

Journal of Geophysical Research: Atmospheres

Supporting Information for

Revisiting global fossil fuel and biofuel emissions of ethane

Z. A. Tzompa-Sosa¹, E. Mahieu², B. Franco^{2,3}, C. A. Keller⁴, A. J. Turner⁴, D. Helmig⁵, A. Fried⁵,
D. Richter⁵, P. Weibring⁵, J. Walega⁵, T. I. Yacovitch⁶, S. C. Herndon⁶, D. R. Blake⁷, F. Hase⁸, J. W. Hannigan⁹, S. Conway¹⁰, K. Strong¹⁰, M. Schneider⁸, and E. V. Fischer¹

¹ Department of Atmospheric Science, Colorado State University, 3915 W. Laporte Ave., Fort Collins, CO, USA

² Institut d'Astrophysique et de Géophysique, Université de Liège, Quartier Agora, Belgium

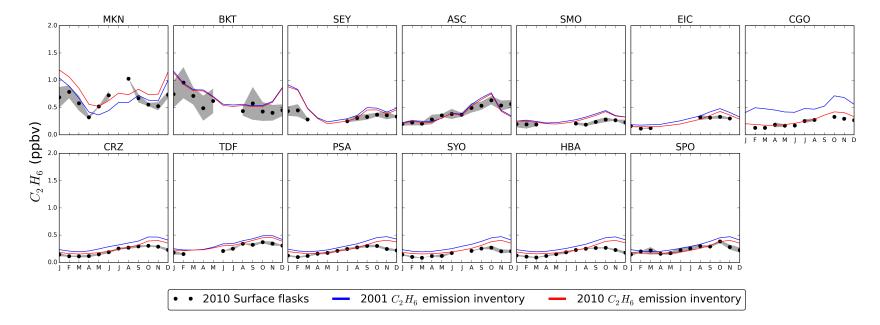
³ Institute for Energy and Climate Research: Troposphere, Forschungszentrum Jülich, Jülich, Germany

⁴ School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA

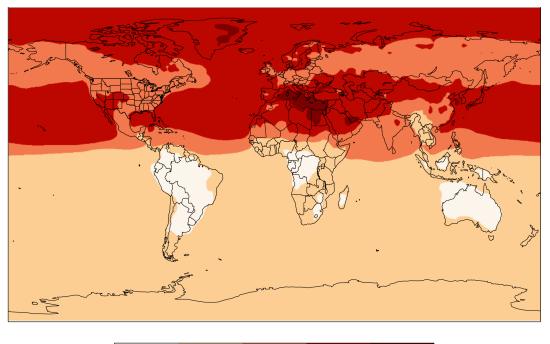
⁵ Institute of Artic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA

⁶ Center for Atmospheric and Environmental Chemistry, Aerodyne Research Inc., Billerica, Massachusetts, USA

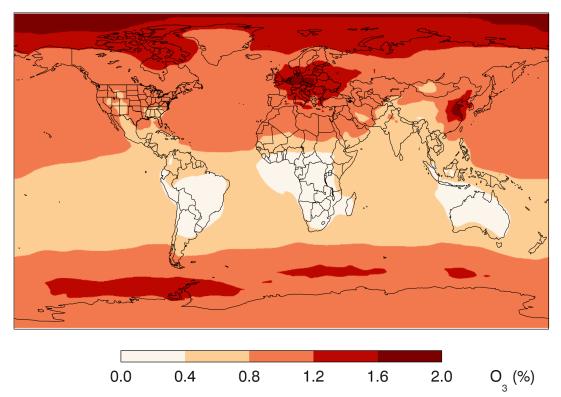
⁷ Department of Chemistry, University of California, Irvine, California, USA

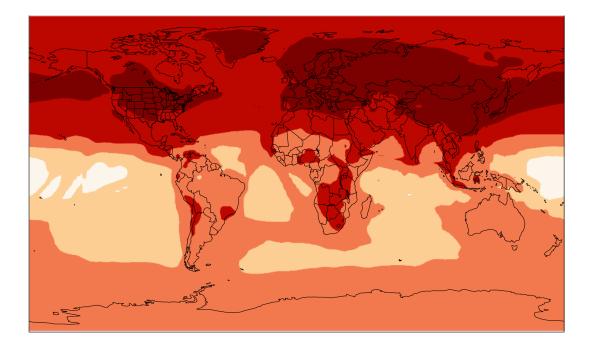

⁸ Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany

⁹ National Center for Atmospheric Research, Boulder, Colorado, USA


¹⁰ Department of Physics, University of Toronto, Toronto, Ontario, Canada

Contents of this file


Figures S1 to S3


Figure S1. Comparison of Southern Hemisphere 2010 C_2H_6 surface mixing ratios to modeled 2001 and 2010 C_2H_6 emission inventories. Black dots represent C_2H_6 observations from NOAA GGGRN global surface flask network and grey areas denote their associated 1σ standard deviation. Lines represent model mixing ratios at the surface from both C_2H_6 emission inventories. Stations are ordered from higher to lower latitudes.

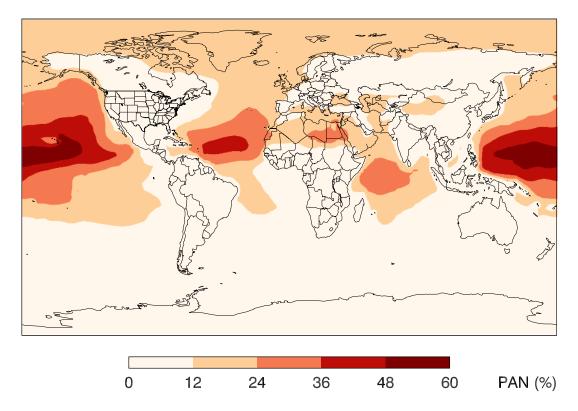

0.00	0.12	0.23	0.35	0.46	0.58	O ₃ (ppbv)

Figure S2. Absolute (top) and percent (bottom) averaged annual contribution of oxidation of C_2H_6 from fossil fuel sources to surface O_3 mixing ratios. Modeled C_2H_6 fossil fuel sources correspond to the 2010 C_2H_6 emission inventory.

0 1x10⁻⁵ 1x10⁻⁴ 1x10⁻³ 1x10⁻² 1x10⁻¹ PAN (ppbv)

Figure S3. Absolute (top) and percent (bottom) averaged annual contribution of oxidation of C_2H_6 from fossil fuel sources to surface mixing ratios of PAN. Modeled C_2H_6 fossil fuel sources correspond to the 2010 C_2H_6 emission inventory.