequent maintenance
or are expensive and require toxic or flammable compressed gases is a potential roadblock. We emphasize
the importance of developing new analytical methods for fast ozone measurement. An effort to coordinate
across research groups measuring ozone fluxes is sorely needed and should promote best practices learned
from the carbon dioxide flux community in calculating fluxes, filtering data sets, and sharing data. Such
an effort should also include validation and intercomparison of different fast ozone analyzers.

While our review offers an unprecedented synthesis of process‐based knowledge of ozone deposition path-
ways, the relative importance of individual depositional pathways remains uncertain. In particular, we
emphasize large uncertainty in the partitioning of ozone dry deposition occurring through pathways other
than through plant stomata. Our synthesis of observationally based estimates of the stomatal fraction of
ozone dry deposition across peer‐reviewed literature shows on average the stomatal fraction over physiolo-
gically active vegetation is 45%, underscoring the importance of nonstomatal deposition.

Process‐oriented investigation of spatiotemporal variations and trends in ozone fluxes is necessary to quan-
tify the relative importance of various deposition pathways and will inform the degree of complexity needed
to model deposition of ozone at large scales. If coordinated with short‐term field intensives, laboratory stu-
dies, and mechanistic modeling, measurements from a few long‐term sites as described in Table 4 would
bridge the molecular to ecosystem scales needed to establish the relative importance of various deposition
pathways and the extent to which they vary in space and time.

Advancing understanding of dry deposition of ozone is also relevant for dry deposition of other reactive trace
gases that alter atmospheric chemistry, climate, and ecosystems because similar physical and chemical pro-
cesses govern their uptake. Process knowledge of dry deposition for ozone can be translated to any trace gas
that reacts with surfaces (e.g., nitrogen dioxide or oxygenated volatile organic compounds). Additionally,
models frequently parameterize dry deposition of other reactive trace gases by using ozone and sulfur diox-
ide as end members. Specifically, a gas's oxidizing ability is scaled to ozone dry deposition, while a gas's solu-
bility is scaled to sulfur dioxide dry deposition given ozone is an oxidant but insoluble and sulfur dioxide is
not an oxidant but soluble. Building on the mechanistic framework for ozone dry deposition outlined in this
review should inform the strengths and limitations of such a parameterization.

The optimal parameterization for ozone dry deposition remains elusive, but the process understanding
synthesized in this review lays the groundwork for one. Representation of most deposition processes in cur-
rent models should be regarded as insufficient. While current parameterizations capture some of the main
observed features of ozone dry deposition, the underlying brazen empiricism of these schemes hinders a full
mechanistic understanding of the influence of ozone dry deposition on air pollution, ecosystems, and climate.

Appendix A: Ecosystem‐Scale Ozone Flux Data Sets
Appendix A contains the table of ecosystem‐scale ozone flux data sets from 1985 onward.

Appendix B: Mechanistic Modeling

B1. Mechanistic Modeling of Ozone Dry Deposition to Leaf Cuticles

Here we derive and review the Potier et al. (2015) physically based model for ozone dry deposition to wet
leaves. We begin with the steady‐state diffusion/reaction equation for aqueous ozone (O3,aq) (mol m−3):

−DO3;aq

d2O3;aq

dz2

� �
¼ LO3;aq : (B1)

DO3;aq (m
2 s−1) is ozone diffusivity in water; z is distance from the leaf surface (z = 0 at the leaf surface); and

LO3;aq is the aqueous ozone chemical sink. With a first‐order rate constant κaq (s−1) such that LO3;aq ¼ −κaq

O3;aq, we have
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d2O3;aq

dz2
¼ κaq

DO3;aq

O3;aq

 !
≡Γ2aqO3;aq: (B2)

We now derive the resistance for aqueous ozone uptake (rcut,aq) (s m
−1) by water droplets and films on a leaf

surface. The boundary condition at the upper surface of the water (i.e., the air‐water interface) is O3,aq(δd)
where δd is the thickness of the film or droplet. The boundary condition at the lower surface of the water
(i.e., the leaf‐water interface) is

DO3;aq

∂O3;aq

∂z
¼ O3;aq 0ð Þ

rcut
: (B3)

rcut (m s−1) is the resistance to aqueous ozone uptake by cuticle underneath the water. Defining γ

¼ rcutΓaqDO3;aq

� �−1
, the solution to equation (B2) is

O3;aq zð Þ ¼ O3;aq δdð Þ 1−γð Þe−Γaqz þ 1þ γð ÞeΓaqz
1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd

� �
; (B4)

dO3;aq

dz
¼ O3;aq δdð Þ Γaq − 1−γð Þe−Γaqz þ 1þ γð ÞeΓaqz

1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd
� �

: (B5)

Then, we have

DO3;aq

dO3;aq

dz

				
z¼δd

¼ O3;aq δdð Þ
rcut;aq

; (B6)

which yields

rcut;aq ¼ 1
ΓaqDO3;aq

1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd
− 1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd
� �

: (B7)

However, the definition of the resistance to ozone uptake on wet cuticles is usually defined relative to the gas
phase, not the aqueous phase. We therefore replace equation (B6) with

DO3;aq

dO3;aq

dz

				
z¼δd

¼ O3 δdð Þ
rcut;wet

: (B8)

O3(δd) (mol m−3) is gaseous ozone concentration at the surface of the water; rcut,wet (s m
−1) is the resistance

to gaseous ozone uptake by wet cuticles. Fully specifying rcut,wet requires a relationship between O3 and O3,

aq, and the simplest approach is assuming O3 and O3,aq are in equilibrium with Henry's law:

O3 δdð Þ ¼ O3;aq δdð Þ
kccH

: (B9)

kccH is the dimensionless Henry's law constant (e.g., Sander, 1999, 2015). Then, we have

rcut;wet ¼ raq
kccH

¼ 1
kccHΓaqDO3;aq

1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd
− 1−γð Þe−Γaqδd þ 1þ γð ÞeΓaqδd
� �

: (B10)

This rcut,wet expression is the same as Potier et al. (2015) equation (A5) except for our using the dimension-
less form of Henry's law constant.

Given that ozone diffusion through water is slow and the underlying cuticle may not be very reactive with
ozone, we may be able to assume the lower boundary condition is zero. This gives us a simpler expression
for rcut,wet:
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rcut;wet ¼ 1

kCCH ΓaqDO3;aq tanh Γaqδd
� � : (B11)

B.2. Mechanistic Modeling of Ozone Dry Deposition to Soil

Here we derive a mechanistic model for the resistance to ozone uptake by soil (rsoil), generalizing the
approach of Tuzet et al. (2011) who analytically solve the steady‐state equation of mass conservation for
ozone within soil pore spaces (O3,soil) to obtain rsoil. We begin with the steady‐state diffusion‐only mass
conservation equation for O3,soil:

d
dz

FO3;soil

� � ¼ DepO3 ;soil þ LO3 ;soil: (B11)

z refers to depth below the soil surface; DepO3 ;soil (ppbv s−1) is the soil ozone depositional sink; and LO3;soil

(ppbv s−1) is the chemical sink within soil pore space. FO3 ;soil (ppbv m s−1) is the ozone vertical diffusive flux
within soil (e.g., Hillel, 1980) and follows

FO3;soil ¼ − η−θð ÞτDO3

dO3;soil

dz
: (B12)

η is volumetric air‐filled soil pore space when completely dry (m3 m−3); θ is volumetric soil moisture (m3

m−3); τ is the soil tortuosity factor (0 < τ < 1; unitless) (a measure of the how many paths ozone can take
in soil); and DO3 is ozone diffusivity in air (m2 s−1).

To insure equation (B11) is amenable to analytical solution, we approximate

d
dz

FO3 ;soil
� � ¼ − η−θð ÞτDO3

d2O3;soil

dz2
: (B13)

However, soils vary vertically in terms of η, τ, θ, and temperature (Tsoil), which may influence variables such
as DO3 .

The next steps are to construct LO3 ;soil and DepO3 ;soil. We parameterize LO3;soil as −∑
i
KXi;O3O3;soilXi;soil where

KX;O3 (ppmv s−1) is the rate coefficient for ozone chemical destruction in soil pore spaces by some gas species
Xsoil.

For porous media, the basic approach for a sink term (S*) associated with dry deposition is to assume S* =
AF* where A (m2 m−3) is the surface area on which dry deposition occurs per unit volume of the porous
media and F* (ppmv m s−1) is the net flux to that surface. Following this approach and Morrison and
Nazaroff (2002) for ozone dry deposition to carpet, we parameterize F* analogously to heterogeneous chem-
istry in the atmosphere (e.g., Jacob, 2000):

F* ¼ 1
4
KdvO3;soil: (B14)

Kd is the surface deposition coefficient (unitless), which provides a measure of the probability that an ozone

molecule reacts once it comes into contact with the surface; v ¼
ffiffiffiffiffiffiffiffiffiffi
8RTsoil
πMO3

q
; R is the universal gas constant

(8.314 J mol−1 K−1); and MO3 is ozone molecular mass (0.048 kg mol−1).

We now have

η−θð ÞτDO3

d2O3;soil

dz2
¼ AKd

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s
O3;soil þ∑

i
KXi;O3O3;soilXi;soil: (B15)

The solution to equation (B15) is
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O3;soil zð Þ ¼ ae−
ffiffi
Γ

p
z þ be

ffiffi
Γ

p
z; (B16)

FO3 ;soil zð Þ ¼ − η−θð ÞτDO3

ffiffiffi
Γ

p
−ae−

ffiffi
Γ

p
z þ be

ffiffi
Γ

p
z

� �
; (B17)

where

Γ ¼
AKd

1
4

ffiffiffiffiffiffiffiffiffiffi
8RTsoil
πMO3

q
þ∑

i
KXi ;O3Xi;soil

� �
η−θð ÞτDO3

: (B18)

a and b are constants determined by the boundary conditions. The upper boundary condition (at z = 0) is
FO3;soil 0ð Þ ¼ O3;soil 0ð Þ

rsoil
, assuming ozone flux is continuous across the soil surface (this assumption is not valid

when diffusion into soil is blocked).

A general lower boundary condition follows from noting O3,soil(z) should remain bounded for all soil depths
(i.e., lim

z→−∞
O3;soil zð Þ ¼ 0). Because z ≤ 0, a bounded lower boundary condition can be assured unconditionally

by requiring a ≡ 0.

Combining a ≡ 0 with O3,soil(0) and FO3 ;soil 0ð Þ yields the following expression for rsoil:

rsoil ¼ 1

η−θð ÞτDO3

ffiffiffi
Γ

p ≡ AKd
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s
þ∑

i
KXi ;O3Xi;soil

 !
η−θð ÞτDO3

� �" #−1
2

: (B19)

B.3. Incorporating Thermal Decomposition Into Mechanistic Modeling of Ozone Dry
Deposition to Soil

We construct a similar mechanistic model for ozone dry deposition to soil as above but one that includes
thermal decomposition of ozone on soil surfaces in order to explore the role of this process. We generalize
the approach outlined by Seinfeld and Pandis (2006) for thermal decomposition, assuming as they do that
thermal decomposition follows first‐order chemical kinetics:

DepthermO3;soil ¼
A
4

K therm
0 e−

Etherma
RTsoil

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

:

s
(B20)

K therm
0 is a proportionality parameter related to the probability of ozone colliding with a molecule on the soil

surface (unitless); Etherm
a (J mol−1) is the activation energy required for thermal decomposition to occur as a

result of collision.

Following the same steps as before, the basic model for the ozone concentration profile within soil is

η−θð ÞτDO3

d2O3;soil

dz2
¼ AK*

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s
O3;soil þ∑

i
KXi;O3O3;soil Xi;soil; (B21)

where K* ¼ Kd þ K therm
0 e−

Etherma
RTsoil :

Equation (B21) yields the following:

rsoil≡
A
4
K*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s
þ∑

i
KXi;O3Xi;soil

" #
η−θð ÞτDO3

 !−1
2

: (B22)

To estimate whether ozone dry deposition via thermal decomposition on soil surfaces may be important,
we present rsoil assuming soil dry deposition only occurs through thermal decomposition:
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rsoil ¼ A
4
K therm

0 e−
Etherma
RTsoil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTsoil

πMO3

s" #
η−θð ÞτDO3

 !−1=2

: (B23)

Previous studies infer Etherm
a using regression analyses, assuming the resistance to uptake (ri) is ri ¼ ae

b
RT

where a and b are empirical coefficients. For sandy‐loam soil at Ispra forest in Italy, b is 40,000 J mol−1

(Fumagalli et al., 2016). For aluminum, stainless steel, beeswax, and paraffin wax (Cape et al., 2009), b is
16,000 to 30,000 J mol−1. To estimate rsoil from equation (B23), we use b= 25,000 J mol−1 which corresponds

to Etherm
a = 50,000 J mol−1 because equation (B23) is analogous to ri ¼ ae

b
2RT . If Etherm

a = 50,000 J mol−1 and

Tsoil = 15 °C, then rsoil ¼ 9:5×105ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AK therm

0 η−θð Þτ
p .

Depending on the magnitude ofA,K therm
0 , and (η− θ)τ, thermal decomposition of ozone on surfaces could be

an important contribution to ozone dry deposition. For example,A ranges from 3 × 107 to 1 × 109 m2 m−3 for
various clay minerals (Kabata‐Pendias, 2004), assuming a bulk density of 1.3 g cm−3 (Warrick & Nielsen,

1980). If we assume the unity upper bounds ofK therm
0 and (η− θ)τ, then this range in A leads an upper bound

of rsoil from thermal decomposition as 30 to 170 s m−1, connoting efficient ozone removal.

Appendix C: Workshop Participants
Appendix C contains the table of participants at a workshop on ozone dry deposition at Lamont Doherty
Earth Observatory of Columbia University in October 2017.

Table C1
Participants at a Workshop on Ozone Dry Deposition at Lamont‐Doherty Earth Observatory of Columbia University in
October 2017

In‐person participants Affiliation

Alex Guenther University of California Irvine
Allison Steiner University of Michigan
Anthony Y. H. Wong Boston University
Arlene Fiore Lamont‐Doherty Earth Observatory/Columbia University
Ashok Luhar Commonwealth Scientific and Industrial Research Organisation

Climate Science Centre, Australia
Barry Lefer NASA
W. J. Massman United States Forest Service
J. W. Munger Harvard University
Catherine Hardacre United Kingdom Met Office
Christopher Holmes Florida State University
Colette Heald Massachusetts Institute of Technology
Colleen Baublitz Lamont‐Doherty Earth Observatory/Columbia University
Delphine Farmer Colorado State University
Dennis Baldocchi University of California Berkeley
Detlev Helmig Institute for Arctic and Alpine Research/University of Colorado Boulder
Donna Schwede United States Environmental Protection Agency
Dylan Jones University of Toronto
Dylan Millet University of Minnesota
Elena McDonald‐Buller University of Texas at Austin
Erin Delaria University of California Berkeley
Garry Hayman United Kingdom Centre for Ecology and Hydrology, Wallingford, United Kingdom
Giacomo Gerosa Università Cattolica del Sacro Cuore, Brescia, Italy
Glenn Wolfe NASA Goddard Space Flight Center and University of Maryland Baltimore Campus
Jason Ducker Florida State University
Jennifer Murphy University of Toronto
Jingqiu Mao University of Alaska Fairbanks
Joanna Joiner NASA Goddard Space Flight Center
Katie Travis Massachusetts Institute of Technology
Kenneth Mooney NOAA Climate Program Office
Kevin Griffin Columbia University
Larry Horowitz NOAA Geophysical Fluid Dynamics Laboratory
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