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ABSTRACT

Recent international efforts at communicating climate change have begun using the notion of a climate

indicator—a climate-related metric that can be used to track changes in the Earth system over time. Based

upon a recently developed global-scale classification of daily air masses, this research examines the trends and

variability in the frequencies of these air masses and then utilizes them to develop two nontraditional climate

indicators: a warm/cool index (WCI) and a global extremes index (GEI). Results show that both indices trend

significantly upward over the 40-yr period of record, indicating an increase in warm-based air masses (WCI)

and extreme air masses (GEI). The two indices also exhibit a moderate (GEI) to strong (WCI) association

with the global mean temperature record, multiple near-surface climate variables, and other existing climate

indicators over that same time, showing promise as global indicators. Shorter-term variability in these indices

also show a linear relationship between the WCI and changes in the Atlantic multidecadal oscillation and a

nonlinear relationship between GEI and El Niño–Southern Oscillation. While many published climate in-

dicators are based upon a single variable, and/or are regional in scope, the two indices presented herein are

unique in that they are representative of the trends in the multivariate (and extreme, in the case of the GEI)

weather conditions that are experienced near Earth’s surface, while also being global in scope.
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1. Introduction

As the planet continues to warm, communicating

the reality of our changing climate is becoming ever

more important. Recent efforts by the United Nations

Framework Convention on Climate Change and multi-

ple agencies in the United States have begun exploring

the use of climate indicators as a metric to track the

long-term change in our climate system and effectively

communicate these changes with the public and policy-

makers (Williams and Eggleston 2017). According to

the U.S. Global Change Research Program (USGCRP),

‘‘indicators are observations or calculations that can be

used to track conditions and trends. Indicators related to

climate—which may be physical, ecological, or societal—

can be used to understand how environmental condi-

tions are changing, assess risks and vulnerabilities, and

help inform resiliency and planning for climate impacts’’

(USGCRP 2019). The USGCRP also notes that part of

what makes a good indicator is that there is a change

over time, there is a clear relationship to a changing

climate, and that it is representative of a broad geo-

graphic area (USGCRP 2018). To date, a number of

indicators have been developed, using traditional cli-

mate variables (e.g., heat waves, surface temperatures,

heavy precipitation events), extreme events (Alexander

et al. 2006), and nontraditional climate and climate-

related variables (e.g., length of the frost-free season,

heating and cooling degree-days, ocean chlorophyll

levels; USGCRP 2019).

In 2014, a new gridded weather typing classification

(GWTC) scheme was developed in order to create a spa-

tially cohesive categorization of synoptic-scale weather

types (analogous to air masses in the midlatitudes) based

upon multivariate surface weather conditions (Lee 2014;

Fig. 1). This classification system has recently been ex-

panded to cover a global scale (theGWTC2), usemore robust

methods for defining air masses (AMs), and—importantly

for this research—define more extreme AMs (Lee 2020a).

However, the longer-term trends in the frequencies of

these multivariate air masses and their shorter-term vari-

ability have yet to be examined.
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Building upon the aforementioned effort to examine

nontraditional indicators of our global climate, the aim

of this research is to provide further evidence of the

broad scope of the cascading impacts of changes in

global mean temperature by 1) investigating airmass

trends and variability, 2) outlining the development of

two global-scale indices based upon these GWTC2 air

masses: a global warm/cool index (WCI) and a global

extremes index (GEI), and 3) analyzing their efficacy as

indicators of global climate change. These two indica-

tors are simplified answers to the overarching research

question: How are the frequencies of air masses chang-

ing through time? Since low-frequency internal climate

variability—in the form of teleconnections and oscilla-

tions (T&O)—plays an important role inmodulating the

variability of AMs and these two indices (and can mask

secular trends), the relationship between AMs, the two

GWTC2-based climate indices (GCIs) and T&Os will

also be explored.

2. Methods

a. Data: Background and treatment

Daily scale GWTC2 data were retrieved from Lee

(2020b) for the entire globe, 1979–2018. In its simplest

description, the GWTC2 is a categorization of near-

surface weather conditions. Since the weather that im-

pacts our daily lives is both transient and multivariate in

nature, the GWTC-2 uses 3-hourly (eight times daily)

values of six different deseasonalized near-surface me-

teorological variables [2-m temperature, 2-m dewpoint,

10-m u and y components of wind, total cloud cover, and

sea level pressure (SLP)] in order to classify every day at

every location (globally at a 0.58 3 0.58 spatial resolu-
tion) into one of 11 different ‘‘weather types’’ or air

masses (Fig. 1) that are relative to season and location.

There are nine ‘‘core’’ air masses that consist of three

partitions each for temperature and humidity (dew-

point), ranging from humid warm to dry cool on one

diagonal axis, to humid cool to dry warm on the other.

Since many days are characterized more by the change

in weather than they are by any static conditions, there

are also two transitional AMs, which aim to identify

conditions associated with cold front passages (CFP)

and warm front passages (WFP). All data for this clas-

sification were obtained from the Climate Forecast

System (CFS; Saha et al. 2010, 2014) of the National

Oceanic andAtmospheric Administration of the United

States and based upon a 1981–2010 baseline climatol-

ogy. While a full description of the methodology behind

the GWTC2 is beyond the scope of this paper, full de-

tails of the GWTC2 can be found in Lee (2020a).

T&O data were collected for the 16 different T&Os

listed in Table S4 in the online supplemental material,

along with their sources and data treatment. Unless

otherwise noted, all data were obtained at monthly

resolution for the 1979–2018 period of study. While all

16 T&Os were analyzed in terms of their relationship

with the GCIs, many exhibited weak and insignificant

correlations with the two GCIs and have thus been

omitted from the analysis. In addition, while some sta-

tistically significant results emerged from correlative

analyses between the GCIs and the Pacific decadal os-

cillation (PDO), Arctic Oscillation (AO), Antarctic

Oscillation (AAO), North Atlantic Oscillation (NAO),

east Atlantic (EA), Pacific–North American (PNA),

east Atlantic/western Russia (EA/WR) and the tropical

FIG. 1. The structure of the 11 GWTC2 air masses. Modified with permission from http://

www.personal.kent.edu/;cclee/gwtc2global.html.
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Northern Hemisphere (TNH) T&Os, all were consid-

ered fairly weak (absolute value rho , 0.35). While re-

sults of these analyses are shown below, for the sake of

brevity, an extensive discussion of these T&Os was

deemed unwarranted. Thus, the majority of the focus is

on two T&Os: the Atlantic multidecadal oscillation

(AMO) and the Niño-3.4 index for El Niño–Southern
Oscillation (Niño-3.4).
AMO was first discovered by Schlesinger and

Ramankutty (1994) and named by Kerr (2000), as a

natural 60–80-yr cycle of sea surface temperatures across

the North Atlantic Ocean. Despite its regional underpin-

nings, theAMO impacts climate across a broad swath of the

globe (Knight et al. 2006; Sun et al. 2019). AMO data were

obtained from the U.S. National Oceanic and Atmospheric

Administration’s Earth System Research Laboratory. Note

that the dataset was collected in January 2019, and this

dataset is updated monthly and detrended using a running

mean filter. The Niño-3.4 is an oceanic-based quantification

of the combined oceanic–atmospheric phenomenon known

as El Niño–Southern Oscillation (ENSO). Possibly discov-

ered as far back as the nineteenth century (seeWallace and

Gutzler 1981), ENSO is an irregular (2–7 year) cycle of

anomalous sea surface temperatures across a wide

longitudinal band of the equatorial Pacific Ocean that

alters SLP values in the atmosphere above it, setting

off a cascade of various climate anomalies on a global

scale. ENSO has been shown in previous research to

heavily regulate global temperatures, with positive Niño-
3.4 values usually leading to anomalously warm global

temperatures (El Niños) and negative Niño-3.4 values

leading to colder conditions (La Niñas). While the non-

standardized version of the Niño-3.4 index was obtained

from the National Center for Atmospheric Research

(NCAR) and theUniversity Corporation forAtmospheric

Research (UCAR), for use in this research, all Niño-3.4
data were standardized prior to analyses herein.

Monthly level global temperature data were obtained

fromU.S.NationalAeronautics andSpaceAdministration’s

Goddard Institute for Space Studies (GISS) Surface

Temperature Analysis, version 4 (GISTEMP Team 2019;

Lenssen et al. 2019). The global monthly mean combined

land surface air and sea surface water temperature anom-

alies were collected and standardized for 1979–2018. For

spatial analyses, the 28 3 28 gridded land–ocean temper-

ature index was also acquired from GISS. Northern

Hemisphere September sea ice extent data used for com-

parison purposeswere retrieved from theNationalCenters

for Environmental Information (please see Table S4).

To independently analyze trends in the near-surface

variables that make up the GWTC2, monthly mean

ERA5 (Hersbach et al. 2020) data were retrieved for the

0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 UTC

hours for the same six near-surface variables mentioned

above (for the GWTC2) across the entire globe at 28 3
28 resolution. These were then turned into a single

monthly value by averaging the eight hourly values for

each of the 480 months from 1979 to 2018. Since air

masses from the GWTC are based upon deseasonalized

z scores for each location, data were then seasonally

standardized by subtracting each value from themean of

the 40 monthly values and dividing each value by the

standard deviation of the 40 monthly values (e.g., each

January is subtracted from the mean of all Januaries and

divided by the standard deviation of all Januaries).

Comparisons to previous indicators were made using

the set of 26 metrics created by the Expert Team on

Climate ChangeDetection and Indices (ETCCDI). These

indices are often used by climate scientists to understand

various temperature and precipitation trends around the

globe, with a focus on extreme events (Alexander et al.

2006; Li et al. 2019). The annual gridded dataset for each

of these were downloaded from the ETCCDI website

(Climdex 2020) and turned into a global indicator by

regridding the data to a 10 242-point equal-area grid to

prevent oversampling the higher latitudes [using the

GridSphere function in MATLAB from von Laven

(2020)]. The mean index across this regridded domain

was then computed for each of the 40 years, 1979–2018.

This same regridding process was used to create global-

scale averages of ERA5 data.

b. Calculation of climate indices

The development of the two GWTC2-based climate

indices (GCIs) was a multistage process. First, the area

covered (over the entire Earth’s surface) for each AM

on each day must be computed. Since AMs are com-

puted on the native 0.58 3 0.58 latitude/longitude grid of

the CFS/GWTC2, to avoid overrepresenting the higher-

latitude AMs, binary values of AM occurrences at each

location on each day were multiplied by the cosine of

latitude for each location. Then, separately for each day

in the time series and each of the 11 air masses, the

products of this multiplication were summed (i.e., sum-

med across latitude-adjusted space). This yields a 14 610

(days) by 11 (air masses) dataset representing the areal

coverage (in latitude-adjustedkm2) across Earth’s sur-

face of each AM on each day, from 1 January 1979 to

31 December 2018. These areal coverages were then

divided by the daily summed total of latitude adjusted

space (165 010km2) to create percentages—which are

representative of the total percent coverage of Earth’s

surface area (510 072 000 km2) by each AM—that form

the foundation for the computation of the two GCIs.

The second stage of the computation differs for the

WCI and GEI. For the WCI, the percentages of the
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three cool AMs [humid cool (HC), cool (C), and dry

cool (DC)] were summed, and subtracted from the

summed percentages of the three warm AMs [humid

warm (HW), warm (W), and dry warm (DW)] on each

day (thus, positive values equate to greater areal cov-

erage of the three warm AMs). For the GEI, the per-

centages of the four extremeAMs (or the corner AMs in

Fig. 1; DW, DC, HW, and HC) were summed—each

representing the most extreme ;5% of their respective

corner of the multivariate temperature/humidity distri-

bution (Lee 2020a).

The third stage in the calculation of the GCIs is

standardization to the 1981–2010 climate normal period.

The 1981–2010 median of each GCI is subtracted from

each individual value in the time series, and this differ-

ence is divided by the 1981–2010 interquartile range,

effectively creating robustly defined z-score-based in-

dices. While both GCIs are available on a daily scale, for

the results presented below, each GCI was averaged

on a month-by-month basis for the 480 months between

January 1979 and December 2018 to align with the time

scale of most T&O data.

While the focus of the research are on these two

global-scale indicators, for a more detailed analysis,

other geographic partitions of these two indices were

also calculated, including ocean-only, land-only, tropical

(,23.58N/S latitude), high-latitude (.66.58N/S lati-

tude), and midlatitude ($23.58N/S and #66.58N/S).

c. Data analysis

Trends in global AM areal coverage, ERA5 climate

variables, WCI, and GEI were computed using Theil–

Sen slope estimations. This robust method of finding

linear trends computes the median slope between all

possible combinations of coordinate pairs [in this case

the x coordinates are the month in the time series (from

1 to 480), and the y coordinate is the monthly value of

either the individual climate variables, the index, or

the percent coverage of an AM]. For air masses, WCI

and GEI, bootstrap resampling was used to construct

95% confidence intervals using the bias corrected and

accelerated percentile method, and then converted to p

values using the method described in Altman and Bland

(2011). For ERA5 climate variables, the nonparametric

Mann–Kendall trend test was used to compute statistical

significance. Decadal changes in these monthly level

slopes were computed by multiplying the slopes by 120

(12 months yr21 3 10 years decade21). Trends in indi-

vidual gridpoint annual airmass occurrences and annual

spatial GISS data were computed using simple linear

regression, with p values of the slope coefficient used to

control for the false detection ratio (as in Wilks 2016) to

determine field significance. The associations between

teleconnections and WCI, GEI, and AMs, were exam-

ined using either Spearman rank correlations, or, where

necessary, a nonlinear (eta h) correlation. Annual-level

associations between ETCCDI indicators and each in-

dex were computed using simple Pearson correlations,

while partial Pearson correlations were used to examine

the multivariate associations between the monthly scale

indices and each ERA5 climate variable. All analyses

were completed using MATLAB 2020a and associated

toolboxes.

3. Results and discussion

a. Trends in AMs and GCIs

When multiplied by the surface area of Earth

(510072000km2), the latitude-adjusted percentage-point

(%-pts) changes of an AM equate to the change in an

AM’s areal coverage of Earth’s surface (%-pts being the

difference between the two percentages). While many of

the slopes appear minimal in magnitude, in reality this

represents a massive shift in areal coverage for the AMs

over the period of study (Fig. 2). For example, the three

warm types are increasing by a summed113.8%-pts and

the three cool types decreasing by about 211.5%-pts of

surface area of Earth over this 40-yr period, which is a

rate of 13.4%-pts decade21 and 22.9%-pts decade21,

respectively (Table 1). The warm air mass itself is in-

creasing its spatial coverage at a rate of nearly 10

millionkm2 decade21, an area roughly the size of Canada,

largely at the expense of a 9.5millionkm2 decrease in area

covered by the coolAM.Further, the time series of spatial

extent of the three warm AMs all have strong and sig-

nificant positive correlations with the surface temperature

data (rho 5 0.70, 0.82, 0.84 for DW, HW, and W), while

the three cool AMs have strong and significant negative

correlations (rho520.60,20.71,20.79 for HC,DC, and

C, respectively; supplemental material). Additionally, the

expanse of all nonseasonal (10.7%-pts decade21, equat-

ing to 3.8 millionkm2) AMs and the four extreme/corner

AMs (10.5%-pts decade21, 2.4 millionkm2) are also in-

creasing markedly. The three humid AMs (12.0%-

pts decade21; 10.0 millionkm2) and the three dry AMs

(21.3%-pts, 26.7 millionkm2) are trending in expected

directions, as humid versus dry is categorized in the

GWTC2 using 2-m dewpoint temperatures, which are

expected to rise concurrent with temperatures, as a

warmer atmosphere will accommodate more absolute

water vapor content (O’Gorman and Schneider 2009). Of

all the air masses, only the CFP has seen a statistically

insignificant trend over this timeframe (20.01%-

pts decade21, p 5 0.100).

The largest changes in most AMs occur in the

tropics—especially the tropical oceans (Fig. 3), where some
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of the warm AMs are occurring at a rate of nearly an

extra 2 days every year (or about 80 more days per year

over the 40-yr period). A secondary area of major

change appears in the Arctic. Considering the largest

changes in temperatures are generally known to be oc-

curring in the Arctic (i.e., Arctic amplification; Francis

and Vavrus 2012), the results for the tropics are some-

what surprising. However, when standardized (rather

than anomalous) GISS temperature data are examined,

the relative changes in tropical temperatures become

much more apparent (Fig. 4) and mimics the results

noted with the warm AMs. This result is due to the fact

that the GWTC2 system uses standardized variables to

compute AMs. While the trends in standardized tempera-

ture (or air masses derived with such) might be less impor-

tant in a ‘‘global scope’’ than unstandardized anomalies, for

humans, plants, and animals living in the tropics that have

become acclimatized to an environment withminimal daily/

annual meteorological variability or have extremely

narrow ranges of tolerance, even seemingly minor ab-

solute changes can have major impacts on ecosystems

(Wiens 2016; Deutsch et al. 2008; Barron 1995).

The month-by-month time series of both GCIs are

presented in Fig. 5. With the WCI, there appears to be a

major shift toward a positive phase around 2000–01,

after which the index does not drop below zero for more

than a handful of consecutive months. The WCI has a

statistically significant increasing trend (m 5 0.0031,

10.374 decade21, p, 0.001) over the 480-month period

of study, indicating that warmer AMs are increasing

markedly at the expense of cooler AMs (Table 1). The

GEI also shows a statistically significant secular increase

(m 5 0.0016, 10.192decade21, p , 0.001), though to a

lesser magnitude than what is noted with WCI. This is

FIG. 2. Monthly time series of each GWTC2 AM’s percentage coverage of Earth’s surface.

TABLE 1. Trends in eachAMandGCI. Theil–Sen slope [TSslope

(m)] is based upon the 480 monthly values of percentage coverage

of Earth’s surface (for AMs), or the 480 monthly values of the

GCIs; p is the p value of the slope; change decade21 is the percentage

point change in areal coverage per decade for AMs, or the change in

value per decade for the GCIs (both calculated as m 3 12 3 10; for

the 12months in a year and 10 years in a decade); km2 decade21 is the

change in the amount of Earth’s surface covered per decade (km2 for

each AM)—which is not applicable to the GCIs.

TSslope (m) p Change decade21 km2 decade21

GWTC2 air masses

HC 20.000 022 ,0.001 20.26% 21 326 353

H 0.000 092 ,0.001 1.10% 5 634 273

HW 0.000 093 ,0.001 1.12% 5 708 182

C 20.000 155 ,0.001 21.86% 29 487 168

S 20.000 073 ,0.001 20.88% 24 493 069

W 0.000 163 ,0.001 1.96% 9 995 761

DC 20.000 063 ,0.001 20.75% 23 850 064

D 20.000 078 ,0.001 20.93% 24 747 844

DW 0.000 030 ,0.001 0.36% 1 836 142

CFP 20.000 001 0.100 20.01% 256 876

WFP 20.000 004 ,0.001 20.05% 2233 859

GWTC2-based climate indices (GCIs)

WCI 0.003 113 4 ,0.001 0.374 —

GEI 0.001 598 0 ,0.001 0.192 —
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likely due to two cool AMs (DC andHC) being included

in this index, both of which show significant decreasing

trends. Nonetheless, their inclusion in the calculation of

the GEI is warranted, as it is the extreme events, rather

than the mean, that are most impactful on society, in-

cluding those on each end of the temperature spectrum

(O’Neill and Ebi 2009; Hajat et al. 2007; Lee and

Sheridan 2018; Sheridan et al. 2019). Both the WCI and

the GEI are increasing more so over the ocean (WCI5
10.390 decade21, GEI 5 10.207 decade21, both p ,
0.001) than they are over land (WCI510.265 decade21,

GEI 5 10.066 decade21, both p , 0.001), however, the

changes over land are arguably more impactful on hu-

man life. Latitudinally, the tropics and midlatitudes

show much greater increases in both indices than the

high latitudes, where the GEI actually shows a signifi-

cant decrease (20.043 decade21, p 5 0.03). However,

if the Antarctic is excluded, the Arctic shows an in-

creasing trend in both indices, though only the WCI

(10.334 decade21; p , 0.001) is significant.

b. Associations with teleconnections and oscillations

When analyzed against the T&Os, the largest mag-

nitude correlations are with the AMO (Fig. 6)—which

exhibits a strong positive associationwithWCI (rho5 0.76,

p, 0.001), and a weaker, but significant association with

GEI (rho 5 0.27, p , 0.001). Further, much like the

trend toward warmer temperatures leading to higher

WCI values, especially after 2000, the AMO also

shows a considerable trend upward over the period of

study, though beginning in the mid-1990s. This correla-

tion is driven mostly by the strong positive correlations

between AMO and the three warm types (DW, W, and

HW), and a strong negative correlation between the

AMO and all three cool types (DC, C, and HC)—all of

which are statistically significant (p , 0.05; supplemen-

tal material). When mapped, the vast majority of the

spatial correlations between airmass frequency and the

WCI comes from the tropics, though a smaller second-

ary area of correlation is visible in Baffin Bay, and the

Greenland, Iceland, and Norwegian Seas with the W,

HW, and C air masses. Of the additional geographic

partitions of the two indicators, GEI over the ocean and

over the midlatitudes exhibited marginally stronger

correlations with AMO than its global-scale counter-

part; for WCI, the global-scale WCI–AMO relationship

was the stronger than any other geographically parti-

tioned WCI (Table S3).

Previous research has shown that the AMO plays a

large role in Northern Hemisphere climate variability,

FIG. 3. Trend in occurrences per year of each of the 11 GWTC2 AMs. Only significant values are shown (p , 0.05).
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though it can also have global-scale impacts. Schlesinger

and Ramankutty (1994) found that the AMO manifests

in the global mean temperature record, and others have

noted that due to its multidecadal-scale oscillation, the

AMO can either mask or enhance the anthropogeni-

cally induced trend in global temperatures (Dima and

Lohmann 2007). As noted in Knight et al. (2006, and

references therein) the AMO also impacts rainfall pat-

terns in Brazil and Africa, North Atlantic hurricanes,

and summer climates on the adjacent European and

North American continents, while Häkkinen et al. (2011)

show a link between the AMO and large-scale atmo-

spheric blocking events. Due to its strong oceanic–

atmospheric coupling, fingerprints of the AMO can also

be found to influence SST variability in the Arabian Sea,

Indian Ocean, and the Pacific Ocean, along with near-

surface temperature anomalies over Eurasia (Sun et al.

2019, 2017a,b). In one of the few papers examining the

manifestation of the AMO in the Southern Hemisphere,

Sun et al. (2018) describe the inverse relationship be-

tween northern and southern Atlantic SSTs stemming

from ocean heat redistribution forced by changes in the

Atlantic meridional overturning circulation.

Herein, with only a 40-yr period of record, the AMO

exhibits a strong correlation to the global-scale tem-

perature record (rho 5 0.69, p , 0.001), though it is

substantially weaker when the secular trend is removed

(rho 5 0.35, p , 0.001), and markedly lower than the

correlation between detrended AMO and WCI (rho 5
0.55; Fig. 6). Thus, while it is known that the AMO can

modulate global temperatures, this research suggests

that the AMO’s role may be even greater in modulating

the multivariate global weather, herein represented by

the areal coverage of GWTC2 AMs.

Significant correlations between the raw GCIs and all

other T&Os are much weaker, with only the EA pattern

and ENSO showing an absolute correlation greater than

rho 5 0.25 with either the GEI or the WCI. When both

the T&Os andGCIs are detrended, the PDO and ENSO

exhibit a greater association with both indices than using

nondetrended values, though these are still relatively

weak. Of particular note is the apparent visual associa-

tion between well-known ENSO events and the GEI

shown in Fig. 5. For example, three of the four spikes in

theGEI (i.e., whereGEI. 2.0 in Fig. 5) occurred during

three of the strongest El Niño events of the last several

decades (1982–83, 1997–98, 2015–16), while the other

one corresponds to one of the strongest La Niña events

(2010–11), which would suggest a u-shaped relationship

between GEI and Niño-3.4 (Fig. 7, top). Further, when

geographical partitions of the indicators are examined,

both tropical WCI and tropical GEI have slightly

stronger rank correlations with Niño-3.4 than the global-
scale versions. To help quantify the nonlinear associa-

tion between the two, a nonlinear (etah) correlationwas

run by partitioning the 480 monthly Niño-3.4 values into
10 ordered bins (with uniform width, as would be used

in a histogram) of 48 values each (Fig. 7, top), which

returned a statistically significant h 5 0.52 (p , 0.001)

between the raw Niño-3.4 and GEI data, and h 5 0.55

(p , 0.001) using detrended Niño-3.4 and GEI data

(Fig. 6). Further, the GEI is heavily impacted by the

frequency of the HW air mass, especially in the trop-

ical Pacific and Indian Oceans, and northern South

America—which also points to the influence of ENSO

impacting this index (Fig. S2). Eta correlations with

other GEI/T&O combinations mostly yielded either

weak relationships (h, 0.30) or similar absolute values

to those derived from the more traditional Spearman’s

rho, indicating a fairly linear relationship.

Many previous studies have highlighted the link be-

tween ENSO phases and extreme weather. Using clus-

tered patterns of sea surface temperatures, Alexander

et al. (2009) found that extreme temperatures from as

far away as Australia to southern Africa, Canada, and

Siberia were all impacted by ENSO, though precipita-

tion variability was less coherent. Examining multiple

T&Os, Kenyon and Hegerl (2010) found extreme pre-

cipitation events on at least 5 continents were substan-

tially impacted by ENSO. In a raremultivariate analysis,

Hao et al. (2018) found that ENSO phases impacted the

FIG. 4. (top) Trends in annual anomalous temperatures from

GISS data, 1979–2018 (8C). (bottom) Trends in annual standardized

anomalous temperatures from GISS data, 1979–2018 (in standard

deviation units). Only significant values are shown (p , 0.05).
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frequency of combined dry and hot events in parts of

South and Central America, Africa, Asia, Alaska, and

Australia during their respective warm seasons. Beyond

the two major meteorological variables, other research

has found links between ENSO and wind events in parts

of the United States (Enloe et al. 2004), surface pressure

in Europe (Fraedrich and Müller 1992), and high clouds

throughoutmuch of the globe (Li et al. 2017). And, using

the previous version of the GWTC (the GWTC1; Lee

2014), Lee (2016) found ENSO to have a significant

impact on cold-season AM frequencies in the southern

half of the United States and most of Mexico.

c. Index associations with existing climate indicators

To establish these new GWTC2-based indices as

global climate indicators, the WCI and GEI were first

examined against the standardized monthly surface

temperature anomaly record from GISS data. Of the

two indices, WCI expectedly showed the stronger rela-

tionship (rho 5 0.85, p , 0.001), and is on par with the

correlation between global temperatures and other cli-

mate indicators. For example, Northern Hemisphere

September sea ice extent—considered a more tradi-

tional climate indicator—andGISS annualmean surface

temperature anomaly data have a Spearman correlation

of rho 5 20.84; correspondingly, annually averaged

WCI also exhibits a strong association (rho 5 20.70)

with sea ice extent. The GEI also displayed a moderate

association with the surface temperature record (rho 5
0.41, p , 0.001), especially when nonlinear associations

(Fig. 7, bottom) were computed (h 5 0.54, p ,
0.001)—stronger than with any of the teleconnections

FIG. 5. Themonthly time series of the twoGCIs (WCI andGEI), two selected T&Os (AMOandNiño-3.4), and the
standardized global temperature anomaly [GISS(z)], 1979–2018.
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when examining raw data. Spatially, both indices exhibit

widespread correlations with temperature anomalies

(Fig. 8). The WCI is most highly associated with tem-

peratures throughout much of the Atlantic Ocean, es-

pecially the tropical Atlantic, northern South America,

tropical Africa, and most of the Indian Ocean north of

308S. The GEI has a similar spatial pattern of correla-

tions with the GISS temperature anomaly dataset,

though lower inmagnitude and shifted westward inmost

ocean basins. This essentially means that the WCI and,

to a lesser extent, the GEI are most impacted by the

trends and variability in global temperatures in the

tropical oceans, central Africa, and northern South

America. This aligns well with the areas of Fig. 3 where

air masses are changing the most, and Fig. 4 (bottom)

where standardized anomalies are changing the most.

While the WCI correlates well with the temperature

record over the entire 40-yr period of record, there is

noted variability in these correlations during certain

blocks of time (e.g., 1986, 1993, 2000, 2002, 2005, 2014,

and 2016–18 when shorter-term correlations between

WCI and GISS approach r , 0.0; Fig. 9). These ephem-

eral changes in association imply that changes in other

meteorological variables (humidity, wind, SLP or cloud

cover that comprise the GWTC2) are driving changes in

air masses that are not reflecting similarly in the global

surface temperature record.

In fact, beyond temperatures there are multiple sur-

face climate variables exhibiting significant changes in

the equatorial Pacific and Atlantic Oceans, and in the

southeastern Pacific Ocean (Fig. 10). These changes

include increased cloud cover, a slight cooling, de-

creased dewpoints, an increase in SLP in the eastern

South Pacific, and a strengthening of the southeast trade

winds—all results noted elsewhere (e.g., Zhou et al.

2016). This increased easterly wind speed is leading to an

enhanced La Niña effect, with increasingly warm and

humid conditions in the western equatorial Pacific and

northern Indian Oceans. Some of these changes could

be due to increased sulfate aerosols—both natural and

anthropogenic in these areas (Takahashi and Watanabe

2016), which would favor increased cloudiness (due to

an abundance of cloud condensation nuclei; Williamson

et al. 2019), and lead to cooler temperatures (perhaps

due to increased reflection of insolation from cloud

cover) and lowering dewpoints. The colder air temper-

atures over the eastern South Pacific would result in

increasing SLP off the west coast of South America,

which would facilitate the stronger trade winds as well.

While the air masses underlying the WCI and GEI are

multivariate in nature, partial correlations were calculated

in order to determine if the indices themselves represent

the multivariate changes in the climate system. Table 2

shows partial correlations between the WCI/GEI and the

globally averaged values of the near surface variables ob-

tained fromERA5.ForWCI,while temperature shows the

strongest correlationwhen controlling for each of the other

variables, dewpoints, SLP, zonal winds, and wind speed all

show significant (p , 0.05) contributions to WCI vari-

ability; overall the variables account for 82% of WCI

variability. Of note, the dewpoint has a negative partial

correlation with WCI, indicating that, despite the high

FIG. 6. Spearman correlations and nonlinear eta correlations between each GCI and selected T&Os (rows) for

both raw data and detrended data. Statistically significant values (p, 0.05) are bolded, italicized, and underlined,

whereas nonsignificant values are gray. For Spearman correlations, darker reds (blues) mean increasingly positive

(negative) correlations. Eta correlations can only be positive, and thus, darker reds equate to stronger associations.

GISS(z) is the standardized surface temperature anomaly. All statistics are based upon 1979–2018.
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degree of correlation between temperature and dewpoints

inmost locations, areas of the globewhere these trends are

diverging (e.g., warming and drying, in the equatorial

Pacific, the southwestern United States, eastern Australia,

parts of southern Africa, and the Middle East), are sig-

nificantly impacting the WCI. For GEI, the variables

combined to account for considerably less variability in the

index (R25 0.34), with temperature, zonal andmeridional

winds, and cloud cover each being significant factors.

Overall, the areas that are showing the most significant

trends in these surface variables (the tropics) are the same

regions that are most highly correlated withWCI andGEI

(Fig. 11), indicating that where there are multivariate

changes, the WCI and GEI are incorporating them.

A thorough examination of the WCI’s and GEI’s

suitability as new indicators also necessitates a compari-

son to existing indicators. In general, the WCI showed

fairly strong correlations with all of the temperature-

based ETCCDI metrics, especially TN90p and TX90p,

which are measures of days exceeding the 90th percentile

of minimum and maximum daily temperatures, respec-

tively; both exhibited r. 0.86 (Table 3). By contrast, the

WCI performs poorer with precipitation-based ETCCDI

indicators, with only R99p (the summed amount of pre-

cipitation on the wettest days) having an r . 0.5 with

WCI. These results are not altogether unsurprising con-

sidering that 1) the WCI is based on a warm versus cold

airmass dichotomy, and 2) the air masses do not directly

incorporate precipitation. This said, the GEI, performs

much better with nearly every precipitation-based indi-

cator and has a more consistent association across all

ETCCDI indicators than WCI. For six of the nine

precipitation-based indicators, the GEI exhibits r . 0.5,

and has r. 0.6 for three of them. This is likely due to the

known association between global precipitation (espe-

cially tropical precipitation) and ENSO (Dai and Wigley

2000; Curtis et al. 2007), withwhich theGEI has also been

shown herein to strongly associate. Since the ETCCDI

indicators are particularly focused on extreme events

(Alexander et al. 2006), this consistency across these

different metrics helps highlight the GEI’s sensitivity to

multiple climate extremes.

FIG. 8. Spearman correlations between the monthly GISS sur-

face temperature anomalies and the (top) WCI and (bottom) GEI.

Note the difference of scale in the two color bars.

FIG. 7. Box-and-whisker plots showing nonlinear relationship

(top) between GEI data and Niño-3.4 and (bottom) between GEI

data and GISS(z). The y axis on both plots is the GEI data within

each of the 10 ordered equal-spaced bins of the standardized Niño-
3.4 index or GISS(z) (x axes), with the bins labeled by their median

values. Red lines are medians, boxes are the interquartile ranges,

whiskers cover about62.7 standard deviations from the mean, and

the red 1 symbols are individual outlier data points.
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Taken together, these results present a number of key

findings with regard to the WCI and GEI as climate

indicators. First, the WCI shows promise as an indicator

of the global climate, as it has 1) increased in the ex-

pected direction with overall global temperatures over

the past four decades, 2) has a very strong association

with the surface temperature record—a necessary hall-

mark of any metric to be considered a climate indicator,

and 3) is strongly correlated with existing extreme

thermal climate indicators. The GEI might also show

promise as an indicator of global climate due to 1) its

moderate nonlinear association with the GISS temper-

ature data, 2) the fact that it is explicitly derived from

climatological extremes, an arguably more-important

potential impact of a changing climate, and 3) it is con-

sistently associated with the suite of existing ETCCDI

indicators, especially the precipitation-based indices.

Further, both indices show significant spatial correla-

tions with multiple climate variables in the same global

locations where these variables are trending the most.

The results also support the added value of the WCI,

in that it is indexing a uniquemultivariate component of

the climate system (geographically and seasonally rela-

tive weather types or synoptic-scale air masses) that are

undergoing changes concurrently with the background

trend in global mean temperatures, but also are sub-

jected to variability somewhat independently from it. In

addition to the uniqueness, these AMs—and by exten-

sion these two indices—are also important, as they are

key drivers regulating the extratropical atmosphere. Air

masses have been shown in previous research to affect

various biometeorological outcomes, especially human

health and temperature-related mortality (Lee 2015;

Hondula et al. 2014), as it is the synergy of the entire

‘‘weather situation’’ someone is exposed to (especially

the interactions of temperature, humidity, and wind

speed) that impacts thermal comfort, more so than in-

dividual meteorological variables acting in isolation.

Finally, as mentioned above, since their underlying air

masses are based upon standardized anomalies (as op-

posed to raw anomalies), the WCI and GEI are able

incorporate the multiple climatic changes happening in

the tropics (where raw anomalies are smaller, but rela-

tive to the limited climatic variability there, large

changes are happening for multiple variables) in addi-

tion to other parts of the globe.

One limitation of this study stems from some data-

sparse regions of the globe. For example, in central Africa,

using CFS data (from which the GWTC2 air masses are

defined), trends in this region show a slight cooling and

increased dewpoints, which lead to a significant rise in HC

frequency. However, using a newer reanalysis product

(ERA5), this same area shows significant warming and

drying, a result that would not support increased HC fre-

quency. This said, for themajority of the globe, the trends in

air masses and the trends in ERA5 data are in agreement,

minimizing the impact on the two indices. Nonetheless,

differences between historical reanalysis based datasets and

their potential influence on airmass identification should be

explored in future research.

FIG. 9. (top) Centered 13-month moving correlations between GEI and GISS (black), between GEI and AMO (green), and between

GEI and the Niño-3.4 index (red), 1979–2018. (bottom) Centered 13-month moving correlations between WCI and GISS (blue), and

between WCI and AMO (orange), 1979–2018.
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4. Conclusions

This research analyzes trends and variability in a re-

cently developed dataset of global-scale multivariate air

masses (the GWTC2) and develops two climate change

indicators: the warm/cool index (WCI) and the global

extremes index (GEI). These indices were then com-

pared to trends in multiple near-surface climate vari-

ables and preexisting climate indicators (to examine

their suitability as indicators) and to teleconnection data

over a 40-yr period (to examine the impact of internal

variability).

Results show that both indices have increased signif-

icantly since 1979 and hold promise as nontraditional

indicators of the global climate, as both show amoderate

(GEI) to strong (WCI) association with the global

temperature record.While theWCI andGEI show land/

ocean and latitudinal differences in their trends, the

global-scale indices are thought to be better indicators

of global climate change. Comparisons to various tele-

connections reveal that the WCI is also strongly related

to the AMO. While the AMO is an oscillatory phe-

nomenon (rather than trending), the multidecadal scale

of the AMO’s cycle results in a general increase over

much of the period of study. When detrended values of

both indices are examined, the correlation between

them decreases, but remains significant, suggesting that

the AMO still greatly impacts near-surface multivariate

weather variability on a global scale.

For the GEI, while correlations with the global tem-

perature dataset were only moderate, the GEI’s suitability

as a unique climate indicator may be enhanced due to its

ability to incorporate the nonlinear relationship to global

temperatures, and its focus on extremes—that is, it is an

FIG. 10. The Theil–Sen slope estimate of each of the seasonally and geographically standardized ERA5 variables.

Units are standard deviation units (z) per decade.
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indicator of extreme change even more than an indicator

for changes in climatic means. The GEI exhibits a mod-

erate nonlinear relationship with ENSO as well, which is

most notable during particularly strong ENSO events

(both warm phase and cool phase), underscoring the

known impact ENSO has on global extremes. While the

GEI shows moderate associations with both the Niño-3.4
and the surface temperature record, there is considerable

variability in this index that is ‘‘unexplained,’’ at least by

the evaluation herein.

Both indices are strongly impacted by variability in

the tropics, especially the tropical oceans. In these areas,

while trends in raw anomalies of temperature are small,

due to the minimal seasonal and interannual variability

of the tropics, trends in standardized anomalies in tem-

perature are significant, and changes in multiple other

near-surface variables (SLP, cloud cover, and winds) are

even more substantial. Both the GEI and WCI are

sensitive to these changes (in multiple different stan-

dardized climate variables), which are arguably as im-

portant as absolute temperature trends within the scope

of changes to the climate system as a whole. Further, the

WCI and GEI are significantly correlated with existing

extreme climate change indicators. The WCI is strongly

related to multiple thermal climate indicators but shows

markedly lower associations with precipitation-based

indicators. The GEI has a more consistent relationship

across the indicators, and generally associates more

strongly with precipitation-based indicators of change.

When investigating the impacts of climate change, we

are really asking how is the climate going to be differ-

ent?What is ‘‘different’’ is always going to be relative; it

is relative to the location, it is relative to the time of the

year (e.g., increasingly warm winters, versus just in-

creasingly warm year-round), it is relative to the usual

amount of climate variability that one is accustomed to

(for the location and time of year), and it can manifest

in a variety of different climate variables. These indi-

cators attempt to incorporate all of these aspects of cli-

mate change. While many published indicators of global

climate are based upon a single variable, the two indices

presented herein are fairly unique in that they are rep-

resentative of the trends in the multivariate weather

conditions—or air masses—that are experienced near

Earth’s surface, while also being global in scope. No

previously published indicators of climate change have

explicitly examined trends in air masses, key drivers of

the extratropical weather where nearly half of the

world’s population lives, and important regulators of

human thermal comfort. The air masses are also sea-

sonally and geographically relative and incorporate the

variability of the surface weather (using standardized

anomalies rather than raw anomalies), adding levels of

originality to the two indicators.

With the underlying data for these two indices (the

GWTC2) are currently available online, regularly upda-

ted, and forecast out to 60 days, future work will automate

FIG. 11. The sum of statistically significant (p , 0.05) results at

each grid point for (top) Pearson correlations between each of the

ERA5 variables and WCI, (middle) the Pearson correlations be-

tween each of the ERA5 variables and GEI, (bottom) and the

Theil–Sen slope estimates for each of the ERA5 variables.

TABLE 2. Partial Pearson correlation (PartialCorr) coefficients

betweenWCI or GEI and the global-scale averaged monthly value

of each near-surface variable obtained from ERA5. RSQ is the R2

of the multiple regression model with each of these variables are

predictors. Statistically significant (p , 0.05) correlations are bol-

ded and italicized.

PartialCorr WCI GEI

Temperature 0.668 0.268

Dewpoint 20.155 20.011

Sea level pressure 0.127 20.057

U wind 20.187 0.091

V wind 0.045 20.149

Wind speed 20.145 20.072

Cloud cover 0.018 0.120

RSQ 0.818 0.344
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the calculation of these indices and keep historical records

and forecasts of them freely available online. Additionally,

future research could benefit by extending the GWTC2

classification to GCM data and examining the trends

in these indices in historical and future global climate

model output.
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