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Abstract Surface-atmosphere fluxes and their drivers vary across space and time. A growing area of
interest is in downscaling, localizing, and/or resolving sub-grid scale energy, water, and carbon fluxes and
drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial
(e.g., sub-kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are
not continuously available at these resolutions. We evaluate an approach to overcome this challenge for
land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key
driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled
by a High-density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable
testbed. We downscaled LST from satellites (GOES-16 and ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station [ECOSTRESS]) with further refinement using airborne hyperspectral
imagery. Temporally and spatially downscaled LST compared well to independent observations from

a network of 20 micrometeorological towers and piloted aircrafts in addition to Landsat-based LST
retrieval and drone-based LST observed at one tower site. The downscaled 50-m hourly LST showed good
relationships with tower (r2 = 0.79, RMSE = 3.5 K) and airborne (r> = 0.75, RMSE = 2.4 K) observations
over space and time, with precision lower over wetlands and lakes, and some improvement for capturing
spatio-temporal variation compared to a geostationary satellite. Further downscaling to 10 m using
hyperspectral imagery resolved hot and cold spots across the landscape as evidenced by independent
drone LST, with significant reduction in RMSE by 1.3 K. These results demonstrate a simple pathway for
multi-sensor retrieval of high space and time resolution LST.

Plain Language Summary The temperature of the Earth’s surface over land—Iland surface
temperature (LST)—is an important variable to observe and forecast. Variation in LST over space and
time at scales of meters and hours influence processes in the atmosphere, soils, vegetation, and water.
For the worldwide coverage of LST, we rely on Earth-observing satellites. However, there are trade offs
in how finely LST can be observed over space versus how often LST can be observed over time, given

the characteristics of any one satellite's orbit, not to mention the obscuring effect of clouds. Therefore,
methods are needed that enable data from multiple satellites as well as aircraft and towers if we want

to observe LST at high space and time resolution. Here, we develop such an approach and test its
accuracy over a test bed of extensive LST observations made by towers, drones, and aircraft during a field
experiment in Northern Wisconsin USA.

1. Introduction

Land surface temperature (LST) is a World Meteorological Organization Essential Climate Variable that
links the thermodynamics of earth’s land surface with the dynamics of the overlying atmosphere (Dirmeyer
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et al., 2012; Dolman et al., 2016). LST, equivalent to surface skin temperature, refers to the apparent temper-
ature of an infinitesimally thin surface of ground (English, 2008). It is a consequence of the difference in the
net radiative energy budget of the surface and rate of heat conduction into the ground. LST can vary greatly
over short distances (Yi et al., 2020), as anyone who has walked across wet and dry sand on a beach during
a sunny summer day can attest. For LST observation systems, then, the challenge becomes how to integrate
that variation at space and time scales relevant to land-atmosphere interactions.

LST is most commonly measured based on principles related to radiative observations made across various
wavelengths in the thermal infrared spectrum, given the tight relationship of electromagnetic blackbody ra-
diation to temperature, as provided by the Planck function and in integrated form to the Stefan-Boltzmann
relationship. The peak of earth's outgoing surface longwave radiation is in 8-12 micrometers and thermal
infrared brightness temperatures reflect surface temperatures integrated over a few micrometers, making
it a good proxy for LST (Hulley & Ghent, 2019). After the calculation of emissivity, these observations
allow for the inversion of LST from longwave radiation measurements (Wang et al., 2014). On a fixed or
moving platform, thermopile sensors facing earth can measure longwave radiation and be used to calculate
in situ LST, after accounting for atmospheric correction. Typically, LST observations on a fixed grid are de-
rived from thermal infrared brightness temperature or outgoing longwave radiation observations made by
earth-observing satellites, in polar, irregular, or geostationary orbits (English, 2008; Li et al., 2013; Scarino
et al., 2013). Orbits, costs, and logistics lead to trade offs retrieving high time frequency (typically from geo-
stationary orbits) versus high spatial resolution (typical from polar or irregular orbits). Additionally, satellite
LST is not easily retrieved in areas under heavy cloud cover.

Continuous high time and space resolution LST, including the diel cycle, is of high value for a number
of scientific investigations (e.g., Kroniger et al., 2019). LST can vary by tens of degrees K over meters and
change within seconds to hours, for example, due to shadows, wind, passing of clouds (Yi et al., 2020), or
irrigation. These changes in LST then influence the heating of the soil, vegetation, and atmosphere over
the course of the day (Dirmeyer et al., 2012; Taylor et al., 2012), and the dynamics that ensue as a result.
In many land surface models, for example, those used in numerical weather prediction, LST is usually a
derived value inferred from the modeled surface energy balance and soil physics, often averaged over an en-
tire grid cell or a land cover tile, and not resolved at scales below hundreds of meters. Continuous LST over
scales of meters and hours would provide a valuable benchmark to evaluating atmospheric surface layer
and soil heat diffusion parameterizations, estimating turbulent heat fluxes (K. Xu et al., 2018), assimilation
of LST for model grids (Bosilovich et al., 2007; Zheng et al., 2012), scaling of land-atmosphere fluxes and
feedbacks (Metzger, 2018; T. Xu et al., 2018), and answering science questions related to fine-scale sub-kilo-
meter space and sub-daily time heterogeneity of landscapes and habitats (Guillevic et al., 2019; Pincebourde
and Salle., 2020). Biological organisms, in particular, are strongly influenced by small-scale microclimates
and scaling these responses across regions is nonlinear (Biitikofer et al., 2020).

Given these needs, fusion approaches have been designed to combine multiple satellite data products and in-
crease their joint space, time, and clear sky coverage (Anderson et al., 2021; Gao et al., 2012; Hu et al., 2020;
Liu et al., 2006). However, current and upcoming generation satellites and computational capacity provide
an even richer array of data fusion options (Freitas et al., 2013; Khan et al., 2021; Tomlinson et al., 2011). For
example, NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)
is a thermal imager on the International Space Station (ISS) that, from this relatively low (~400 km) and fast
precessing orbit, can image the globe at roughly 1-5 day repeat (at different hours of the day of every orbit)
and at 70-m resolution (Fisher et al., 2020). Meanwhile, the latest NOAA Geostationary Operational Envi-
ronmental Satellites (GOES-16 and GOES-17) image the Western Hemisphere at a nominal 15-min time-
step with approximately 2 km resolution depending on view geometry. Fusion of these products have not
been evaluated. High space and time resolution LST has been attempted in some locations (e.g., Sismanidis
et al., 2016a, 2016b, 2018), but there is a need for greater evaluation across multiple approaches and sensors.

A number of remotely sensed features beyond thermal infrared also relate to LST and could improve down-
scaling (Yue et al., 2020). For example, observations in visible and microwave wavelengths relate to pro-
cesses such as vegetation activity and soil moisture, respectively, that in turn relate to fine-scale variation
in LST. Hyperspectral remote sensing (aka imaging spectroscopy), in particular, may allow for fine-tuning
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of LST by linking to surface mineralogy and crown-level foliar functional characteristics that affect foliar
thermodynamics.

Prior studies often lacked a comprehensive spatial and temporal database of in situ LST at relevant space
and time scales for evaluating LST fusion products and their uncertainty, critical for model assimilation
(Bosilovich et al., 2007; Freitas et al., 2010). The recent Chequamegon Heterogeneous Ecosystem Ener-
gy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) (Butterworth
et al., 2021) field campaign included an array of towers, drones, and aircraft, in addition to remote-sensing
thermal imagery from Landsat-8 (Gerace et al., 2020) that provides a comprehensive, open-access test bed
for any fusion approach. Radiometric-derived LST over various landscapes is available over a 4-month pe-
riod across a nearly 1,000 km? area of a heterogenous, flat landscape of northern Wisconsin USA. Further-
more, visible and near infrared hyperspectral airborne imagery at 1 m resolution was flown in the domain
several times, providing a second data source to evaluate alternative downscaling and fusion approaches
based on surface cover characteristics rather than emissivity.

Here, we evaluate a novel high space (50 and 10 m) and time (hourly) resolution LST fusion approach using
next generation thermal imagery. We ask: how reliably can we fuse high space and high temporal resolution
satellites to generate continuous, cloud-free gridded LST? Further, hyper-resolution drone LST imagery at
the submeter scale allows us to further evaluate downscaling of this gridded product to even smaller do-
mains, necessary for some scientific applications (Pincebourde Salle., 2020). Thus, within a subset of our
study area, we also test whether we can further downscale to higher resolution by connecting hyperspec-
tral indices combined with the LST fusion. Finally, we discuss the implication of the work for advancing
land-atmosphere interaction science.

2. Materials and Methods

Our general approach employs hierarchical fusion (Figure 1). As a prior, cloud-free, coarse-resolution
(12 km) estimate of LST, we used data assimilation-constrained hourly LST from a set of three land surface
models. These modeled LSTs are then fit on a pixel level to gap-fill geostationary satellite LST to generate
gap-free medium resolution (1-2 km) hourly LST. Further spatial downscaling is accomplished using the
suite of cloud-screened, quality-controlled high-resolution (50 m) LST and generating a regression surface
that links the medium and high-resolution LST across all collected time points. The resulting high space
and time resolution LST grids are then evaluated against a range of independent tower, aircraft, and satellite
estimates of LST. Finally, an additional higher resolution downscaling to 10 m is conducted using hyper-
spectral imagery over an area where coincident submeter resolution drone LST was also measured.

2.1. Site Description

Analyses are centered on the observations collected during the CHEESEHEADI19 field campaign (Butter-
worth et al., 2021) conducted near Park Falls, Wisconsin, USA, in the central region of the North American
continent from June to October 2019. CHEESEHEAD19 was an intensive surface-atmosphere field experi-
ment investigating the role of surface spatial heterogeneity on atmospheric dynamics and the surface energy
balance. As a result, a suite of observations was collected over a 10 X 10 km core domain and a 30 x 30 km
extended domain, centered on the WLEF Park Falls Ameriflux very tall eddy covariance (US-PFa) tower,
which is also an NOAA greenhouse gas (LEF) tall tower. Observations included 20 micrometeorology tow-
ers within the core domain, ground-based atmospheric profiling, drone and airborne remote sensing at
various locations throughout, and more than 10,000 km of low-level meteorological aircraft observations in
the extended domain. Upwelling and downwelling longwave radiation observations from towers, IR skin
temperature retrieved from aircraft, and an independent satellite LST estimate from Landsat were used here
to evaluate the LST product.

2.2. Input Data

All data products used for the generation of 50 m high and 10 m higher resolution LST were acquired from
public open-access data repositories (Table 1). Each data product was extracted for all acquisitions from
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Figure 1. Stommel diagram schematic of space and time scale of input data products (black text), evaluation land
surface temperature (LST) (cyan), high-resolution (50 m) and higher-resolution (10 m) downscaled LST (dark blue),
and processes to create those (red arrows and text) over The Chequamegon Heterogenous Ecosystem Energy-balance
Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) domain (map, upper right, and red
box). Example input LST imagery is shown from August 7, 2019 0Z.

June 1 to October 31, 2019 and subset to a domain that encompassed the CHEESEHEAD19 extended do-
main (Figure 1). Descriptions of each data product are provided here.

For the prior modeled LST, we acquired LST from the National Land Data Assimilation System version 2
(NLDAS-2) (Xia et al., 2012). NLDAS is an observation reanalysis that constructs an optimal meteorological
driver forcing based on gauge precipitation and bias-corrected shortwave radiation. This forcing is provided
to a suite of land surface models, which output a common set of responses, including LST. NLDAS products
are provided on a Y5 degree grid (approximately 12.5 km) across North America at hourly timestep. We
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Table 1
Input Data Sources Used in Gap-Filling and Downscaling Land Surface Temperature
Spatial
Product Description resolution Temporal repeat frequency URL
NLDAS-2 Data-assimilation model reanalysis LST s degree hourly https://1das.gsfc.nasa.gov/nldas/
GOES-R Geostationary satellite LST over Western Hemisphere ~2km 15 min https://www.goes-r.gov/
products/baseline-LST.html

ECOSTRESS Thermal imager on International Space Station 70 X 70 m 1-5 days; diurnal sampling  https://ecostress.jpl.nasa.gov/
UW HySpex Visible to Shortwave IR airborne hyperspectral Varies, ~1 m ~Monthly https://data.eol.ucar.edu/

imager 400-2,500 nm dataset/592.027

extracted LST for the three land surface models that are part of NLDAS and output surface skin tempera-
ture: Mosaic (Koster & Suarez, 1992), Noah-2.8 (Chen et al., 1996), and VIC (Liang et al., 1994). We calcu-
lated mean and variance moments on the modeled LST as a prior preparation.

NOAA's Geostationary Operational Environmental Satellites (GOES) are the primary U.S. operational geo-
stationary weather satellites in orbit over the Western Hemisphere (Schmit et al., 2017). In recent years, LST
has become a primary operational product of the GOES-R Advanced Baseline Imager (ABI) in the current
generation GOES-16 and GOES-17 satellites (Yu et al., 2009). These outputs, at an approximately 2 km spa-
tial resolution, are produced based on thermal channel split-window retrieval using the 11.2 and 12.3 um
channels with high surface emission and low atmospheric absorption. The algorithm also uses prescribed
surface emissivity and an atmospheric radiative transfer model to produce an output at least once an hour
for the Northern Hemisphere (more fully described at: https://www.goes-r.gov/products/baseline-LST.
html). Target accuracy is 2.5 K and evaluations have shown it to be approaching 1.5 K (Yu et al., 2012).

ECOSTRESS is a thermal imager flown on the ISS (Fisher et al., 2020; Hulley et al., 2017). ECOSTRESS
was launched in June 2018 and has been providing harmonized Level 2 70 X 70 m data products on surface
temperature, evapotranspiration, water use efficiency, and drought stress since launch. We acquired the
Level 2 LST and Emissivity product and the ECOSTRESS cloud cover product (described at https://lIpdaac.
usgs.gov/documents/423/ECO2_User_Guide_V1.pdf). LST is derived from a physically based Temperature
and Emissivity Separation (TES) algorithm (Gillespie et al., 1998; Hulley & Hook, 2011). Atmospheric cor-
rection is performed using the RTTOV radiative transfer model (Matricardi, 2008; Saunders et al., 1999).
Retrieval is based on thermal radiances in the 8.29, 8.78, 9.20, 10.49, and 12.09 um bands. Validation ac-
curacy was reported as 1.07 K (Hulley et al., 2021). QA flags were used to limit to best or nominal quality
observations. The ECOSTRESS Level-2 CLD cloud-mask (https://lpdaac.usgs.gov/products/eco2cldv001/)
was applied to mask any cloud-contaminated pixels. The ISS orbit is not sun-synchronous, so scenes are
retrieved at different times of the day, with a repeat interval of 1-5 days depending on the location. A total of
118 full domain scenes were retrieved over the CHEESEHEAD19 domain during the study period spanning
all hours of the day. Of these, 49 images were at least 50% cloud free. From that subset, 25 images (~weekly)
were retained that were significantly (p < 0.001) correlated (r > 0.3) with the GOES imagery and had <50%
cloud cover. This quality control filter was applied to remove those ECOSTRESS scenes that had significant
noise, offsets, or missing regions.

The University of Wisconsin hyperspectral imager is a visible to near-infrared (400-2,500 nm) imaging
spectrometer designed for airborne applications (HySpex, Norsk Elektro Optikk, Oslo, Norway). The HyS-
pex consists of two boresighted imagers measuring a total of 474 narrow bands between 400 and 1,000 nm
(3.26 nm spectral resolution) and 930-2,500 nm (5.45 nm spectral resolution). In CHEESEHEAD19, the
HySpex was flown on a State of Wisconsin, Department of Transportation Cessna 210 at 1,400 m altitude
above ground, allowing for a nominal 1 m pixel size over the core domain. The HySpex was flown multiple
times over the study period (26 June through 30 August). The CHEESEHEAD19 study area is covered by
21 flight lines flown +2 h around solar noon. Here, observations from dates closest to the date of the drone
overflight were used. Images were orthorectified (following Schlépfer & Richter, 2002) and atmospherically
corrected (following Adler-Golden et al., 1999) to surface reflectance using LibRadTran (Emde et al., 2016)
open-source code by Liu et al. (2019). Flight lines were subset to the regions of drone overflights. In our
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Table 2
Evaluation Data Sources
Spatial
Product Description resolution Temporal repeat frequency URL
University of Wyoming King Air ~ Upwelling infrared surface ~10 m Twice-daily over three 4-day http://flights.uwyo.edu/
(UWKA) temperature periods projects/cheesehead19/
NCAR Integrated Surface Flux Upwelling longwave radiation from 19 ~50 m 5-min average https://data.eol.ucar.edu/
Station (ISFS) eddy covariance towers dataset/592.025
Landsat split-window LST Satellite land surface temperature 100 m ~16 days https://doi.org/10.3390/
1512020224
NOAA UAS Drone-based land surface temperature ~ Varies, ~1 m Hourly in daytime over two https://data.eol.ucar.edu/

4-day periods

dataset/592.010

analyses, we used a normalized spectral index approach that reduced the need for additional processing to
reduce bidirectional reflectance variation.

2.3. Evaluating LST Data

Several data products were used to evaluate the 50 and 10 m downscaled LST. These are noted in Table 2 and
briefly described here. The University of Wyoming King Air (UWKA) is a meteorological research aircraft
that flew linear transects in CHEESEHEADI19 focused on eddy covariance applications during three 4-day
periods within the experiment window (July 9-13, 2019, August 20-23, 2019, and September 24-28, 2019).
Flights were flown in mid-morning and mid-afternoon, usually 15 legs at 100 and 400 m altitude above
ground spanning the 30 X 30 km extended domain, at approximately 90 m s™!. UWKA included a down-
ward-looking radiative thermometer (Heimann KT-19.85), which reports observed brightness temperature
for the 9.5-11.5 um IR spectrum with 0.5 K accuracy and 0.2 K RMSE over 1 s (~90 m at flight speed). This
instrument reported temperature at 100- m flight altitude above ground, which was compared to our LST
fusion to evaluate spatial variability. UWKA geospatial coordinates were used to average all 100-m above
ground flight leg LST observations overlapping each pixel.

Twenty eddy covariance flux towers were located in the 10 X 10 km inner domain. These towers were
located in a range of ecosystems, including mixed forests, evergreen forests, wetlands, and grass fields.
Seventeen of these had four-component net radiation measurements (Hukseflux NRO1) available, from
which upwelling and downwelling longwave radiation were extracted to calculate LST. Following Malakar
et al. (2018), we estimated surface emissivity at 10.6 and 11.3 pm based on the ASTER satellite global emis-
sivity database, provided at 30 m resolution (Hulley et al., 2015). Surface emissivity was averaged over a
90 X 90 m box around the center coordinate of each tower. Hourly averaged LST estimates for each tower
were then used to compare to LST from the hourly fusion product.

Landsat 8-based LST was also acquired for this domain. Here, we acquired an enhanced LST product from
Landsat based on the two-channel split window algorithm from Gerace et al. (2020), an improvement over
the operational single-channel algorithm. Given the high cloud cover of most scenes during the intermit-
tently and anomalously rainy CHEESEHEAD19 campaign, we focused on a single scene collected on Sep-
tember 26, 2019 as an evaluation LST, whereas ECOSTRESS was used for training given its more frequent
repeat coverage. Landsat LST thermal resolution is 100 m, but the output is at 30 m by cubic convolution to
match the visible bands. For a reliable comparison of LST, we resampled both images to 100 m after repro-
jecting the LST image to the high-resolution 50 m LST grid.

The NOAA uncrewed airborne system drone is a DJI S-1000 that was outfitted with a downward-pointing
FLIR Tau 2 infrared camera during CHEESEHEAD19 as well as iMet-XQ sensors to sample temperature,
moisture, and pressure in situ. The infrared camera has a 7.5-mm lens, 336 X 256 pixel resolution, and view
angle of 90° X 69° (Dumas et al., 2016, 2017; Lee et al., 2017, 2019). The DJI S-1000 was flown in July at a sin-
gle eddy covariance flux tower site hourly throughout the day, over an area of approximately 500 x 500 m,
which was a distance sufficient to cover a significant number of pixels. We focus on data obtained during
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the flights on 12 July; flights on the other days with the DJI S-1000 during the July campaign were smaller
in radius and thus less useful for downscaling.

2.4. High-Resolution (50 m) LST Fusion

We apply a fusion approach based on regression over multiple colocated images. The approach is of the
same class as the STARFM fusion approach for downscaling of MODIS to Landsat resolution, based on pixel
level and neighborhood correlation (Gao et al., 2006, 2015; Yoo et al., 2020). However, instead of sharpening
one coarse image based on the relationship of overlapping fine (Landsat) and coarse (MODIS) resolution
images and the corresponding increment, as is done for STARFM; here, by virtue of having a large number
of high-resolution images and the need to capture the diel cycle of LST, we instead applied an approach
more appropriate for capturing diel time variation. The basics are provided below and evaluated in the
results.

The first step was to gap-fill cloud-covered LST data in GOES, as indicated by the GOES cloud flag. To do so,
we used the NLDAS LST estimate from each of the three models. The average and standard deviation are
used here as a prior estimate of LST. For each GOES pixel, the relevant NLDAS pixel is geolocated using a
nearest neighbor approach. A linear regression debias is then applied to the hourly NLDAS LST for the same
hour on each day when GOES LST was observed, so that each 12.5 km NLDAS pixel would have ~40 in-
dependent regressions against each ~2 km GOES pixel. Regression was performed using the fitexy routine
in the IDL Astronomy Library (Landsman, 1993), allowing the slope and intercept to account for errors in
both the predictor variable X (uncertainty of GOES, nominally set to 1.5 K) and response variable in Y (the
standard deviation of NLDAS LST across the three models). For the 153-day period, each GOES pixel had 24
separate regressions (one for each hour of the day) applied to the matching NLDAS pixel. This enabled us
to debias the mean and variance of LST over the season, and also correct for differences in the magnitude of
the diel cycle. Missing values of LST in GOES were then replaced with these debiased NLDAS values. This
approach assumes that any bias between NLDAS and GOES is independent of cloud cover.

Next, ECOSTRESS was used to downscale the gap-free 2 km GOES image to a standard 50 m grid, using
a simple pixel-level linear fusion model (Yoo et al., 2020), after finding that non-linear and spatial models
are not an improvement in our case. Both were first re-projected into a standard UTM grid with 50 X 50 m
square pixels. For each ECOSTRESS pixel (for most points, up to 25 observations over the 153-day period,
generally equally distributed across all hours of day and night), we extracted all nearest GOES observations
matching in space and time, within the closest hour of the ECOSTRESS overpass. For spatial alignment,
GOES was resampled to our target 50 m resolution using bilinear interpolation. No threshold was applied
for maximum difference in temperature. The 95% of the difference in the two were within —5.0-3.8 K. Lin-
ear slope and intercept were then calculated for each again using fitexy with the documented uncertainty
of 1 K for ECOSTRESS. Slopes outside of the 98% confidence interval, where 98% of calculated slopes fell
within 0.9-1.4, were rejected to prevent unreasonable LST extrapolations. For the missing slope values, a
neighborhood smoothing algorithm was applied from nearby pixels, and the intercept was recalculated
based on the regression of slope to intercept (r = —0.24). Unlike traditional fusion approaches, which might
only use one fine resolution scene and one coarse resolution image to downscale a subsequent or preced-
ing coarse resolution image, here, we are using all ECOSTRESS images and all matching GOES images to
develop a single fit. This linear fit is then applied to the GOES gap-filled imagery to downscale the image to
hourly, 50 m resolution LST.

2.5. Case Study of Higher Resolution (10 m) Downscaling

To evaluate whether additional covariates from high-resolution optical and near-to-shortwave infrared im-
agery could further sharpen our hourly 50 m LST, we developed an approach based on predicting sub-pixel
LST variation based on hyperspectral airborne remote sensing. In this approach, a regression of spectral
indices to LST anomalies is developed based on drone LST observations and then applied to the 50 m LST
image to downscale it to 10 m. For this downscaling test to 10 m resolution, the additional covariates were
brought from 1 m HySpex imagery based on known relationships among optical indices and fine-scale
surface temperature variations (Yang et al., 2017). Data from three HySpex flight acquisition scenes (June
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310 = 26, 2019, July 11, 2019, and August 8, 2019) were chosen to bracket the
12=0.82 acquired drone LST image on July 12, 2019. The drone LST and HySpex
300 bias=-0.78 K imagery were upscaled to 10 m resolution using simple averaging and
coaligned to a common grid. This had the benefit of increasing the sig-
nal-to-noise in the hyperspectral data. Following the approach by Dubois
= 290 et al. (2018), analyses of the hyperspectral imagery utilized normalized
% § difference spectral indices (NDSIs) with all two-band combinations of
i’ 280 § wavelengths:
w 2 NDSI(ij) = (Band_i — Band_j)/(Band_i + Band _j) )
© 270 Statistically, this enables the identification of key narrowband spectral
features, while the use of ratios greatly decreases cross-track illumina-
260 tion effects related to sun-target-sensor geometry (i.e., bidirectional re-
flectance distribution function, BRDF). The downscaled 50 m LST from
250 o ECOSTRESS was subtracted from the upscaled 10 m drone LST to pro-
250 260 270 280 290 300 310 duce an LST anomaly map. This approach allows us in theory to build a
NLDAS (Kelvin) more generalized model by assuming the higher resolution visible and
near infrared reflectance provide information on how LST varies within
Figure 2. Strong correspondence of National Land Data Assimilation the ECOSTRESS pixel due to variation in vegetation and surface proper-
System (NLDAS)-modeled land surface temperature against observed ties. Each HySpex NDSI was separately regressed against the LST anoma-

geostationary satellite Geostationary Operational Environmental
Satellites(GOES) temperature allowed for the filling of cloud gaps in GOES

with NLDAS.

ly map. Band ratios with the largest average value of correlation r? across
all three HySpex dates were then selected to develop a linear model to
predict fine-scale LST from the anomaly map and three selected HySpex
bands, after which multiple linear regression was used to develop coef-
ficients that relate NDSI to LST anomalies. We then constructed a higher-resolution 10 m LST by adding
the ECOSTRESS-GOES based 50 m LST to anomalies predicted from applying the equation to the Hyspex
image closest in time (July 11, 2019). Using all of the 474 bands in Hyspex allowed us to evaluate possible
novel combinations of reflectance that could help explain variation in LST. The code that walks through the
fusion methodology can be found at: https://github.com/DesaiLab/LSTfusion

3. Results
3.1. Cloud-Free Geostationary LST

After the diurnal regression step is applied, hourly NLDAS average LST corresponds well to retrieved GOES
LST across the study domain (Figure 2). Overall 82% of the variation of GOES LST can be explained by NL-
DAS-modeled LST, though a small domain-wide cold bias of —0.78 K persists, with larger variance toward
colder temperatures, potentially pointing to view-angle effects from shading or undetected clouds in GOES.
The bias was more pronounced at night and near zero to slightly positive in daytime (range —1.87-0.7 K).
Using the pixel-level, hour-specific regression, 60% of cloud-identified gaps were replaced with the mod-
eled values. Missing observations were most prevalent late at night (9 UTC, 51% missing), during periods
of fog or low-level stratus clouds, and a minimum in late afternoon (21 UTC, 25% missing), mostly during
periods of extensive fair-weather cumulus cloud decks. Individual scenes had between 0% and 97% of pixels
missing, averaging over 50% in early summer, during a particularly rainy period, to less than 40% during the
normally drier autumn.

3.2. High-Resolution 50 m Fusion

Similar levels of correlation were found between the GOES gap-filled LST with retrieved ECOSTRESS LST
(Figure 3, see Figure 1 for example of overlapping GOES and ECOSTRESS image), though with significant
spatial variation. In general, within-pixel temporal correlation (r = 0.59-0.95) was stronger than across-pix-
el spatial correlation (r = 0.32-0.74). Low correlations were primarily found over water bodies, in particular
the larger lake in the north of the domain, potentially from differences in retrieval algorithms or a docu-
mented cold bias on cooler surfaces in ECOSTRESS (Hulley et al., 2021).
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The regression of GOES to ECOSTRESS also varied in space, with medi-

X N an slope and intercept of 1.1 (interquartile range 1.06-1.17) and —0.87 K
o A (interquartile range —0.60 to —1.18), respectively (Figures 3a and 3b).

! fa& 5 ¥ Particularly notable is the identification of urban areas (the City of Park
Pl Falls on western side) and highways. Slope and intercept were negatively

d ’m correlated (r = —0.24). Locations with low slope (weaker diel and/or sea-

"\‘"3\",7;4 sonal variation in ECOSTRESS compared to GOES) generally had higher

(warmer) intercepts; for example, indicative of urban heat island or as-
phalt heat storage effects. Conversely, high slopes (stronger diel and/or
seasonal variation) occurred in areas with lower (colder) intercepts, such

-90.5 -90.3  -90.1

% - 2 2 2 as topographically low spots where cold-air pooling may depress mean
intercept (b) temperature, including lakes, rivers, and bottomland forested areas.
d) These slopes and intercepts were applied to the GOES cloud-free LST
300 to develop the downscaled high-resolution 50 m LST. Further eval-
_;'::" . uation of short time series of this product shows how the downscaled
= 290F — . . . . .
% forest , + 50 m high-resolution LST better reflects differences in the diurnal cycle
= 280 i{f}ﬁ and means from the coarser resolution NLDAS or GOES, and closer to
@ Zigd
£ . ,/1‘“ the tower-observed variations in LST, best resolved over wetlands (Fig-
i+ . .
§ ;Z” f ure 4a), but also reflecting good correspondence at resolving the warmer
* 260 /“ . nighttime temperatures over forests (Figures 4a and 4b) and cooler day-
. , it 250 time temperatures over lakes (Figure 4d).
-90.5 -90.3  -90.1 250 260 270 280 290 300
GOES-NLDAS (Kelvin)
o ~ Yo) @ o
rooN @ @ Q
S, 2 o & b 3.3. Evaluation
correlation (r)
We evaluate downscaled LST against several estimates of LST from tower,
Figure 3. Pixel-by-pixel (a) linear slope, (b) intercept, (c) correlation, aircraft, and satellite. Spatial patterns were well captured in the high-res-
and (d) example regressions for three locations between 25 ECOsystem olution LST as compared to aircraft LST (Figure 5a, r* = 0.75) with small

Spaceborne Thermal Radiometer Experiment on Space Station images
collected from January to October 2019 and gap-filled Geostationary
Operational Environmental Satellites land surface temperature. Pixel-level

bias (—0.65 K) and an RMSE of 2.4 K. A larger >5 K bias is apparent
in high LST locations, where the fusion product smooths out extremes

temporal correlation ranges from 0.59 to 0.95 (p < 0.01) while individual given its linear averaging approach. In contrast, seasonal temporal vari-
image spatial correlation ranges from 0.32 to 0.74 (p < 0.001). ation biases were found to be more prevalent with colder temperatures,

where the downscaled LST tended to underestimate the coldest temper-

atures observed by the towers (Figure 5b, r* = 0.79), though with better
correlation. No significant difference was found in the LST time series variation across land cover type,
whether deciduous forest, evergreen forest, or wetland, with general RMSE of 3.5 K. Bias was larger than
the airborne data at —2.6 K, especially later into the fall. Correlations within a land cover type were higher
(r* ~ 0.85-0.88) than when pooled, as mean bias varied by land cover type. Wetlands had slightly larger bias
(—3.2 K), RMSE (3.6 K), and lower correlation than the forested areas.

When the high-resolution 50 m LST was compared to independent satellite estimates of LST, a single 100 m
Landsat LST scene generally revealed similar correspondence in the primary spatial pattern, but the overall
correlation of the two products was much lower (r> = 0.31, Figure 6). The correlation was strongly influ-
enced by the underestimation of higher LST range of the observation by our fusion product, over urban ar-
eas and a few forest clearings, implying an alternate weighting scheme may allow for better correspondence
in those locations that are less prevalent in the area and thus under-represented in the calibration. As well,
outside of those areas, variance of LST on this particular mid-day mid-summer scene is relatively small,
within the RMSE shown for the high-resolution LST in the tower and aircraft comparison.

3.4. Higher-Resolution 10 m Downscaling

NDSI plots demonstrate a number of bands where visible and infrared band differences highly correlate
with anomalies in sub-grid LST as observed by the drone (Figure 7). Most of the normalized differenc-
es with high correlation were on bands that were near each other, reflecting the role of specific spectral
reflectance features of vegetation and soils that relate to LST variation. Here, we selected the top three
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Figure 4. Comparison of land surface temperature diel cycle in (a) deciduous forest, (b) evergreen forest, (c) wetland, and (d) lake at four sites within ~2.5 km
of each other from tower radiometric observations (orange), National Land Data Assimilation System (black line and gray shading representing spread in

three models), Geostationary Operational Environmental Satellites (blue crosses, gaps indicate clouds), and the ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station fusion product (red line) for mid-July, 2019.

consistent correlated NDSI band differences across the three flights. The three band pairs were: 1,982.7 nm
and 1,470.5 nm in the shortwave infrared (NDSI_SWIR, r = 0.380), 709.1 and 760.2 nm in the red-edge
spectral region (NDSI_EDGE, r = 0.448), and 651.6 and 504.7 nm at the red-green portions of the visible
spectrum (NDSI_VIS, r = 0.442). In all three combinations, the second listed wavelength was subtracted
from the first. The latter two are close to commonly used vegetation indices of NDVI (typically 630-690 nm
and 760-900 nm) and the photochemical reflectance index (PRI, 531 and 571 nm), and correlations in those
bands are not too far off from the selected bands (boxes in Figure 7), consistent to other studies linking LST
and vegetation indices (e.g., Raynolds et al., 2008; Karnieli et al., 2010). The three bands are correlated with
each other (r? range 0.30-0.61), with the NDSI_EDGE and NDSI_VIS most closely related. In addition, all
three supported a more skillful model than any one or two of these bands, while additional bands did not
appreciably change correlation or RMSE. Partial correlation coefficients show that each band contributed
roughly equally in total correlation. With these three bands, a linear model was built to explain the sub-grid
LST anomalies and applied to the downscaled LST_50m (Figure 8), expressed as:

LST_10m = 2.147 x NSDI_SWIR + NDSI_EDGE + 5.143 x NDSI_VIS + 4.566 + LST_50m  (2)
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Figure 5. Comparison of fusion land surface temperature product against upwelling infrared temperature from (a)
~10° flight land surface temperature observations from the University of Wyoming King Air and (b) time series from 17
eddy covariance towers in deciduous forests (green), evergreen forests (brown), and wetlands or lakes (blue).
The resulting model produced a higher resolution 10 m LST map that was reasonably correlated to the
drone imagery (2 = 0.34) and had significantly reduced bias compared to the high resolution 50 m LST from
2.35 K to near zero and lower bias-removed RMSE from 3.0 to 1.7 K. Most NDSI_SWIR values were positive
(mean 0.12 + 0.07), while NDSI_EDGE (—0.59 + 0.10) and NDSI_VIS (—0.48 + 0.09) were negative. Since
all three coefficients were positive, the effect of positive SWIR was to in-
crease LST, while for the mostly negative red-edge or visible reflectance
a) b) was to decrease LST. The effect of these is to bring out key LST features,
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the fusion.

especially on the “hot-spot” side, such as a road and a larger open area,
both of which were observed to have high LST but not well-detected in
the original downscaled image. The higher NDSI_SWIR of these two fea-
tures allowed this model to better capture its higher LST. The results paint
a multistep pathway toward downscaling LST to meter scale resolution.

4. Discussion

Land surface temperature exhibits high spatial and temporal variability.
Depending on the application, capturing this variability can be essential
for diagnosing land-atmosphere interactions, soil processes, and ecosys-
tem thermal tolerances. Here, we demonstrated one approach to capture
these scales of variations with multi-sensor fusion and find high skill in
these when compared against independent LST observations. Both direct
observations of LST and indirect observations of covariates provided in-
formation needed to downscale to hourly, 10 m resolution LST.

4.1. Challenges in LST Fusion

Our LST fusion approach performed well on evaluation, but several lin-
gering uncertainties remain which require further investigation. The first
involves the gap-filling of cloud cover. Previous satellite fusion investiga-
tions generally focused on clear-sky LST. The primary assumption made
in our methodology is that the relatively strong linear relationship of pix-
el-level, hour-segregated NLDAS modeled LST, which does incorporate
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the effect of clouds into its LST estimates (at least as reflected in the input
model forcing), to the cloud-screened GOES is translatable to gap-filling.
This approach assumes that LST during cloud cover is similar to LST
during clear-sky conditions, given the same temperature for that time
of day. Generally, the effect of clouds is to make LST cooler in daytime
and warmer in nighttime compared to clear sky. An analysis of cloud
cover (estimated as the ratio of observed shortwave radiation to poten-
tial maximum shortwave) versus difference in fusion to tower observed
LST did not show any clear trend, suggesting this assumption is broadly
reasonable.

Correlation (r)

Downscaling with ECOSTRESS and a linear model also brings additional
uncertainty. The coverage of ECOSTRESS varies by the time of day and
cloud cover, which means that each pixel had differing numbers of valid
ECOSTRESS LST observations across the study period. Here, we assume
no change in the seasonality of the relationship or temporal differences.

Figure 7. Normalized difference spectral index Pearson correlation (r) Rather, we assume that what ECOSTRESS is mainly providing is differ-

between band combinations from HySpex airborne hyperspectral imager
and drone land surface temperature imagery. The top three most correlated

ences in mean LST within the sub grid of a single GOES pixel (intercept)

band differences (1,470.466 and 1,982.657 nm, 709.077 and 760.173 nm, and changes in the diel amplitude (slope). However, this assumes that
and 504.697 and 651.595 nm, noted in black circles) were used to construct ~ other biases are negligible, no changes occurred in land surface from dis-
a linear model for downscaling the fusion land surface temperature. turbance or phenology, and seasonal variation in those two factors are
Normalized difference vegetation indices region (green square) and zero. Subsetting by sub-season would be helpful here, but given the re-

photochemical reflectance index region (yellow box) noted for comparison.

peat interval and number of cloud-free images, statistical power would
degrade noticeably. With a longer time period data set, additional subset-
ting may be warranted to evaluate such an approach. While some aspects
may have been better captured using a non-linear model, deviation from linear slopes across our ECOS-
TRESS and GOES pairs was rarely seen and initial tests with quadratic forms did not find improved fits. Data
mining approaches, including data sharpening approaches, may improve performance (Gao et al., 2012).

Some of these performance issues show up when looking at the goodness of fit against towers and aircraft,
and in the diel cycle plots. While the downscaling helps differentiate variation in LST by land cover type,
it appears the methodology has challenges with a few land cover types. One is lakes, and especially lake-
land edges, where pixel registration and gradients are missed leading to increased “noise” or blur in imag-
es around lakes. However, the visual inspection of geolocation errors did not find anything significantly
skewed. The second is picking up cold LST values in autumn. The drone comparisons also suggest that the
70 m resolution of ECOSTRESS may still be challenging for picking up even finer-scale urban, road, or other
hot spots on the landscape. Similar to seasonal subsetting, partitioning the regression by higher-resolution
land cover observations may provide another approach to better reflect land cover variation.

View angle differences among the sensors may also contribute to differing error structures and biases that
were not corrected in the provided Level 2 products used here (Anderson et al., 2021; Ermida et al., 2014;
Gerace et al., 2020; Guillevic et al., 2013). Geostationary satellites in particular have strong angular effects as
the sensor scans away from the central location, while ECOSTRESS has a +25° acceptance swath, narrower
than other polar orbiters. Surface skin temperature is also derived from different sets of wavelengths across
the sensors, and biases from these may pose a challenge in addition to algorithmic differences in retrievals
(Bosilovich et al., 2007). It is one reason we used mean bias removal in our regressions.

4.2. Mechanisms of LST Relationships to Visible to VSWIR Spectra

Though limited to a small number of images, our attempt to further downscale with visible to shortwave in-
frared hyperspectral imagery demonstrated improved ability to resolve fine-scale features such as roads and
smaller wetlands observed in the drone imagery. The three band indices that contributed most to the NDSI
regression represent key vegetation and soil features that link to LST variation. The strongest was in the
shortwave IR, a region known to detect differences in soil thermal and moisture status. The other two in the
visible and red-edge reflect signals of vegetation presence and photosynthetic activity, respectively. Actively
photosynthesizing vegetation will have lower LST due to the cooling effect of concomitant transpiration
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Figure 8. Comparison of (a) high-resolution (0.5 m) NOAA UAS drone land surface temperature on July 12, 2019 at
2230Z to (b) same image upscaled to 10m, (c) original fusion land surface temperature product (average of 22 and 23
Z), and (d) fusion product further downscaled with visible and near IR hyperspectral imagery collected on June 26, July
13, and Aug 6, 2019, demonstrating significant improvement in correlation (> = 0.14 and RMSE = 3.0 K with 50 m and
r?> = 0.34 and RMSE = 1.7 K with 10 m imagery).

and given our formulation of NDSI, those areas had higher negative values in NDSI_EDGE and NDSI_VIS,
which when combined with positive coefficients, led to lower LST over vegetated areas. The SWIR bands
helped distinguish areas of exposed ground, and NDSI_SWIR was found to be most strongly positive over
roads and open area. The broad areas of high correlation also partly overlap with commonly used band
ratios, including NDVI and PRI, suggesting that broadband visible-IR remote sensing has strong potential
for downscaling LST.

4.3. Comparison to Other Approaches

While several papers have assessed fusion approaches for gridded LST, literature on joint temporal and
spatial LST downscaling is relatively limited, with primary applications over urban areas (e.g., Sismanidis
et al., 2016a; Sismanidis et al., 2016b, 2018). Our results show that sub-daily temporal and sub-km spatial
downscaling is possible while maintaining a similar level of uncertainty as previously published daily or
less-frequent LST products (Freitas et al., 2010; Goettsche et al., 2013). Further, even without the additional
spatialization from ECOSTRESS or HySpex, there is value in the greater use of geostationary satellite LST.
Several of these satellites can now provide up to one-minute time resolution for target-mode operations,
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Figure 9. Radially integrated two-dimensional spatial power spectrum
for a single clear sky day (June 16, 2019) compared among (a) GOES-
NLDAS, (b) ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS), and (c) the fusion land surface temperature
product. The fusion product shows better correspondence of spatial
autocorrelation and structure to ECOSTRESS than Geostationary
Operational Environmental Satellites (GOES).

and fusion of these through a data assimilation approach would help
develop global high-temporal resolution LST (Freitas et al., 2013; Xiao
et al., 2021). Further work on using the higher frequency observations to
reduce cloud coverage and increase the estimate of temperature variabili-
ty could prove useful for developing more sub-daily LST-related products,
including surface energy fluxes.

4.4. Applications of High Space and Time Resolution LST

There is a downside with temporal and spatial downscaling of LST,
which is the increase in uncertainty as more products are fused and local
calibrations fail to extrapolate well. The higher uncertainty does lead to
the question of whether such an approach adds value. Beyond the afore-
mentioned importance of fine space and time variation in LST for biolog-
ical and geophysical processes, a number of studies suggests that higher
resolution LST, even with greater uncertainty, aids in interpreting obser-
vations and testing hypotheses. We argue that the approach here demon-
strates that relatively straightforward to implement linear fusion models
can sufficiently capture much of the higher time and space variability in
LST necessary for many science applications. Further, modifications of
this approach, such as non-linear models, additional covariates, or sea-
sonality (e.g., elevation for complex topography or vegetation phenology
for crops) are relatively easy to incorporate.

As an example of the utility of high resolution LST, we present as an
example its value to the Environmental Response Function (ERF) ap-
proach. ERF is a method to map surface-atmosphere fluxes of carbon,
energy, and momentum across space and time from the fusion of eddy

covariance flux towers, flux footprint models, and input covariates (Metzger et al., 2013; Xu et al., 2017).

For surface energy fluxes, such as sensible heat flux, LST is a key driver. Eddy fluxes of sensible heat dur-

ing periods of high variability in wind direction reveal the presence of hot spots and hot moments of heat
flux across space. The ERF methodology can identify those only if the input covariates are of sufficient
spatial (decameter) and temporal (hourly or better) resolution to resolve those. While these flux hot spots
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Figure 10. Difference in spatial standard deviation of land surface
temperature (LST) between the 50 m fusion and Geostationary Operational
Environmental Satellites as a function of hour of day (x-axis) and day of
year (y-axis). Increasing heterogeneity in LST is found toward the autumn
and afternoons in summer.

can be tied to landscape features, they can also be transient features of
atmospheric circulation. Previous ERF studies relied on linear regridding
of coarser resolution LST products, decreasing the accuracy of hot spot
localization (e.g., Xu et al., 2020). Thus, even at the acceptance of higher
random uncertainty, a high space and time LST product is essential in
this application. The variation in LST or difference of LST to air temper-
ature is fit to an empirical model. Thus, it is the variation in LST that is
guiding the methods, and accuracy is less important than spatial preci-
sion. In other cases, the magnitude of LST may be the driving factor, as is
the case in models of evapotranspiration (Anderson et al., 2021; Guillevic
et al., 2019) or atmospheric boundary-layer growth (Desai et al., 2006),
in which case, the additional spatial information may be of less use, but
the higher temporal information captures land-surface heat capacity and
moisture holding impacts that influence the diel cycle of LST.

There are other cases where neither the variation nor magnitude mat-
ters, but rather the spatial structure. Consider Figure 9, where we depict
the radially integrated spatial power spectrum of LST from GOES-NL-
DAS, ECOSTRESS, and the fused product. A number of fine scale modes
of variation are present in the higher resolution products not found in
GOES, which overestimates the autocorrelation. Similarly, when looking
over time (Figure 10), the enhanced spatial resolution improves upon
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GOES ability to detect increasing spatial variation of LST in autumn and during midday in summer. These
patterns have been tied to generating heterogeneity in heat fluxes that promote mesoscale atmospheric
circulations (Butterworth et al., 2021).

5. Conclusions

We demonstrated that a fusion of modeled land surface temperature with geostationary, irregular, and polar
orbit observations and hyperspectral imagery provides a simple pathway for high space and time resolution
LST for any region where those observations are available. LST estimates well captured many dynamics
of spatial and temporal variation across a heterogeneous landscape of lakes, forests, wetlands, and urban
areas in northern Wisconsin. Additional efforts should be placed on approaches to gap-filling for clouds,
improvement of LST retrievals over water bodies and landscape transition edges, and multi-instrument
evaluation. Our results suggest that continued effort to combine temporal and spatial estimates of LST can
provide a fruitful path forward to better understand earth system processes, land surface data assimilation
for modeling, and microclimate delineation.

Data Availability Statement

CHEESEHEAD19 observations are archived and described at the National Center for Atmospheric Research
(NCAR) Earth Observing Lab (EOL) data repository: https://www.eol.ucar.edu/field_projects/cheesehead.
Specific data include those from eddy covariance flux towers micrometeorology, archived at the Ameriflux
website (US-PFa through US-PFt, https://doi.org/10.17190/AMF/1717850) and University of Wyoming air-
craft (https://doi.org/10.26023/5B70-4VP5-XY0OV), NOAA UAS drone LST (https://doi.org/10.26023/F761-
BMJ8-3E0C), and UW HySpex hyperspectral imagery (https://doi.org/10.26023/NMQG-NGWE-3400).
The output land surface temperature grids are available at the https://doi.org/10.26023/5J4W-8XPH-250N.
ECOSTRESS observations can be obtained from: https://ecostress.jpl.nasa.gov/data. NLDAS model out-
puts are available at: https://disc.sci.gsfc.nasa.gov/datasets?keywords=NLDAS. GOES ABI LST data are at:
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01521. The LST fu-
sion algorithm are available at: https://doi.org/10.5281/zenod0.5279192.
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