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Abstract (250 words or less) 

Targeted amplicon sequencing methods, such as genotyping-in-thousands by sequencing 

(GT-seq), facilitate rapid, accurate, and cost-effective analysis of hundreds of genetic loci in 

thousands of individuals. Development of GT-seq panels is non-trivial, but studies describing 

trade-offs associated with different steps of GT-seq panel development are rare. Here, we 

construct a dual-purpose GT-seq panel for walleye (Sander vitreus), discuss trade-offs associated 

with different development and genotyping approaches, and provide suggestions for researchers 

constructing their own GT-seq panels. Our GT-seq panel was developed using an ascertainment 

set consisting of restriction site-associated DNA data from 954 individuals sampled from 23 

populations in Minnesota and Wisconsin. We then conducted simulations to test the utility of all 

loci for parentage analysis and genetic stock identification and designed 600 primer pairs to 

maximize joint accuracy for these analyses. We conducted three rounds of primer optimization to 

remove loci that overamplified and our final panel consisted of 436 loci. We also explored 

different approaches for DNA extraction, multiplexed polymerase chain reaction (PCR) 

amplification, and cleanup steps during the GT-seq process and discovered the following: (1) 

inexpensive Chelex extractions performed well for genotyping, (2) the exonuclease I and shrimp 

alkaline phosphatase (ExoSAP) procedure included in some current protocols did not improve 

results substantially and was likely unnecessary, and (3) it was possible to PCR amplify panels 

separately and combine them prior to adapter ligation. Well-optimized GT-seq panels are 

valuable resources for conservation genetics and our findings and suggestions should aid in their 

construction in myriad taxa. 
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Introduction 

The development of genotyping-by-sequencing (GBS) methods has allowed collection of 

data from thousands of markers across a genome, enabling research that was not possible using 

traditional genetic approaches (Davey et al., 2011; Narum et al., 2013). For example, studies 

using restriction site-associated DNA (RAD) sequencing have shown improved sensitivity for 

detecting inbreeding depression (Hoffman et al., 2014), increased resolution for determining 

complex phylogenies (Wagner et al., 2013), and allowed researchers to observe selection on 

introduced alleles (Bay et al., 2019). Many genetic analyses, however, can be conducted 

efficiently with genotypes from tens to hundreds of single nucleotide polymorphisms (SNPs) 

(Anderson & Garza, 2006). Two such approaches that have been widely used in conservation 

genetics and molecular ecology for decades are parentage analysis and genetic stock 

identification (GSI). 

Parentage analysis involves assigning offspring to putative parents by comparing 

genotypes at multiple loci, while GSI infers the natal origins of individuals by leveraging allele 

frequency estimates from baseline populations or reporting groups. These techniques were first 

conducted using allozyme markers genotyped with protein electrophoresis (Hanken & Sherman, 

1981; Milner et al., 1985). Although these analyses were groundbreaking, they often lacked 

statistical power except in cases of highly diverged stocks or simple pedigrees. The adoption of 

highly variable microsatellite markers in the 1990s greatly increased statistical power, allowing 

these two techniques to become widely adopted (Luikart & England, 1999). Despite the 

advances made possible by microsatellites, problems associated with homoplasy (Garza & 

Freimer, 1996), locus discovery (Navajas et al., 1998), and reproducibility among laboratories 
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led researchers to explore the potential of biallelic single-nucleotide polymorphisms for GSI and 

parentage analysis (Seeb et al., 2011). 

Although SNPs are less powerful than microsatellites on a per marker basis, SNPs are 

more abundant in the genome, generally have low genotyping error rates, and can be genotyped 

using panels capable of efficiently screening a large number of samples (Brumfield et al., 2003; 

Morin et al., 2004). Early SNP panels were constrained, however, in the availability of 

molecular markers suitable for genotyping and genotyping costs associated with 5’ exonuclease 

chemistry (Seeb et al., 2011). These constraints were significantly lessened with the proliferation 

of next-generation sequencing (NGS) technology. For example, methods such as RADseq 

facilitate quick and affordable discovery of thousands of candidate loci, which can then be 

selected among for specific purposes. 

As SNP discovery has become less expensive, methods of selecting the most informative 

SNPs for a given study have advanced (Storer et al., 2012). Previous research has shown that 

information content will vary among SNPs depending on the context within which they are 

applied and location within the genome (i.e. coding or non-coding regions). For example, 

Ackerman et al. (2011) found that SNPs under diversifying selection provide increased accuracy 

and precision in GSI of sockeye salmon (Oncorhynchus nerka) from the Copper River, Alaska. 

In general, previous studies have shown that GSI accuracy is generally positively correlated with 

differentiation (e.g., FST) and, to a lesser extent, diversity (e.g., heterozygosity) (Ackerman et al., 

2011; Bradbury et al., 2011; Storer et al., 2012). Studies of SNP selection methods for parentage 

analysis, however, have found that high diversity is the most important attribute to consider 

when creating a panel (Baetscher et al., 2018). More recently, analytical techniques have shifted 

towards consideration of closely linked SNPs (i.e. microhaplotypes), which effectively increases 
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the diversity at a locus and has proven useful for parentage and GSI tests (Baetscher et al., 2018; 

McKinney, Seeb, et al., 2017; Reid et al., 2019). While obtaining microhaplotypes would require 

independent assays for each SNP at a locus using previous 5’ exonuclease methods, NGS 

technology has enabled the joint genotyping of multiple SNPs within single reads, making 

microhaplotype data easily obtainable through a simple modification in analytical approach. 

In addition to increasing the volume of molecular markers sampled, NGS technology also 

facilitates increased throughput with respect to the number of individuals genotyped. This is 

especially true for amplicon sequencing approaches, which generally utilize highly-multiplexed 

polymerase chain reaction (PCR) to genotype many individuals and loci on a single 

high-throughput sequencing lane. Amplicon sequencing approaches do not require an 

allele-specific probe, can genotype multiple SNPs within an amplicon using a single primer pair, 

and are generally significantly less expensive than 5’ exonuclease chemistry, especially in the 

context of genotyping thousands of individuals. Many amplicon sequencing approaches exist, 

and most large biotechnology companies offer a unique amplicon sequencing solution (e.g. 

Illumina TruSeq, ThermoFisher Ion AmpliSeq). However, these solutions can be expensive, and 

often lack the flexibility desired by conservation geneticists. For example, many companies do 

not support multiplexing of thousands of individuals within a single sequencing lane. 

One recently developed amplicon sequencing method that provides a more cost-effective 

and flexible workflow is genotyping-in-thousands by sequencing (GT-seq). This amplicon 

sequencing method, which was developed by Campbell et al. (2015), facilitates the creation of 

custom panels containing hundreds of SNPs that can be genotyped in thousands of individuals on 

a single high-throughput sequencing lane. As noted above, GT-seq is one of many amplicon 

sequencing approaches but has already shown great promise for conservation genetics 
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applications (reviewed in Meek and Larson 2019). Here, we focus on GT-seq and suggestions for 

optimizing the GT-seq workflow rather than comparisons between GT-seq and other amplicon 

sequencing methods (e.g. Chen et al., 2016; Onda et al., 2018) as those comparisons could 

warrant a full manuscript. 

Despite its benefits, GT-seq is not yet widely used outside of salmonids. Early 

applications to non-model organisms, however, have shown great promise for this method’s 

versatility, including the ability to reveal dispersal and mating patterns in a complex environment 

(Baetscher et al., 2019), provide insight to the ecological and evolutionary dynamics of 

secondary contact (Reid et al., 2019), and understand population diversity in systems that are 

heavily influenced by climate change (Pavinato et al., 2019). Pedigree analysis in wild 

populations relies particularly heavily on the ability to genotype large sample sizes to increase 

the likelihood of detecting kin relationships, toward which GT-seq is ideally suited. Moreover, 

GT-seq has proven capable of generating high-quality genotypes from low-quality DNA samples 

(Natesh et al., 2019; Schmidt et al., 2019), making it a viable approach for monitoring 

endangered or elusive species. 

While GT-seq panels have been developed to maximize accuracy for GSI (McKinney et 

al., 2019) or parentage (Baetscher et al., 2018) analyses, the potential for developing 

dual-purpose panels is largely unexplored. Moreover, developing GT-seq panels is a relatively 

involved task and, to this point, while there are papers describing panel development (Baetscher 

et al., 2018; Campbell et al., 2015; McKinney et al., 2019), there are limited resources providing 

guidelines and suggestions for efficient panel construction. For example, there are many decision 

points in panel development related to primer selection, multiplexing approaches, laboratory 

protocols, and analysis parameters that have yet to be addressed. We used walleye (Sander 
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vitreus) from Minnesota and Wisconsin as a test case to investigate various tradeoffs associated 

with GT-seq panel development and optimization and leveraged our collective experience to 

provide guidelines for researchers developing GT-seq panels. 

Walleye are an apex predator and one of the most prized sportfish throughout their native 

and introduced range. Recently, many walleye populations have declined across the Midwestern 

United States (Embke et al., 2019; Hansen et al., 2015; Rypel et al., 2018), prompting increases 

in stocking efforts relative to already large and long-term regional stocking programs that have 

existed for decades. Genetic studies have been used to guide these efforts by informing 

broodstock selection and general stocking practices. Genetic variation in walleye from this 

region was first characterized by Fields et al. (1997), who found geographic-based patterns of 

genetic structure, but limitations related to sample size and molecular marker choice resulted in 

the use of contemporary watershed boundaries as genetic management units. This research was 

later expanded upon by (Hammen & Sloss, 2019), who attempted to further define genetic 

structure in the Ceded Territory of Wisconsin (approximately the northern third of the state) and 

test whether significant genetic structure existed between distinct hydrological basins within this 

region. Once again, constraints associated with available molecular markers used in a system 

with not only low differentiation, but also extensive stocking precluded definition of fine scale 

structure. This system, however, provides an excellent model for applying genomic techniques to 

discriminate populations and evaluate hatchery programs using parentage analysis. 

Like many intricacies of genomics research, GT-seq panel development is a process that 

is at once broadly generalizable to non-model organisms and highly specific to the taxa it is 

applied to. While the overarching steps (Fig. 1) will remain constant, there are many decision 

points within that will require informed thought and decision. Here, we used walleye, a species 
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with few well-established genomic resources, as a model to examine the methods inherent to 

GT-seq panel development, identify critical decision points in the process, and illuminate the 

nuances associated with them. Our overarching goal was to design a dual-purpose GT-seq panel 

optimized for parentage analysis and GSI in walleye. The creation of this panel allowed us to 

address the following specific objectives: (1) investigate the tradeoffs between choosing markers 

for parentage analysis versus GSI, (2) explore the most efficient way to design an optimized 

panel, and (3) evaluate various laboratory approaches to maximizing the efficiency of GT-seq 

genotyping. We provide an in-depth discussion of our experiences designing the panel and 

outline important topics that should aid researchers in designing future GT-seq panels. 

Materials and Methods 

Sample collection 

Tissue samples were collected from adult walleye from 23 inland lakes across Wisconsin 

and Minnesota and the St. Louis River (border water) (Fig. 2a, Table 1) and stored in 95% 

ethanol until DNA extraction. We obtained samples from as many major drainages as possible 

across the two states, with an emphasis on the Wisconsin and Chippewa River drainages in 

Wisconsin, which were difficult to differentiate using microsatellites (Hammen & Sloss, 2019). 

In Minnesota, sampling focused primarily on major sources of wild broodstock for stocking 

programs. Samples were collected by the Wisconsin and Minnesota Departments of Natural 

Resources using fyke nets or electrofishing. Sampling took place during the spring spawning 

runs of April 2015 and 2017 and fall surveys in August and September of 2015 and 2017. 

Stocked individuals may be tagged, or fin clipped; we inspected all sampled individuals for tags 

or fin clips to avoid as many individuals as possible that were of stocked origin. 

Preparation of RAD sequencing libraries 
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Genomic DNA was extracted in a 96-well format with Qiagen DNeasy Blood and Tissue 

Kits. Extracted DNA was quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, 

Waltham, MA) and normalized to 20ng/µl. We then prepared DNA for RADseq library 

preparation following the BestRAD protocol (Ali et al., 2016). Briefly, DNA was digested in a 2 

µl reaction with the restriction enzyme SbfI, and biotinylated barcode adaptors were ligated to 

the 5’ cut ends. Shearing of DNA was conducted using a 12.5 µl fragmentase reaction. Library 

preparation was conducted using an NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, 

Ipswich, MA), with a 12-cycle PCR enrichment. We then inspected RAD library quality on a 2% 

agarose gel before undergoing a final AMPure XP (Beckman Coulter, Indianapolis, IN) 

purification and quantification on a Qubit 2.0 Fluorometer (HS kit, ThermoFisher Scientific, 

Waltham, MA). Libraries were sequenced using paired-end (PE) 150 technology on a HiSeq 

4000 (Illumina, San Diego, CA) at the Michigan State University Genomics Core Facility or 

Novogene Corporation, Inc. (Davis, CA). Sequencing was conducted to achieve a target of over 

one million retained reads per individual. 

Analysis of RAD data to discover SNPs 

Loci were identified and genotyped in STACKS v.2.2 (Rochette et al., 2019) without 

using gapped alignments. Raw reads were demultiplexed and barcodes were trimmed in 

process_radtags (parameter flags: -e SbfI, -c, -q, -filter_illumina, -r, --bestrad). We assembled 

RAD-tags into putative RAD loci with ustacks using the bounded model (bound_high =  0.05, 

--disable-gapped) and allowing for a maximum of three nucleotide mismatches (-M = 3) and four 

stacks per locus (-max_locus_stacks = 4), as well as a minimum depth of three (-m = 3). The 

calling of haplotypes from secondary reads was disabled (-H). A catalog of consensus loci was 

assembled in cstacks using the two individuals with the highest number of retained reads from 
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each population, allowing a maximum of three mismatches between sample loci (n = 3, 

--disable-gapped). After matching all samples against the catalog in sstacks (--disable-gapped), 

data were oriented by locus with tsv2bam, and individual genotypes were called in gstacks, with 

paired-end reads incorporated. Genotypes were exported in variant call format (vcf) using 

populations, with loose filtering parameters (SNPs present at >5% of individuals, minimum 

minor allele frequency of >0.005). 

Comprehensive filtering of individuals and genotypes was conducted in vcftools v0.1.15 

(Danecek et al., 2011) by: 1) removing individuals missing >20% of SNP calls, 2) removing 

SNPs that were missing in >20% of individuals, and 3) removing SNPs that were not in the first 

140 base pairs of the RAD-tag. This filtering effectively reduced the dataset to include SNPs 

detectable using single-read (SR) 150 sequencing to simplify downstream amplicon design. 

Putative duplicated loci were identified in HDplot (McKinney, Waples, et al., 2017) (H > 0.5, -7 

< D < 7) and removed with vcftools. Retained individuals and SNPs were used to form whitelists 

for input into populations that output a filtered vcf of multi-SNP haplotypes, which was then 

filtered to remove loci with more than 10 alleles and used in simulations for locus selection. We 

also estimated single-SNP FIS across all populations using diveRsity v1.9.90 (Keenan et al., 

2013) and excluded any SNPs with FIS values >0.2 or <-0.2 from locus selection. Loci with more 

than 10 alleles likely represent duplicated or repetitive sequences that are found in many places 

throughout the genome, and loci with highly positive or negative FIS values may indicate null 

alleles or high heterozygosity resulting from duplicated or repetitive sequences. Finally, loci with 

a SNP in the first 10 base pairs of the RAD-tag were excluded to allow room for forward primer 

design. 

Analysis of population structure, locus selection, and panel assessment 
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To understand population structure in our system and ensure that selected loci could 

facilitate accurate parentage assignment and GSI, we evaluated patterns of genetic divergence 

using pairwise FST (Table S1) estimated in Arlequin v3.5.2 (Excoffier & Lischer, 2010) and 

constructed a dendrogram (Fig. 2b) using Nei’s distance in poppr v2.8.2 (Kamvar, Tabim, & 

Grünwald, 2014). These analyses facilitated identification of population pairs that would be 

challenging to discriminate and supported historic data suggesting several populations were 

founded from hatchery sources located outside of their drainage basin (Escanaba Lake, Sanford 

Lake, and Lake Millicent in Wisconsin); these populations were removed from simulations of 

panel accuracy to ensure that selected loci would best represent the natural genetic patterns of the 

region. 

After initial population genetic analyses, loci were selected for primer development by 

constructing several test panels from the RAD data and simulating assignment accuracy for 

parentage and GSI. Previous research suggested that choosing loci with greater genetic 

differentiation (e.g., FST) should maximize accuracy for GSI (Ackerman et al., 2011; Storer et al., 

2012), while choosing loci with higher diversity (e.g., heterozygosity and number of alleles) 

maximizes accuracy for parentage (Baetscher et al., 2018). We therefore constructed the test 

panels using single-SNP FST estimated in diveRsity v1.9.90 (Keenan et al., 2013) as well as 

expected heterozygosity at a multi-SNP haplotype (HE_mhap ) and the number of alleles at a locus 

estimated in adegenet v2.1.1 (Jombart & Ahmed, 2011). All simulations were conducted with 

genotypes coded as multi-SNP haplotypes. 

GSI accuracy for each panel was assessed via 100% simulations implemented in rubias 

(Moran & Anderson, 2018) using the assess_reference_loo function (mixsize = 200, reps = 

1000). Populations were aggregated into reporting units based on hydrological basins (Table 1). 
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Collections within a simulation were drawn from a Dirichlet distribution with all parameters 

equal to 10 (i.e., each simulation’s prior contained approximately equal proportions of each 

population for the given reporting unit). Individuals were assigned to reporting groups if they 

had a cumulative probability of >70%, a typical value for studies conducting individual 

assignment to reporting groups or populations (Ackiss et al., 2020). Unfortunately, limited 

sample sizes in some reporting units prevented creation of separate training and holdout datasets 

as suggested by Anderson (2010), thus assignment accuracies presented here may be upwardly 

biased and would need to be reassessed more thoroughly for populations involved in an applied 

study. 

We assessed the power of each panel for assigning parentage and other kin relationships 

in CKMRsim (Anderson, https://zenodo.org/record/820162), which employs a variant of the 

importance sampling algorithm of (Anderson & Garza, 2006) that allows for more accurate 

estimates of a very small false-positive rate (per-pair rate of truly unrelated individuals being 

inferred as related) versus those obtained using standard Monte Carlo methods (Baetscher et al., 

2018). Parentage analyses were conducted following the methods of Baetscher et al. (2018), 

whereby log-likelihood ratios between a tested relationship and the hypothesis of no relationship 

are computed from the calculated probabilities of genotype pairs for related individuals 

simulated from allele frequency estimates. Distributions of simulated log-likelihood ratios are 

then used to compute false-positive rates. Using this approach, we estimated false-positive rates 

for parent-offspring, full-sibling, and half-sibling relationships at false-negative rates (per-pair 

rate of truly related individuals being inferred as unrelated) ranging from 0.01 to 0.1. 

Panels of 600 unique loci were iteratively selected, choosing loci based first on rank 

FST then rank HE_mhap, and their utility was tested by conducting GSI tests and parentage 
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simulations. We targeted 600 loci because previous published (McKinney et al. 2019) and 

unpublished studies in salmonids have suggested that attempting to include more than 400-500 

loci in a GTseq panel can lead to primer interactions that prevent efficient genotyping. We 

ultimately defined three panels of 600 loci that best described the tradeoffs between markers 

selected based on FST and heterozygosity. Loci in these panels were chosen by selecting 1) the 

top 600 loci based on FST, 2) the top 300 loci based on FST and 300 based on HE_mhap (If a locus 

was present in both lists [n = 12] it was allocated to the FST list, and the next rank HE_mhap locus 

was selected), and 3) the top 600 loci based on HE_mhap. These panels are hereafter referred to as 

FST_600, Composite_600, and Diversity_600, respectively. Through further testing, we determined that 

a variation of the Composite_600 panel, with 250 loci based on HE_mhap and 350 loci based on FST 

performed slightly better for GSI and parentage analyses than a panel with 300 markers from 

each category and proceeded to design primers for the selected loci. While choosing equal 

numbers of markers from each category is logistically simpler, we encourage researchers 

designing similar panels to test different combinations of markers from each category in order to 

maximize assignment power. 

Primer Design 

To design PCR primers for the selected loci, their consensus sequences were subset 

from the STACKS catalog into a FASTA file for import into Geneious Prime® 2019.1.1 

(https://www.geneious.com). The freeware program Primer3 (Untergasser et al., 2012) can also 

be used, although it lacks a graphical user interface. The vcf file produced in the vcftools step 

containing all SNPs and alleles within a consensus sequence was included to ensure primers 

were properly designed (i.e., should a SNP fall within a primer binding region, a degenerate 

nucleotide could be inserted or the primer re-designed). Primer pairs were iteratively designed, 
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with optimal target parameters defined as a primer length of 20 bp, product size of 140 bp to 

facilitate genotyping with SR chemistry, Tm of 60° C, GC content of 50%, and no more than 

four of the same base repeated consecutively (i.e., poly-X repeats). Primers identified as 

matching one or more off-target sites, which could lead to amplification of multiple products, 

were redesigned. Given that not all 600 candidate loci initially identified were suitable 

candidates for primer development, we continued to iteratively select loci and design associated 

primers until we reached our target of 600 loci. Assignment accuracy for the 600 loci we 

successfully designed primers for was then assessed via simulation. Unfortunately, the loci 

selected for primer design were based on data containing a subset of individuals with discordant 

encoded and true identities as a result of transposition of in-silico barcodes during 

demultiplexing. Despite these discrepancies, the effect was likely minor as only 8% of 

individuals were incorrectly assigned to reporting units prior to simulation. Simulation results 

shown here were conducted using corrected data.GT-seq optimization 

Sequencing via GT-seq was conducted following the methods of Campbell et al. 

(2015), with modification to the multiplex thermal cycling conditions (95 °C hold for 15 min; 

five cycles of 95 °C for 30 s, 5% ramp to 57 °C for 2 min, 72 °C 30 s; and 10 cycles of 95 °C for 

30 s, 65 °C for 30 s, and 72 °C 30 s) and post-normalization dual-sided SPRI size-selection and 

purification (0.6X plus 0.4X) to further restrict the product size range (e.g., primarily toward 

removal of primer inter-hybridization). Final library quality control consisted of confirmation of 

amplification and barcoding by SYBR Green-based RT-qPCR (Stratagene Mx3005P QPCR 

System, Agilent, Santa Clara, CA), visualization on a 2% agarose E-Gel (Invitrogen, Carlsbad, 

CA), and quantification using picogreen. Libraries were then sequenced at the University of 
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Wisconsin-Madison Biotechnology Center (UWBC) DNA Sequencing Facility on a MiSeq 

(Illumina) using 2 × 150 bp flowcells. 

Demultiplexed amplicon sequencing data were processed using GTscore v1.3 

(McKinney et al., 2019). GTscore generates in-silico primer-probe sequences from a catalog of 

loci generated in STACKS, that are then matched to amplicon sequences and call genotypes for 

individual SNPs as well as multi-SNP haplotypes. GTscore also enables separation of on-target 

sequence reads (i.e., reads containing both an in-silico primer and associated probe) from reads 

produced as a result of primer cross-hybridization. Primer-probe file development was 

accomplished with sumstatsIUBconvert.pl by obtaining the IUB code information for each SNP 

from the sumstats.tsv file produced in the STACKS pipeline, converting catalog sequences 

produced in the STACKS pipeline to FASTA sequences using catalog2fasta.pl, and merging IUB 

code information with the catalog.fasta using fasta2IUB.pl. This primer-probe file was then input 

for AmpliconReadCounter.pl, along with an individual’s fastq file, to produce read count 

summaries of primers and probes. 

Overall, we conducted three rounds of panel optimization to identify and remove loci 

that had disproportionately high amplification rates (i.e., “overamplifiers”) and ensure that our 

panel was capable of delivering a high proportion of on-target reads for each locus as well as 

homogeneous amplification rates among loci. The first round of optimization used DNA from a 

single walleye from Sanford Lake, WI, while the second and third rounds were conducted on 

subsets of 24 individuals from each of four populations (96 individuals total) originally included 

in the RADseq study: Delavan Lake, Medicine Lake, and the Wolf River in Wisconsin and the 

Pine River in Minnesota. Upon completing the final optimization, the characteristics of retained 

loci were compared to those of loci culled from the panel. This was done by performing a 
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Welch’s two sample t-test (α = 0.05) between the GC:AT ratio of primers that were retained and 

those culled and between the GC:AT ratio of DNA templates retained and culled, based on the 

first 140 bp of the template as this was the region in which SNPs were targeted. We also assessed 

the assignment accuracy of the fully optimized panel by performing GSI and kinship simulations 

with the retained loci. 

Sequenced GT-seq libraries from each round were collectively analyzed for PCR 

accuracy and uniformity. Accuracy was measured by calculating the proportion of reads 

containing in-silico primer sequences (total reads) relative to those that also contained in-silico 

probes. Uniformity of amplification among loci was determined by calculating the proportion of 

total reads that were allocated to the top 10% of loci, based on locus read counts 

(prop_reads_T10); if amplification was perfectly uniform across loci, we would expect 

prop_reads_T10 to account for exactly 10% of total reads. Given that amplification rates vary 

substantially within a panel, we compared among locus performance by plotting the relative log10 

abundance of total and on-target reads at each locus in descending order, which facilitated visual 

identification of overamplifiers. As among-locus amplification rates evened out after the first 

optimization, the on-target proportion of reads at each locus became a factor in retaining or 

excluding loci during the second optimization. 

Testing methodological modifications and performance analysis 

During panel optimization, we compared the quality of GT-seq libraries prepared 

from DNA extracted with Qiagen DNeasy and a more cost-effective chelating resin-based 

procedure. Performance of libraries was compared using Bonferroni corrected (α = 0.016) 

Tukey’s HSD for the number of on-target reads and the proportion of total reads that were 

on-target, after determining whether significant differences existed among libraries via a 
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one-way ANOVA (α = 0.05). DNA was extracted from the 96 test individuals twice, first using 

Qiagen DNeasy and again with a 10% Chelex 100 (200-400 mesh; Bio-Rad, Hercules, CA) 

solution containing 1% each of Nonidet P-40 and Tween 20 (Millipore Sigma, St. Louis, MO). 

Additionally, we compared results with and without the exonuclease I and shrimp alkaline 

phosphatase (ExoSAP) procedure included in (Campbell et al., 2015) to remove PCR inhibitors 

and free nucleotides. Therefore, we conducted GT-seq on all individuals in triplicate: 1) Qiagen 

with ExoSAP, 2) Chelex with ExoSAP, and 3) Chelex without ExoSAP, and all tests were 

sequenced on the same MiSeq lane. Finally, we also tested whether the total number of loci 

successfully targeted could be increased through methodological adjustments. We accomplished 

this by dividing our optimized primer panel into two non-overlapping primer pools before 

multiplex PCR amplification. We then merged PCR products from the separate pools prior to the 

barcoding PCR. The sequencing performance of this joint panel was then compared to the single 

multiplex containing the full panel using a Welch’s two sample t-test (α = 0.05). 

We examined genotype concordance between RADseq and GT-seq across GT-seq 

read depths using the fully optimized panel in the third round. Genotypes were called using 

PolyGen (McKinney et al., 2018), an extension of the GTscore pipeline that uses the same 

maximum-likelihood algorithm as STACKS v1 for diploid, bi-allelic loci. The average coverage 

of RADseq data at GTseq loci retained for these comparisons was 26.55, which is typical for 

many RAD studies (Euclide et al., 2020). However, genotyping error rates at these moderate read 

depths are still relatively common (Nielsen et al., 2011). Therefore, we only retained genotypes 

if they had greater than 60× coverage in RADseq data to minimize the chances that genotyping 

discrepancies were caused by incorrect RAD genotypes. We then modeled the relationship 

between GT-seq read depth and genotype concordance using only read depths with more than 30 
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genotypes to ensure that estimates of genotype concordance at a given depth had adequate 

sample sizes. 

As a final proof of concept, we tested the optimized panel on a sample of 570 walleye 

obtained from Escanaba Lake, WI, using the methods described above to estimate the variance in 

read depth among loci within a pool. We retained only loci present in more than 70% of 

individuals and individuals genotyped at more than 70% of loci. 

Results 

Analysis of ascertainment dataset 

A total of 954 individuals from 23 populations were RAD sequenced, with an average of 

42 individuals per population (Table 1). Sequencing yielded 1,313,358 retained reads on average 

per individual (range = 8,941 - 8,176,163). Initial sequence data was used to identify 682,223 

putative SNPs. After passing sequence data through quality filters, 839 individuals and 20,597 

SNPs were retained (Table S2). 

Population estimates of HO (0.144 - 0.179), allelic richness (1.498 - 1.674), and FIS 

(-0.050 - 0.017) were relatively similar across locations (Table 1). Populations from Minnesota 

had slightly lower diversity, which may be due to ascertainment bias as 14 of the 23 populations 

were from Wisconsin. The highest genetic differentiation was observed between populations 

from Minnesota and Wisconsin, with further structuring by drainage basin within each state (Fig. 

2b, Table S1). Structuring was higher in Minnesota, with most populations showing a relatively 

high degree of isolation (average FST = 0.07, Table 2). Structure in Wisconsin was shallower 

(average FST = 0.03, Table 2) and only loosely correlated with drainage basins. From these 

results, we constructed 13 reporting groups to facilitate GSI to identifiable genetic units (Table 

1). All the reporting groups from Minnesota contained single populations, whereas in Wisconsin, 
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while the Rock-Fox and Wolf River groups contained single populations, the Wisconsin and 

Chippewa River groups each contained five populations. Some single populations in the 

Wisconsin and Chippewa Rivers were distinctly identifiable (e.g., Eau Claire River, Medicine 

Lake), but we grouped these populations within their drainage basin of origin as the panel will 

likely be used this way for management purposes. 

Locus selection and panel assessment 

GSI accuracy was similar among the three panels, with < 1% difference in average 

accuracy between the panel with loci chosen based solely on differentiation (FST_600) and the 

panel based solely on diversity (Diversity_600) (Fig. 3, Table 3). Average assignment accuracy 

was > 90% for nine of the 13 reporting units in all panels (Fig. 3a). The remaining four reporting 

units had average assignment accuracies ranging from 78% to 86%. Three of these units (upper 

Chippewa River, WI; St. Louis River, MN/WI; and Red Lake, MN) are known to have admixed 

stocking histories (personal communications with Wisconsin and Minnesota Departments of 

Natural Resources biologists), while the fourth, North Fork Crow River, MN, included Lake 

Koronis, which had the fewest individuals retained after filtering (n = 15). Misassigned 

individuals from the St. Louis River, MN, and Red Lake, MN groups primarily assigned to the 

Pike River, MN, an unsurprising result given that fish from the Pike River contributed to the 

recovery of the collapsed walleye fishery in Red Lake (Logsdon et al., 2016) and fish in the St. 

Louis River watershed. Misassignments from the Upper Chippewa basin primarily assigned to 

the Upper Wisconsin basin due to the lower differentiation described previously. 

The populations with the lowest assignment accuracies were found in the Chippewa 

River and Wisconsin River reporting groups (Table S3, S4, S5), particularly in northern 

Wisconsin near the headwaters of the Chippewa and Wisconsin River drainages, and included 
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Big Arbor Vitae Lake (FST_600 accuracy = 74%), Manitowish Lake (FST_600 accuracy = 58%), and 

Turtle Flambeau Flowage (FST_600 accuracy = 63%). A large portion (> 10%) of the simulated 

individuals from these populations could not be assigned to any population, providing further 

support for the genetic similarity of these two reporting groups. A high proportion of individuals 

from Big Arbor Vitae Lake were assigned to Manitowish Lake (12%) and vice versa, from 

Manitowish Lake to Big Arbor Vitae Lake (20%). Most misassignments in the Turtle Flambeau 

Flowage were to Kawaguesaga Lake (16%). Populations with high misassignment rates also 

tended to have short branch lengths in the dendrogram and were often located near the root of a 

clade (Fig. 2b). Furthermore, the two populations from the upper Chippewa basin (Manitowish 

Lake and Turtle Flambeau Flowage) had lower pairwise FST values, on average, with populations 

from the upper Wisconsin than the upper Chippewa. 

The Diversity_600 panel had the highest accuracy for assigning kin relationships, the 

Composite_600 panel showed intermediate performance and the FST_600 panel had the lowest 

accuracy rate (Fig. 3b, Table 3). For all panels, false-positive rates were < 10-20 for 

parent-offspring and full-sibling relationships, indicating all panels would perform adequately for 

reconstructing most relationships in most study systems. Inter-panel performance did, however, 

range widely, from a false-positive rate of 4.68 × 10-34 for FST_600 to 2.74 × 10-80 for 

Diversity_600 panel at a false-negative rate of 0.01. Within panels, false-positive rate was 

inversely related to false-negative rate. 

Primers were designed using a modified Composite_600 panel, with 250 loci chosen 

based on HE_mhap and 350 chosen based on FST, as this panel delivered the best joint accuracy for 

GSI and kinship analyses (Fig. 3, Table 3). Of the initial 600 loci initially selected for primer 

design, 100 were not suitable for primer design, and thus, iterative selection of loci meeting 
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primer design requirements was continued until the targeted number of FST and diversity markers 

was met.GT-seq optimization 

Initial amplification and MiSeq sequencing of all 600 loci yielded 4,655,071 reads 

containing intact i7 barcode sequences, with 4,150,910 reads (89%) matching in-silico primer 

sequences. Locus specificity was considered via the proportion of total reads that were on-target, 

which was 1,031,707 (24%) (Table 4). In terms of amplification uniformity among loci, 

prop_reads_T10 accounted for 3,526,201 (85%) of the 4,150,910 total reads. A cutoff of 3,000 

reads per locus was then visually identified (Fig. 4a); loci producing more than 3,000 reads (n = 

123) were deemed overamplifiers and discarded prior to further optimization. 

For the second round of optimization, the remaining 477 primers pairs produced 

12,653,262 reads containing intact i7 barcode sequences, and 9,347,591 (74%) matched in-silico 

primer sequences. Locus specificity improved, with 3,268,293 (35%) of the total reads 

successfully aligning to in-silico probe sequences (Table 4). Improvement was also observed in 

the uniformity of amplification across loci, with prop_reads_T10 equating to 72% (6,776,302) of 

total reads. Because locus performance was less variable in this round of testing, the individual 

on-target proportion of reads at a locus was also considered while culling undesirable loci. As 

such, loci visually identified as overamplifiers were again discarded if they did not display high 

on-target read proportions (n = 41, Fig. 4b). 

The third GT-seq test was used to determine the functional performance of the panel and 

aimed to target 858 SNPs across 436 loci (Fig. 4c). This test produced 7,282,101 reads with 

intact i7 barcodes, and 6,827,424 (94%) matched to in-silico primers. Locus specificity of primer 

pairs improved greatly in this test, as 6,262,523 (92%) of the total reads were also on-target 
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(Table 4). Likewise, the variation in amplification rates across loci decreased as evidenced by 

prop_reads_T10 decreasing to 37% (2,148,932) of the total reads. 

Upon completion of panel optimization, a small but significant difference was observed 

between the GC content of primers that were retained (mean = 49.2%) and primers that were 

removed (mean = 51.4%, df = 602, t = 5.4, p < 0.001). Similar differences were found when 

comparing the GC content of the DNA template; significantly higher GC proportions were 

present in templates that were culled from the panel (mean = 47.8%) than templates that were 

retained (mean = 45.5%, df = 359, t = 3.8, p < 0.001). Additionally, a total of 88 primer pairs in 

the original panel contained at least one degenerate nucleotide, 72 (81%) of which were in the 

forward primer. After optimization, 56 of the initial 88 primer pairs (64%) were retained. In 

comparison, of the 512 initial primer pairs that did not have degenerate primers, 380 (74%) were 

retained. 

The average FST for the most informative SNP at a locus and the average HE_mhap did not 

change appreciably between the initial and fully optimized panels (Table 4). Similarly, 

assignment accuracy showed minimal differences between GSI simulations performed using the 

final 436 loci and the initially selected 600 (0.6% difference in accuracy on average, Fig. S1. 

Kinship assignment error rates, which were the most variable in initial simulations, showed an 

increase of approximately 1 × 10-10 for both parent-offspring and full-sibling relationship 

assignment after optimization (Fig. S1). False-positive rates for parent-offspring assignment did, 

however, remained below 1 × 10-20 at a false-negative rate of 0.01, indicating that the ability to 

identify parent-offspring relations in most systems was still high. Likewise, false-positive rates 

for identifying full-sibling relations (4.92 × 10-18 at a false-negative rate of 0.01) retained 

sufficiently low error rates for the panel to perform this task. 
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Methodological modifications and performance analysis 

Significant differences for on-target read counts and the proportion of total reads that 

were on-target were detected among genomic DNA extraction and purification method 

combinations. Subsequent analysis using Tukey’s HSD revealed that Chelex-extracted DNAs 

produced the highest on-target read count, and Qiagen-extracted DNAs with 

ExoSAP-purification produced the lowest (Fig. 5, p < 0.001). While the proportion of on-target 

reads did not differ between Chelex with ExoSAP and Qiagen with ExoSAP, both methods 

produced a significantly lower proportion of on-target reads than the Chelex-only library (Fig. 5, 

p < 0.001). Although we did not test Qiagen-extracted DNAs without ExoSAP, analysis in our 

laboratory on other species suggests this approach performs similarly to Chelex without ExoSAP. 

When comparing results from the full panel of 436 primer pairs to those obtained using the same 

panel divided into two unique multiplexes of 209 and 227 primer pairs (n = 436) and repooled 

prior to barcoding, no significant differences were found in total primer reads (df = 860, t = 0.10, 

p = 0.92), on-target reads (df = 858, t = 0.16, p = 0.87), or the proportion of total reads that were 

on target (df = 806, t = 0.66, p = 0.51). 

A total of 4,063 genotypes across 406 loci (820 SNPs) could be used in comparisons 

between GT-seq data and those obtained from the original RAD study. Of these genotypes, 

96.6% of calls were identical between methods, and modeled expectations of genotype 

concordance (residual sum of squares = 0.02) indicted that a concordance rate of 99.0% could be 

expected at a GT-seq read depth of 31 (Fig. 6). 

For a final proof of concept, a new sample of 570 walleye was sequenced using the 

current panel of 436 loci. After filtering,  551 individuals and 303 loci were retained with an 

average of 32.9 (SD = 29.1) reads per locus; 116 of the 303 loci exhibited an average coverage 
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greater than the 31× target identified for 99% genotyping concordance (Fig. 7) The average 

percent missing data was 6.4% (SD = 13.0%) across individuals and 30.0% (SD = 38.0%) across 

loci. 

Discussion 

Amplicon sequencing methods such as GT-seq have tremendous potential for facilitating 

high-throughput genotyping in non-model organisms (Meek & Larson, 2019). Few published 

studies, however, have critically analyzed the panel development process (see McKinney et al. 

2019). Here, we leverage our experiences developing a GT-seq panel for walleye with testing 

various aspects of the GT-seq methodological process to provide general guidelines usable by 

other researchers to simplify panel construction and validation, particularly in non-model 

species. Our walleye panel has the necessary power to conduct GSI in a study system with highly 

variable degrees of genetic differentiation and perturbation by historical stocking, while also 

being capable of identifying parent-offspring and full-sibling relationships within large 

populations. In fact, this panel has already been screened on over 2,000 additional walleye in 

Wisconsin, providing valuable information on out-of-basin stockings as well and survival of 

stocked fish inferred from parentage analysis (data not shown). The robust performance of our 

panel was facilitated by exploring the upper limits of how many loci a GT-seq panel can target 

and the trade-offs between choosing loci for GSI versus parentage analysis. The guidelines and 

suggestions presented here will aid in the efficient creation of multipurpose GT-seq panels in 

organisms with little to no available genomic resources. 

Patterns of population structure: historic stocking influences GSI accuracy 

The largest genetic differentiation in our data was observed between populations from 

Wisconsin and Minnesota; this structure was likely the result of recolonization from different 
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refugia following the Wisconsin glaciation, which ended ~10,000 years ago. A range-wide 

analysis of walleye genetic structure using microsatellite loci produced similar patterns, with the 

most genetically independent populations found in northern Minnesota and Canada (Stepien et 

al., 2009). Additionally, we found that while populations in Minnesota displayed strong isolation 

on relatively small spatial scales, broad-scale patterns of isolation were less evident in 

Wisconsin. In particular, the Ceded Territory of Wisconsin (CTWI), which included our 

Chippewa River and Wisconsin River reporting groups, displayed patchy and low genetic 

structure overall. It is likely that structure in this region has been compromised by stocking. 

Hammen and Sloss (2019), for instance, observed that several populations of walleye in the 

upper Chippewa were more genetically similar to populations in the upper Wisconsin than to 

other populations in the upper Chippewa, while nongame species in the CTWI displayed patterns 

of genetic divergence strictly associated with drainage basin boundaries (Westbrook, 2012). We 

also observed that four proximate populations spanning the Chippewa and Wisconsin River 

boundaries were nearly indistinguishable (Turtle Flambeau Flowage, Manitowish Lake, 

Kawaguesaga Lake, Big Arbor Vitae Lake). These populations are within 50 km of each other 

and are located near a state walleye hatchery in Woodruff, WI, that has historically used 

broodstock solely from the Wisconsin River drainage basin (personal communication, Steve 

Gilbert, Wisconsin Department of Natural Resources). It is therefore highly likely that the 

genetic similarity of these four populations is due to stocking. Several of the sampled 

populations from Minnesota also had poorly documented stocking histories yet they remained 

highly distinct. Genetic structure in Minnesota may have been less eroded if local, genetically 

similar sources were used, stocking was into larger, healthier resident populations, or stocking 

was less intense or ended a longer time ago. 
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Despite the challenges posed by low FST and evidence of supplemental stocking altering 

genetic structure in some populations, the SNPs discovered here provide greatly increased 

resolution for defining reporting units across the midwestern USA. Additionally, simulations 

suggested that a panel of several hundred loci would be highly capable of conducting 

individual-based GSI for most genetic units in the region. Given the regional complexity, 

however, improvements to accuracy could be made by further sampling areas that have shown 

heterogeneous signals of genetic structure (e.g., due to stocking). For example, increased 

sampling effort directed at the Chippewa and Wisconsin Rivers’ drainage basins could prove 

especially beneficial as analyzing populations in the lower reaches of each basin may provide a 

better understanding of signals of historic recolonization, while populations in the upper reaches 

(e.g., CTWI) could better define the effects stocking may have had. Additional samples could 

also serve as a holdout dataset, as suggested by Anderson (2010), to test the assignment accuracy 

of our panel. 

Tradeoffs associated with choosing loci based on differentiation versus diversity 

We evaluated the tradeoffs associated with selecting SNPs based on differentiation or 

diversity and found that there was relatively little variation in GSI accuracies across panels. 

Markers selected based on differentiation have been shown to provide increased resolution for 

defining reporting groups in systems with low levels of genetic structure (Larson et al., 2014; 

McKinney et al., 2019). This approach has not, however, been applied to systems where stocking 

may be a major factor for reduced levels of population structure, such as in Upper Midwestern, 

USA, walleye. Interestingly, we found that assignment accuracy with our smaller panels was 

relatively similar to accuracy using 5,000 loci discovered with RAD-seq, the maximum number 

of loci that rubias was able to process (average difference in assignment accuracy = 1.6%, Fig. 
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S1). This suggests that assignment accuracy in our system may be limited more by biological 

realities associated with human-mediated gene flow than by the power of our genetic markers. 

Further increases in assignment accuracy are therefore likely to be realized through sampling of 

additional populations and a more refined understanding of population history as opposed to 

genotyping additional markers. 

Conversely, we found that false-positive rates for assigning kin relationships were highly 

variable among panels, with the microhaplotype diversity-based panel displaying the lowest 

false-positive rates by several orders of magnitude for each kin relationship (Table 3). Previous 

work has shown that a false-positive rate of 2.7 × 10-9 at a false-negative rate of 0.015 is capable 

of conducting parent-offspring assignment in complex marine ecosystems (Baetscher et al., 

2019). As such, while loss of the loci through panel optimization was reflected in increased 

false-positive error rates for the fully optimized panel (Fig. S1), we are confident that final panel 

retains the power necessary to perform this task in future studies. 

The contrast in inter-panel variation between GSI and kinship simulations is reflective of 

the variation in information content of each panel (Fig. S2), and supports previous findings that 

while microhaplotype information provided added benefit to both applications, the greatest 

increase in assignment accuracy will likely be for kinship analysis (Baetscher et al., 2018; 

McKinney, Seeb, et al., 2017). When attempting to target microhaplotype loci via GT-seq, 

attention should be given to the number of SNPs one aims to genotype within a locus, as 

attempting to include loci with too many SNPs may result in targeting repetitive regions that fail 

to amplify properly in a multiplex. The expected maximum number of alleles per locus and the 

degree to which loci with large numbers of alleles perturbs primer design will likely vary among 

taxa. We choose a cutoff of 10 alleles per locus as this appeared to be a natural break point in the 
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allele distribution for walleye; we suggest that researchers investigate this in their system and 

come up with a logical cutoff prior to selecting loci. 

Optimizing primer design and removing overamplifying loci 

The main objective of GT-seq primer development is to produce a single pool of primer 

pairs that will amplify uniformly, while retaining as many loci as possible. To achieve this, it is 

important to minimize heterogeneity of primer and product characteristics (e.g., primer size, 

product size) and to understand that the highly multiplexed PCR required by GT-seq can be 

complicated by hairpin- and inter-primer hybridization artifacts. To best control PCR artifacts, it 

is important to avoid developing primers with complimentary regions (e.g., complimentary 3’ 

regions and self-complementarity) and apply conservative thresholds to the upper Tm of primer 

design parameters (Rychlik, 1993). Incorporating loci with multiple SNPs can lead to further 

difficulties when the ideal priming region also contains a SNP. We found that, while degenerate 

primers could be successfully amplified in a multiplex, they were culled during optimization at a 

higher rate than non-degenerate primers. Further performance benefits could be gained from 

examining DNA template quality beyond just the availability of priming regions, as shown by 

(Benita et al., 2003) who found regionalized GC content of template DNA to be a predictor of 

PCR success. This was supported by our data, as loci removed from the panel during 

optimization displayed significantly higher GC content in the amplicon and primer. Finally, 

while GT-seq primers can theoretically be designed for a range of amplicon sizes, we suggest 

that researchers design panels targeting similarly sized products that can be sequenced using 

PE150 technology. Panels containing similarly sized and relatively short amplicons should 

reduce variation in amplification rates (Baetscher et al., 2018) and ensure that genotyping is 
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robust to variation in sample quality. Moreover, PE150 sequencing is common to benchtop and 

core facility sequencing platforms, such as Illumina® MiSeq and HiSeq. 

In exploring the upper limits of how many loci a GT-seq panel can target, we found that 

the number of amplicons reliably genotyped in a single pool is highly dependent on variable 

rates of amplification among primer pairs during PCR and, to a lesser extent, the degree of 

primer specificity. Despite efforts to limit primer inter-hybridization through diligent primer 

design, the presence of overamplifying loci is likely inevitable during early phases of panel 

development. We found it best to focus primarily on the uniformity of amplification within the 

primer pool in early optimization steps, by removing primer pairs found to overamplify. 

Although achieving perfect uniformity is challenging, application of strict cutoffs during initial 

optimization steps likely results in a final panel that is less influenced by overamplification. The 

importance of this was illustrated by prop_reads_T10 reducing from 85.0% of all primer reads to 

36.6% after optimization. In contrast, loci that displayed low rates of amplification posed little 

problem and can produce functional sequencing yields after elimination of overamplifiers (data 

not shown). Likewise, on-target rates were greatly improved by addressing overamplification, as 

demonstrated by the on-target proportion of reads increasing from 24.9% to 91.7% by the third 

test. 

Further optimization of the GT-seq protocol 

Although there may be an upper as-yet-unidentified limit in the number of primers that 

can be included in a single primer pool, we found that the total number of loci targeted can be 

increased by PCR amplifying multiple primer pools separately on a sample and pooling PCR 

products within individuals prior to barcoding. This approach could be used to genotype multiple 

complementary or even independent GT-seq panels using the same primer tail systems at a small 
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cost increase compared to genotyping a single panel, as the most expensive steps in the GT-seq 

protocol (e.g., DNA normalization) are only conducted once (Campbell et al., 2015). Combining 

multiple panels could facilitate genotyping of > 1,000 loci rather than a few hundred, providing 

greatly increased power for kinship analysis and GSI (Baetscher et al., 2018; McKinney, Seeb, et 

al., 2017). Additionally, further optimization of individual panels could be conducted by 

manipulating the initial concentrations of primer pairs based on observed panel performance, 

reducing the concentration of loci that appear to overamplify. While this process would be 

cumbersome to perform by hand, a liquid handling robot could enable a researcher to fine-tune 

the performance of existing and new panels alike, thereby enhancing efficiency. 

DNA extraction can comprise a large portion of the total cost of genetic analysis, 

especially for relatively affordable approaches such as GT-seq, in terms of finances and time. 

Extractions using chelating beads provided a cost-effective alternative to more expensive 

salting-out approaches, such as Qiagen DNeasy kits. Chelating extractions, however, can also 

produce lower quality DNA and may include suspended impurities (Singh et al., 2018). 

Campbell et al. (2015) did show that GT-seq can be conducted using DNA from chelating 

extractions but did not directly compare results using multiple extraction protocols. Here, we 

directly showed that cost-effective chelating extractions can produce equally high quality, if not 

superior, sequence data compared to more expensive methods. Although consideration should be 

given to the quality of tissue samples, the chelating approach appears to be a viable approach for 

reducing per-sample costs with GT-seq. It is important to be aware that proper lab technique is 

essential when using this method, however, as chelating beads will inhibit PCR and greatly 

reduce library product yields. This may be especially problematic when using a liquid handling 

robot that is unable to visually detect chelating beads. Therefore, we suggest researchers 
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carefully pipette the DNA-containing supernatant from chelating resin extractions by hand into a 

secondary container (e.g., 96-well PCR plate) before aliquoting DNA with a robot. Finally, we 

found that the ExoSAP procedure included in the original GT-seq protocol did not produce 

higher quality data and was not necessary for our purposes; removing this step from the protocol 

will further reduce GT-seq costs and time commitment. 

Suggestions for designing GT-seq studies and conclusions 

A major consideration when designing a GT-seq panel is deciding how large of an 

ascertainment dataset is necessary. We constructed a comprehensive ascertainment set with 

RAD-seq, which was expensive and resource intensive. Despite this, we found that the panel 

chosen based on diversity produced similar results to the panel chosen based on differentiation. 

In our case, we believe that a smaller ascertainment set of ~96 individuals sampled from across 

the same geographic range may have resulted in a panel of relatively similar quality. Smaller 

ascertainment datasets are likely sufficient when the main applications of a given GT-seq panel 

are kinship analysis and GSI of highly diverged populations; however, when designing GT-seq 

panels to differentiate closely related populations (e.g. Chinook salmon Oncorhynchus 

tshawytscha in western Alaska), accurate characterization of ascertainment populations is vital 

(Larson et al., 2014; McKinney et al., 2019). 

Another major consideration when conducting GT-seq analysis is deciding how deep to 

sequence individuals. We found that a read depth of 31× could be expected to produce genotypes 

that were 99% concordant with those derived from RADseq. Read depths were, however, highly 

variable across loci; we only retained 303 of the 436 loci in our panel when we genotyped 536 

individuals at an average depth of 33×. We also found that a large and variable proportion of 

reads can be discarded prior to genotyping. Therefore, we suggest that researchers target an 
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average depth of at least 100× to ensure that most loci in the panel can be genotyped and that all 

acquired genotypes are highly reliable. At this level of coverage, researchers could genotype 

~500 individuals with a panel of 500 loci on a single MiSeq lane (~25 million reads) and ~8,000 

individuals on a HiSeq lane (~400 million reads). It is possible this level of coverage is not 

necessary for some applications, such as GSI, but we strongly suggest obtaining high coverage 

for more sensitive applications that require high genotyping accuracy, such as kinship analysis. 

Finally, researchers conducting GT-seq must consider trade-offs associated with different 

genotyping approaches. The two main approaches we are aware of are: (1) in-silico probe-based 

methods that use pattern matching to genotype specific alleles (Campbell et al., 2015; McKinney 

et al., 2019) and (2) alignment-based methods that call all polymorphisms in a given amplicon 

(Baetscher et al., 2019). A major advantage of probe-based methods is that databases of probes 

can be shared among laboratories, facilitating standardization. It is difficult, however, to discover 

new variation with these methods, whereas alignment-based methods discover new variation by 

default. We suggest a hybrid approach, where researchers periodically use alignment-based 

approaches to discover new variation and add this variation to a probe database that forms the 

basis of genotyping and standardizing genotyping among laboratories. 

Genotype-in-thousands sequencing is a powerful addition to the molecular ecologist’s 

toolkit that facilitates rapid, accurate, and cost-effective genetic analysis. Yet, creating a GT-seq 

panel is non-trivial, and there are many considerations for maximizing the utility of this 

approach. We found that the greatest challenge when designing our GT-seq panel was 

locus-specific overamplification, and we suggest that researchers remove these loci liberally. We 

also found that chelating extractions without an ExoSAP step produce high-quality results, 

providing a lower-cost alternative to salting-out extractions. Additionally, we showed that 
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combining multiplex PCR products from multiple panels prior to barcoding can ensure 

additional, potentially important, loci can be genotyped with only a moderate cost increase. 

Finally, we found that a relatively substantial proportion of sequencing reads are lost before 

genotyping, and we suggest researchers target higher sequencing coverage (100×) than may 

apparently be necessary to ensure that GT-seq datasets are robust across loci. 

While GT-seq has, to date, been most often applied in fish, many of the over 150 citations 

of Campbell et al. (2015) at the time of this writing are from perspective papers that discuss the 

potential of this approach in other taxa. This potential is starting to be realized in non-fish 

species such as snakes (Schmidt et al. 2019) and aquatic invertebrates (Pavinato et al. 2019), 

indicating that the GT-seq approach promises to be a mainstay of population genetics for the 

foreseeable future. The guidelines and suggestions outlined here will hopefully facilitate the 

spread and effective use of the GT-seq method in a broad array of taxa, allowing researchers to 

tackle topics that may have been difficult or impossible to address with previous methods. 
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Tables 

Table 1. Information on walleye collections from 23 sites in Wisconsin and Minnesota. 
Reporting units are aggregations of genetically similar populations grouped for GSI analysis, n 
sampled is the number of individuals that were RAD sequenced, n past filters is the number of 
individuals missing genotypes at < 30% of SNPs and retained after quality filtering. Diversity 
statistics calculated using 20,579 SNPs. The FST_600, Composite_600, and Diversity_600 columns are 
the percent correct assignment to reporting group for each population with 100% simulations 
conducted using the corresponding panel. 

Populatio 
n ID 

Reporting Unit Population 
Latitud 
e 

Longitud 
e 

n 
sample 
d 

n past 
filters 

HE HO FIS AR 
FST_60 

0 

Composite_60 

0 
Diversity 600 

0.16 0.16 1.60 
1 Rock-Fox Delavan Lake 42.58 -88.63 48 48 9 8 0.008 7 1.00 1.00 1.00 

0.17 0.18 1.64 
2 Wolf River Lake Winnebago 44.36 -88.69 47 41 3 6 -0.05 5 1.00 1.00 1.00 

0.17 0.17 1.67 
3 Upper Wisconsin Lake Wisconsin 43.38 -89.58 48 45 9 5 0.017 4 1.00 1.00 1.00 

Medicine Lake 0.16 0.16 1.60 
4 Upper Wisconsin Chain 45.81 -89.13 47 47 6 6 0.004 4 0.96 0.98 0.98 

0.17 0.17 1.65 
5 Upper Wisconsin Willow Flowage 45.71 -89.87 48 48 6 4 0.013 7 1.00 1.00 0.99 

0.16 1.63 
6 Upper Wisconsin Kawaguesaga Lake 45.86 -89.74 48 42 0.17 7 0.013 8 0.96 0.94 0.94 

7 Upper Wisconsin 
Big Arbor 
Lake 

Vitae 
45.93 -89.65 48 44 

0.17 
4 

0.17 
4 0.005 

1.65 
4 0.74 0.96 0.99 

0.16 0.17 1.62 
8 Upper Chippewa Escanaba Lake 46.06 -89.59 48 44 8 3 -0.018 3 NA NA NA 

0.15 0.16 1.52 
9 Upper Chippewa Sanford Lake 46.18 -89.69 48 44 7 4 -0.033 8 NA NA NA 

0.17 0.17 1.64 
10 Upper Chippewa Manitowish Lake 46.11 -89.85 47 35 2 5 -0.006 7 0.58 0.57 0.51 

Turtle Flambeau 0.17 0.17 1.66 
11 Upper Chippewa Flowage 46.06 -90.13 47 38 3 2 0.005 1 0.63 0.55 0.76 

0.17 0.17 1.65 
12 Upper Chippewa Chippewa Flowage 45.90 -91.09 47 43 3 5 -0.006 8 0.88 0.89 0.93 

0.16 0.16 1.58 
13 Upper Chippewa Eau Claire River 44.80 -91.50 47 47 1 2 -0.001 3 0.98 0.98 0.98 

0.16 0.17 1.62 
14 Upper Chippewa Lake Millicent 46.53 -91.37 48 32 7 6 -0.034 3 NA NA NA 

0.16 1.62 
15 Lake Superior St. Louis River 46.65 -92.21 32 30 0.17 8 0.006 1 0.77 0.77 0.77 

0.14 0.14 1.49 
16 Vermilion River Pike River 47.59 -92.39 32 28 4 2 0.005 8 1.00 1.00 1.00 

0.16 0.16 1.59 
17 Des Moines River Lake Sarah 44.15 -95.77 32 30 4 6 -0.006 7 1.00 1.00 1.00 

0.15 0.15 1.57 
18 North Fork Crow River Lake Koronis 45.33 -94.70 32 17 5 5 -0.011 9 0.82 0.82 0.75 

0.14 0.15 1.51 
19 Rum River Mille Lacs Lake 46.25 -93.67 32 29 8 1 -0.018 1 1.00 1.00 1.00 

0.15 0.16 1.54 
20 Pine River Pine River 46.70 -94.39 32 30 6 2 -0.028 7 0.97 0.97 0.97 

21 
Mississippi 
Headwaters 

River -
Cutfoot Sioux Lake 47.50 -94.09 32 25 

0.14 
7 

0.14 
8 -0.011 

1.51 
7 1.00 1.00 1.00 

0.15 1.56 
22 Otter Tail River Ottertail Lake 46.41 -95.66 32 23 8 0.16 -0.016 8 1.00 1.00 0.97 

0.14 0.15 1.51 
23 Red Lake Red Lake 47.91 -95.04 32 29 9 3 -0.025 4 0.90 0.86 0.83 
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Table 2. Summary of pairwise FST comparisons between walleye Sander vitreus populations 
grouped by state of origin. Abbreviations are Wisconsin (WI) and Minnesota (MN). 

WI-W MN-M WI-M 
 I N N 
Max 0.106 0.142 0.142 
Mean 0.032 0.068 0.072 
Min 0.001 0.019 0.026 
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 FST 600 Composite 600 Diversity 600 

Average FST 0.117 0.076 0.047 

Average HE mhap 0.389 0.569 0.633 
Average accuracy by reporting unit 0.937 0.937 0.929 
Average accuracy by population 0.864 0.861 0.862 

Parent-offspring FPR (FNR = 0.01)  4.68×10-34  7.92×10-62  2.74×10-80

Full-sibling FPR (FNR = 0.01)  3.42×10-29  5.34×10-50  1.16×10-64

Half-sibling FPR (FNR = 0.01)  6.44×10-6  2.56×10-10  2.06×10-13

Table 3. Summary statistics by SNP panel tested for walleye Sander vitreus in Wisconsin and 
Minnesota, USA, including: average FST, heterozygosity (HE_mhap), assignment accuracy to 
population and reporting unit of origin in 100% simulations, and estimated false-positive rates 
(FPR) for a given kin relationship at a false-negative rate (FNR) of 0.01. 
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Table 4. Summary of GT-seq optimization runs for walleye Sander vitreus in Wisconsin and 
Minnesota, USA. Rows report number of primer pairs targeted, number of reads with intact i-7 
barcodes (retained reads), number of retained reads with in-silico primer sequences (total reads), 
number of total reads with in-silico probe sequences (on-target reads), percent of total reads 
on-target, percent of total reads allocated to the 10% of loci tested with highest rank total read 
counts, average number of SNPs per locus, and average GC content in the forward and reverse 
primers. 

 Test 1 Test 2 Test 3 
Total primer pairs 600 477 436 

i7 reads 
4,655,07 
1 

12,653,26 
2 

7,282,10 
1 

i7 reads w/ primers 
4,150,91 
0 9,347,591 

6,827,42 
4 

 i7  reads  w/  primers  & probes 
1,031,70 
7 3,268,293 

6,262,52 
3 

 On-target  percent  of  total reads 24.9% 35.0% 91.7% 
 Percent  reads  in  top  10%  of loci 85.0% 72.5% 36.6% 

 mean  SNPs  per locus 2.06 2.00 1.97 
 mean  GC  percent  forward primer 51.0% 50.4% 50.3% 
 mean  GC  percent  reverse primer 49.0% 48.3% 48.2% 
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Figure captions 

Figure 1. Generalized workflow describing major steps inherent in de novo construction of a 
high-density SNP panel for walleye Sander vitreus in Wisconsin and Minnesota, USA. 

Figure 2. (a) Map of walleye Sander vitreus in Wisconsin and Minnesota, USA, collection 
locations and (b) dendrogram of sampled populations with bootstrap support (n = 1000) 
estimates above nodes. Branch lengths correspond to genetic distances estimated using Nei’s 
DA. Figures color coded according to major drainage of origin (Hudson Bay: yellow, 
Mississippi: green, Great Lakes: blue) and numbered with respect to order in Table 1. 

Figure 3. (a) Violin plots showing densities of accuracy estimates from 100% simulations of 20 
populations of walleye Sander vitreus in Wisconsin and Minnesota, USA, performed using 1,000 
iterations for each test panel by reporting unit and (b) simulated false-positive rate estimates 
across a range of false-negative rates. Figures color coded according to SNP panel tested: FST_600 

(red, 600 rank FST loci), Composite_600 (black, 300 rank FST and 300 rank HE_mhap loci), and 
Diversity_600 (purple, 600 rank HE__mhap loci). 

Figure 4. Relative log10 total read counts per locus (black) and relative log10 on-target read counts 
per locus (green) of the GT-seq panel for walleye Sander vitreus in Wisconsin and Minnesota, 
USA, prior to optimization (a, 600 loci), after first optimization (b, 477 loci), and after second 
optimization (c, 436 loci). Loci identified for culling during optimization steps shown in orange 
and read counts annotated in boxes. 

Figure 5. Number of on-target reads (green) and proportion of total reads on-target obtained 
from GT-seq libraries produced using DNAs extracted via Chelex, Chelex with ExoSAP, and 
Qiagen with ExoSAP. Significantly different groups denoted by letters on box. 

Figure 6. Modeled relationship between GT-seq read depth and genotype concordance between 
GT-seq and RADseq shown in gray (1.00-0.34/GT-seq read depth, rss = 0.02) with 95% 
confidence intervals in red. GT-seq read depth at which estimated genotype concordance equals 
99% (96.2%-100%) represented by blue line. Black points display proportion of genotypes found 
identical between GT-seq and RADseq for GT-seq read depth bins with > 30 genotypes. 

Figure 7. Variation in read depth among individuals at loci successfully genotyped after quality 
filtering (303 loci with < 30% missing data). Average read depth at each locus shown with black 
points, while gray points denote first and third quartile for each locus. Dotted blue line denotes 
target read depth of 30×. Data from 551 walleye sequenced using fully optimized panel. Average 
read depth among all loci is 33×. 

Supplementary materials 

Table S1. Pairwise FST estimates for all sampled walleye Sander vitreus populations (sites 
numbered according to Table 1 and Fig. 1 A). Estimates produced in arlequin v3.5.2. 

Table S2. Summary statistics for 20,597 SNPs retained through initial filtering based on 
maximum missingness rates of < 30% and HDplot cutoffs of H > 0.5 and -7 < D < 7. Columns 
include a locus tag (CHROM), position of SNP within locus (Reid et al.), a unique SNP value 
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(ID), reference (REF) and alternate (Keenan et al.) SNP alleles, global FIS (Willi et al.), single 
SNP FST (Smith et al.), expected microhaplotype heterozygosity (mhap_HE), and number of 
alleles per locus tag (n_alleles). Diversity statistics estimated in diveRsity v1.9.90 (global FIS and 
single SNP FST) and adegenet v2.1.1 (single locus HE, number of alleles). 

Table S3. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 
population retained through filtering, performed using the FST_600 panel. Each row represents a 
simulation for the listed population name. Each column within a row represents the proportion of 
individuals assigned to the population denoted at the top of the column. Unassigned individuals 
(< 70% probability of origin from a given population) accounted for in last column. 

Table S4. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 
population retained through filtering steps, performed using the Composite_600 panel. Each row 
represents a simulation for the listed population name. Each column within a row represents the 
proportion of individuals assigned to the population denoted at the top of the column. 
Unassigned individuals (< 70% probability of origin from a given population) are accounted for 
in the last column. 

Table S5. Summary matrix of 100% simulations (reps = 1,000, mixsize = 200) for each sampled 
population retained through filtering steps, performed using the Diversity_600 panel. Each row 
represents a simulation for the listed population name. Each column within a row represents the 
proportion of individuals assigned to the population denoted at the top of the column. 
Unassigned individuals (< 70% probability of origin from a given population) are accounted for 
in the last column. 

Figure S1. (a) Violin plots showing densities of accuracy estimates from 100% simulations of 20 
populations of walleye Sander vitreus in Wisconsin and Minnesota, USA, performed using 1,000 
iterations for each test panel by reporting unit and (b) simulated false-positive rate estimates 
across a range of false-negative rates. Figures color coded according to SNP panel tested: Final 
436 (light blue,the 436 loci retained through all optimization steps), Primed 600 (dark blue, the 
600 loci for which primer pairs were successfully designed), and 5,000 loci (brown, 5,000 
randomly selected loci). 

Figure S2. Frequency distribution of number of alleles among 600 loci tested in each panel. 
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