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1. Data availability in Walsh et al 2017

Walsh et al. (2017) uses sea ice observations from a ranked list of 12 different sources,

with priority given to the available highest-ranked source. When none of these sources

are available at a given time, temporal interpolation (for a single month of missing data)
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or analog-based methods to fill in missing data are used (for periods with more than

one month missing). In Figure S1 we plot the percentage of longitude ocean grid cells

with an observation available for each month separated into two seasons from 1850–2013.

Before March of 1953 (vertical green line) there is very little spatial coverage of sea ice

observations in the winter months (September–March). Data coverage in the summer

months (April–August) is also very low (<40% on average) before May of 1901 and with

better coverage between 1902–1953 except for one time period in the late 1940s and early

1950s.

2. The early 20th century warming in reanalysis

Figure S2 shows a comparison between annually averaged Arctic (north of 70◦N) mean

temperature observations from HadCRUT and reanalysis data (NOAA-20C and ERA-

20C) during the 20th century. Between 1953–2011 there is good agreement between

HadCRUT and reanalysis datasets, with R2-value of 0.85 for ERA-20C and 0.41 for

NOAA-20C. In contrast, before 1953 the reanalysis products diverge from HadCRUT,

R2-values for ERA-20C and NOAA-20C of 0.27 and 0.01, respectively. In particular, we

note from 1900–1953, ERA-20C temperature anomalies have little variability just below

0◦C and NOAA-20C shows very cold anomalous temperatures of around −3◦C, whereas

HadCRUT increases from approximately −2◦C to 1◦C over the same time period. These

discrepancies illustrate that neither of these reanalysis products capture the early 20th

century warming.
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3. Sensitivity of sea ice extent to temperature in our reconstructions

Here we add the relationship between our reconstructed Arctic mean 2 m air temper-

ature and total Arctic sea ice extent to augment Figure 1 of the main paper. Results

show that the sensitivity between temperature and sea ice in the reconstructions during

1850–2018 agree well with that found in satellite observations. In contrast, the Walsh et

al. (2017) reconstruction shows a disconnect in this relationship before and after 1953,

which we speculate is due to limited data availability (see Figure S1). When we calculate

the linear least-squares regression between our reconstructed mean Arctic temperature

and total Arctic sea ice extent pre-1953, we see slopes of −0.68 x 106 km2/◦C and −0.79

x 106 km2/◦C using CCSM4 and MPI priors and R2-values of 0.76 and 0.89 respectively.

For the same calculations on our reconstructions post-1953 we see slopes of of −0.66 x

106 km2/◦C and −0.75 x 106 km2/◦C using CCSM4 and MPI priors and R2-values of 0.87

and 0.93 respectively. Therefore, the linear relationship does not shift in the mid 1900s

in our reconstructions in the same way it does in the Walsh et al. (2017) reconstructions.

Furthermore, a large shift in sea ice and temperature sensitivity is not supported by the

literature (Armour et al., 2011; Mahlstein & Knutti, 2012).

4. Sensitivity of data assimilation results

Here, we quantify the sensitivity of our reconstructions to the choice of gridded tem-

perature product assimilated (and their errors), climate model prior, and sample-error

mediation in the DA (localization length scale and ensemble variance inflation factor).
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4.1. Sensitivity to the observations

To test the sensitivity to the choice of assimilated observations, we assimilate three

temperature products: HadCRUT, GISTEMP and Berkeley Earth (BE). The original

temperature measurements used to create these products are mostly the same, and the

main difference is the amount of interpolation (or infill) from grid cells with observations

to grid cells with no observations for GISTEMP and BE. Reconstructions using all three

temperature products are shown in Figure S4. The skill of the reconstructions during the

satellite period is slightly higher when HadCRUT is assimilated, as measured by the R2

values and coefficient of efficiency. Overall, the source of the temperature observations

has little effect on the overall variability of the reconstructions, with R2 values with

satellite data ranging from 0.82–0.89 for the MPI prior and 0.79–0.89 for the CCSM4

prior (described below). This is expected given the overall agreement among temperature

products (e.g. (Rohde et al., 2013)).

For all of these experiments, an observed uncertainty of (R in Equation 2) 0.4 K2 is used

for all three products as explained in the main manuscript. Other uncertainty estimates

tested include: (1) using the annually averaged diagonal elements of the error covariance

matrix provided with HadCRUT, and (2) using the variance across all three datasets at

each point.

Method (1) is ideal, but can only be applied to HadCRUT which has fewer data points

than GISTEMP and BE because it does not use interpolation. For method (2) the variance

across these datasets is very small, given that they often use the same original temperature
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observations. This led to an over-weighting of observations in the Kalman gain and a SIE

reconstruction with an inter-annual variability much larger than the satellite record.

4.2. Sensitivity to the prior

We use the MPI and CCSM4 Last Millennium simulations to test the sensitivity of

the results to the choice of model prior. Figure S4 shows Arctic SIE from these two

experiments (note that we use different inflation factors of 1.8 and 2.6 for the MPI and

CCSM4 priors respectively, see below). Results show differences in inter-annual variability,

but overall the decadal variability and the timing and magnitude of the ETCW agree well

(Figure S4). MPI-based reconstructions show slightly higher correlation with satellite

data, with R2-values of 0.82–0.89, as compared to CCSM4-based reconstruction, with

R2-values of 0.79–0.89.

4.3. Sensitivity to sample error: prior inflation and localization

The prior ensemble-perturbation inflation factor and prior spatial localization length

scale are both determined empirically based on correlations with the trend in Arctic SIE

in satellite observations, and correlation and coefficient of efficiency with satellite obser-

vations between 1979–2017. A series of experiments are performed with inflation factors

ranging from 1.6–2.0 (incremented by 0.1) for the MPI prior and 2.3–2.7 (incremented

by 0.1) for the CCSM4 prior. For each inflation factor, reconstructions are performed for

localization radii of 5,000, 7,500, 10,000, 15,000, 20,000, and 25,000 km. As the basis of

comparison, the trend, detrended variance, correlation and coefficient of efficiency with

respect to satellite observations between 1979–2017 are determined across all iterations

and ensemble members for each of the 30 parameter combinations (see Figure S5 and S6).
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Increasing the localization length scale and the ensemble inflation of sea ice relative

to temperature, both increase the temporal variance and trend in the reconstructions of

SIE (Figures S5, S6). The results indicate that there is not only a trade-off between

capturing the trend versus inter-annual variability, but that there are various parameter

combinations that show similar performance. Overall, all experiments described above

using HadCRUT observations resulted in R2 values greater than 0.86 and CE greater

than 0.77 for MPI and R2 values greater than 0.76 and CE greater than 0.62 for CCSM4.

5. Verification Statistics

To test the performance of our reconstructions we use both R2 value (correlation coef-

ficient squared) and coefficient of efficiency against satellite observations. The coefficient

of efficiency (CE, Nash and Sutcliffe (1970)), like the correlation coefficient, measures the

synchronicity in the variability of two datasets, but also quantifies mean bias and the

difference in variance between the two datasets. This is a much stricter skill metric. Its

maximum value is 1.0 and it is unbounded in the negative direction. A CE value of zero

occurs when the sum of squared errors is equal to the variance in the verification data.

Generally, positive CE values represent skill. It is defined as:

CE = 1 −
∑n

i (vi − xi)
2∑n

i (vi − v̄)2
. (1)

Here v is the verification value, with mean value v̄, and x is the value being evaluated

(the reconstructed value).
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Figure S1. Shown is the data availability incorporated into the Walsh et al. (2017)

Arctic sea ice record separated by two seasons over time. The color indicates the percent-

age of ocean longitude grid cells with an observation available at each latitude for each

month. The vertical green lines indicate April 1953 and September 1953 respectively.
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Figure S2. Arctic (north of 70◦N) mean surface air temperatures anomalies from

HadCRUT, NOAA-20C, and ERA-20C. The vertical gray line indicates the year 1953,

when availability of observations of sea ice in the Arctic increase substantially in the

Walsh et al. (2017) record. Anomalies are centered about 1979–2011.
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Figure S3. Arctic 2 m air temperature (averaged north of 65◦N, derived from Had-

CRUT) and total Arctic sea ice extent in both the satellite data between 1979–2017 (in

red) and Walsh et al. (2017) data set between 1850–1952 (in gray) and 1953–2013 (in

black). The same relationship from reconstructed SAT and SIE between 1850–2018 are

also shown for two reconstructions: one using MPI as the prior and HadCRUT tempera-

ture observations (in blue) and one using CCSM4 as the prior and HadCRUT temperature

observations (in brown). Anomalies are relative to 1979–2013.
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Figure S4. Total Arctic SIE reconstructed using priors drawn from two models (MPI

and CCSM4 Last Millennium simulations) and three temperature datasets (HadCRUT,

GISTEMP, and BE). For all experiments a localization length scale of 15,000 km is used

and an inflation factor of 1.8 for MPI and 2.6 for CCSM4. The 97.5 and 2.5 percentiles

of the ensemble spread are shown in blue and brown shading.
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Figure S5. Verification statistics for 30 reconstructions performed using MPI as a model

prior, HadCRUT observations, and different combinations of localization length scales (y-

axis) and inflation factors (x-axis) are shown. Trends and detrended variances during the

satellite era are shown in the two boxes on the left and the values observed in the satellite

record (Fetterer et al., 2017) are shown in the column on the right. The correlation and

coefficient of efficiency of these reconstructions when compared with (Fetterer et al., 2017)

are shown in the two boxes on the right.
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Figure S6. Verification statistics for 30 reconstructions performed using CCSM4 as

a model prior, HadCRUT observations, and different combinations of localization length

scales (y-axis) and inflation factors (x-axis) are shown. Trends and detrended variances

during the satellite era are shown in the two boxes on the left and the values observed in the

satellite record (Fetterer et al., 2017) are shown in the column on the right. The correlation

and coefficient of efficiency of these reconstructions when compared with (Fetterer et al.,

2017) are shown in the two boxes on the right.
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