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Overview 
S1 describes the development of a refined approach to estimate urban aboveground biomass, discusses considerations involved therein, and provides estimates of model uncertainty and estimate variability. S2 describes the modified Vegetation Photosynthesis and Respiration Model and the steps taken to incorporate urban growing conditions such as urban heat island, altered phenology, and impervious surfaces. S3 describes the datasets and methods used to produce our inventory of anthropogenic emissions. S4 contains additional discussion of factors influencing biogenic carbon fluxes in urban ecosystems.

S1 Refined estimates of urban vegetation biomass: A Better Urban Biomass Map (BU-BioM)
The extent and quantity of vegetation in most urban ecosystems is poorly quantified and varies dramatically. In lower biomass biomes, cities can have higher biomass and/or biodiversity than native vegetation communities due to tree planting, irrigation, etc. (Hope et al., 2003), while the opposite can be true in higher biomass biomes (e.g. Boston, MA, USA (Briber et al., 2015), Seattle, WA, USA (Hutyra et al., 2011), Berlin, Germany (Schreyer et al., 2014)). While some areas have developed high-resolution maps of vegetation cover within urban areas, availability of these datasets is not universal. We therefore developed a method of estimating urban biomass that relies on nationally and freely available data sources that can be readily parameterized and implemented in cities located in a wide variety of biomes. We caution, however, that application of these methods in other cities, especially those located in differing bioclimatic zones, should incorporate information from local inventory plots.

We used the National Biomass and Carbon Dataset (NBCD; Kellndorfer et al., 2013)as the foundation for our map of quantity and distribution of biomass across the state. NBCD uses SRTM forest canopy height data and Forest Inventory and Analysis (FIA) county-level forest biomass estimates as the basis of a high-resolution (30m), spatially continuous nationwide map of aboveground biomass (AGB) but NBCD was not designed to specifically characterize urban vegetation. While NBCD biomass estimates are consistent with inventory data at county scales, it tends to overestimate biomass quantity while underestimating vegetation extent in urban areas (Raciti et al., 2014).  We combined field and remotely sensed data sources to correct this bias.

Field plots (n=299) were established in 2010 in two transects extending from downtown Boston westward into rural portions of the state (Raciti et al., 2012b), supplemented by additional plots in areas surrounding the city of Boston in 2013 (Briber et al., 2015). Field-based measurements of AGB were compared to two remote sensing-derived metrics of vegetation quantity and extent: enhanced vegetation index (EVI) and the 2011 National Land Cover Database (NLCD; Homer et al., 2015) 30m forest canopy cover layer (cartographic version). Growing season (June-August) mean EVI for 2011 was calculated for each field plot using atmospherically corrected and cloud screened Landsat ETM+ imagery.

Candidate models to estimate urban biomass were based on relationships between plot AGB and six covariates (NLCD canopy, NLCD land cover, a state-level map of land cover, EVI, and ISA) evaluated singly and in combination. Further, land cover classes in each land cover variable were grouped in several alternate permutations and added to candidate models. Model fit was evaluated on the basis of goodness of fit and corrected Akaike Information Criterion. The best model was then used to estimate biomass (B; MgC ha-1) as

                                         SI Eqn. 1

where C is percent forest canopy and E is EVI (model adjusted R2=0.51, p<0.01). An alternate model which used normalized difference vegetation index (NDVI) instead of EVI performed similarly but EVI was chosen since it is less prone to saturation over areas with high leaf area than NDVI (Huete et al., 2002). To avoid out of sample issues, EVI values greater than the range observed at any of our field sites were replaced with the mean EVI value for the state. If not replaced, these values produced in unrealistically high predicted biomass values. This approach is conservative because it will tend to pull estimated AGB values toward the regional mean. This change affected 10.7% of pixels corresponding to 2,277.5 km2, only 2.5% of which were located in urban areas for which we estimate biomass with this approach. A similar correction for NLCD canopy was unnecessary. Importantly, our objective was to improve urban AGB estimates, not to revise the NBCD product in its entirety, and pixel level differences in AGB [image: ]estimates between different maps are to be expected (Huang et al., 2015).

Figure S1-1. Comparison of AGB measured in ground plots with AGB predicted for those plots using EVI and NLCD % canopy. The smooth line is a regression model between the two. Dark and light grey bands represent 95% confidence (CI) and predictive intervals (PI), respectively. 


Figure S1-2. Comparison of four methods of estimating urban biomass: observed AGB in ground plots throughout the greater Boston area, predicted AGB for those plots using EVI and NLCD % canopy, NBCD AGB values in urban areas, and BU-BioM AGB. [image: ]

S2 Modeling urban biogenic carbon fluxes
Most remote-sensing derived estimates of landscape-level biogenic fluxes omit urban areas from their analysis. For example, the MODIS NPP product omits 13.6% of MA land area that is classified as urban (Figure 1C). We estimated biogenic carbon fluxes over Massachusetts for 2013 at an hourly time step and over a 500m grid cell using the Vegetation Photosynthesis and Respiration Model (VPRM), a data-driven, spatially explicit model for ecosystem fluxes that uses remote sensing and climate reanalysis data (Mahadevan et al., 2008). A number of modifications were made to the model structure and parameterization in order to correct for urban land cover misrepresentations and to account for aspects of biogenic carbon fluxes unique to urban areas, which are typically excluded from flux models. We refer to our urban-enabled version VPRM as the Urban Vegetation Photosynthesis and Respiration Model, or UrbanVPRM. In our study, UrbanVPRM was driven by a combination of MODIS remote sensing data products (Land cover: MCD12Q1 (Friedl et al., 2010), Land cover dynamics: MCD12Q2 (Zhang et al., 2006), and Vegetation indices derived from Nadir BRDF-Adjusted Reflectances: MCD43A4 (Schaaf and Wang, 2015)), meteorological reanalysis (3-hourly irradiance and air temperature at 2m) from NCEP’s North American Regional Reanalysis (NARR), and Landsat-based NLCD ISA and Land Cover (Homer et al., 2015). NARR data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. While the approach of UrbanVPRM is essentially the same as the original VPRM, there are several significant modifications as explained below.

S2.1 Land Cover
Since VPRM was originally developed and calibrated for several common land cover types, none of which are urban, we implemented various changes to the model structure to account for unique features of urban ecosystems, such as fine-scale spatial heterogeneity. Boston and other urban areas include significant fractions of non-native species as well as planted native species at higher densities than found in the wild (Clemants and Moore, 2003). We assumed that urban land use conversion in Massachusetts replaces some, but not necessarily all, of the naturally occurring deciduous broadleaf vegetation, and that the urban forest features similar species composition as the surrounding natural forest; the reduced vegetative cover will be evident in the lower observed values of greenness in urban areas. Therefore, we used deciduous broadleaf forest parameter values (λ, α, β, Topt, Tmin, Tmax, Tlow, and PAR0, Table 1) based on data from Harvard Forest, Petersham, MA) for the entire study area. This choice was necessary for several reasons: 1) deciduous broadleaf forest is the dominant cover for the state (Homer et al., 2015); 2) no parameterization exists for urban ecosystems; 3) the vegetation in urban portions of MA is dominated by species native to temperate deciduous broadleaf forests; and 4) other ecosystem types present in MA (e.g. grasslands, small-scale agriculture) are poorly represented by existing VPRM parameterizations (e.g. tall grass prairie/steppe/savannah, Mediterranean grasslands, and corn/soybeans) (Mahadevan et al., 2008).  The impact of this approximation was relatively minor because these classes only occupy 14% of the landscape, most of which is outside of urban areas. Model resolution was 500m and at this spatial scale (500m), we expect that instances of grasslands and croplands in New England are likely to also contain substantial deciduous broadleaf forest.

Table 1. Deciduous Broadleaf Forest Model Parameters* used in UrbanVPRM taken from Mahadevan et al. (2008). Parameters are explained in text.
	Tmin
	Topt
	Tmax
	Tlow
	PAR0
	λ
	Α
	β

	0
	20
	40
	5
	570
	0.127
	0.271
	0.25


* Units are as follows: Tmin/Tmax/Tlow/Topt: ºC; PAR0: µmole m-2 s-1; λ: µmole CO2 m-2 s-1/µmole PAR m-2 s-1; α: µmole CO2 m-2 s-1/ºC; β: µmole CO2 m-2 s-1

Our decision to represent MA as uniformly deciduous broadleaf forest in the UrbanVPRM may contribute to our observations of elevated rates of biogenic C flux per unit biomass estimated in urban areas. Lawn area, a significant fraction of urban and developed areas (Milesi et al., 2005), was captured in the EVI data in UrbanVPRM, but was modeled with forest parameters (Table 1), meaning lawn C fluxes were likely underestimated. Previous estimates of lawn NEE range from 0.22 to 1.21 MgC ha-1 yr-1 (Milesi et al., 2005), potentially comprising a major component of urban biogenic C flows (Ng et al., 2014) with soil respiration rates higher than rates from native vegetation (Kaye et al., 2005) in part due to high nitrogen inputs (Lorenz and Lal, 2009; Rao et al., 2014). Further, soil respiration rates associated with landscaped areas are 50% higher than rates from lawn areas  (Decina et al., 2016) and these areas are similarly unaccounted for in this analysis. However, lawn biomass is low relative to forest and this is captured in our revised biomass map through inclusion of the NLCD canopy layer. This may introduce a bias in our estimates of flux per unit biomass. This could be addressed in future studies by developing a set a of model parameters appropriate for turf grasses and landscaped areas which by some estimates account for ~50% of US urban land area (Milesi et al., 2005; Nowak et al., 2001).

S2.2 Urban Heat Island
A key property of urban ecosystems is the “urban heat island”, whereby urbanization results in increased air and surface temperatures relative to the surrounding rural/natural landscape. This air temperature bias has effects on both photosynthetic and respiration rates. The magnitude of the urban heat island varies both seasonally, diurnally, and contextually within urban areas (Oke, 1982; Stewart and Oke, 2012; Yuan and Bauer, 2007) and we corrected the NARR air temperature field based on local urban intensity and time of year. As described in Wang et al., (2016), we empirically estimated an hourly urban heat island bias using a sampling network of portable, radiation-shielded air temperature micro-loggers (HOBO U23-001: Onset Computer Corporation) spanning 1.5 years (2013-2015) and 25 field sites. The Micro-loggers were mounted at a height of 1.5-2m from trees in parks, urban forests, parking lots, and yards across a gradient of urban intensity in Massachusetts. For each hour of the year, we estimated a linear regression between air temperature and the surrounding Impervious Surface Area (ISA) based on the NLCD 2011 ISA data upscaled to the 500m model grid cell, which represents the areal proportion of a grid cell that is covered in impervious development (e.g. concrete, asphalt, building roofs). We adjusted the air temperature used in the UrbanVPRM model based on the sub-pixel impervious surface area and hour of the year using the coefficients from the particular hour-of-year linear regression. The hourly linear regressions vary widely in magnitude, reflecting the temporally-varying nature of the urban heat island. Hourly urban heat island biases ranged between -1.5 and 5°C. 

S2.3 Gross Ecosystem Exchange
VPRM estimates gross ecosystem exchange (GEE) as a function of remotely-sensed estimates of the fraction of absorbed photosynthetically active radiation and reanalysis-derived climate data. We modified the treatment of phenology and leaf age in the model, but otherwise UrbanVPRM does not explicitly change the structure of the GEE calculation relative to the original VPRM algorithm, but it indirectly modifies GEE via the urban heat island correction on air temperature. The GEE formula is expressed as the product of environmental scaling terms:

               SI Eqn. 2

Where λ is a model parameter, Tscale, Wscale, and Pscale are scalars for temperature, leaf water content, and leaf phenology, respectively, fAPAR is the fraction of 
incident photosynthetically-active radiation (PAR) absorbed by vegetation. To estimate fAPAR, we used the Enhanced Vegetation Index (EVI), a satellite-derived spectral index using visible and near-infrared land surface reflectance from the MODIS instrument that is closely correlated with photosynthesis across a large range of canopy status and closely follows leaf phenology (Xiao et al., 2004).

Wscale is expressed as a function of the Land Surface Water Index (LSWI), a spectral index using near-infrared and shortwave infrared reflectance that represents changes in plant canopies resulting from drought (Xiao et al., 2004):

                                               SI Eqn. 3

where LSWImax represents the maximum LSWI observed for each pixel within the growing season. 

Pscale is expressed as a seasonally-normalized function of the Enhanced Vegetation Index:
                                               SI Eqn. 4

where EVImin and EVImax are the minimum EVI and maximum EVI observed for each pixel within the growing season, respectively. This formulation differs from the formulation proposed by Mahadevan et al. (2008) which utilizes a step-function of LSWI. We found this formulation of Pscale produced unrealistic seasonal behavior, and so opted for the simpler EVI formulation.

Tscale is expressed as a modified version of the function of air temperature developed for the Terrestrial Ecosystem Model (Raich et al., 1991):

                     SI Eqn. 5

where Tmin, Tmax, and Topt are model parameters representing minimum, maximum, and optimal temperatures for photosynthesis, respectively, and TUHI represents the air temperature that has been modified by local urban land use and is experiencing a time-varying urban heat island adjustment (described above). 

S2.4 Respiration
VPRM estimates ecosystem respiration (RE) as a linear function with air temperature. UrbanVPRM indirectly modifies RE via the increased air temperatures resulting from the urban heat island, raising respiration rates in cities. We structured RE as the sum of autotrophic (RA) and heterotrophic respiration (RH), which we took to contribute equally to RE, in order to more precisely estimate the effects of urbanization on respiration. Precise partitioning of RA and RH is difficult and varies between sites but Gaudinski (2000)et al. observed at Harvard Forest in Petersham, MA that RH accounted for 34%–51% of RE. Whether this pattern is similar in urban ecosystems, with large areas of lawn but little aboveground biomass, is unknown. Importantly, separating RH and RA allows UrbanVPRM to more explicitly characterize respiration from AGB that overhangs paved areas (e.g. large street trees). We used the original VPRM formulation to calculate RE_init, or the initial ecosystem respiration, from which we determined RA and RH. After applying UrbanVPRM modifications to RA and RH, we summed them to produce a final value for RE. RE_init follows the same form described by Mahadevan et al. (2008):
                                     SI Eqn. 6

where α and β are model parameters and TUHI is the urban heat island-modified air temperature.

Heterotrophic respiration depends on mineralization of organic matter by soil microbial communities and emission of CO2 associated with respiration from paved soils is restricted to lateral diffusion through adjacent unpaved areas or cracks in pavement (Lorenz and Lal, 2009; Nehls et al., 2006; Scalenghe and Marsan, 2009). We therefore assumed respiration from paved surfaces and the soils beneath them was negligible and scaled RH by the sub-pixel proportion of ISA. Respiration from paved soils likely varies with the quantity of soil organic carbon (SOC) and long-paved soils are likely to be depleted of labile SOC compared to recently paved or unpaved soils (Raciti et al., 2012a), though infiltration of roots into soils under pavement represents an unquantified potential allochthonous source of SOC. Thus, RH was defined as:

                                     SI Eqn. 7

Autotrophic respiration was scaled by the pixel greenness, as defined by EVI, and ISA. EVI is broadly correlated to the amount of living biomass in the area (Huete et al., 2002) and is used as a proxy for the amount of living autotrophic respiration. The EVI-ISA correction estimates the relative contribution of respiration by urban trees that are densely packed in urban settings, normalized by respiration occurring at a nearby reference natural grid cell (Harvard Forest):

                          SI Eqn. 8

where EVI is the Enhanced Vegetation Index, or hourly grid-cell greenness, EVIref is the greenness at a reference non-urban site (Harvard Forest) at the same time, min(EVIHF) is the yearly minimum of EVI at Harvard Forest (representing leaf-off, woody biomass autotrophic respiration), and ISA is the impervious surface area. This structure adds a baseline amount of autotrophic respiration dependent on the local impervious surface area (the min(EVIHF)*ISA term) while scaling the autotrophic respiration at a given pixel to the simultaneous RA in a natural ecosystem. Urban areas tend to have lower greenness, so this structure reflects the lower RA that would occur in sparsely vegetated urban areas.

S2.5 Net Ecosystem Exchange 
In VPRM, net ecosystem exchange (NEE) is calculated as the sum of gross ecosystem exchange (GEE) and ecosystem respiration (RE). UrbanVPRM calculated NEE in the same way, where negative values indicate carbon uptake by the land surface and positive values indicate carbon release.


S3 Anthropogenic emissions of CO2
Estimates of CO2 efflux from anthropogenic sources were developed separately for different source sectors and harmonized to a 1 x 1km grid. Emissions from residential, commercial, industrial, non-road mobile, and rail sources were derived from the U.S. Environmental Protection Agency’s (EPA) National Emissions Inventory (NEI) for 2011 (U.S. Environmental Protection Agency, 2014a). Emissions from human respiration were derived from population estimates and a mean per-capita CO2 respiratory flux. Emissions from point sources, which include electric power generation, industrial facilities, and aircraft take-off and landing operations, were estimated using a combination of data from the NEI and from the EPA Greenhouse Gas Reporting Program (GHGRP; U.S. Environmental Protection Agency, 2014b). On-road CO2 emissions were obtained from the Database of Road Transportation Emissions (DARTE; Gately et al., 2015). 

The NEI reports annual emissions of carbon monoxide (CO) at the county scale for most of the non-point sources (residential, commercial, some industrial, non-road mobile, and railroad sectors). For point sources, NEI and GHGRP report annual CO and CO2 emissions, respectively, for each facility, with an accompanying latitude and longitude. We used emissions factors from EPA and from Gurney et al. (2010) to convert CO estimates to CO2, depending on fuel type and combustion process. County-level CO2 emissions were then spatially downscaled using spatial proxies specific to each source sector. Annual CO2 estimates were also downscaled to monthly and hourly fluxes using sector-specific proxies. The details of emissions estimation and downscaling procedures for each sector are described below.

S3.1 Airport and Heliport Emissions
The airports and heliports sector includes only emissions from aircraft taxiing, take-off and landing operations. Other emissions associated with airport facilities such as ground-based mobile vehicles and stationary combustion sources are reported in the ‘non-road mobile’ emissions sector. We converted NEI estimates of annual CO emissions into CO2 using emissions factors for jet fuel from Gurney et al. (2010). Emissions were assigned to NEI airport point locations using the included latitude and longitude values, and these points were then spatially joined to the 1km grid cells. We disaggregated the annual emissions to a daily time structure using take-off and landing data from the Federal Aviation Administration’s Air Traffic Activity System (ATADS) (http://aspm.faa.gov/opsnet/sys/Main.asp). We calculated each day’s share of total annual flights for a given airport in ATADS and then used those daily shares to distribute annual CO2 estimates for the NEI airports to daily emissions for 2013. Each airport in the NEI source data was assigned the daily time structure of the nearest airport in the ATADS system, as identified through a GIS nearest neighbor calculation. Daily emissions were aggregated by month for the growing season. 

S3.2 Railroad Emissions
Railroad CO and CO2 emission factors were obtained from the EPA Emission Factors for Locomotives Report (US EPA, 2009). Emissions were summed by county and then spatially distributed onto the NEI-provided “Rail Line Shape Files” GIS layer using the “2011 NEIv2 Shape Fractions of County Emissions for Rail and Commercial Marine”, both available at http://www.epa.gov/ttnchie1/net/2011inventory.html. Railroad emissions were given a uniform time structure, as no data on seasonal, monthly, or diurnal patterns in activity was available.	

S3.3 On-road Mobile Emissions
Annual on-road CO2 emissions on a 1km grid were obtained from DARTE (Gately et al., 2015), and then downscaled to hourly estimates using hourly vehicle counts reported by local automatic traffic recorders (ATRs). We calculated the fraction of total annual traffic that occurs in each hour of the year at each ATR. For each 1 x 1km grid cell in DARTE, we then assigned the hourly time structure from the nearest ATR station to the CO2 emissions of that grid cell. Hourly emissions were aggregated to monthly totals for the growing season.

S3.4 Non-road Mobile Emissions
Estimates of county-level CO2 were obtained from the NONROAD2008 model included in the EPA MOVES2012b (Motor Vehicle Emission Simulator) model (http://www.epa.gov/otaq/nonrdmdl.htm). The NONROAD2008 model estimates CO2 emissions for all mobile vehicle activity that does not occur on public roads (construction vehicles, agricultural vehicles, rail yards and airports, lawn and garden equipment, etc.). Emissions were uniformly distributed across each county and then aggregated to our 1km grid. The NONROAD2008 model provides time-varying emissions estimates by month and by weekday/weekend. The time structure was developed based on data from the NONROAD2005 model, and has not been updated since then. This is the same time structure as the Vulcan Project ‘non-road’ emissions layer, as Vulcan estimated emissions using the NONROAD2005 model (Gurney et al., 2010). To reduce the computational cost of running NONROAD2008 multiple times to generate weekday and weekend emissions estimates for every month in the growing season, we chose to use the annual CO2 estimates from NONROAD2008 and the temporal structure from the Vulcan ‘non-road’ emissions layer. The relative shares of each hourly emissions value in the Vulcan grid were distributed to our 2011 annual emissions on an hourly basis. Each hourly value of emissions in each Vulcan grid cell was divided by the total annual emissions for that Vulcan grid cell. For Vulcan grid cells that reported zero emissions for 2002, but contained non-zero emissions in our 2011 dataset, we used the time structure of the nearest non-zero Vulcan grid cell. In order to correctly align the weekday/weekend variations to our target year of 2013, we shifted the Vulcan hourly data (which starts on 00:00 Universal Standard Time, 1 January 2002) so that the first hour of the year matches the first hour of the year 2013 in our domain (00:00 Eastern Standard Time, 1 January, 2013). This shift was done by moving Vulcan emissions from the beginning of January to the end of December. The adjusted hourly shares of each Vulcan grid cell were then assigned to each of our 1km grid cells contained by the Vulcan grid cell, and those shares were used to distribute the 2011 annual CO2 estimates into 2013 hourly CO2 estimates. Hourly emissions were aggregated to monthly totals for the growing season.

S3.5 Point Source Emissions
The NEI and GHGRP point source emissions files were partitioned into electricity generating and non-electricity generating facilities. For the NEI point sources, the reported CO emissions were converted into CO2 emissions using emissions factors from the EPA WEBFire database (http://cfpub.epa.gov/webfire/) and from Gurney et al. (2010). We also incorporated CO2 emissions from point sources that report under the GHGRP, as these emissions are directly reported by each facility as CO2, which reduces the potential errors associated with using CO to CO2 conversion factors as was done for the NEI point source facilities. To avoid double counting facilities whose emissions are reported in both the NEI and the GHGRP, we filtered the NEI point dataset to remove any facilities that matched GHGRP facilities. We used hourly energy consumption data reported by electric power generating stations as part of the EPA Air Markets Program Database (AMPD) (http://ampd.epa.gov/ampd/) to temporally downscale annual emissions. Each facility reports the heat input in millions of British thermal units (BTUs) of the fuel combusted to generate power for each hour of the year. We summed the hourly heat input to an annual total for each facility, then divided each hour’s value by this total to generate hourly shares of activity for the facility. Each 1km grid cell was assigned the temporal structure of the nearest AMPD facility, and emissions in each grid cell were then partitioned into hourly emissions. Hourly emissions were then aggregated to monthly emissions for the growing season.

The time structure procedure for the non-electricity generating point sources is similar to the electricity-generating facilities. Data on hourly heat input for facilities that were not electricity-generating facilities was obtained from AMPD for 2013. However, due to the widely varying temporal structure of activity in the non-electricity generating facilities reported in AMPD, we elected to use the average 2013 temporal structures of all the facilities in the domain to partition annual emissions from our NEI and GHGRP facilities into hourly emissions. Heat input in million BTUs were summed across all facilities for each of hour of the year, and then used to calculate the average hourly share of activity across all facilities. These hourly shares were then assigned to all of the non-electricity generating point source emissions in our 1km grid. Hourly emissions were aggregated to monthly emissions for the growing season.

S3.6 Commercial Building Emissions
Annual CO emissions from NEI are reported at the county scale for the commercial sector. We converted CO to CO2 using emissions factors from EPA’s WEBFire database and Gurney et al. (2010). We downscaled county-level emissions using Tax Assessor Parcel data from the Boston Metropolitan Area Planning Council (http://www.mapc.org). Emissions were assigned to parcels whose land-use code identified them as commercial buildings based on each parcel’s share of total commercial building square footage in the county. We then aggregated parcel level emissions to our 1km grid.

We use data on the monthly consumption of natural gas for commercial purposes as a proxy to disaggregate annual commercial emissions to monthly emissions. This data was obtained for the year 2013 from the Energy Information Administration’s State Energy Data System (SEDS) available at http://www.eia.gov/state/seds. 

S3.7 Residential Building Emissions
Annual CO emissions from NEI are reported at the county scale for the residential sector. We converted CO to CO2 using emissions factors from EPA’s WEBFire database and Gurney et al. (2010). To downscale emissions from the county scale, only the number of households in each Census Block Group (BG) that use the following fuels to heat their homes were included: natural gas, heating oil, coal, wood, and LPG. We calculated the total number of households in each county that used each fuel type, and then applied each BG’s share of total households by fuel type to allocate county-level emissions by fuel type to each BG. Emissions from all fuel types were then summed in each BG, and the average emissions per-square meter were calculated. The BG polygons were then intersected with our 1km grid in ArcGIS, and emissions were summed by grid cell. A monthly time structure was assigned to emissions in each grid cell using the same method as for commercial sector emissions, with the only difference being that monthly emissions shares were obtained using the monthly natural gas consumption date from SEDS for the residential sector rather than the commercial sector. 

S3.8 Non-Point Industrial Emissions
Annual CO emissions from NEI were obtained at the county scale for the industrial sector. We converted CO to CO2 using emissions factors from EPA’s WEBFire database and Gurney et al. (2010). Industrial emissions were assigned uniformly across each county, as no data on the sub-county spatial distribution of emissions were available, and then aggregated to the 1 km grid. The time structure of industrial non-point emissions was calculated using the same methodology as for the commercial sector emissions. Data from SEDS on the monthly shares of natural gas consumption by the industrial sector contained a large number of missing values. Therefore, we elected to use the monthly shares for the commercial sector to calculate monthly shares for the non-point industrial sector.

S3.9 Human Respiration 
Estimates of human respiration were derived from LandScan 1km gridded 2013 average daily population (ORNL, 2014) using an estimate of mean per-capita CO2 respiratory flux of 257 g C/person/day (Prairie and Duarte, 2007). The LandScan data uses a different spatial grid than our 1km grid. We re-projected the LandScan shapefile into our grid’s coordinate system, and then calculated the average population per square meter in each LandScan gridcell. The two grid layers were then intersected in ArcGIS, and the per-square-meter population values were used to calculate the population of the overlapping portions of each gridcell. Total population in each cell of our grid was then calculated by summing the population of the included cell fractions. This layer has a flat time structure (each hour was assigned 1/8760th the value of the annual emissions total in the grid cell).


S4 Additional factors impacting urban carbon cycling
Globally, conversion to urban land cover is accelerating (Seto et al., 2012). Urbanization creates complex, spatially heterogeneous patchworks that incorporate heavily modified environments devoid of vegetation alongside fragments of largely intact native vegetation (Raciti et al., 2014). However, even intact patches of urban vegetation are influenced by urban growing conditions (Ramalho and Hobbs, 2012; Reinmann and Hutyra, n.d.) and evince altered phenological (Zhang et al., 2004) and biogeochemical cycles (Rao et al., 2014) that may boost C storage. Elevated C storage in these remnant forest patches may offset some C losses associated with urbanization (Reinmann et al., 2016; Zhao et al., 2016), but are unlikely to offset anthropogenic emissions in the resulting urban areas. Nevertheless, a full accounting of the unique suite of growing conditions in urban ecosystems and their influence on biogenic C flows will improve efforts to accurately monitor, report, verify, and mitigate urban anthropogenic C emissions.

Many municipalities have embraced tree planting efforts as part of climate change mitigation strategies (Georgescu et al., 2014; Pincetl et al., 2013). While urban greening is desirable for myriad reasons, its potential to significantly increase urban biogenic C storage has been questioned (Birdsey et al., 2006). Conditions that promote higher rates of urban tree growth may lose efficacy if trees are planted at higher densities. Further, municipalities tend to plant small trees with high rates of mortality (Nowak and Crane, 2002; Roman et al., 2014; Troxel et al., 2013), while removing large, old trees that store large amounts of C and cast the most shade (Nowak et al., 2004), a pattern that suggests urban ‘greening’ initiatives may struggle to meet their goals.
The high rate of C exchange from urban vegetation suggested by our model estimates belies its limited capacity to offset anthropogenic emissions by sequestering CO2 in AGB. Turnover rates of urban C pools are unknown but intensive management practices including leaf litter collection, mulching, and fertilizing likely accelerate C cycling (Briber et al., 2015; Rao et al., 2014; Templer et al., 2015). Land owners seldom allow urban vegetation to accumulate large pools of woody debris and snags, a major slow-turnover C pool that contributes to long-term C storage in rural forests (Gough et al., 2016, 2007; Harmon et al., 1986). Live urban trees are often aggressively pruned and cut down, comprising AGB removals of unknown magnitude and frequency (Templer et al., 2015). Much of this AGB is relocated away from the site of production for firewood or to municipal composting facilities or is chipped and applied as mulch, creating undocumented and poorly understood hotspots of biogenic C emissions. Further, management practices for urban vegetation also contribute to FFCO2 emissions through fuel use in mowing, pruning and transportation (Jo and McPherson, 1995; McPherson and Simpson, 1999; Ryan et al., 2010). Thus, management practices that remove both live and dead AGB limit the size of total AGB pools in urban ecosystems. 
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