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ABSTRACT: A set of 30-day reforecast experiments, focused on the Northern Hemisphere (NH) cool season (November—
March), is performed to quantify the remote impacts of tropical forecast errors on the National Centers for Environmental
Prediction (NCEP) Global Forecast System (GFS). The approach is to nudge the model toward reanalyses in the tropics and
then measure the change in skill at higher latitudes as a function of lead time. In agreement with previous analogous studies,
results show that midlatitude predictions tend to be improved in association with reducing tropical forecast errors during
weeks 2-4, particularly over the North Pacific and western North America, where gains in subseasonal precipitation
anomaly pattern correlations are substantial. It is also found that tropical nudging is more effective at improving NH
subseasonal predictions in cases where skill is relatively low in the control reforecast, whereas it tends to improve fewer
cases that are already relatively skillful. By testing various tropical nudging configurations, it is shown that tropical circu-
lation errors play a primary role in the remote modulation of predictive skill. A time-dependent analysis suggests a roughly
1-week lag between a decrease in tropical errors and an increase in NH predictive skill. A combined tropical nudging and
conditional skill analysis indicates that improved Madden—Julian oscillation (MJO) predictions throughout its life cycle
could improve weeks 3—4 NH precipitation predictions.
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prediction/forecasting; Subseasonal variability

1. Introduction of model developments are needed in order to realize this
potential source of skill from the tropics.

The approach of nudging, or relaxation, is a well-known
strategy for investigating relationships between local and re-
mote forecast errors. Briefly, local forecast errors are attenu-
ated by nudging one or more prognostic variables toward
model analyses, or reanalyses, within a limited area, while
allowing the model to run freely everywhere else. Previous
studies have shown that nudging of the tropical belt improves
medium- to extended-range mean absolute errors in the mid-
latitudes, particularly over the North Pacific, North America,
and the North Atlantic (Ferranti et al. 1990; Jung et al. 2010a;
Jung 2011). Nudging has also been used to identify the tropical
origin of specific cases of forecast errors (Jung et al. 2010b;
Pohl and Douville 2011; Greatbatch et al. 2015). However,
because it is generally hard to separate the predictable versus
unpredictable sources of tropical error, it remains unclear as
how much extratropical skill can be gained in practice, as well
as what sort of model advancements are needed to realize such
potential gains. Motivated by this issue, the present work fur-
ther investigates the approach of tropical nudging, including its
limitations, by exploring sensitivities to choices about which
state variables are nudged, as well the region and duration over
which the nudging is applied.

The extent to which tropical sources of remote subseasonal
skill can be tapped remains unclear for a variety of reasons. For
one, there are well known differences in the limits of sub-
seasonal predictability in the tropics versus midlatitudes owing
to the differing types of weather that prevail in each region.
Weather disturbances in the extratropics are generally more
Corresponding author: Juliana Dias, juliana.dias@noaa.gov constrained by a balance between gravitational and rotational

Tropical-extratropical teleconnections provide pathways
for errors in global model forecasts at low and high latitudes to
interact in ways that can ultimately degrade prediction skill in
both regions at longer leads. Tropical-extratropical error re-
lationships can be understood through Rossby wave theory,
which shows how perturbations in upper-level tropical diver-
gence tend to cause Rossby wave energy propagation from low
to high latitudes (Hoskins and Karoly 1981; Sardeshmukh and
Hoskins 1988). The effects of disturbances initiated near the
equator take about 5-15 days to reach northern midlatitudes,
depending on the source location and the basic state (Hoskins and
Ambrizzi 1993; Newman and Sardeshmukh 1998; Branstator
2014). Local errors in the upper-level divergence field in the
tropics can thus spread from their source region by altering the
model’s Rossby wave response, which can then impact weather
predictions downstream. This theoretical expectation has been
verified in numerical weather prediction (NWP) systems,
which generally show that predictions of weeks 2—4 during
Northern Hemisphere (NH) winter are improved in the mid-
latitudes when tropical errors are reduced (Ferranti et al. 1990;
Hendon et al. 2000; Jung et al. 2010a; Dias and Kiladis 2019).
The present study applies tropical nudging to evaluate and
further characterize the relationship between tropical and ex-
tratropical subseasonal skill in the GFS, which is the medium
range global model of NOAA'’s Unified Forecast System
(UFS). The overarching goal is to better understand what types
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restoring forces (e.g., baroclinic waves). Under weaker rota-
tional effects and stronger insolation, tropical weather is more
dependent on moist convective processes, a main driver of
error growth (Selz and Craig 2015), and convectively coupled
organized disturbances (e.g., convectively coupled equatorial
waves, easterly waves and the MJO) emerge as the dominant
players on subseasonal time scales. Recent tropical predict-
ability studies based on cloud permitting models (Ying and
Zhang 2017; Judt 2019), with some support from theory and
observations (Li and Stechmann 2020), have suggested that
tropical synoptic- to planetary-scale variability is more pre-
dictable than has previously been thought. Given the existence
of tropical-extratropical teleconnections, this higher than ex-
pected tropical predictability suggests that we might not have
reached the upper limit on the amount of subseasonal skill in
the midlatitudes that can be drawn from the tropics, an idea
that can be explored through tropical nudging.

Even if these recent tropical predictability estimates are
overly optimistic, there is ample evidence that model ad-
vancements, particularly those dealing with the representation
of subgrid-scale processes related to clouds and precipitation,
can ultimately lead to more realistic simulations of organized
tropical variability (Chikira and Sugiyama 2010; Frierson et al.
2011; Park 2014; Bengtsson et al. 2019). The fact that such
improvements can, in turn, lead to improved tropical predic-
tions is by now well established. By replacing reanalysis with an
independent model prediction, tropical nudging experiments
can provide a pathway for a more practical estimate of if and/or
how much an improved model representation of tropical sub-
seasonal variability should translate to improved midlatitude
subseasonal predictions. This is potentially important at the
current state of UFS development where recent versions of
both medium and extended range predictions systems have
been shown to underperform in the tropics in comparison to
other state of the art prediction systems (Dias et al. 2018; Dias
and Kiladis 2019). In addition, implementing nudging within
the UFS could be useful for its development as it can be used
as a diagnostic tool for relating local and remote error inter-
dependencies when testing various model configurations.

While there are a large number of questions related to
tropical-extratropical skill interdependencies that could be
addressed with tropical nudging, here we focus on the nudging
implementation in the GFS and initial results addressing a few
practical questions:

1) Does tropical nudging applied to the GFS produce results
consistent with previous studies using other models?

2) Do improvements in remote skill seen in dynamical vari-
ables extend to subseasonal precipitation predictions?

3) Which tropical fields need to be nudged in order to reduce
remote errors, and where is nudging most effective?

4) How much of the remote error reduction originates from
concurrent versus time-lagged tropical nudging?

In addition to addressing the questions above, we present a
conditional skill analysis that tackles issues related to practical
predictability originating from the tropics, including the role
of the MJO on the high latitude error dependency. The set
of tropical nudging reforecasts presented here is viewed as
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comprising the initial steps necessary to design experiments
that more explicitly address such issues, as well as isolate what
types of model developments would be helpful or most effec-
tive in realizing these sources.

2. Methodology
a. Description of subseasonal reforecasts experiments

The model used here is the NOAA/NCEP GFS v.15.1.1,
which is an early version of NOAA’s Unified Forecast Systems
(UFS) that is currently used at NCEP for generating forecasts
out to day 14. The effects of air-sea coupling are neglected, and
all reforecasts are run out to day 30 at C128 resolution, which
corresponds to a roughly 0.7° X 0.7° horizontal grid with 64
vertical levels from the surface to 1 hPa. The treatment of the
lower boundary is the same as in operations, where the initial
sea surface temperature (SST) is taken from an analysis and
then anomalies about a daily annual climatology are damped
on a 90-day time scale. Details about the model formulation
can be found at https://www.emc.ncep.noaa.gov/emc/pages/
numerical_forecast_systems/gfs/implementations.php.

The focus of this study is on the extended NH cool season,
from November to April. A series of 30-day reforecasts are
generated once every 5 days, starting on 1 November of each
year for the 20-yr period 1999-2018. The total number of re-
forecasts is 620, with 31 reforecasts per season. The spacing of
5 days between reforecasts is chosen as a compromise between
computational/storage limitations and the need to adequately
sample the full range of initial states. The model output is re-
gridded to a 1° regular horizontal grid and all analyses are
performed using that grid. The impact of tropical forecast
errors is assessed by comparing a set of “free” reforecasts
without nudging, also referred to as “control” (CNT), against
several sets of tropical nudged reforecasts that are described
below and summarized in Table 1.

1) NUDGING AND INITIALIZATION

The current GFS data assimilation (DA) system adopts an
incremental analysis update (IAU) scheme, which was
originally developed for the NASA Global Modeling and
Assimilation Office (GMAO) GEOS model (Bloom et al.
1996) and is designed to reduce analysis-induced initial
shocks during the model forecast step of the assimilation
cycle. The IAU approach can be applied independently of
the data assimilation cycle by calculating increments based
on differences between a reanalysis dataset (as opposed to
the model’s own analysis) and a set of short-term forecasts.
We use the IAU to effectively nudge the model to ERA
interim reanalysis (Dee et al. 2011), as described below.

The TAU approach can be thought of as a refined form of
nudging, in which a series of time-independent analysis incre-
ments or “‘updates’ is applied to one or more of the model
state variables, as part of a cycled forecast integration. Here
the analysis increments (A7) are calculated generically as

Al =30 = O 6h}2 meAUN (1)


https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/implementations.php
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/implementations.php

SEPTEMBER 2021

DIAS ET AL.

2977

TABLE 1. Description of UFS reforecast datasets, where all reforecasts are initialized every 5 days with the same configuration,
except for the nudging setup (details in the text).

Short Nudged Extent of nudging Period (1 Nov- Forecast/nudging

name Type of reforecast variables region 31 Mar) length (days)
CNT Control free — — 1999-2018 30/—
WTR Wide tropical nudged u,v, T,p, q 30°S-30°N 1999-2018 30/30
WTRuv Wide tropical nudged u,v 30°S-30°N 1999-2018 30/30
WTRqT  Wide tropical nudged q, T 30°S-30°N 2016-18 30/30
NTR Narrow tropical u,v, T,p, q 20°S-20°N 1999-2018 30/30

nudged

WTRwk1l  Wide tropical nudged u,v, T,p, q 30°S-30°N 1999-2018 30/7
WTRwk2  Wide tropical nudged u,v, T,p, q 30°S-30°N 1999-2018 30/14

where f,,, = (t — 3h) corresponds to a model forecast initialized
3 h prior to the valid time ¢, and f,(¢) is the reanalysis field at ¢.
The increment is then applied as a forcing term to another 6 h
forecast cycle that is centered at time ¢ (following the reanalysis
output times) and is initialized from a ¢ — 3 h restart file. This
procedure is often referred to as “replay” (Orbe et al. 2017,
Takacs et al. 2018) and is repeated for every 6-h period cen-
tered on the reanalysis output times, as illustrated in the
schematic in Fig. 1.

Prior to generating the set of reforecasts, the model is first
initialized on 1 November of each year from the ensemble
mean of the Global Ensemble Forecast System (GEFSv12,
https://www.emc.ncep.noaa.gov/users/meg/gefsvl2/retros/),
which provides initial data on the cubed sphere grid of the
GFS v.15.1.1. A global nudged run is then performed from
1 November to 30 April, with model output saved every 6 h
for verification and restart files saved every 5 days, as initial
conditions for the set of reforecasts. Comparison of these

global nudged runs against the original ERAi data showed
only nominal differences for the fields of interest.

2) TROPICAL NUDGING FORMULATION

The tropical nudging experiments consist of repeating the
global replay cycle described in the previous section, except that
the Al are tapered to zero outside a specified latitudinal range
centered at the equator. Two tapering functions are used, one
where A = 1 from 10°S to 10°N for the wide tropical nudging
(WTR) and one where A = 1 from 5°S to 5°N for the narrow
tropical nudging (NTR). A hyperbolic tangent is used to smooth
A =1toA =0over20°in WTR and over 15°in NTR. The WTR
tapering function is identical to the tapering function used in
Jung et al. (2010a) where forecasts run free beyond 30°S/N. In
NTR, forecasts are free beyond 20°S/N. The motivation for
examining a narrower set up is to isolate the role of tropical
circulation errors, in contrast to the WTR, where errors in the
model’s subtropical circulation are also partially reduced.

0z 6Z 122 182 0z
forecast forecast
D—O
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FI1G. 1. Schematic of IAU approach to nudging (more details in the text).
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In addition to varying the width of the tropical nudging belt,
we also describe the impact of nudging different sets of model
variables. The specific sets considered are: [u, v, p, T, q], [u, v, p,
T], [u,v], and [T, q]. The first set is chosen because, in principle,
it should yield the ‘“‘best” representation of the tropics as
measured by the reanalysis. The second set enables more direct
comparisons to results from Jung et al. (2010a), where specific
humidity was not included in the relaxation scheme. It turns
out, however, that exclusion of ¢ in the GFS does not lead to
significant differences in remote skill in comparison to when g
is included, so results of this case are not reported. The third
set, winds only, is motivated by theoretical considerations of
the “Rossby wave source” (Sardeshmukh and Hoskins 1988),
which implies that the upper-level flow is a primary driver of
tropical error propagation from low to high latitudes. The final
set [T, q] is designed to contrast the winds-only set and spans
just two seasons for testing purposes, as discussed further be-
low. To address questions about the lag dependence of remote
skill on tropical forecast errors, two additional sets of refor-
ecasts are considered where tropical nudging is applied only
during the first week or first two weeks of the forecast, as de-
scribed further in section 3. The naming convention for each
reforecast dataset and brief descriptions are listed in Table 1.

b. Verification metrics

We use standard verification metrics such as mean absolute
errors (MAE), mean bias (BIAS), and anomaly pattern cor-
relation (APC). Differences in skill among the reforecasts are
assessed based on a random sampling method. Specifically, we
first randomly resample with replacement each reforecast
dataset 1000 times with a subsample size of 80% of the total
number of initial times (0.8 X 620 = 496), then we calculate
the skill metric of interest in each of these subsamples. The
reduced random sample size is somewhat arbitrary and is
done to account for the fact that nearby initializations are not
independent. We report the median skill over all random
realizations, as opposed to the mean to minimize the influ-
ence of outliers. Confidence intervals (CI) correspond to the
bounds defined as the 5th and 95th percentiles of the random
sample distribution. Differences in skill among experiments
are referred to as significant when the confidence intervals do
not overlap. Skill over particular spatial domains is defined as
the longitude and cosine-weighted latitude average. The APC
is also area weighted, and anomalies are defined as full fields
minus the forecast lead-dependent climatology. Climatology
is defined for each reforecast dataset as the mean fields over
the 20 realizations of each calendar day (every 5 days from
1 November to 31 March and 1999-2018) and for each lead
day (1-30).

3. Results
a. The impact of tropical nudging on zonal mean biases

According to linearized Rossby wave theory, both the mean
pattern and anomalies in the upper-level tropospheric circu-
lation play a role in the triggering, pathway, and propagation
characteristics of midlatitude Rossby waves originating from
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low latitudes (Hoskins and Karoly 1981; Sardeshmukh and
Hoskins 1988). Therefore, if tropical nudging affects the
model’s mean state, changes in remote skill cannot necessarily
be attributed exclusively to reduced errors in tropical sub-
seasonal variability. To investigate this issue we first analyze
how tropical nudging impacts the model’s zonal mean state as
function of lead time. Figure 2 illustrates that while week 1
upper-level zonal winds in all cases agree well with ERAI
(Fig. 2a), the NH subtropical jets in CNT week 4 tend to be
weaker than in ERAI, but stronger and closer to the equator in
WTR and NTR (Fig. 2b). In contrast, when only winds are
nudged, WTRuv week 4 NH subtropical jets tend to be weaker
than in CNT, and slightly shifted toward the equator. Another
difference in the zonal mean state can be seen in NTR week 4
Southern Hemisphere (SH) upper-level meridional winds. By
analyzing latitude-longitude mean bias maps (not shown), we
found that these differences in NTR meridional winds occur
primarily over subtropical South America.

The differences in the mean upper-level zonal winds are
consistent with the changes in the upper-level meridional
temperature gradient that are imposed by the tropical nudging
in NTR and WTR (red and blue curves, respectively, in
Figs. 2¢,d). Since pole to pole CNT upper-level temperatures
display a cold bias when compared to ERAI, the net effect of
nudging the model temperature to ERAI is to steepen the
meridional temperature gradient in the subtropics and thus,
strengthen the jets in both cases. In contrast to dynamical
variables, model precipitation biases (Figs. 2e,f) generally de-
velop earlier as illustrated by the week 1 averages. Comparing
the profiles in WTR and WTRuv shows that the primary effect
of nudging temperature and moisture in addition to winds is to
change the model’s tropical dry bias to a slight wet bias,
whereas the model’s midlatitude wet bias (CNT) remains
largely unaffected in all cases. Importantly, because winds near
the equator are very similar comparing WTR and WTRuv,
differences in remote skill between the two nudging cases are
likely related to differences in performance in the subtropics
rather than in the tropics, and this is discussed further below.

b. The impact of tropical nudging on mean absolute errors

From previous nudging studies (Ferranti et al. 1990; Jung
et al. 2010a; Jung 2011), we expect z500 MAE to be reduced
over the NH when nudging the tropics and this is verified in
Fig. 3a. The median MAE amplitude in all nudged reforecasts
is less than in the free reforecast (CNT), particularly beyond
week 2. This MAE attenuation also holds for precipitation
rates (Fig. 3b), upper-level geopotential, winds and tempera-
ture, precipitable water and low level specific humidity (not
shown). In the previous studies cited above, this systematic
error reduction has been interpreted as indicating the potential
for improving extended range NH predictions by reducing
tropical errors. Figure 3b shows that nudging the tropics to re-
analysis also lead to a decrease in weeks 2—4 precipitation errors
in regions remote to the tropics. Figure 3 also illustrates how
NH MAE varies depending on how the tropics are nudged. For
instance, while errors are reduced less when nudging is applied
to a narrower tropical region, the amount of error reduction in
WTR and WTRuv is similar for both z500 and precipitation.
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FIG. 2. Depiction of upper-troposphere (200 hPa) longitudinal averages of (a),(b) zonal and (c),(d) meridional
winds, (e),(f) temperature, and (g),(h) mean precipitation rates. Averages including all initializations from
November to March and reforecast lead days (left) 1-7 and (right) 22-28. ER Ai averages match the reforecast valid

times. Line color labels correspond to the experiments described in Table 1.

We have tested tropical nudging of only temperature and
specific humidity with the WTR tapering and over a shorter
period (the latest two seasons, not shown), which shows that
errors are reduced more than in NTR, but not as much as in
WTR and WTRuv. Taken together, these results support a
stronger kinematic rather than thermodynamic link between
tropical and NH midlatitude errors, consistent with expecta-
tions based on Rossby wave theory.

The first row in Fig. 4 displays maps of z500 MAE in CNT at
weeks 1, 2, 3 and 4, which show that MAE increases most
rapidly during weeks 1-2, with the largest values occurring at
higher latitudes, as expected. Maps of the percent difference in
MAE with respect to CNT in the nudged runs are plotted in
Figs. 4e-41, where the percent difference is calculated as:
AMAE = 100 X (MAEnup — MAEcnT)/MAECNT. Extensive
homogeneous regions with MAE amplitudes larger than 40%
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are shown in light gray, which roughly correspond to the
tropical nudging zone. Maps of AMAE show that while errors
are reduced in most regions outside the nudging region, MAE
reductions are larger over the Northeast Pacific-western
United States sector in the three cases displayed. It also
appears that tropical nudging applied to winds only introduces
a mass imbalance within the nudging region since the z500
AMAE is uniformly increased there. However, this imbal-
ance does not have a strong remote imprint in the midlati-
tudes since WTR and WTRuv patterns are roughly similar.
In contrast, at higher latitudes over East Asia, WTR and
NTR are associated with an increase in AMAE that is not
seen in WTRuv. Tropical nudging is not necessarily expected
to reduce MAE everywhere because nudging affects the
model’s basic state (Fig. 2), and tropical-extratropical tele-
connections are not uniform around the globe. In particular,
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FIG. 3. The median MAE over the entire reforecast period and
averaged from 35° to 55°N for geopotential height at (a) 500 hPa
(z500) and (b) precipitation. The line color labels displayed in the
legend correspond to the experiments described in Table 1.
Shading displays the CI as described in the text.

by potentially distorting weather systems that move in and out
of the nudging region, predictions of the remote response could
be deteriorated.

The large-scale patterns where MAE is reduced are in
qualitative agreement when comparing precipitation (Fig. 5)
and z500. However, precipitation AMAE amplitude as well as
the extent of the areas where differences are significant tend to
be smaller. A remote region that stands out is the western
United States where significant week 2-4 MAE reductions
peaking around 30%-40%, with MAE decreases seen even in
the NTR case. These results support the interpretation that
reducing tropical forecast errors improves week 2—4 precipi-
tation skill over the western United States, as discussed further
below. Perhaps related to the tropical imbalance seen in z500,
WTRuv MAE is slightly increased over the central United
States, but not in WTR or NTR. While not the focus of the
current work, we also note that precipitation weeks 3-4 MAE
are significantly reduced along the South Pacific and Atlantic
convergence zones, as well as over the southern Indian Ocean.
These “‘cloud band” locations are well removed from the
nudging region, and are known regions of significant tropical—
extratropical interactions in the Southern Hemisphere. We
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also note that verification against satellite estimates of pre-
cipitation as opposed to reanalyses indicate similar patterns of
AMAE, except that amplitudes are attenuated (not shown).

c¢. The impact of tropical nudging on anomaly pattern
correlations

To further evaluate the impact of tropical nudging in pre-
dictions of the remote response, differences in the predicted
anomaly patterns are assessed using APC. The APC is calcu-
lated within 35°-35°N and two longitudinal sectors: 180°—45°W
(sector 1) for z500 and 125°-85°W for precipitation (sector 2,
also referred to as the “‘western United States”). The extended
longitudinal sector used for z500 is motivated by its larger-scale
patterns in comparison to precipitation, whereas the narrower
sector used for precipitation is chosen because the western
United States is both an important region for socioeconomic
reasons and a region where MAEs remain substantially re-
duced over the northern midlatitudes. We note that the main
conclusions are qualitative similar when using APC within 35°
and 55°N with all longitudes included. As seen with MAE,
week 2-4 NH APC tends to improve when tropical nudging is
applied, which is illustrated in Fig. 6 for z500 and precipitation.
This improvement is also found for anomaly patterns in upper-
level winds, temperature and geopotential, as well as for pre-
cipitable water and specific humidity at 850 hPa (not shown).
The difference between nudging all variables or winds only is
negligible (blue and green bars), whereas the narrower tropical
nudging region is associated with a smaller APC increase (red
bars). The vertical black lines demonstrate that, based on the
random resampling method described earlier, the changes in
7500 week 2-4 APC between CNT and tropical nudged cases
tend to be significant, and that is also the case for precipitation,
with generally larger relative increases at longer lead times.
Week 2 precipitation APC is an exception, where the slight
APC increases in the nudged cases are not significant.

Histograms of weekly APCs (Fig. 7) show that tropical
nudging is associated with changes in remote skill that extend
well beyond the positive shift in the median shown in Fig. 6.
Specifically, APC histograms are more left-skewed, with
higher APC values more frequent when comparing tropical
nudged to the CNT reforecasts. The increase/decrease in
percentage of reforecasts with higher/lower skill is particu-
larly noticeable during weeks 3 and 4 for WTR and WTRuv.
Comparison of MAE histograms are analogous in the sense
that tropical nudged cases are more right-skewed than in
CNT (not shown). This result suggests that reducing tropical
forecast errors might lead to an increase in the probability of
having a skillful subseasonal forecast over sectors 1 and 2.
These shifts are also seen when APC is calculated over all
longitudes, although they are less pronounced in global
precipitation.

The APC scatterplots shown in Fig. 8 demonstrate that
tropical nudging does not always lead to improved remote
predictive skill. The reforecasts marked by symbols lying below
the black diagonal line are cases where APC is deteriorated by
the nudging, and vice versa for reforecasts marked by symbols
lying above the black diagonal. The distance between dashed
lines corresponds to one standard deviation of the CNT APC,
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FIG. 4. (a)-(d) The z500 CNT MAE (m) for weeks 1-4, respectively. (e)—(p) As in (a)-(d), but for the MAE percentual difference
(AMAE defined in the text) for WTR in (e)-(h), WTRuv in (i)—(1), and NTR in (m)—(p). Blue (red) shading denotes regions where errors
are reduced (increased) in comparison to CNT. Regions where the amplitude of AMAE is larger than 45% are shaded gray and contoured
with lines starting at 100% at 100% intervals. The gray symbols correspond to regions where the AMAE is not significantly different

than zero.

and this is used as a rough estimate of the relative change in
skill due to nudging in comparison to the expected spread in
the free running forecasts. The darker symbols correspond to
the median WTR/WTRuv/NTR APC within bins of the CNT
APC showing that, more often than not, tropical nudging is
associated with an increase in z500 APC over sector 1 and
precipitation over sector 2, but there is certainly considerable
spread in how much tropical nudging changes in comparison to
CNT. A similar conclusion applies to APC extending over all
longitudes and for other variables, and also for similar MAE
scatterplots. An analogous depiction of week 1 shows symbols
lying close to the diagonal suggesting that week 1 APC is not
systematically shifted by tropical error reduction, a result in
line with previous studies regarding the lag in the response to
tropical forcing (Branstator 2014; Dias and Kiladis 2019). It is
interesting that a CNT reforecast that has poor NH skill is
more likely to be improved when tropical errors are reduced
than a case where CNT APC is relatively good. The fact that
the median nudged APC tends to lie close to the diagonal line
when the CNT APC is larger implies that tropical nudging has
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less of a systematic positive impact on reforecasts that are al-
ready skillful. By week 3—4 there is some indication that, par-
ticularly for NTR, high CNT APC are lowered when applying
tropical nudging; however, sample sizes are small at those
ranges of CNT APC (see histograms in Fig. 7), therefore the
significance of those median values is less clear.

The analogous APC scatter when all longitudes are included
is qualitatively similar, and so is the SH APC scatter, except
that median APC changes there tend to be less, with larger
spread. The fact that WTR and WTRuv median APC’s are
similar, with NTR suggesting only slightly smaller shifts, im-
plies that the changes in zonal mean state seen in Fig. 2 do not
play a major role on how each tropical nudging formula-
tion impacts remote predictive skill. While week 4 APCs
are an exception, where there is more separation among
WTR/WTRuv/NTR APCs, those results are harder to interpret
because the version of the GFS here is not specifically tuned for
its performance beyond week 2, as shown by the very low CNT
APC. Similarly, because GFS weeks 3 and 4 precipitation skill
is on average low, it is not clear that the potential increases
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FIG. 5. As in Fig. 4, but for precipitation rate. The red box in (a) corresponds to sector 1 and the black box to sector 2, as defined in
section 3c.

associated with the tropics would lead to useful skill, or more
reliable predictions at those lead times.

d. The lagged response between tropical and extratropical
errors

Aside from the lack of realism of a global prediction system
where tropical predictions are nearly “perfect’” throughout the
forecast cycle, another limitation of tropical nudging is that
remote errors could be reduced due to a “forced boundary
effect” rather than because of an improved representation of
the tropical source of midlatitude weather (e.g., the Rossby
wave source). One indication that the former might be im-
portant is that the nudged median APCs tend to be constant
when CNT APCs are below zero (Fig. 8). Said differently,
because the northern edge of the nudging region carries in-
formation from both tropics and extratropics, the improved
skill in cases that are otherwise not skillful might simply be a
consequence of the fact that we are effectively weakly forcing
the model with ‘‘realistic”” information (reanalysis) at the lat-
itudinal boundary between nudged and free forecasts, analo-
gous to predictions based on regional models. Counter to this
argument, the NTR setup indicates that tropical forecast errors
might be the primary source of the change on weeks 2 and 3
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because the NTR ““boundary” is farther from the subtropics
and we still observe an increase in remote APC that is com-
parable to WTR and WTRuv.

To test the role of concurrent nudging at the boundary as a
potential driver of the improved remote skill, we generated two
additional sets of reforecasts that are analogous to WTR, ex-
cept that tropical nudging is switched off at day 7 (WTRwk1)
and day 14 (WTRwk2). Upper-level zonal and meridional wind
APCs within the tropics (Figs. 9a,b) illustrate the approach
where, by design, correlation coefficients are nearly one
throughout the forecast cycle in WTR as well as for WTRwk1
out to day 7 and WTRwk2 out to day 14. Comparison of the
evolution of median z500 and precipitation APC over the NH
extratropics in these cases points to a lag in the remote skill
response to tropical nudging of about 4-5 days (Figs. 9c,d).
Specifically, WTR, WTRwk1l and WTRwk2 yield median
APC values that are not significantly different from CNT out
to day 4-5 (gray lines), and from then on WTRwk1 and
WTRwk2 APC are statistically lower than WTR’s about
4-5 days after tropical nudging is switched off. The precise
number of days is dependent on the variable and also the
region where the APC is calculated, but tends to fall in the
synoptic range of 3-8 days (not shown), again, consistent with
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FIG. 6. (a) Sector 1 median APC for 500-hPa geopotential
heights and (b) sector 2 APC for precipitation. Vertical bars cor-
respond to the experiments defined in Table 1: CNT (gray), WTR
(blue), WTRuv (green), and NTR (red). The vertical lines centered
at the top of each bar display the 95% CI of the corresponding
median APC value.

the time Rossby waves forced from the tropics take to reach
midlatitudes (Branstator 2014).

The scatterplots in Fig. 10 are similar to the ones in Fig. 8,
except that they compare WTR, WTRwk1 and WTRwk2. The
nearly overlapping symbols on week 2 for both z500 and pre-
cipitation imply that the changes in remote APC at week 2 are
primarily related to error reductions prior to that week, sug-
gesting that the concurrent nudging is not playing a major role
in the tendency for APC to increase in the WTR runs. A similar
conclusion can be drawn from comparing WTR and WTRwk2
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symbols for week 3 scatter (middle column). By week 4, there is a
clear separation between the median WTR and WTRw1/WTRwk2
APCs; however, particularly for z500, WTRwk1 and WTRwk2 still
show an improvement in comparison to CNT and when CNT APC
values are less than zero. That could be because week 2-3 tropical
circulation in WTRwk1 and WTRwk?2 are improved in comparison
to CNT (Figs. 9a,b) even though tropical nudging is applied only out
to weeks 1 and 2, respectively.

The comparison between WTR, WTRwk1l and WTRwk2
strongly suggests that the concurrent effect of the boundary
forcing plays only a minor role in the changes in remote skill.
We note that a similar conclusion applies to potential concerns
regarding errors introduced due to wave distortion at the
nudging boundary. Overall, these results provide evidence of a
synoptic lag between error reductions in the tropics and extra-
tropics that is consistent with the Rossby wave mechanism un-
derlying the tropical-extratropical prediction error relationship.
One implication is that a model development that leads to im-
proved week 1 tropical predictions is beneficial for week 2 NH
cool season predictions, as well as for the subsequent weeks.

e. Tropical to extratropical conditional skill

As mentioned in the introduction, the issue of practical
subseasonal predictability originating from the tropics is diffi-
cult to address with nudging experiments as applied here be-
cause all tropical predictions are kept skillful, regardless of any
intrinsic predictability barriers. The question of how much
remote skill can be gained from the tropics in practice is par-
tially addressed in Dias and Kiladis (2019) where a conditional
analysis was applied to subseasonal reforecasts to evaluate
the relationship between tropical and extratropical predictive
skill. Their results showed how reforecasts that perform well
(poorly) in the short range over the tropics tend to perform
better (worse) than average in the medium to extended range
over the NH. This relationship is reproduced here for the GFS
CNT following a similar approach as in Dias and Kiladis
(2019). We first split reforecasts in two subsets: one where day
2-5 CNT APC from tropical (20°S-20°N) divergence at 200 hPa
(D200) is above its upper tercile (‘“good tropical forecast”),
and a second one where the same APC is below its lower tercile
(“poor tropical forecast””). We then calculate the median NH
(35°-55°N) CNT precipitation APC as a function of lead day in
each of these subsets. The NH APC median values are com-
pared to the median NH APC from random subsamples drawn
from the entire reforecast period. The random subsampling is
done 1000 times using 1/3 of the total number of reforecasts,
which is consistent with the tercile thresholds used to define the
cases where the tropical performance is good versus poor. The
NH precipitation APC normalized difference D between these
sets of reforecasts is defined as

AP — (AP
D =100 X Ccond ( Crnd>

(APC_ )

) @

where APC,,q is the conditional (good or poor tropical per-
formance) median NH precipitation APC and (APC,4) is
similar, except that we averaged the median APC over the
1000 random subsamples. The symbols in Fig. 11 highlight lead
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F1G. 7. (a)-(c) Histograms of sector 1 weekly 500-hPa geopotential height and (d)—(f) sector 2 precipitation APCs, using the entire
reforecast period. The ticked gray lines correspond to CNT, and thinner colored lines correspond to tropical nudging APC, where the
color convention is the same as in previous figures (blue, green, and red correspond to WTR, WTRuv, and NTR, respectively). Bin size is

0.2 with tick marks placed at every other bin center.

times where the sign of D is statistically significant. The sign
significance is defined as lead times where 90% of the nor-
malized differences using each APC,, as opposed to the av-
erage, agree in sign. While the significance test could be
done in many different ways, the method here illustrates
how even large values of D are not necessarily significant
because at longer lead times the denominator in Eq. (2)
becomes very small.

The NH weeks 2-3 positive/negative D values (blue/red
bars) displayed in Fig. 11a imply that when the week 1 upper-
level tropical divergent flow prediction is better (worse) than
the median, then subsequent GFS precipitation predictions
tend to perform above (below) average in the northern mid-
latitudes with a lag of about one week. This result is consistent
with what was found for the two prediction systems studied in
Dias and Kiladis (2019). However, as it was the case in Dias
and Kiladis (2019), it is unclear how much of this relationship
can be attributed to model errors versus an initial state de-
pendence. The tropical nudging reforecasts allow us to inves-
tigate this issue, by comparing the conditional skill of the
nudged realizations of the “good” versus “poor”” CNT refor-
ecasts. That is, if the improved or degraded precipitation skill
seen at a lead-lag in Fig. 11a were solely a consequence of the
initial conditions, then the corresponding WTR reforecasts
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should show the same behavior on average as their CNT
counterparts. Conversely, if the changes in conditional skill at a
lead-lag were instead due solely to model errors in the tropics,
then the WTR conditional APC should show no statistical
difference between the good/poor and random subsets because
the WTR realizations are “‘perfect” in the tropics, by design.
Figure 11c suggests a mix of these two possible scenarios, while
emphasizing the likely role of model errors. The amplitudes of the
normalized differences in the nudged realizations are generally
smaller and less significant, indicating that model errors are in-
deed important in the linkage between tropical and extratropical
skill. However, the signs of the D values are systematic and con-
sistent with CNT, which suggests some influence of the initial
state. This behavior is similar to what is seen in the WTRwk1 case
shown in Fig. 11e, further emphasizing the lagged linkage between
tropical and extratropical predictions. When using upper-level
divergence as our metric of tropical performance, WTRuv,
WTRwk2 and NTR yield similar conclusions (not shown).

The conditional analysis based on upper-level divergence
indicates that model advancements resulting in improved week
1 predictions of tropical upper-level divergence circulation
would be beneficial for week 2 NH precipitation predictions.
Interestingly, this same statement does not appear to hold true
when considering tropical predictions of lower-level divergence
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FIG. 8. (a)-(f) Light colored symbols denote the scatter of weekly western U.S. APC between CNT APC (x axis) and tropical
nudging APC (y axis), where each light colored symbol denotes one reforecast initialized during the analyzed period. The dark colored
symbols depict the median tropical nudged APC within bins of CNT APC. The bin width is 0.2, and bins are centered in 0.1 intervals from
—1 to 1. The color convention is the same as in previous figures (blue, green, and red correspond to WTR, WTRuv, and NTR, respec-
tively). Each panel is zoomed to tightly display all 620 reforecasts. Symbols lying on the slanted line indicate reforecasts where the APCis
unchanged by tropical nudging. Vertical and horizontal lines highlight zero APC. The distance between the dashed lines corresponds to
one CNT APC standard deviation for the corresponding forecast lead and variable.

(not shown) or upper-level vorticity. The right column in Fig. 11 are a number of studies that point to the MJO as a practical
shows that using 200-hPa vorticity as the metric for “good” versus  source of tropical and extratropical subseasonal predictability
“poor” tropical reforecasts yields no significant separation in re-  (Schreck et al. 2020 and references therein). Tropical nudging
mote performance at lag for any of the cases considered. These  experiments can also be useful in revealing some aspects of the
results are found to be unchanged when expanding the tropical role of the MJO in tropical-extratropical error interdepen-
APC area from 20°S-20°N to 30°S-30°N, or when separating the  dencies because, in contrast to CNT, in WTR the MJO is by
reforecasts based on the APC in NH subtropical bands (not design well represented throughout its life cycle. To illustrate,
shown). Because tropical-extratropical teleconnections originate  here we apply a similar conditional skill analysis as shown in
with tropical precipitation systems that are the primary drivers of  the previous section, except that we split reforecasts depending
upper-level divergent flows in the tropics and subtropics, these  on the MJO amplitude at initial reforecast time. To focus on
results point to the well-known need for improving the repre- the MJO convective signal, the metric used for MJO amplitude
sentation of moisture—convection—circulation coupling in the is the OLR MJO index (OMI) (Kiladis et al. 2014), which
tropics (Wolding et al. 2020a,b). was obtained from https://www.psl.noaa.gov/mjo/mjoindex/.
Active/neutral/inactive MJO subsets are defined depending on
OMI terciles for the period of November-March and 1999-
2018. One question that this conditional analysis allows us to

While the role of tropical synoptic waves as deterministic  investigate is whether the effectiveness of tropical nudging in
sources of tropical predictability are more uncertain, there increasing NH precipitation APC depends on the initial state

4. MJO dependence of remote skill
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FIG. 9. (a) Tropical zonal and (b) meridional 200-hPa wind APCs. (c),(d) As in (a) and (b), but for midlatitude
7500 and precipitation. The latitudinal bands are displayed in the panel titles. The gray lines correspond to CNT
median APC, and the blue lines correspond to WTR (solid), WTRwk1 (dashed), and WTRwk2 (dash-dotted). The
gray vertical lines highlight the earliest lead time where the tropical nudged APC is larger than CNT. From left to
right, the blue vertical lines mark the earliest lead time where WTR APC is statistically larger then WTRwk1 and

WTRwKk2, respectively.

of the MJO. Figure 12a shows that, regardless of tropical nudging,
the median weeks 2-3 NH precipitation CNT APCs tend to in-
crease with initial MJO amplitude. Figure 12b shows that the
absolute difference between WTR and CNT APC is positive and
increases with lead time, independently of MJO amplitude. The
only statistically significant difference is seen at week 4, where
WTR shows a larger enhancement in APC with increasing MJO
amplitude at initial time. Figure 12c indicates that most of the
improvements in APC comparing WTR to CNT and any poten-
tial MJO modulation at week 4 largely rely on the tropical
nudging being applied throughout the entire forecast cycle.
Figure 13a is similar to Fig. 11a, except that the vertical
bars correspond to normalized differences of APC (D) using
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MJO active (blue) and inactive (red) as defined above. The
increase/decrease in conditional skill with MJO activity is
consistent with Fig. 12a because, aside from the normalization,
the only difference is that we calculated APC on weekly av-
eraged fields as opposed to daily. Note that when the MJO is
inactive at initial time, week 2-3 NH precipitation APC is
substantially reduced in comparison to random initializations.
Comparing CNT (Fig. 11a) to WTR (Fig. 11b) shows that when
the MJO is active and the tropics are nudged, remote skill is
improved by a comparable amount on week 2 as in CNT, but it
is also improved out to week 4. We note that APC here is based
on all longitudes from 35° to 55°N, but when looking at dif-
ferent sectors and MJO phases, the lead time and amplitude of
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FIG. 10. As in Fig. 8, but the blue symbols correspond to WTR (circles), WTRwk1 (asterisks), and WTRwk2 (crosses).

those modulations varies (not shown). When the MJO is in-  the longer lead times, ENSO is certainly expected to play an
active and the tropics are nudged weeks 2-3 remote skill isnot  important role on how tropical forecast errors propagate to
nearly as reduced as in CNT. Figure 11c suggests that nudging  higher latitudes.
only week 1 in the tropics does not affect MJO related changes
in subsequent lead times in comparison to CNT. Perhaps
because the MJO in the GFS has a reasonable amount of skill
in week 1, realizing remote improvements in week 2 sug- The tropical nudging experiments presented here dem-
gested by Figs. 11c and 11e might rely on other sources of onstrate that GFS subseasonal NH predictions during the
week 1 tropical predictability apart from the MJO, for ex- winter are improved when tropical forecast errors are re-
ample, the other convectively coupled equatorial waves. In  duced, with results broadly consistent with previous similar
contrast, at longer lead times (week 3—4) it is possible that an  experiments applied to other NWP systems. A number of
improved MJO would lead to improvements in remote skill.  sensitivity tests are performed supporting the interpretation
A thorough analysis of the role of the MJO in tropical to that much of the tropical to extratropical subseasonal
extratropical skill linkages, including seasonality, and MJO  forecast error is rooted to errors in the tropical atmospheric
phase dependences would likely be very insightful, but is circulation, which is, in turn, known to be strongly coupled
beyond the scope of the present manuscript. to moist convection. In addition to reductions in remote
Regarding El Nifio-Southern Oscillation (ENSO), we first dynamical field errors, both MAE and APC analysis indi-
note that most reforecasts in the analyzed period correspond to  cate the potential for week 2—4 precipitation predictions to
weak to moderate La Nifia conditions, where reforecasts ini- be improved by reducing forecast errors in the tropics.
tialized during strong El Nifio are primarily coming from the  Specifically, by fully nudging the tropics to reanalysis from
2015/16 season. This sampling distribution bias makes it diffi- 10°S to 10°N with no nudging beyond 30°S/30°N, weeks 2—4
cult to untangle any potential skill modulation related to precipitation predictions are improved by as much as 40 % in
ENSO phases and, therefore, a conditional analysis similar to  some portions of the western United States. This remote skill
the MJO did not produce robust or conclusive results. This improvement is only about 15%-20% weaker when fully
issue also merits further investigation because, particularly at  nudging only 5°S-5°N, with no nudging beyond 20°S/20°N, once

5. Summary and conclusions
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gence and (right) vorticity. Symbols are plotted when the sign of D is statistically significant. Brown bars denote

lead times where red and blue bars are overlaid.

again, highlighting the role of the deep tropics in driving extra-
tropical circulation.

Interestingly, tropical nudging is more effective at improving
predictions of the remote response is cases when the free
reforecasts (CNT) are not skillful, whereas there is less of a
systematic impact on reforecasts that are already skillful. This
behavior is seen even when nudging is switched off at the end of
week 1 or 2 (WTRwk1/WTRwk2), again indicating that the
remote skill response does indeed originate from within the
tropics. One interpretation of the differences in how effective
tropical nudging is depending on the skill of the NH CNT
prediction is that current GFS week 24 skillful forecasts do
not strongly draw skill from the tropics, and, therefore, week 2—
4 NH predictions would be skillful more often if tropical
forecasts errors were reduced. This comes with the caution that
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the extent to which the decrease in tropical errors and subse-
quent gain in remote skill is achievable remains an open
question, which could be further investigated, for example, by
linking these modulations to known subseasonal tropical—
extratropical teleconnection patterns (Stan et al. 2017).
Toward the practical goal of better understanding how much
remote subseasonal skill can be gained from the tropics, we
presented a conditional skill analysis. This analysis in conjunction
with the week 1 or week 1-2 only nudging reforecasts, suggests that:

1) During NH winter, there is a lag of about one week between
tropical forecast error growth and NH precipitation predic-
tion skill; therefore, a model development that is beneficial
for a given forecast range in the tropics will likely have a
positive imprint on the following week’s NH predictions.
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F1G. 12. (a) The weekly precipitation APC averaged over all
longitudes and 35°-55°N split according to MJO amplitude at ini-
tialization (details in the text). (b) As in (a), but that the difference
between WTR and CNT APC is displayed. (c) As in (b), but for
WTRwk1. The CIs displayed in (b) and (c) (vertical bars) are
calculated using the same resampling method described in the text
and denote that 90% of the median APC differences between MJO
conditional and random subsamples fall within that range.

2) Tropical forecast errors in upper-level divergent circulations
are of primary importance in the modulation of remote
errors, and based on previous studies those errors are likely
to be rooted in model deficiencies related to moisture—
convection—circulation coupling.

The conditional analysis does not directly address the issue
of practical predictability that originates from the tropics be-
cause, in nudging experiments, all tropical forecasts are made
equally skillful. That being said, studies such as Wang et al. (2019);
Bengtsson et al. (2019, 2021) have shown that advancements in
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F1G. 13. As in Figs. 11a,c,e, but reforecasts subsets are based on
MIJO amplitude at initialization where blue (red) bars correspond

to normalized APC difference [D, defined in Eq. (2)] for cases
where the MJO is active (inactive) at initialization.

the GFS model physics, and particularly those related to con-
vective parameterizations, lead to improved week 1 tropical
skill, which, in turn, tropical nudging suggests should lead to
improved NH week 2 predictions. Because synoptic-scale
convective variability in the tropics (e.g., Kelvin and easterly
waves) is intermittent and localized, the linkage between
tropical convection organization, beyond the MJO, to the po-
tential boosts in remote skill estimated from the tropical
nudged reforecasts might not be entirely realizable. This is a
crucial issue that could be investigated by filtering and or in-
troducing noise to the fields we nudge to. Because different
GFS physics packages are currently being developed and
tested, remote changes in predictions originating from the
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tropics could also be tested by nudging the tropics to forecast
target fields from different GFS versions. For example, if a
particular model configuration performs better in the tropics,
tropical nudging could be applied to the operational configu-
ration using the better performing forecasts as the fields that
are nudged to. A similar analysis as presented here would then
allow an estimate of how much remote skill is gained from the
tropics in isolation. We are currently working on the design and
implementation of some of these alternative types of nudging
experiments, and those results will be reported in the future.

In summary, as is the case in previous tropical nudging
studies, the present work offers potential upper bounds on
how much midlatitude subseasonal remote skill might be
tapped from low latitudes. In addition, we hope to have dem-
onstrated that tropical nudging is a productive diagnostic tool
that can be beneficial to better characterize sources of tropical
model errors, and which modes of tropical variability are im-
portant for NH subseasonal predictions. This diagnostic aspect
of tropical nudging is particularly useful in the current stage of
the UFS development (see https://ufscommunity.org/) because
it might guide what types of model developments in the
tropics are the most effective in improving remote sub-
seasonal predictions.
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