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ABSTRACT: A set of 30-day reforecast experiments, focused on theNorthernHemisphere (NH) cool season (November–

March), is performed to quantify the remote impacts of tropical forecast errors on the National Centers for Environmental

Prediction (NCEP)Global Forecast System (GFS). The approach is to nudge themodel toward reanalyses in the tropics and

thenmeasure the change in skill at higher latitudes as a function of lead time. In agreement with previous analogous studies,

results show that midlatitude predictions tend to be improved in association with reducing tropical forecast errors during

weeks 2–4, particularly over the North Pacific and western North America, where gains in subseasonal precipitation

anomaly pattern correlations are substantial. It is also found that tropical nudging is more effective at improving NH

subseasonal predictions in cases where skill is relatively low in the control reforecast, whereas it tends to improve fewer

cases that are already relatively skillful. By testing various tropical nudging configurations, it is shown that tropical circu-

lation errors play a primary role in the remote modulation of predictive skill. A time-dependent analysis suggests a roughly

1-week lag between a decrease in tropical errors and an increase in NH predictive skill. A combined tropical nudging and

conditional skill analysis indicates that improved Madden–Julian oscillation (MJO) predictions throughout its life cycle

could improve weeks 3–4 NH precipitation predictions.

KEYWORDS:Atmosphere; Extratropics; NorthernHemisphere; Tropics; Teleconnections; Hindcasts; Numerical weather

prediction/forecasting; Subseasonal variability

1. Introduction

Tropical–extratropical teleconnections provide pathways

for errors in global model forecasts at low and high latitudes to

interact in ways that can ultimately degrade prediction skill in

both regions at longer leads. Tropical–extratropical error re-

lationships can be understood through Rossby wave theory,

which shows how perturbations in upper-level tropical diver-

gence tend to cause Rossby wave energy propagation from low

to high latitudes (Hoskins and Karoly 1981; Sardeshmukh and

Hoskins 1988). The effects of disturbances initiated near the

equator take about 5–15 days to reach northern midlatitudes,

depending on the source location and the basic state (Hoskins and

Ambrizzi 1993; Newman and Sardeshmukh 1998; Branstator

2014). Local errors in the upper-level divergence field in the

tropics can thus spread from their source region by altering the

model’s Rossby wave response, which can then impact weather

predictions downstream. This theoretical expectation has been

verified in numerical weather prediction (NWP) systems,

which generally show that predictions of weeks 2–4 during

Northern Hemisphere (NH) winter are improved in the mid-

latitudes when tropical errors are reduced (Ferranti et al. 1990;

Hendon et al. 2000; Jung et al. 2010a; Dias and Kiladis 2019).

The present study applies tropical nudging to evaluate and

further characterize the relationship between tropical and ex-

tratropical subseasonal skill in the GFS, which is the medium

range global model of NOAA’s Unified Forecast System

(UFS). The overarching goal is to better understandwhat types

of model developments are needed in order to realize this

potential source of skill from the tropics.

The approach of nudging, or relaxation, is a well-known

strategy for investigating relationships between local and re-

mote forecast errors. Briefly, local forecast errors are attenu-

ated by nudging one or more prognostic variables toward

model analyses, or reanalyses, within a limited area, while

allowing the model to run freely everywhere else. Previous

studies have shown that nudging of the tropical belt improves

medium- to extended-range mean absolute errors in the mid-

latitudes, particularly over the North Pacific, North America,

and the North Atlantic (Ferranti et al. 1990; Jung et al. 2010a;

Jung 2011). Nudging has also been used to identify the tropical

origin of specific cases of forecast errors (Jung et al. 2010b;

Pohl and Douville 2011; Greatbatch et al. 2015). However,

because it is generally hard to separate the predictable versus

unpredictable sources of tropical error, it remains unclear as

how much extratropical skill can be gained in practice, as well

as what sort of model advancements are needed to realize such

potential gains. Motivated by this issue, the present work fur-

ther investigates the approach of tropical nudging, including its

limitations, by exploring sensitivities to choices about which

state variables are nudged, as well the region and duration over

which the nudging is applied.

The extent to which tropical sources of remote subseasonal

skill can be tapped remains unclear for a variety of reasons. For

one, there are well known differences in the limits of sub-

seasonal predictability in the tropics versus midlatitudes owing

to the differing types of weather that prevail in each region.

Weather disturbances in the extratropics are generally more

constrained by a balance between gravitational and rotationalCorresponding author: Juliana Dias, juliana.dias@noaa.gov
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restoring forces (e.g., baroclinic waves). Under weaker rota-

tional effects and stronger insolation, tropical weather is more

dependent on moist convective processes, a main driver of

error growth (Selz and Craig 2015), and convectively coupled

organized disturbances (e.g., convectively coupled equatorial

waves, easterly waves and the MJO) emerge as the dominant

players on subseasonal time scales. Recent tropical predict-

ability studies based on cloud permitting models (Ying and

Zhang 2017; Judt 2019), with some support from theory and

observations (Li and Stechmann 2020), have suggested that

tropical synoptic- to planetary-scale variability is more pre-

dictable than has previously been thought. Given the existence

of tropical–extratropical teleconnections, this higher than ex-

pected tropical predictability suggests that we might not have

reached the upper limit on the amount of subseasonal skill in

the midlatitudes that can be drawn from the tropics, an idea

that can be explored through tropical nudging.

Even if these recent tropical predictability estimates are

overly optimistic, there is ample evidence that model ad-

vancements, particularly those dealing with the representation

of subgrid-scale processes related to clouds and precipitation,

can ultimately lead to more realistic simulations of organized

tropical variability (Chikira and Sugiyama 2010; Frierson et al.

2011; Park 2014; Bengtsson et al. 2019). The fact that such

improvements can, in turn, lead to improved tropical predic-

tions is by nowwell established. By replacing reanalysis with an

independent model prediction, tropical nudging experiments

can provide a pathway for amore practical estimate of if and/or

how much an improved model representation of tropical sub-

seasonal variability should translate to improved midlatitude

subseasonal predictions. This is potentially important at the

current state of UFS development where recent versions of

both medium and extended range predictions systems have

been shown to underperform in the tropics in comparison to

other state of the art prediction systems (Dias et al. 2018; Dias

and Kiladis 2019). In addition, implementing nudging within

the UFS could be useful for its development as it can be used

as a diagnostic tool for relating local and remote error inter-

dependencies when testing various model configurations.

While there are a large number of questions related to

tropical–extratropical skill interdependencies that could be

addressed with tropical nudging, here we focus on the nudging

implementation in the GFS and initial results addressing a few

practical questions:

1) Does tropical nudging applied to the GFS produce results

consistent with previous studies using other models?

2) Do improvements in remote skill seen in dynamical vari-

ables extend to subseasonal precipitation predictions?

3) Which tropical fields need to be nudged in order to reduce

remote errors, and where is nudging most effective?

4) How much of the remote error reduction originates from

concurrent versus time-lagged tropical nudging?

In addition to addressing the questions above, we present a

conditional skill analysis that tackles issues related to practical

predictability originating from the tropics, including the role

of the MJO on the high latitude error dependency. The set

of tropical nudging reforecasts presented here is viewed as

comprising the initial steps necessary to design experiments

that more explicitly address such issues, as well as isolate what

types of model developments would be helpful or most effec-

tive in realizing these sources.

2. Methodology

a. Description of subseasonal reforecasts experiments

The model used here is the NOAA/NCEP GFS v.15.1.1,

which is an early version of NOAA’s Unified Forecast Systems

(UFS) that is currently used at NCEP for generating forecasts

out to day 14. The effects of air–sea coupling are neglected, and

all reforecasts are run out to day 30 at C128 resolution, which

corresponds to a roughly 0.78 3 0.78 horizontal grid with 64

vertical levels from the surface to 1 hPa. The treatment of the

lower boundary is the same as in operations, where the initial

sea surface temperature (SST) is taken from an analysis and

then anomalies about a daily annual climatology are damped

on a 90-day time scale. Details about the model formulation

can be found at https://www.emc.ncep.noaa.gov/emc/pages/

numerical_forecast_systems/gfs/implementations.php.

The focus of this study is on the extended NH cool season,

from November to April. A series of 30-day reforecasts are

generated once every 5 days, starting on 1 November of each

year for the 20-yr period 1999–2018. The total number of re-

forecasts is 620, with 31 reforecasts per season. The spacing of

5 days between reforecasts is chosen as a compromise between

computational/storage limitations and the need to adequately

sample the full range of initial states. The model output is re-

gridded to a 18 regular horizontal grid and all analyses are

performed using that grid. The impact of tropical forecast

errors is assessed by comparing a set of ‘‘free’’ reforecasts

without nudging, also referred to as ‘‘control’’ (CNT), against

several sets of tropical nudged reforecasts that are described

below and summarized in Table 1.

1) NUDGING AND INITIALIZATION

The current GFS data assimilation (DA) system adopts an

incremental analysis update (IAU) scheme, which was

originally developed for the NASA Global Modeling and

Assimilation Office (GMAO) GEOS model (Bloom et al.

1996) and is designed to reduce analysis-induced initial

shocks during the model forecast step of the assimilation

cycle. The IAU approach can be applied independently of

the data assimilation cycle by calculating increments based

on differences between a reanalysis dataset (as opposed to

the model’s own analysis) and a set of short-term forecasts.

We use the IAU to effectively nudge the model to ERA

interim reanalysis (Dee et al. 2011), as described below.

The IAU approach can be thought of as a refined form of

nudging, in which a series of time-independent analysis incre-

ments or ‘‘updates’’ is applied to one or more of the model

state variables, as part of a cycled forecast integration. Here

the analysis increments (DI) are calculated generically as

DI(t)5
f
m
(t2 3 h)2 f

r
(t)

6 h
, (1)
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where fm5 (t2 3 h) corresponds to amodel forecast initialized

3 h prior to the valid time t, and fr(t) is the reanalysis field at t.

The increment is then applied as a forcing term to another 6 h

forecast cycle that is centered at time t (following the reanalysis

output times) and is initialized from a t 2 3 h restart file. This

procedure is often referred to as ‘‘replay’’ (Orbe et al. 2017;

Takacs et al. 2018) and is repeated for every 6-h period cen-

tered on the reanalysis output times, as illustrated in the

schematic in Fig. 1.

Prior to generating the set of reforecasts, the model is first

initialized on 1 November of each year from the ensemble

mean of the Global Ensemble Forecast System (GEFSv12,

https://www.emc.ncep.noaa.gov/users/meg/gefsv12/retros/),

which provides initial data on the cubed sphere grid of the

GFS v.15.1.1. A global nudged run is then performed from

1 November to 30 April, with model output saved every 6 h

for verification and restart files saved every 5 days, as initial

conditions for the set of reforecasts. Comparison of these

global nudged runs against the original ERAi data showed

only nominal differences for the fields of interest.

2) TROPICAL NUDGING FORMULATION

The tropical nudging experiments consist of repeating the

global replay cycle described in the previous section, except that

the DI are tapered to zero outside a specified latitudinal range

centered at the equator. Two tapering functions are used, one

where l 5 1 from 108S to 108N for the wide tropical nudging

(WTR) and one where l 5 1 from 58S to 58N for the narrow

tropical nudging (NTR). A hyperbolic tangent is used to smooth

l5 1 to l5 0 over 208 inWTR and over 158 in NTR. TheWTR

tapering function is identical to the tapering function used in

Jung et al. (2010a) where forecasts run free beyond 308S/N. In

NTR, forecasts are free beyond 208S/N. The motivation for

examining a narrower set up is to isolate the role of tropical

circulation errors, in contrast to the WTR, where errors in the

model’s subtropical circulation are also partially reduced.

TABLE 1. Description of UFS reforecast datasets, where all reforecasts are initialized every 5 days with the same configuration,

except for the nudging setup (details in the text).

Short

name Type of reforecast

Nudged

variables

Extent of nudging

region

Period (1 Nov–

31 Mar)

Forecast/nudging

length (days)

CNT Control free — — 1999–2018 30/—

WTR Wide tropical nudged u, y, T, p, q 308S–308N 1999–2018 30/30

WTRuv Wide tropical nudged u, y 308S–308N 1999–2018 30/30

WTRqT Wide tropical nudged q, T 308S–308N 2016–18 30/30

NTR Narrow tropical

nudged

u, y, T, p, q 208S–208N 1999–2018 30/30

WTRwk1 Wide tropical nudged u, y, T, p, q 308S–308N 1999–2018 30/7

WTRwk2 Wide tropical nudged u, y, T, p, q 308S–308N 1999–2018 30/14

FIG. 1. Schematic of IAU approach to nudging (more details in the text).
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In addition to varying the width of the tropical nudging belt,

we also describe the impact of nudging different sets of model

variables. The specific sets considered are: [u, y, p,T, q], [u, y, p,

T], [u, y], and [T, q]. The first set is chosen because, in principle,

it should yield the ‘‘best’’ representation of the tropics as

measured by the reanalysis. The second set enables more direct

comparisons to results from Jung et al. (2010a), where specific

humidity was not included in the relaxation scheme. It turns

out, however, that exclusion of q in the GFS does not lead to

significant differences in remote skill in comparison to when q

is included, so results of this case are not reported. The third

set, winds only, is motivated by theoretical considerations of

the ‘‘Rossby wave source’’ (Sardeshmukh and Hoskins 1988),

which implies that the upper-level flow is a primary driver of

tropical error propagation from low to high latitudes. The final

set [T, q] is designed to contrast the winds-only set and spans

just two seasons for testing purposes, as discussed further be-

low. To address questions about the lag dependence of remote

skill on tropical forecast errors, two additional sets of refor-

ecasts are considered where tropical nudging is applied only

during the first week or first two weeks of the forecast, as de-

scribed further in section 3. The naming convention for each

reforecast dataset and brief descriptions are listed in Table 1.

b. Verification metrics

We use standard verification metrics such as mean absolute

errors (MAE), mean bias (BIAS), and anomaly pattern cor-

relation (APC). Differences in skill among the reforecasts are

assessed based on a random sampling method. Specifically, we

first randomly resample with replacement each reforecast

dataset 1000 times with a subsample size of 80% of the total

number of initial times (0.8 3 620 5 496), then we calculate

the skill metric of interest in each of these subsamples. The

reduced random sample size is somewhat arbitrary and is

done to account for the fact that nearby initializations are not

independent. We report the median skill over all random

realizations, as opposed to the mean to minimize the influ-

ence of outliers. Confidence intervals (CI) correspond to the

bounds defined as the 5th and 95th percentiles of the random

sample distribution. Differences in skill among experiments

are referred to as significant when the confidence intervals do

not overlap. Skill over particular spatial domains is defined as

the longitude and cosine-weighted latitude average. TheAPC

is also area weighted, and anomalies are defined as full fields

minus the forecast lead-dependent climatology. Climatology

is defined for each reforecast dataset as the mean fields over

the 20 realizations of each calendar day (every 5 days from

1 November to 31 March and 1999–2018) and for each lead

day (1–30).

3. Results

a. The impact of tropical nudging on zonal mean biases

According to linearized Rossby wave theory, both the mean

pattern and anomalies in the upper-level tropospheric circu-

lation play a role in the triggering, pathway, and propagation

characteristics of midlatitude Rossby waves originating from

low latitudes (Hoskins and Karoly 1981; Sardeshmukh and

Hoskins 1988). Therefore, if tropical nudging affects the

model’s mean state, changes in remote skill cannot necessarily

be attributed exclusively to reduced errors in tropical sub-

seasonal variability. To investigate this issue we first analyze

how tropical nudging impacts the model’s zonal mean state as

function of lead time. Figure 2 illustrates that while week 1

upper-level zonal winds in all cases agree well with ERAi

(Fig. 2a), the NH subtropical jets in CNT week 4 tend to be

weaker than in ERAi, but stronger and closer to the equator in

WTR and NTR (Fig. 2b). In contrast, when only winds are

nudged, WTRuv week 4 NH subtropical jets tend to be weaker

than in CNT, and slightly shifted toward the equator. Another

difference in the zonal mean state can be seen in NTR week 4

Southern Hemisphere (SH) upper-level meridional winds. By

analyzing latitude–longitude mean bias maps (not shown), we

found that these differences in NTR meridional winds occur

primarily over subtropical South America.

The differences in the mean upper-level zonal winds are

consistent with the changes in the upper-level meridional

temperature gradient that are imposed by the tropical nudging

in NTR and WTR (red and blue curves, respectively, in

Figs. 2c,d). Since pole to pole CNT upper-level temperatures

display a cold bias when compared to ERAi, the net effect of

nudging the model temperature to ERAi is to steepen the

meridional temperature gradient in the subtropics and thus,

strengthen the jets in both cases. In contrast to dynamical

variables, model precipitation biases (Figs. 2e,f) generally de-

velop earlier as illustrated by the week 1 averages. Comparing

the profiles in WTR andWTRuv shows that the primary effect

of nudging temperature and moisture in addition to winds is to

change the model’s tropical dry bias to a slight wet bias,

whereas the model’s midlatitude wet bias (CNT) remains

largely unaffected in all cases. Importantly, because winds near

the equator are very similar comparing WTR and WTRuv,

differences in remote skill between the two nudging cases are

likely related to differences in performance in the subtropics

rather than in the tropics, and this is discussed further below.

b. The impact of tropical nudging on mean absolute errors

From previous nudging studies (Ferranti et al. 1990; Jung

et al. 2010a; Jung 2011), we expect z500 MAE to be reduced

over the NH when nudging the tropics and this is verified in

Fig. 3a. The median MAE amplitude in all nudged reforecasts

is less than in the free reforecast (CNT), particularly beyond

week 2. This MAE attenuation also holds for precipitation

rates (Fig. 3b), upper-level geopotential, winds and tempera-

ture, precipitable water and low level specific humidity (not

shown). In the previous studies cited above, this systematic

error reduction has been interpreted as indicating the potential

for improving extended range NH predictions by reducing

tropical errors. Figure 3b shows that nudging the tropics to re-

analysis also lead to a decrease in weeks 2–4 precipitation errors

in regions remote to the tropics. Figure 3 also illustrates how

NHMAE varies depending on how the tropics are nudged. For

instance, while errors are reduced less when nudging is applied

to a narrower tropical region, the amount of error reduction in

WTR and WTRuv is similar for both z500 and precipitation.
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We have tested tropical nudging of only temperature and

specific humidity with the WTR tapering and over a shorter

period (the latest two seasons, not shown), which shows that

errors are reduced more than in NTR, but not as much as in

WTR and WTRuv. Taken together, these results support a

stronger kinematic rather than thermodynamic link between

tropical and NH midlatitude errors, consistent with expecta-

tions based on Rossby wave theory.

The first row in Fig. 4 displays maps of z500 MAE in CNT at

weeks 1, 2, 3 and 4, which show that MAE increases most

rapidly during weeks 1–2, with the largest values occurring at

higher latitudes, as expected. Maps of the percent difference in

MAE with respect to CNT in the nudged runs are plotted in

Figs. 4e–4l, where the percent difference is calculated as:

DMAE5 1003 (MAENUD2MAECNT)/MAECNT. Extensive

homogeneous regions with MAE amplitudes larger than 40%

are shown in light gray, which roughly correspond to the

tropical nudging zone. Maps of DMAE show that while errors

are reduced in most regions outside the nudging region, MAE

reductions are larger over the Northeast Pacific–western

United States sector in the three cases displayed. It also

appears that tropical nudging applied to winds only introduces

a mass imbalance within the nudging region since the z500

DMAE is uniformly increased there. However, this imbal-

ance does not have a strong remote imprint in the midlati-

tudes since WTR and WTRuv patterns are roughly similar.

In contrast, at higher latitudes over East Asia, WTR and

NTR are associated with an increase in DMAE that is not

seen in WTRuv. Tropical nudging is not necessarily expected

to reduce MAE everywhere because nudging affects the

model’s basic state (Fig. 2), and tropical–extratropical tele-

connections are not uniform around the globe. In particular,

FIG. 2. Depiction of upper-troposphere (200 hPa) longitudinal averages of (a),(b) zonal and (c),(d) meridional

winds, (e),(f) temperature, and (g),(h) mean precipitation rates. Averages including all initializations from

November toMarch and reforecast lead days (left) 1–7 and (right) 22–28. ERAi averagesmatch the reforecast valid

times. Line color labels correspond to the experiments described in Table 1.
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by potentially distorting weather systems that move in and out

of the nudging region, predictions of the remote response could

be deteriorated.

The large-scale patterns where MAE is reduced are in

qualitative agreement when comparing precipitation (Fig. 5)

and z500. However, precipitation DMAE amplitude as well as

the extent of the areas where differences are significant tend to

be smaller. A remote region that stands out is the western

United States where significant week 2–4 MAE reductions

peaking around 30%–40%, with MAE decreases seen even in

the NTR case. These results support the interpretation that

reducing tropical forecast errors improves week 2–4 precipi-

tation skill over the western United States, as discussed further

below. Perhaps related to the tropical imbalance seen in z500,

WTRuv MAE is slightly increased over the central United

States, but not in WTR or NTR. While not the focus of the

current work, we also note that precipitation weeks 3–4 MAE

are significantly reduced along the South Pacific and Atlantic

convergence zones, as well as over the southern Indian Ocean.

These ‘‘cloud band’’ locations are well removed from the

nudging region, and are known regions of significant tropical–

extratropical interactions in the Southern Hemisphere. We

also note that verification against satellite estimates of pre-

cipitation as opposed to reanalyses indicate similar patterns of

DMAE, except that amplitudes are attenuated (not shown).

c. The impact of tropical nudging on anomaly pattern
correlations

To further evaluate the impact of tropical nudging in pre-

dictions of the remote response, differences in the predicted

anomaly patterns are assessed using APC. The APC is calcu-

lated within 358–358N and two longitudinal sectors: 1808–458W
(sector 1) for z500 and 1258–858W for precipitation (sector 2,

also referred to as the ‘‘western United States’’). The extended

longitudinal sector used for z500 is motivated by its larger-scale

patterns in comparison to precipitation, whereas the narrower

sector used for precipitation is chosen because the western

United States is both an important region for socioeconomic

reasons and a region where MAEs remain substantially re-

duced over the northern midlatitudes. We note that the main

conclusions are qualitative similar when using APC within 358
and 558N with all longitudes included. As seen with MAE,

week 2–4 NH APC tends to improve when tropical nudging is

applied, which is illustrated in Fig. 6 for z500 and precipitation.

This improvement is also found for anomaly patterns in upper-

level winds, temperature and geopotential, as well as for pre-

cipitable water and specific humidity at 850 hPa (not shown).

The difference between nudging all variables or winds only is

negligible (blue and green bars), whereas the narrower tropical

nudging region is associated with a smaller APC increase (red

bars). The vertical black lines demonstrate that, based on the

random resampling method described earlier, the changes in

z500 week 2–4 APC between CNT and tropical nudged cases

tend to be significant, and that is also the case for precipitation,

with generally larger relative increases at longer lead times.

Week 2 precipitation APC is an exception, where the slight

APC increases in the nudged cases are not significant.

Histograms of weekly APCs (Fig. 7) show that tropical

nudging is associated with changes in remote skill that extend

well beyond the positive shift in the median shown in Fig. 6.

Specifically, APC histograms are more left-skewed, with

higher APC values more frequent when comparing tropical

nudged to the CNT reforecasts. The increase/decrease in

percentage of reforecasts with higher/lower skill is particu-

larly noticeable during weeks 3 and 4 for WTR and WTRuv.

Comparison of MAE histograms are analogous in the sense

that tropical nudged cases are more right-skewed than in

CNT (not shown). This result suggests that reducing tropical

forecast errors might lead to an increase in the probability of

having a skillful subseasonal forecast over sectors 1 and 2.

These shifts are also seen when APC is calculated over all

longitudes, although they are less pronounced in global

precipitation.

The APC scatterplots shown in Fig. 8 demonstrate that

tropical nudging does not always lead to improved remote

predictive skill. The reforecastsmarked by symbols lying below

the black diagonal line are cases where APC is deteriorated by

the nudging, and vice versa for reforecasts marked by symbols

lying above the black diagonal. The distance between dashed

lines corresponds to one standard deviation of the CNT APC,

FIG. 3. The median MAE over the entire reforecast period and

averaged from 358 to 558N for geopotential height at (a) 500 hPa

(z500) and (b) precipitation. The line color labels displayed in the

legend correspond to the experiments described in Table 1.

Shading displays the CI as described in the text.
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and this is used as a rough estimate of the relative change in

skill due to nudging in comparison to the expected spread in

the free running forecasts. The darker symbols correspond to

the median WTR/WTRuv/NTR APC within bins of the CNT

APC showing that, more often than not, tropical nudging is

associated with an increase in z500 APC over sector 1 and

precipitation over sector 2, but there is certainly considerable

spread in howmuch tropical nudging changes in comparison to

CNT. A similar conclusion applies to APC extending over all

longitudes and for other variables, and also for similar MAE

scatterplots. An analogous depiction of week 1 shows symbols

lying close to the diagonal suggesting that week 1 APC is not

systematically shifted by tropical error reduction, a result in

line with previous studies regarding the lag in the response to

tropical forcing (Branstator 2014; Dias and Kiladis 2019). It is

interesting that a CNT reforecast that has poor NH skill is

more likely to be improved when tropical errors are reduced

than a case where CNT APC is relatively good. The fact that

the median nudged APC tends to lie close to the diagonal line

when the CNT APC is larger implies that tropical nudging has

less of a systematic positive impact on reforecasts that are al-

ready skillful. By week 3–4 there is some indication that, par-

ticularly for NTR, high CNT APC are lowered when applying

tropical nudging; however, sample sizes are small at those

ranges of CNT APC (see histograms in Fig. 7), therefore the

significance of those median values is less clear.

The analogous APC scatter when all longitudes are included

is qualitatively similar, and so is the SH APC scatter, except

that median APC changes there tend to be less, with larger

spread. The fact that WTR and WTRuv median APC’s are

similar, with NTR suggesting only slightly smaller shifts, im-

plies that the changes in zonal mean state seen in Fig. 2 do not

play a major role on how each tropical nudging formula-

tion impacts remote predictive skill. While week 4 APCs

are an exception, where there is more separation among

WTR/WTRuv/NTR APCs, those results are harder to interpret

because the version of theGFS here is not specifically tuned for

its performance beyond week 2, as shown by the very low CNT

APC. Similarly, because GFS weeks 3 and 4 precipitation skill

is on average low, it is not clear that the potential increases

FIG. 4. (a)–(d) The z500 CNT MAE (m) for weeks 1–4, respectively. (e)–(p) As in (a)–(d), but for the MAE percentual difference

(DMAE defined in the text) for WTR in (e)–(h), WTRuv in (i)–(l), and NTR in (m)–(p). Blue (red) shading denotes regions where errors

are reduced (increased) in comparison to CNT. Regions where the amplitude ofDMAE is larger than 45% are shaded gray and contoured

with lines starting at 100% at 100% intervals. The gray symbols correspond to regions where the DMAE is not significantly different

than zero.
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associated with the tropics would lead to useful skill, or more

reliable predictions at those lead times.

d. The lagged response between tropical and extratropical
errors

Aside from the lack of realism of a global prediction system

where tropical predictions are nearly ‘‘perfect’’ throughout the

forecast cycle, another limitation of tropical nudging is that

remote errors could be reduced due to a ‘‘forced boundary

effect’’ rather than because of an improved representation of

the tropical source of midlatitude weather (e.g., the Rossby

wave source). One indication that the former might be im-

portant is that the nudged median APCs tend to be constant

when CNT APCs are below zero (Fig. 8). Said differently,

because the northern edge of the nudging region carries in-

formation from both tropics and extratropics, the improved

skill in cases that are otherwise not skillful might simply be a

consequence of the fact that we are effectively weakly forcing

the model with ‘‘realistic’’ information (reanalysis) at the lat-

itudinal boundary between nudged and free forecasts, analo-

gous to predictions based on regional models. Counter to this

argument, the NTR setup indicates that tropical forecast errors

might be the primary source of the change on weeks 2 and 3

because the NTR ‘‘boundary’’ is farther from the subtropics

and we still observe an increase in remote APC that is com-

parable to WTR and WTRuv.

To test the role of concurrent nudging at the boundary as a

potential driver of the improved remote skill, we generated two

additional sets of reforecasts that are analogous to WTR, ex-

cept that tropical nudging is switched off at day 7 (WTRwk1)

and day 14 (WTRwk2). Upper-level zonal andmeridional wind

APCs within the tropics (Figs. 9a,b) illustrate the approach

where, by design, correlation coefficients are nearly one

throughout the forecast cycle in WTR as well as for WTRwk1

out to day 7 and WTRwk2 out to day 14. Comparison of the

evolution of median z500 and precipitation APC over the NH

extratropics in these cases points to a lag in the remote skill

response to tropical nudging of about 4–5 days (Figs. 9c,d).

Specifically, WTR, WTRwk1 and WTRwk2 yield median

APC values that are not significantly different from CNT out

to day 4–5 (gray lines), and from then on WTRwk1 and

WTRwk2 APC are statistically lower than WTR’s about

4–5 days after tropical nudging is switched off. The precise

number of days is dependent on the variable and also the

region where the APC is calculated, but tends to fall in the

synoptic range of 3–8 days (not shown), again, consistent with

FIG. 5. As in Fig. 4, but for precipitation rate. The red box in (a) corresponds to sector 1 and the black box to sector 2, as defined in

section 3c.
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the time Rossby waves forced from the tropics take to reach

midlatitudes (Branstator 2014).

The scatterplots in Fig. 10 are similar to the ones in Fig. 8,

except that they compare WTR, WTRwk1 and WTRwk2. The

nearly overlapping symbols on week 2 for both z500 and pre-

cipitation imply that the changes in remote APC at week 2 are

primarily related to error reductions prior to that week, sug-

gesting that the concurrent nudging is not playing a major role

in the tendency forAPC to increase in theWTR runs. A similar

conclusion can be drawn from comparing WTR and WTRwk2

symbols for week 3 scatter (middle column). By week 4, there is a

clear separationbetween themedianWTRandWTRw1/WTRwk2

APCs; however, particularly for z500,WTRwk1 andWTRwk2 still

show an improvement in comparison toCNT andwhenCNTAPC

values are less than zero. That could be because week 2–3 tropical

circulation inWTRwk1 andWTRwk2 are improved in comparison

toCNT(Figs. 9a,b) even though tropical nudging is appliedonlyout

to weeks 1 and 2, respectively.

The comparison between WTR, WTRwk1 and WTRwk2

strongly suggests that the concurrent effect of the boundary

forcing plays only a minor role in the changes in remote skill.

We note that a similar conclusion applies to potential concerns

regarding errors introduced due to wave distortion at the

nudging boundary. Overall, these results provide evidence of a

synoptic lag between error reductions in the tropics and extra-

tropics that is consistent with the Rossby wave mechanism un-

derlying the tropical–extratropical prediction error relationship.

One implication is that a model development that leads to im-

proved week 1 tropical predictions is beneficial for week 2 NH

cool season predictions, as well as for the subsequent weeks.

e. Tropical to extratropical conditional skill

As mentioned in the introduction, the issue of practical

subseasonal predictability originating from the tropics is diffi-

cult to address with nudging experiments as applied here be-

cause all tropical predictions are kept skillful, regardless of any

intrinsic predictability barriers. The question of how much

remote skill can be gained from the tropics in practice is par-

tially addressed in Dias and Kiladis (2019) where a conditional

analysis was applied to subseasonal reforecasts to evaluate

the relationship between tropical and extratropical predictive

skill. Their results showed how reforecasts that perform well

(poorly) in the short range over the tropics tend to perform

better (worse) than average in the medium to extended range

over the NH. This relationship is reproduced here for the GFS

CNT following a similar approach as in Dias and Kiladis

(2019). We first split reforecasts in two subsets: one where day

2–5 CNT APC from tropical (208S–208N) divergence at 200 hPa

(D200) is above its upper tercile (‘‘good tropical forecast’’),

and a second one where the same APC is below its lower tercile

(‘‘poor tropical forecast’’). We then calculate the median NH

(358–558N) CNT precipitation APC as a function of lead day in

each of these subsets. The NH APC median values are com-

pared to the median NH APC from random subsamples drawn

from the entire reforecast period. The random subsampling is

done 1000 times using 1/3 of the total number of reforecasts,

which is consistent with the tercile thresholds used to define the

cases where the tropical performance is good versus poor. The

NH precipitation APC normalized difference D between these

sets of reforecasts is defined as

D5 1003
APC

cond
2 hAPC

rnd
i

hAPC
rnd

i , (2)

where APCcond is the conditional (good or poor tropical per-

formance) median NH precipitation APC and hAPCrndi is

similar, except that we averaged the median APC over the

1000 random subsamples. The symbols in Fig. 11 highlight lead

FIG. 6. (a) Sector 1 median APC for 500-hPa geopotential

heights and (b) sector 2 APC for precipitation. Vertical bars cor-

respond to the experiments defined in Table 1: CNT (gray), WTR

(blue),WTRuv (green), andNTR (red). The vertical lines centered

at the top of each bar display the 95% CI of the corresponding

median APC value.
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times where the sign of D is statistically significant. The sign

significance is defined as lead times where 90% of the nor-

malized differences using each APCrnd, as opposed to the av-

erage, agree in sign. While the significance test could be

done in many different ways, the method here illustrates

how even large values of D are not necessarily significant

because at longer lead times the denominator in Eq. (2)

becomes very small.

The NH weeks 2–3 positive/negative D values (blue/red

bars) displayed in Fig. 11a imply that when the week 1 upper-

level tropical divergent flow prediction is better (worse) than

the median, then subsequent GFS precipitation predictions

tend to perform above (below) average in the northern mid-

latitudes with a lag of about one week. This result is consistent

with what was found for the two prediction systems studied in

Dias and Kiladis (2019). However, as it was the case in Dias

and Kiladis (2019), it is unclear how much of this relationship

can be attributed to model errors versus an initial state de-

pendence. The tropical nudging reforecasts allow us to inves-

tigate this issue, by comparing the conditional skill of the

nudged realizations of the ‘‘good’’ versus ‘‘poor’’ CNT refor-

ecasts. That is, if the improved or degraded precipitation skill

seen at a lead-lag in Fig. 11a were solely a consequence of the

initial conditions, then the corresponding WTR reforecasts

should show the same behavior on average as their CNT

counterparts. Conversely, if the changes in conditional skill at a

lead–lag were instead due solely to model errors in the tropics,

then the WTR conditional APC should show no statistical

difference between the good/poor and random subsets because

the WTR realizations are ‘‘perfect’’ in the tropics, by design.

Figure 11c suggests a mix of these two possible scenarios, while

emphasizing the likely role ofmodel errors. The amplitudes of the

normalized differences in the nudged realizations are generally

smaller and less significant, indicating that model errors are in-

deed important in the linkage between tropical and extratropical

skill. However, the signs of the D values are systematic and con-

sistent with CNT, which suggests some influence of the initial

state. This behavior is similar to what is seen in theWTRwk1 case

shown inFig. 11e, further emphasizing the lagged linkage between

tropical and extratropical predictions. When using upper-level

divergence as our metric of tropical performance, WTRuv,

WTRwk2 and NTR yield similar conclusions (not shown).

The conditional analysis based on upper-level divergence

indicates that model advancements resulting in improved week

1 predictions of tropical upper-level divergence circulation

would be beneficial for week 2 NH precipitation predictions.

Interestingly, this same statement does not appear to hold true

when considering tropical predictions of lower-level divergence

FIG. 7. (a)–(c) Histograms of sector 1 weekly 500-hPa geopotential height and (d)–(f) sector 2 precipitation APCs, using the entire

reforecast period. The ticked gray lines correspond to CNT, and thinner colored lines correspond to tropical nudging APC, where the

color convention is the same as in previous figures (blue, green, and red correspond toWTR,WTRuv, and NTR, respectively). Bin size is

0.2 with tick marks placed at every other bin center.
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(not shown) or upper-level vorticity. The right column in Fig. 11

shows that using 200-hPa vorticity as themetric for ‘‘good’’ versus

‘‘poor’’ tropical reforecasts yields no significant separation in re-

mote performance at lag for any of the cases considered. These

results are found to be unchanged when expanding the tropical

APC area from 208S–208N to 308S–308N, or when separating the

reforecasts based on the APC in NH subtropical bands (not

shown). Because tropical–extratropical teleconnections originate

with tropical precipitation systems that are the primary drivers of

upper-level divergent flows in the tropics and subtropics, these

results point to the well-known need for improving the repre-

sentation of moisture–convection–circulation coupling in the

tropics (Wolding et al. 2020a,b).

4. MJO dependence of remote skill

While the role of tropical synoptic waves as deterministic

sources of tropical predictability are more uncertain, there

are a number of studies that point to the MJO as a practical

source of tropical and extratropical subseasonal predictability

(Schreck et al. 2020 and references therein). Tropical nudging

experiments can also be useful in revealing some aspects of the

role of the MJO in tropical–extratropical error interdepen-

dencies because, in contrast to CNT, in WTR the MJO is by

design well represented throughout its life cycle. To illustrate,

here we apply a similar conditional skill analysis as shown in

the previous section, except that we split reforecasts depending

on the MJO amplitude at initial reforecast time. To focus on

theMJO convective signal, the metric used forMJO amplitude

is the OLR MJO index (OMI) (Kiladis et al. 2014), which

was obtained from https://www.psl.noaa.gov/mjo/mjoindex/.

Active/neutral/inactive MJO subsets are defined depending on

OMI terciles for the period of November–March and 1999–

2018. One question that this conditional analysis allows us to

investigate is whether the effectiveness of tropical nudging in

increasing NH precipitation APC depends on the initial state

FIG. 8. (a)–(f) Light colored symbols denote the scatter of weekly western U.S. APC between CNT APC (x axis) and tropical

nudging APC (y axis), where each light colored symbol denotes one reforecast initialized during the analyzed period. The dark colored

symbols depict the median tropical nudged APCwithin bins of CNTAPC. The bin width is 0.2, and bins are centered in 0.1 intervals from

21 to 1. The color convention is the same as in previous figures (blue, green, and red correspond to WTR, WTRuv, and NTR, respec-

tively). Each panel is zoomed to tightly display all 620 reforecasts. Symbols lying on the slanted line indicate reforecasts where the APC is

unchanged by tropical nudging. Vertical and horizontal lines highlight zero APC. The distance between the dashed lines corresponds to

one CNT APC standard deviation for the corresponding forecast lead and variable.
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of theMJO. Figure 12a shows that, regardless of tropical nudging,

the median weeks 2–3 NH precipitation CNT APCs tend to in-

crease with initial MJO amplitude. Figure 12b shows that the

absolute difference between WTR and CNTAPC is positive and

increases with lead time, independently of MJO amplitude. The

only statistically significant difference is seen at week 4, where

WTR shows a larger enhancement in APC with increasing MJO

amplitude at initial time. Figure 12c indicates that most of the

improvements in APC comparing WTR to CNT and any poten-

tial MJO modulation at week 4 largely rely on the tropical

nudging being applied throughout the entire forecast cycle.

Figure 13a is similar to Fig. 11a, except that the vertical

bars correspond to normalized differences of APC (D) using

MJO active (blue) and inactive (red) as defined above. The

increase/decrease in conditional skill with MJO activity is

consistent with Fig. 12a because, aside from the normalization,

the only difference is that we calculated APC on weekly av-

eraged fields as opposed to daily. Note that when the MJO is

inactive at initial time, week 2–3 NH precipitation APC is

substantially reduced in comparison to random initializations.

Comparing CNT (Fig. 11a) toWTR (Fig. 11b) shows that when

the MJO is active and the tropics are nudged, remote skill is

improved by a comparable amount on week 2 as in CNT, but it

is also improved out to week 4.We note that APC here is based

on all longitudes from 358 to 558N, but when looking at dif-

ferent sectors and MJO phases, the lead time and amplitude of

FIG. 9. (a) Tropical zonal and (b) meridional 200-hPa wind APCs. (c),(d) As in (a) and (b), but for midlatitude

z500 and precipitation. The latitudinal bands are displayed in the panel titles. The gray lines correspond to CNT

medianAPC, and the blue lines correspond toWTR (solid), WTRwk1 (dashed), andWTRwk2 (dash–dotted). The

gray vertical lines highlight the earliest lead time where the tropical nudged APC is larger than CNT. From left to

right, the blue vertical lines mark the earliest lead time where WTR APC is statistically larger then WTRwk1 and

WTRwk2, respectively.
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those modulations varies (not shown). When the MJO is in-

active and the tropics are nudged weeks 2–3 remote skill is not

nearly as reduced as in CNT. Figure 11c suggests that nudging

only week 1 in the tropics does not affect MJO related changes

in subsequent lead times in comparison to CNT. Perhaps

because the MJO in the GFS has a reasonable amount of skill

in week 1, realizing remote improvements in week 2 sug-

gested by Figs. 11c and 11e might rely on other sources of

week 1 tropical predictability apart from the MJO, for ex-

ample, the other convectively coupled equatorial waves. In

contrast, at longer lead times (week 3–4) it is possible that an

improved MJO would lead to improvements in remote skill.

A thorough analysis of the role of the MJO in tropical to

extratropical skill linkages, including seasonality, and MJO

phase dependences would likely be very insightful, but is

beyond the scope of the present manuscript.

Regarding El Niño–Southern Oscillation (ENSO), we first

note that most reforecasts in the analyzed period correspond to

weak to moderate La Niña conditions, where reforecasts ini-

tialized during strong El Niño are primarily coming from the

2015/16 season. This sampling distribution bias makes it diffi-

cult to untangle any potential skill modulation related to

ENSO phases and, therefore, a conditional analysis similar to

the MJO did not produce robust or conclusive results. This

issue also merits further investigation because, particularly at

the longer lead times, ENSO is certainly expected to play an

important role on how tropical forecast errors propagate to

higher latitudes.

5. Summary and conclusions

The tropical nudging experiments presented here dem-

onstrate that GFS subseasonal NH predictions during the

winter are improved when tropical forecast errors are re-

duced, with results broadly consistent with previous similar

experiments applied to other NWP systems. A number of

sensitivity tests are performed supporting the interpretation

that much of the tropical to extratropical subseasonal

forecast error is rooted to errors in the tropical atmospheric

circulation, which is, in turn, known to be strongly coupled

to moist convection. In addition to reductions in remote

dynamical field errors, both MAE and APC analysis indi-

cate the potential for week 2–4 precipitation predictions to

be improved by reducing forecast errors in the tropics.

Specifically, by fully nudging the tropics to reanalysis from

108S to 108N with no nudging beyond 308S/308N, weeks 2–4

precipitation predictions are improved by as much as 40% in

some portions of the western United States. This remote skill

improvement is only about 15%–20% weaker when fully

nudging only 58S–58N, with no nudging beyond 208S/208N, once

FIG. 10. As in Fig. 8, but the blue symbols correspond to WTR (circles), WTRwk1 (asterisks), and WTRwk2 (crosses).
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again, highlighting the role of the deep tropics in driving extra-

tropical circulation.

Interestingly, tropical nudging is more effective at improving

predictions of the remote response is cases when the free

reforecasts (CNT) are not skillful, whereas there is less of a

systematic impact on reforecasts that are already skillful. This

behavior is seen evenwhen nudging is switched off at the end of

week 1 or 2 (WTRwk1/WTRwk2), again indicating that the

remote skill response does indeed originate from within the

tropics. One interpretation of the differences in how effective

tropical nudging is depending on the skill of the NH CNT

prediction is that current GFS week 2–4 skillful forecasts do

not strongly draw skill from the tropics, and, therefore, week 2–

4 NH predictions would be skillful more often if tropical

forecasts errors were reduced. This comes with the caution that

the extent to which the decrease in tropical errors and subse-

quent gain in remote skill is achievable remains an open

question, which could be further investigated, for example, by

linking these modulations to known subseasonal tropical–

extratropical teleconnection patterns (Stan et al. 2017).

Toward the practical goal of better understanding how much

remote subseasonal skill can be gained from the tropics, we

presented a conditional skill analysis. This analysis in conjunction

with theweek1orweek1–2onlynudging reforecasts, suggests that:

1) During NHwinter, there is a lag of about one week between

tropical forecast error growth and NH precipitation predic-

tion skill; therefore, a model development that is beneficial

for a given forecast range in the tropics will likely have a

positive imprint on the following week’s NH predictions.

FIG. 11. Display of conditional normalized APC difference [D, defined in Eq. (2)] as a function of forecast lead in

days, for (a),(b) CNT; (c),(d) WTR; and (e),(f) WTRwk1. The difference D when the conditional partitioning

between ‘‘good’’ and ‘‘poor’’ tropical performance is based on the CNT APC from 200-hPa (left) tropical diver-

gence and (right) vorticity. Symbols are plotted when the sign of D is statistically significant. Brown bars denote

lead times where red and blue bars are overlaid.
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2) Tropical forecast errors in upper-level divergent circulations

are of primary importance in the modulation of remote

errors, and based on previous studies those errors are likely

to be rooted in model deficiencies related to moisture–

convection–circulation coupling.

The conditional analysis does not directly address the issue

of practical predictability that originates from the tropics be-

cause, in nudging experiments, all tropical forecasts are made

equally skillful. That being said, studies such asWang et al. (2019);

Bengtsson et al. (2019, 2021) have shown that advancements in

the GFS model physics, and particularly those related to con-

vective parameterizations, lead to improved week 1 tropical

skill, which, in turn, tropical nudging suggests should lead to

improved NH week 2 predictions. Because synoptic-scale

convective variability in the tropics (e.g., Kelvin and easterly

waves) is intermittent and localized, the linkage between

tropical convection organization, beyond the MJO, to the po-

tential boosts in remote skill estimated from the tropical

nudged reforecasts might not be entirely realizable. This is a

crucial issue that could be investigated by filtering and or in-

troducing noise to the fields we nudge to. Because different

GFS physics packages are currently being developed and

tested, remote changes in predictions originating from the

FIG. 12. (a) The weekly precipitation APC averaged over all

longitudes and 358–558N split according to MJO amplitude at ini-

tialization (details in the text). (b) As in (a), but that the difference

between WTR and CNT APC is displayed. (c) As in (b), but for

WTRwk1. The CIs displayed in (b) and (c) (vertical bars) are

calculated using the same resampling method described in the text

and denote that 90%of themedianAPC differences betweenMJO

conditional and random subsamples fall within that range.

FIG. 13. As in Figs. 11a,c,e, but reforecasts subsets are based on

MJO amplitude at initialization where blue (red) bars correspond

to normalized APC difference [D, defined in Eq. (2)] for cases

where the MJO is active (inactive) at initialization.
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tropics could also be tested by nudging the tropics to forecast

target fields from different GFS versions. For example, if a

particular model configuration performs better in the tropics,

tropical nudging could be applied to the operational configu-

ration using the better performing forecasts as the fields that

are nudged to. A similar analysis as presented here would then

allow an estimate of how much remote skill is gained from the

tropics in isolation.We are currently working on the design and

implementation of some of these alternative types of nudging

experiments, and those results will be reported in the future.

In summary, as is the case in previous tropical nudging

studies, the present work offers potential upper bounds on

how much midlatitude subseasonal remote skill might be

tapped from low latitudes. In addition, we hope to have dem-

onstrated that tropical nudging is a productive diagnostic tool

that can be beneficial to better characterize sources of tropical

model errors, and which modes of tropical variability are im-

portant for NH subseasonal predictions. This diagnostic aspect

of tropical nudging is particularly useful in the current stage of

the UFS development (see https://ufscommunity.org/) because

it might guide what types of model developments in the

tropics are the most effective in improving remote sub-

seasonal predictions.
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