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Introduction  
Text S1 details the ozone deposition velocity calculation and filtering techniques used. 
Text S2 details leaf area index measurements at all three forests. 
Text S3 describes soil moisture measurements at Harvard Forest. 
Text S4 describes the stomatal conductance models used. 
Text S5 provides information on the bootstrapping technique. 
Text S6 provides details of the multiple linear regression analyses used for day-to-day variability. 
Text S7 details the ozone dry deposition model from Massman (2004). 
Text S8 describes the regression for the temperature dependence of the observed ozone fluxes. 
Figure S1 shows the difference in monthly mean ozone deposition velocity at Harvard Forest for 1998 
and 1999 due to filtering technique.  
Table S1 shows the mean and standard deviation used for removing high and low ozone deposition veloc-
ities at the short-term monitoring sites and Harvard Forest (only used for Harvard Forest when comparing 
to the short-term sites). 
Table S2 provides the details of the linear regression models described in Text S8.  



Text S1 
Ozone deposition velocity calculation and filtering techniques used. 
For Kane and Sand Flats, 30-minute mean ozone fluxes are given in ppb m s-1 and ozone concentrations 
from the fast sensor are given in ppb. We calculate ozone deposition velocity (vd) by dividing the flux by 
the concentration of the fast analyzer. We assume that the fluxes at Kane and Sand Flats are calculated 
using air density that varies with virtual temperature (Tv) and pressure. At Sand Flats, there are 17 erro-
neous temperature measurements (e.g., Tv greater than 100ºC and Tv less than -10ºC during the growing 
season) that have not been discarded; we discard the corresponding values of vd.  

For Harvard Forest, fluxes are given hourly and in µmol m-2 s-1. Concentrations from the fast ozone ana-
lyzer are given in ppb. We convert the fluxes to ppb m s-1 using constant air density at 25ºC and 1013 hPa 
because there are extended periods with missing air temperature measurements (e.g., all of 1990 and most 
of 1991). We find that calculating vd with constant air density leads to a mean offset of 0.01 cm s-1 at Har-
vard Forest as compared to varying air density with air temperature at constant pressure (987 hPa), which 
was the approach used to calculate the fluxes (Clifton et al., 2017). Thus, using constant air density at 
Harvard Forest but varying air density at Kane and Sand Flats should only have a minor impact on our 
comparison. 

At Harvard Forest, the ozone fluxes are computed half-hourly and then averaged to hourly and reported as 
hourly. We average Kane and Sand Flats ozone fluxes and concentrations from half-hourly to hourly be-

fore calculating vd to ensure consistency in our comparison of the data among sites. 

For Harvard Forest, we follow the same method as Clifton et al. (2017) for removing outliers. This 
method is: we remove outliers by requiring hourly vd to fall within the mean ± three standard deviations 

of the entire hourly time series (i.e., we retain 99.7% of the data; µ = 0.28 cm s-1 and 𝜎 = 0.50 cm s-1). Be-

fore doing this, we remove any periods with ozone fluxes that correspond to missing latent and sensible 
heat fluxes as in Clifton et al. (2017) because often these periods correspond to near-zero ozone fluxes. In 
addition, in this paper, we remove any other extended time periods with near-zero vd (November 27, 1990 
at 22:00 EST to November 29, 1990 at 0:00; September 4, 1999 at 14:00 to September 5, 1999 at 10:00; 
November 20, 1992 at 12:00 to November 23, 1992 14:00; October 28, 1992 16:00 to October 31, 1992 at 

11:00) before filtering, which does not change the µ or 𝜎. We refer to this method as the Clifton et al. 

(2017) filtering method.  

Except where stated otherwise, we use this filtering method for Harvard Forest. This filtering method ap-
plies equally to all years and is thus appropriate to compare vd across the years at Harvard Forest. Howev-



er, this filtering approach is not appropriate for comparisons between vd at Harvard Forest and the short-
term monitoring sites, which only have data for the growing season when vd is relatively high (i.e., µ 
would be much higher at the short-terms sites). Therefore, when we compare Harvard Forest and Kane 
1997 data and Harvard Forest and Sand Flats 1998 data directly in Figure 1, we filter hourly vd for 1997 

and 1998 by the µ ± 3𝜎 of the 1997 and 1998 growing seasons, respectively (see Table S1 for the µ or 𝜎 at 

each forest and time period). We define the growing season for 1997 and 1998 as the observing periods at 
Kane (April 29 to October 23, 1997) and Sand Flats (May 12 to October 20, 1998), respectively. Before 
filtering, we remove hourly |vd| greater than 10 cm s-1 at each forest as there is are ten such values at Kane 
and one at Sand Flats. The magnitude of vd changes with the filtering approach used, especially for 1997 
and 1998 at Harvard Forest (Figure S1), as these are high vd years and they have more data filtered out by 
the Clifton et al. (2017) method. When we compare Harvard Forest, Sand Flats and Kane directly in Fig-
ure 1, we use the filtering approach described in this paragraph. We retain this filtering method for Kane 
and Sand Flats for the rest of the paper, but elsewhere for Harvard Forest we use the Clifton et al. (2017) 
method. 



Text S2 
Leaf Area Index at Harvard Forest.  
Leaf Area Index (LAI) measurements are available from 1998, 1999 and 2005-2014 (Munger & Wofsy, 
1999a; Barford et al., 2001). LAI is measured using a LICOR 2000 plant canopy analyzer. We use LAI 
averaged across 1998, 1999 and 2005-2014. In our estimate, we include plots A through H except G3, H3, 
and H4, which only have data for a couple of years. LAI is measured at several plots in the dominant 
wind sectors of the EMS tower: the northwest (NW) and southwest (SW). We average across the plots in 
each wind sector, interpolate to daily resolution and average across years. LAI differs between these wind 
sectors consistently (by 0.9 m2 m-2 on a multiyear mean basis). In order to capture the LAI of the flux 
tower footprint in models requiring input at hourly time resolution, we repeat the daily estimate for each 
hour of the day, and use NW LAI when wind comes from the NW and SW LAI when wind comes from 
the SW. When wind comes from the east, we use LAI from the SW wind sector. 

For models requiring LAI as input, we choose to include 2005-2014 in addition to 1998-1999 in the mul-
tiyear average to dampen interannual variability in LAI (±10%), especially because there is low LAI dur-

ing 1998 due to stunted canopy growth (Urbanski et al., 2007). We note that canopy tree biomass has in-
creased from 1990 to 2010 by one third (Eisen & Plotkin, 2015). Another model that we use and employs 
LAI is the Wehr and Saleska (2015) empirical stomatal conductance model, which is described in Text S4. 
The multiyear mean LAI used in this estimate differs slightly from our other calculations, but also ac-
counts for varying LAI with wind direction (Wehr & Saleska, 2015; see their Appendix B4). 

Leaf Area Index at Kane and Sand Flats. 
LAI is measured using a LICOR 2000 plant canopy analyzer (Meyers et al., 1998; Finkelstein, 2001). 
Finkelstein et al. (2000) multiply the LAI by a correction factor (Chason et al., 1991) to account for 
clumping of leaves, but we do not use a clumping factor at Harvard Forest, Kane or Sand Flats. LAI is 
homogeneous around the flux tower at Kane, but heterogeneous around the flux tower at Sand Flats 
(Finkelstein et al., 2000). The predominant wind sectors at Sand Flats are the southwest and the southeast; 
LAI is higher in the southwest (for more information see Finkelstein et al. (2000) Section 3.1). To give the 
reader a sense of how much LAI varies by wind sector at Sand Flats, maximum LAI is 3.74 m2 m-2 and 
minimum is 2.44 m2 m-2 during June-September 1998. We use hourly LAI at Sand Flats that varies with 
observed wind direction to represent the instrument footprint of the flux tower.  



Text S3 
Soil Moisture at Harvard Forest. 
Volumetric soil moisture measurements (top 15 cm of soil) are available for 1995 to 2000 (Davidson & 
Savage, 1999; Savage & Davidson, 2000). We use the measurement plots: NWF, NWM, NWN, SWF, 
SWM, and SWN. The first two letters correspond to the wind sector (northwest or southwest), and the last 
letter corresponds to distances far (F), mid (M), and near (N) the tower (see Table 1 of Davidson et al. 
(1998)). We linearly interpolate soil moisture for each plot from approximately weekly to daily. 



Text S4 
Stomatal conductance models. 
For Harvard Forest, we use three observation-driven estimates of stomatal conductance (gs). The first two 
are modified slightly from Clifton et al. (2017). 

Inversion of Penman-Monteith 
The first gs estimate employs water vapor EC fluxes; it is the Shuttleworth et al. (1984) inversion of the 
Penman-Monteith equation (hereafter, P-M): 

  !  (S1) 

 is the slope of the saturated humidity curve for air temperature Ta (Allen et al., 1998); λ is latent heat of 

vaporization of water (2442 kJ kg-1); E is water vapor eddy covariance flux; we correct the specific heat 

capacity at constant pressure (cp; 1010 J K-1 kg-1) for moist air; ⍴a is air density at 25ºC and 1013 hPa; β is 

the Bowen ratio (H/ ) where H is sensible heat flux; qw(Ta) is saturation specific humidity at Ta; and q is 
specific humidity. Ra is the aerodynamic resistance (see Text S7). We scale gs for water vapor from Equa-
tion (S1) by the ratio of ozone diffusivity to water vapor diffusivity (0.66; Massman, 1998). 

The following paragraph describes modifications to the P-M inversion from Clifton et al. (2017). In P-M, 
we account for sub-canopy evapotranspiration by removing 10% of the hourly observed water vapor flux 
value (Moore et al., 1996), before including the term in P-M. This value was calculated by Moore et al. 
(1996) using short-term above and below canopy flux measurements, and using this value as a summer-
time average is corroborated by Wehr et al. (2017) who infer the evaporation fraction of evapotranspira-
tion at Harvard Forest using flux and isotope measurements. We acknowledge that assuming evaporation 
is always 10% of evapotranspiration is likely an oversimplification, but we use two other methods of in-
ferring gs at Harvard Forest to support our findings with P-M. In Clifton et al. (2017), we applied this 
change to evapotranspiration in both of its instances in P-M, but here we do not adjust evapotranspiration 
in the Bowen ratio because this part of the P-M equation represents energy balance. Another change is 
that we use air density that changes with ambient temperature and pressure instead of using constant air 
density. The third modification is that we use wind-direction dependent LAI (see Text S2) in Ra. Fourth, 
we do not include hourly P-M gs with atmospheric vapor pressure deficit (VPD) less than 0.5 kPa as the 
estimate generally becomes unreliable at high humidity. Previous observational studies also exclude wa-
ter-flux-based gs estimates with high ambient humidity, employing various thresholds (Hogg et al., 2007; 
Lamaud et al., 2009; Rannik et al., 2012; Launiainen et al., 2013; Novick et al., 2016). We select 0.5 kPa 
because this threshold more or less optimizes the relationship between vd and gs on daily timescales inves-
tigated in Section 3.2. These changes do not alter the conclusions of Clifton et al. (2017). 

gs = ((
Δ′�λ
cp

β − 1)Ra +
ρaλ(qw(Ta) − q)

λ E
)−1

∆′�
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For P-M, we do not exclude days with rain from our analysis. We acknowledge that P-M has serious 
shortcomings after rain due to the enhanced contribution of evaporation to evapotranspiration. However, 
because we examine lower-frequency averages, we wish to retain as much data as possible. To build con-
fidence in our results using P-M, we compare them to the findings using the two other gs estimates de-
scribed below. 

Optimal photosynthesis, minimal transpiration model 
The second gs estimate is obtained from an optimal photosynthesis, minimal transpiration model (Lin, Y. 
S., et al., 2015; Medlyn et al., 2011; hereafter, “L15”). 

   !   (S2) 

na is the number density of air at 25ºC and 1013 hPa; g1 is a constant, inversely proportional to the square 
root of the cost of carbon per unit water used by the plant; VPD is atmospheric vapor pressure deficit; Anet 

is net photosynthesis rate; and !  is the carbon dioxide mixing ratio. For this model, we employ gross 

primary productivity (GPP) as the best estimate of net photosynthesis. GPP at Harvard Forest is inferred 
from observed carbon dioxide fluxes; the calculation assumes daytime ecosystem respiration has the same 
relationship to soil temperature as nighttime (Wofsy et al., 1993; Urbanski et al., 2007). We scale gs for 
carbon dioxide from Equation (S2) by the ratio of ozone diffusivity to carbon dioxide diffusivity (1.06).  
For L15 we do not include hourly values with VPD less than 0.02 kPa because the majority of summer 
daytime hourly L15 gs outliers occur when VPD is below 0.02 kPa (Clifton et al., 2017). L15 calculate g1 
for red oak at Harvard Forest as 5.14 by fitting Equation (S2) to short-term leaf-level measurements. For 
L15, we use g1 = 2.61 for red oak at Harvard Forest (Franks et al., 2018) as this value corrects for the fac-
tor of 2-3 overestimate in L15 relative to P-M gs found by Clifton et al. (2017). 

Empirical model 
The third gs estimate is the Wehr and Saleska (2015) empirical model (hereafter, “W15”) for gs at Harvard 
Forest: 

   !    (S3) 

This model is a function of LAI, leaf-to-air vapor pressure deficit (LVD), clear sky index (𝜒), and photo-

synthetically active radiation (PAR) (Wehr & Saleska, 2015). To allow for long-term trends (e.g., due to 
LAI), the three free parameters in this model (b0, b1, b2) are tuned such that W15 gs fits the five-year run-
ning average centered on the current year (for 1992 and 1993 only 3 and 4 years are used, respectively) 
estimated from the measured latent heat flux during periods with minimal evaporation (i.e., excluding 
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periods after rain and mornings with likely dew, as described in Appendix B4 of Wehr and Saleska 
(2015)). The estimation of gs from heat fluxes in this approach is similar to P-M but is closer to the der-
ivation from Fick’s Law (see Appendix C of Wehr and Saleska (2015)). We scale gs for water vapor from 
Equation (S3) by the ratio of ozone diffusivity to water vapor diffusivity (0.66; Massman, 1998).  

Kane and Sand Flats  
For Kane and Sand Flats, we only use the P-M gs estimate because g1 and GPP for L15 have not been in-
ferred for these sites (doing so is beyond the scope of this manuscript) and W15 was designed specifically 
for Harvard Forest. Our P-M method for Kane and Sand Flats is the same as for Harvard Forest except 
where mentioned below. Note that we use the same assumption for the evaporation fraction of evapotran-
spiration at Kane and Sand Flats as Harvard Forest (10%), but there has been no prior work at these sites 
to constrain this fraction observationally.  

For Kane and Sand Flats, we remove hourly gs with VPD less than 0.3 kPa. This threshold is less strin-
gent than for Harvard Forest in order to maximize the data available (we only have data for one growing 
season at these sites). Generally, we remove values with low VPD to optimize the regression of vd against 
P-M gs. We show in Text S6 and Table 1 that our regression results are similar for both thresholds. For 
Kane and Sand Flats, we remove P-M gs with hourly rain above zero. 



Text S5 
Bootstrapping Technique 
Whenever we composite a time series of a certain variable, we use a bootstrapping technique to estimate 
the mean and 95% confidence intervals in order to utilize all of the available data. For each hour, year 
and/or environmental condition, we create 1000 distributions (i) of n samples of the variable by resam-
pling with replacement where n is the number of days with non-missing data for each hour and year and/
or environmental condition. We set the minimum threshold for n to be 25% of the maximum number of 
days for each year and/or environmental condition. We average across each of these 1000 distributions to 
obtain 1000 means for each hour, year, and/or environmental condition. Then we create 1000 daytime 
means for each year and/or environmental condition by averaging the hours from 9am to 4pm at the same 
index i = 1,…,1000. To create the daytime average, we average across these 1000 values. The 5th to 95th 
confidence intervals are the 26th to 975th daytime mean values. 



Text S6 
Multiple linear regression analyses used for day-to-day variability. 
Daily anomalies are used in the multiple linear regressions for each site described below. 

Harvard Forest. 
The following details describe the multiple linear regression model for Harvard Forest. We regress vd 

anomalies on relative humidity (RH) and P-M stomatal conductance (gs) anomalies. The variance infla-
tion factors (VIF) are 1, suggesting that collinearity among predictors (RH and P-M gs) has little influence 
on the model. We iterate thrice removing six points that are outliers, or have disproportionate impact on 
the model (i.e., relatively high Cook’s distance or leverage points). In each iteration, we regress then re-
move the outlier(s) and point(s) with disproportionate impact, and regress again. 

Kane Experimental Forest. 
The following details describe the multiple linear regression model at Kane for 1997. We regress vd 
anomalies on RH and P-M gs anomalies. VIFs are 1, suggesting that collinearity among predictors (RH 
and P-M gs) has little influence on the model. We iterate twice to remove six points that have a dispropor-
tionate impact on the model. Table 1 gives the coefficients for each predictor and the y-intercept, the 
number of observations, the root mean square error, and the adjusted R2. Having a higher VPD threshold 
(VPD>0.5 kPa instead of VPD>0.3 kPa) for hourly P-M gs does not generally change our findings (see 
Table 1 for VPD>0.3kPa; for VPD>0.5kPa, y-intercept=0.082±0.023 (significant), coefficient for P-M 
anomaly is 0.452±0.130 (significant), coefficient for RH anomaly is 0.009±0.002 (significant), n is 38, 
adjusted R2 is 0.57, root mean squared error is 0.11; here we iterate twice to remove four points that have 
a disproportionate impact on the model). However, the model results for Kane are more similar to Har-
vard Forest when VPD>0.3 kPa is employed, which lends confidence to this estimate. 

Sand Flats State Forest. 
The following details describe the multiple linear regression model at Sand Flats for 1998. We regress vd 
anomalies on RH and P-M gs anomalies, but find that P-M gs is not a significant predictor for vd at Sand 
Flats. We remove five outliers with a disproportionate impact on the model with one iteration. Table 1 
gives the coefficients for each predictor and the y-intercept, the number of observations, the root mean 
square error, and the adjusted R2. Having a higher VPD threshold (VPD>0.5 kPa instead of VPD>0.3 
kPa) for hourly P-M gs does not change our findings because it does not lead to P-M becoming a signifi-
cant predictor.  



Text S7 
Ozone dry deposition estimated with Massman (2004) model. 
For the Massman (2004) model, we combine equations (S4)-(S12) to estimate vd using hourly meteoro-
logical and biophysical observations (or quantities inferred from observations). 

!  (S4) 

!  (S5) 

!  (S6) 

!  (S7) 

Rb,soil is 40 s m-1, Rsoil is 100 s m-1 for dry soil and 500 s m-1 for wet soil (distinction between wet and dry 
soil described in Section 3.3.1), R0,cut is 5000 s m-1, and R0,ac = 25 s m-1, all as prescribed by Massman 
(2004). The constants are not specific to land cover type. Ra is the aerodynamic resistance and Rb,leaf is the 
resistance to molecular diffusion in the small boundary layer around leaves. 

Aerodynamic resistance.  
Aerodynamic Resistance (Ra), the resistance posed by above-canopy turbulence, is from Fick’s Law:  

!  (S8) 

k is the von Kármán constant (0.40); u* is friction velocity; zr is reference height (29 m); d is zero-plane 
displacement height; z0,m is roughness length for momentum; and ѰH is the stability correction function. 
The Monin-Obukhov length (L) is: 

!  (S9) 

g is gravitational acceleration; Tv is virtual temperature; H is sensible heat flux; cp is specific heat capaci-

ty at constant pressure (1010 J K-1 kg-1) that we correct for moist air; and ⍴a is air density at 25ºC and 

1013 hPa. We use mean canopy height and LAI (see Text S2) to calculate z0,m and d (Wu et al., 2015; 
Meyers et al., 1998). ѰH (Paulson, 1970; Foken, 2008) is an integral form of the dimensionless heat pro-
files (ϕH) (Businger et al., 1971; Högström, 1988). We use ϕH summarized as the current understanding of 
Monin-Obukhov similarity theory by Foken (2006):  

!  (S10) 
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!  (S11) 

Leaf sublaminar layer resistance. 
We calculate the sublaminar layer resistance for leaves (Rb,leaf) according to Wesely and Hicks (1977): 

!  (S12) 

k is the von Kármán constant (0.40); u* is friction velocity; κ is thermal diffusivity of air (0.2 cm2 s-1); and 
DO3 is diffusivity of ozone (0.14 cm2 s-1; Massman, 1998).  

ΨH = − 7.8
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L
,
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L

∈ (0,1)
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Text S8 
Linear regression for the temperature dependence of the observed ozone fluxes. 
The following details describe the linear regression model for Harvard Forest for hourly ozone fluxes 
when wind comes from the northwest during June-September 9am-4pm against an exponential function 
of air temperature (e0.17*(T-30)) (Duhl et al., 2008) during 1998, 1999, and all years except 1998 and 1999 
with both ozone flux and air temperature measurements. For the first model (1998), we iterate five times 
removing 16 outliers or points that have disproportionate impact on the model (i.e., relatively high Cook’s 
distance or leverage points). For the second model (1999), we iterate four times removing 27 outliers or 
points that have disproportionate impact on the model. For the third model (all years except 1998 and 
1999), we iterate twice removing 24 points that are outliers, or have disproportionate impact on the mod-
el. Table S2 gives the coefficients for the exponential function of air temperature and the y-intercept, the 
number of observations, the root mean square error, and the adjusted R2. In each iteration, we regress then 
remove the outlier(s) and point(s) with disproportionate impact, and regress again. 



!
Figure S1. Ozone deposition velocity (vd) at Harvard Forest. The black lines show monthly daytime 
(9am-4pm) mean vd calculated with a bootstrapping method for 1990 to 2000 after we filter hourly values 
by the mean ± three standard deviations of the entire dataset (Clifton et al., 2017). Solid colored lines 
show vd at Harvard Forest for 1997 and 1998, the years when there are observations at nearby forests. 
Dashed colored lines indicate the monthly daytime mean vd at Harvard Forest for 1997 and 1998 after we 
first remove any hourly values with absolute value greater than 10 cm s-1 and then filter by the mean ± 
three standard deviations of all the data in the year’s growing season (Table S1), which is defined by the 
measurement periods of Kane Experimental Forest for 1997 and Sand Flats State Forest for 1998. If the 
percentage of days with missing data for any hour between 9am and 4pm for any month and year is 
greater than 75% then that monthly average is not included. 
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Table S1. The mean and standard deviation used to filter the ozone deposition velocities from Harvard 
Forest, Kane Experimental Forest and Sand Flats State Forest (the latter two are the short-term monitor-

ing sites) during the growing season 1997 and 1998, defined by the measurement periods at Kane and 
Sand Flats, respectively. We only use these values to filter Harvard Forest ozone deposition velocities 
when we directly compare Harvard Forest with Kane and Sand Flats (i.e., in Figure 1).  

April 29-October 23 1997 May 12-October 1998

Harvard Forest µ = 0.49, 𝜎 = 0.74 µ = 0.44, 𝜎 = 0.65

Short-term monitoring site µ = 0.35, 𝜎 = 0.60 (Kane) µ = 0.39, 𝜎 = 0.50 (Sand Flats)



Table S2. Coefficients (estimates±standard errors) for the linear regression of hourly 9am-4pm ozone 
fluxes (in µmol O3 m-2 s-1) when wind comes from the northwest on an exponential temperature depen-
dence during June through September at Harvard Forest. T is air temperature. n is the number of observa-
tions used in the model, RMSE is the root mean squared error. Italics denote p<0.05 for predictors. All 
models are statistically significant (p<0.05). 

y-intercept e0.17*(T-30) n adjusted R2 RMSE

All years 
except 1998 
and 1999

30.8±1.07 32.7±3.95 1264 0.0509 21

1998 24.9±4.12 66.1±17.7 152 0.0789 18.8

1999 36.5±3.37 62.5±9.15 245 0.157 26.3


