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Fig. S1. Interannual variability of hurricane counts. (A) Interannual variability of observed 
(black) and simulated (gray) North Atlantic hurricane counts in the satellite era. The interannual 
component is the anomalies relative to 15-year running averaged hurricane counts.  The 
simulated interannual variability (black) is the average over 16 members (eight from HadISST1-
based runs and eight from HadISST1b-based runs) because groupwise bucket adjustments damp 
toward zero after the 1980s. (B) Compared with the one-to-one line (dashed gray), the simulated 
interannual variability of hurricane frequency is consistent with observations. 

 
  



 
 

 

 

Fig. S2. Maps of 1885-2012 trends in ensemble-mean simulated hurricane track density. 
Individual panels are for (A) HadISST1-based and (B) HadISST1b-based simulations.  Also 
shown are maps for HiRAM (50km) and AM2.5 (25km) simulations (smaller panels).  Hurricane 
track density on 1° gridding is smoothed using a nine-grid 2D convolutional smoother before 
computing trends.  Dots denote significant trends at the 95% confidence level.  



 
 

 

 

Fig. S3. Observed and simulated Atlantic hurricane counts. Panels are as those in Fig. 1 in 
the main text but for HiRAM simulations (left, five members) and AM2.5 simulations (right, 
three members). The improvement in the skill of hurricane simulations is consistent between 
models.  



 
 

 

 

Fig. S4. Sensitivity of simulated hurricane counts to the relative SST (RSST) index.  
Ensemble-mean simulated hurricane counts (y-axis) using both HadISST1 (blue) and 
HadISST1b (red) are regressed against RSSTs from corresponding SST estimates (x-axis).  A 
sensitivity of 7.30 hurricanes per year per °C change in RSST (black line) is estimated using an 
ordinary-least-square (OLS) regression.  The OLS makes use of 15-year running averaged 
hurricane counts and RSSTs because smoothing reduces errors in both axes and alleviates the 
low bias in the regression slope, also known as regression dilution. 
  



 
 

 

 

Fig. S5. Sensitivity of simulated hurricane counts to the AMO index.  Similar to Fig. S4 but 
against the Atlantic Multidecadal Oscillation index in respective SST estimates.  AMO is defined 
as the annual SST anomalies over the North Atlantic (0--80°W, 0--65°N) relative to global-mean 
SST anomalies (52).  



 
 

 
 

 

Fig. S6. Maps of hurricane track density. Panels are as those in Fig. 3 in the main text but for 
HiRAM simulations (left, five members) and AM2.5 simulations (right, three members).  The 
pattern of changes in hurricane density is consistent between models. 
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