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Abstract Carbon monoxide (CO) is an ozone precursor, oxidant sink, and widely used pollution
tracer. The importance of anthropogenic versus other CO sources in the US is uncertain. Here, we
interpret extensive airborne measurements with an atmospheric model to constrain US fossil and
nonfossil CO sources. Measurements reveal a low bias in the simulated CO background and a 30%
overestimate of US fossil CO emissions in the 2016 National Emissions Inventory. After optimization we
apply the model for source partitioning. During summer, regional fossil sources account for just 9%-16%
of the sampled boundary layer CO, and 32%-38% of the North American enhancement—complicating
use of CO as a fossil fuel tracer. The remainder predominantly reflects biogenic hydrocarbon oxidation
plus fires. Fossil sources account for less domain-wide spatial variability at this time than nonfossil and
background contributions. The regional fossil contribution rises in other seasons, and drives ambient
variability downwind of urban areas.

Plain Language Summary Carbon monoxide (CO) is an air pollutant emitted from fossil
fuel combustion and from forest and agricultural fires. CO is also produced in the atmosphere through
the oxidation of hydrocarbons from both natural and human-caused sources. US fossil fuel CO emissions
have been declining in recent years, and their current importance relative to other regional sources is
uncertain. Here, we interpreted a large group of aircraft-based CO measurements with a high-resolution
atmospheric model to better quantify US fossil and nonfossil fuel CO sources over the eastern half of the
US. We find that US fossil fuel CO emissions in the 2016 National Emissions Inventory are overestimated
by ~30%. Furthermore, during summer regional fossil fuel sources account for only a small fraction of the
CO over North America compared to the background concentrations already present in air entering North
America, and compared to the regional source from natural hydrocarbon oxidation. This complicates the
use of CO as a tracer for estimating fossil fuel sources of other pollutants such as carbon dioxide.

1. Introduction

Carbon monoxide (CO) is the largest sink of atmospheric hydroxyl (OH) radicals (Miiller et al., 2018) and
a major tropospheric ozone precursor (Hu et al., 2017). It is emitted from fossil fuel and biomass com-
bustion and is also indirectly produced from the oxidation of methane and non-methane volatile organic
compounds (VOCs). CO removal occurs mainly via reaction with OH, forming atmospheric carbon dioxide
(COy) at an annual rate equivalent to ~10% of the global fossil fuel source (Duncan et al., 2007; Friedling-
stein et al., 2019). As a result of its oxidative effects and their feedbacks, CO has a 100-year global warming
potential ~5 times that of CO, per unit mass (Shindell et al., 2009).

According to the National Emissions Inventory Collaborative (NEIC) Emissions Modeling Platform, based
on the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), US CO emissions
totaled ~55 Tg in 2016, with fossil fuel and biomass burning emissions accounting for 41 Tg and 14 Tg,
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Figure 1. Atmospheric Carbon and Transport (ACT)-America and Greenhouse Emissions in the Midwest (GEM) flight-tracks colored by observed carbon

monoxide (CO) mixing ratios.

respectively (NEIC, 2019). Fossil fuel sources in the inventory are predominantly mobile (on-road: 18 Tg;
non-road: 10 Tg) and in the case of on-road emissions, mainly (90%) due to non-diesel light-duty vehicles.
Gasoline combustion similarly accounts for the majority (80%) of the estimated non-road mobile source
(NEI, 2014). Annual fossil fuel CO emissions in the NEI decreased by ~50 Tg/year from 2000 to 2016, driven
by a nearly 70% drop in the estimated mobile source (EPA, 2019).

CO has traditionally been used as a fossil fuel tracer to diagnose anthropogenic sources of CO, and other spe-
cies (e.g., Cheng et al., 2018; Halliday et al., 2019; Nathan et al., 2018; Super et al., 2017). In the US, however,
the dramatic decline in transportation-related emissions (EPA, 2019; Gaubert et al., 2017; Parrish, 2006)
means that nonfossil fuel CO sources are increasingly important. For example, Hudman et al. (2008) esti-
mated that VOC oxidation (predominantly from biogenic precursors) was a 2-fold larger CO source than
direct combustion emissions over the US during summer 2004. Furthermore, previous NEI versions have
been shown to overestimate US anthropogenic CO emissions by as much as 60% (Brioude et al., 2011, 2013;
Fujita et al., 2012; Hudman et al., 2008; Kim et al., 2013; Miiller et al., 2018; Plant et al., 2019; Salmon
et al., 2018), so the nonfossil fuel CO fraction may be even greater than suggested by current inventories.

Together, the large recent emission trends and demonstrated inventory biases imply significant uncertainty
in the current CO budget over North America. Two airborne measurement campaigns conducted from 2016
to 2019 with widespread, multi-seasonal coverage over the eastern half of the US provide new constraints
for addressing this issue: The Atmospheric Carbon and Transport (ACT, 2019)-America mission, with five
dual-aircraft deployments across three US regions (Davis et al., 2021), and the Greenhouse Emissions in the
Midwest (GEM) mission with three deployments across the US Upper Midwest (Yu et al., 2020; 2021). Here,
we employ the GEOS-Chem chemical transport model (CTM) to interpret these datasets in terms of their
implications for fossil fuel versus nonfossil and primary versus secondary CO sources over the US.

2. Methods
2.1. Aircraft Measurements

Figure 1 shows flight-tracks for the ACT-America and GEM airborne deployments used here. ACT-America
took place during summer 2016 (ACT1; see Table S1), winter 2017 (ACT2), fall 2017 (ACT3), spring 2018
(ACT4), and summer 2019 (ACT5) (Davis et al., 2018, 2021). Each deployment featured measurements
aboard two aircraft (C-130 Hercules: 487 flight hours; Beechcraft B200 King Air: 513 flight hours) across
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the US Midwest, Northeast, and South. Sampling altitudes ranged from 0.1 to 8.7 km above ground level
(AGL); only data below 8 km AGL are employed here. Airborne CO measurements were also performed
for the first two GEM campaigns over the US Upper Midwest during summer 2017 (GEM1) and winter
2018 (GEM2). Measurements took place on a Mooney aircraft (76 flight hours) from 0.1 to 2.2 km AGL (Yu
et al., 2020, 2021). We employ data from ACT1 to ACT4 for CO source estimation and reserve ACT5, GEM1,
and GEM2 for independent evaluation of the results.

ACT-America CO dry-air mole fraction measurements used here were performed in-situ by wave-
length-scanned cavity ring-down spectroscopy (CRDS; Picarro G2401-m) with +5 ppb estimated uncertain-
ty (DiGangi et al., 2021; Wei et al., 2021). Additional CO measurements were obtained during ACT-America
via air samples collected on-board both aircraft with Programmable Flask Packages (PFP) (Baier et al., 2020;
Davis et al., 2018; Wei et al., 2021). An intercomparison of the C-130-H and B-200 Picarro datasets using the
PFP observations as transfer standard shows no significant difference (Figure S1) and we treat them here as
a single statistical ensemble. GEM CO measurements were performed by continuous-wave tunable infra-
red laser absorption spectrometry (Aerodyne CW-TILDAS) with +1 ppb estimated uncertainty (Gvakharia
et al., 2018; Millet et al., 2019). In-situ measurements for ACT and GEM were made at 0.4 Hz and we use
1-min averaged data in analyses that follow.

We also employ airborne CO measurement over the remote Pacific from the Atmospheric Tomography
Mission (ATom) (Wofsy et al., 2018) to evaluate and adjust the chemical boundary conditions used in the
nested GEOS-Chem simulations (Section 2.2). ATom featured pole-to-pole sampling from 0.2 to 12 km al-
titude during four separate deployments; CO measurements used here were collected using the NOAA
Picarro instrument with estimated +3.6 ppb uncertainty (Chen et al., 2013). ATom1 (Northern Hemisphere
summer 2016), ATom2 (winter 2017), ATom3 (fall 2017), and ATom4 (spring 2018) overlap temporally with
ACT1-ACT4, respectively, and are applied for correction accordingly. ATom1 data is further used for ACT5
and GEM1 background correction, and ATom?2 data for GEM2 background correction, given their matching
seasonal coverage. Correction procedures are explained below. All data sets are calibrated on the WMO
X2014A scale.

2.2. GEOS-Chem Simulations

We interpret the above airborne datasets using a GEOS-Chem (v12.6.3; doi:10.5281/zenod0.3552959) sim-
ulation nested at 0.25° x 0.3125° (latitude X longitude) resolution over North America (60°W-130°W,
9.75°N-60°N) with 47 vertical layers (Figure S2). Model runs are driven by GEOS-FP meteorological data
from NASA GMAO (Lucchesi, 2013), and employ timesteps of 10-min (transport, convection) and 20-min
(emissions, chemistry). A 1-month nested spinup is used for initialization.

Chemical boundary conditions (3-h) for the nested model domain are obtained from global simulations at
2° x 2.5° and bias-corrected using a latitude-dependent (and altitude-invariant) fit of model-measurement
0.1 quantile differences (6° latitude bins from 66°S to 54°N) along the ATom flight-tracks over the remote
Pacific (Figure S3). As described later, we also perform a sensitivity analysis without this boundary condi-
tion correction as one test of our results.

We use tagged tracers (Fisher et al., 2017) to track contributions to ambient CO from direct and indirect
sources within the North American domain shown in Figure S2 and from the chemical boundary condi-
tions (CO,,.)- Tagged direct sources include US on-road mobile emissions (CO,,,,). US non-road mobile
emissions (CO,,,), other US anthropogenic sources (CO,,,,; for example, from power generation, industrial
and manufacturing activities, and waste processing), non-US anthropogenic emissions (CO,,,,,; from Cana-
da and Mexico) and wildfires plus agricultural burning (CO,,). We separately track secondary CO (CO,,,,;)
from the oxidation of biogenic VOCs (CO,,,,; 1;,)> anthropogenic VOCs (CO,,,,; )» and other precursors
(CO,pa_om> methane plus pyrogenic VOCs) occurring within the North American domain. CO production
rates are computed using archived fields from global full-chemistry simulations at 2° X 2.5°; secondary con-
tributions from biogenic and anthropogenic VOCs are derived from runs with the corresponding emissions
perturbed by 10%. Photochemical removal is applied to each of the tagged tracers using offline OH fields
(GEOS-Chem v5-07-08); the simulation is thus linear in CO.
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Global anthropogenic emissions in the model are from the Community Emissions Data System (Hoesly
et al., 2018) overwritten for the US by the 2016 EPA NEI (NEIC2016v1; NEIC, 2019) and for Canada by the
Air Pollutant Emission Inventory (APEI, 2020). Biogenic emissions are from the Model of Emissions of
Gases and Aerosols from Nature (MEGANV2.1) implemented as described by Hu et al. (2015), and biomass
burning emissions use the Quick-Fire Emissions Data Set (Koster et al., 2015). The above CO emission es-
timates and production rates contain significant uncertainties and the following analyses optimize both on
the basis of the ACT-America airborne data. All model-measurement comparisons employ the model plane-
flight diagnostic to sample the model output along the aircraft flight-tracks at the time of measurement.

3. Results
3.1. Measured Versus Predicted CO Over the Eastern and Central US

Figures 2a-2g shows the mean vertical CO profiles measured during ACT1-ACT5 and GEM1-GEM2. Av-
erage concentrations during the ACT-America flights peak in the planetary boundary layer (PBL; defined
here as z < 2 km) at ~120-125 ppb during summer and fall and at ~140 ppb during spring and winter.
Concentrations during GEM (which sampled farther north and predominantly within the PBL) are slightly
higher. Aloft, we see free tropospheric (z > 4 km) concentrations ranging seasonally between ~80-90 ppb
(summer) and ~100-110 ppb (winter).

Also shown in Figures 2a-2g are the CO mixing ratios simulated by GEOS-Chem along the flight-tracks at
the time of measurement, with the corresponding tagged-tracer source contributions. The base-case simu-
lation successfully captures the relative vertical distribution of CO, but underestimates its abundance in all
seasons except fall (ACT3). The magnitude of this low bias during spring, summer, and winter ranges from
9 ppb (averaged below 2 km) during spring for ACT4 to 48 ppb during summer for GEM1.

Transport from outside North America makes the largest contribution to ambient CO over the eastern half
of the US in the GEOS-Chem base-case simulation (Figures 2a-2g). This background varies little with al-
titude and changes seasonally in concert with the CO lifetime, from ~50 ppb in summer (for ACT1 and
ACTS5) to ~100 ppb in winter (for ACT2 and GEM2). We see from Figure 2 that the background contribution
dominates total CO in the free troposphere (71%-96% above 4 km, lowest in summer). At lower altitudes,
regional CO sources play a larger role; nevertheless, the CO background still represents 55% (summer)-78%
(winter) of the total averaged model abundance below 2 km.

Figures 2h-2n shows the base-case model partitioning of North American CO enhancements (i.e., exclud-
ing CO,,, which is already present in air entering North America) during ACT-America and GEM. The
regional secondary source is further partitioned into biogenic, anthropogenic, and other (methane + pyro-
genic VOC) contributions. Secondary production accounts for a significant fraction of the predicted North
American CO source, particularly during summer when, in the case of ACT1 and ACTS5, it mainly arises
from biogenic VOC oxidation. Primary emissions mainly reflect US anthropogenic sources (in turn domi-
nated by on-road and off-road mobile emissions). GEM1, over the Upper Midwest, featured a larger contri-
bution from biomass burning.

3.2. CO Source Optimization

‘We next apply the base-case tagged tracer simulations discussed above to develop improved US CO source
estimates based on the ACT-America observations. The optimization is performed separately for ACT1-
ACT4 and consists of two steps. First, since background CO dominates the total free tropospheric abun-
dance (Figure 2), we attribute the prior model bias aloft accordingly and correct the simulated CO,,. based
on the mean >4 km model-measurement differences for each campaign. Given the vertical uniformity of
CO,, this correction is applied throughout the column and ranges from a factor of 1.0 during fall to 1.5
during summer. This adjustment (along with the ATom-based adjustment described earlier) also implicitly
corrects for the effects of a potential model OH bias on the simulated CO.

Second, after subtracting this corrected background we derive top-down adjustments on regional CO sourc-
es by regressing the model tagged tracers against the observed above-background enhancements below
2 km AGL. Selected tracers are grouped for optimization to avoid multicollinearity and based on their
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Figure 2. Mean carbon monoxide (CO) profiles during Atmospheric Carbon and Transport (ACT)-America and
Greenhouse Emissions in the Midwest (GEM). Panels (a—g) compare observed CO mixing ratios (black dashed

lines) with those predicted by the prior GEOS-Chem simulation (stacked color plots). Pink lines show simulated CO
concentrations after source optimization. Panels (h-n) show the above-background source contributions based on

the prior GEOS-Chem simulation. CO,,;, CO,,,» CO,,,: Anthropogenic CO from US on-road, non-road, and other
sources. CO_,,,..: Anthropogenic CO emitted in Canada + Mexico. CO,,: CO from North American biomass burning.
CO,,,,4: CO photochemically produced over North America from the oxidation of biogenic volatile organic compounds
(VOCs) (CO ro d_bl.g), anthropogenic VOCs (CO and methane + biomass burning VOCs (CO prod_om)- COpet CO
transported from outside North America.
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relative abundance. During summer we thus optimize (a) direct CO emissions from US onroad, non-road
mobile, and other anthropogenic sources (CO,,.; = CO,q + COusnr + CO,,,) and (b) regional secondary
CO production from biogenic and anthropogenic VOCs (CO .1 voc = CO 04 pio + CO roq_anm) @S single var-
iables based on the high cross-correlation (R = 0.92-0.98) among the grouped tracers. Other secondary
production (CO pro 4 ony) 1S DOt Optimized as it is primarily from methane and implicitly corrected by the
preceding background adjustment. CO sources from Canada and Mexico and from biomass burning each

usot
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Table 1
Seasonal CO Source Optimization”

CO,nei CO i vor Mean bias® (ppb) ~ RMSE* (ppb) R
Scale factor ~ Mean (ppb)  Scale factor ~ Mean (ppb) Intercept VIF®  Prior Post Prior Post Prior  Post

ACT1 (summer) 0.66 + 0.05 13.2 0.91 + 0.03 25.4 —0.2+0.3 3.1 —-17.6 0.2 26.4 16.5 0.75 0.81
ACT?2 (winter) 0.79 + 0.03 12.8 1.8 +0.3 —14.8 -1.7 21.4 15.5 0.69 0.69
ACTS3 (fall) 0.69 = 0.03 16.8 5.5+0.5 —2.5 —5.5 134 14.2 0.79 0.75
ACT4 (spring) 0.74 = 0.02 16.9 —2.7x04 —8.8 2.6 18.1 17.0 0.65 0.62

Note. ACT1-ACT4 refer to the first four Atmospheric Carbon and Transport (ACT)-America campaigns.
“Stated uncertainties reflect 95% confidence intervals computed through bootstrap resampling. "Variance inflation factor. “Mean of simulated minus observed

values. “Root mean square error.
Abbreviation: CO: carbon monoxide.

make up <18% of the above-background model abundance during ACT1-4 and are likewise not optimized.
During other seasons the same procedure is used but without optimizing CO ,,,,; ,,. s it then accounts for
<16% of the mean above-background enhancements. A sensitivity test described later explores how the
choice of tracer groups for optimization affects our results.

In this way, we obtain seasonal top-down correction factors for the NEIC2016v1l US anthropogenic CO
emissions, along with a top-down correction to the regional secondary source from biogenic + anthropo-
genic VOCs during summer. Results shown in Table 1 are consistent across the seasonal ACT-America
campaigns in revealing a moderate NEI overestimate of US anthropogenic CO emissions, with coefficients
ranging from 0.66 + 0.05 to 0.79 %+ 0.03 (here and below, stated uncertainties reflect bootstrapped 95% con-
fidence intervals). We find that secondary CO production from regional VOC oxidation is well-represented
in the model, with a derived scale factor of 0.91 + 0.03.

Figure 2 and Table 1 show that the optimization successfully minimizes the prior model bias, and either
improves or maintains the prior model:measurement correlation. An exception is ACT3, where the prior
simulation was already essentially unbiased (<3 ppb) with high correlation. However, the posterior fit qual-
ity here is still comparable to that obtained in other seasons. In the following section, we apply a series of
statistical and sensitivity analyses and independent data comparisons to further test the representativeness
and robustness of these results.

3.3. Uncertainty Analysis

The bootstrapped uncertainty estimates in Table 1 provide a first evaluation of the optimization results,
showing that the individual scaling coefficients derived from ACT1 through ACT4 are each statistically
robust. The similar findings across ACT1-ACT4 provide a second piece of supporting evidence, as the de-
ployments represent four separate data sets and independent source derivations that all lead to consistent
results—despite seasonally varying CO sources, background contributions, and OH. Third, we see from
Figure 2 and Table S2 that the CO source optimization (derived from ACT1-ACT4 data) strongly improves
model performance versus independent airborne data from ACT5, GEM1, and GEM2, which were not em-
ployed in the optimization.

As a fourth test, we perform the CO source optimization separately for the two ACT-America aircraft. Ta-
ble S3 shows that we arrive at the same conclusions when analyzing the B-200 and C-130 observations in-
dependently as opposed to treating them as a combined data set. Specifically, we infer an NEI overestimate
of US anthropogenic CO emissions in both cases, with derived scale factors spanning 0.54-0.87 (sensitivity
tests) versus 0.66-0.79 (base analysis). The modest adjustment to the modeled secondary CO source from
regional biogenic and anthropogenic VOCs is likewise independently supported by both airborne data sets
(scale factors of 0.74-0.96 vs. 0.91 in the base-case).

A fifth evaluation repeats the base-case optimization with alternate boundary conditions (CO,,) for the
nested model domain—that is, employing the native model output for this purpose and omitting the
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ATom-based background adjustment (Section 2.2; Figure S3). Results in Table S4 show that scale factors
derived in this way are statistically consistent with the base-case analysis. For a sixth and final test, we mod-
ify the tracer groupings used for optimization and instead derive ACT1-ACT4 scale factors for (a) CO,,,;
and (b) the sum of all other regional source tracers. Results shown in Table S5 are again consistent with
the base-case findings, with a slightly wider range for the CO,,,; scale factor (0.58-0.85) and a modestly
degraded observational fit.

Overall, the above uncertainty tests all support our core findings, and we proceed to interpret the optimized
results in terms of their implications for fossil fuel versus nonfossil, and primary versus secondary, CO
sources over the US.

3.4. Optimized CO Source Contributions

Figures 3a-3g shows the optimized primary and secondary North American contributions to ambient CO as
sampled during ACT-America and GEM. We find that secondary production (mainly from biogenic VOCs)
is the dominant summertime North American CO source for air masses sampled by ACT-America, account-
ing for ~70% of the total PBL enhancement. Secondary production is also significant at other times (e.g.,
26%-45% of the PBL enhancement during the fall, winter, and spring ACT-America campaigns) but then
mainly reflects regional methane oxidation along with pyrogenic VOC oxidation. To the north, the impor-
tance of secondary CO over the Upper Midwest during GEM is significantly less (~7%-40%)—reflecting
lower biogenic VOC emissions and slower regional photochemistry. In total, photochemical CO sources
contribute between 2 ppb (winter; GEM2) and 31 ppb (summer; ACT5) to the average sampled PBL en-
hancements, versus 13-25 ppb from primary emissions.

In Figures 3h-3n, we further partition the optimized CO abundance into fossil fuel versus nonfossil contri-
butions. Here, fossil fuel sources include primary emissions plus secondary production from anthropogenic
VOC, while nonfossil fuel sources include biogenic VOC oxidation plus biomass burning CO emissions. The
remainder is from the oxidation of methane and of fire-derived VOCs. Results show that fossil fuel sources
account for just 32%-38% of the North American PBL CO enhancements sampled by ACT-America and
GEM during summer, increasing to 48%—49% during spring/fall and 57%-84% during winter.

The findings above reveal the complications of using CO as an anthropogenic tracer, particularly during
summer—as fossil fuel sources account for just 9%-16% of the total PBL abundance, and 32%-38% of the
North American enhancement, during this season. However, for many applications (e.g., applying spe-
cies:species correlations for source partitioning), source impacts on tracer variability can be more important
than their absolute magnitude. For example, one might expect the secondary CO source to be relatively
diffuse and that direct anthropogenic emissions would be a more important driver of ambient CO variability
over the US.

To explore this expectation, Figures S4-S5 show the CO standard deviation by source category (based on
the optimized GEOS-Chem simulation) for each airborne campaign in its entirety. In the summertime PBL
sampled by ACT-America and GEM, the CO variability due to North American (primary + secondary) fos-
sil fuel sources is substantially smaller (7-10 ppb) than that associated with background (15-21 ppb) and
regional nonfossil fuel (11-15 ppb) contributions. In other seasons, regional fossil fuel emissions drive as
much or more of the CO variability than nonfossil sources, but (except in the case of GEM) this variability
is still smaller than that associated with the CO background.

The characterization above, treating each ACT-America and GEM campaign as a single statistical data set,
mainly describes spatial patterns of CO variability across the eastern half of the US as a whole. If we instead
apply the optimized model to map the drivers of temporal CO variability (Figures S6-S10), we observe in
all seasons a dominant role for fossil fuel emissions in and downwind of most urbanized areas. A similar
finding applies for fires in specific affected regions. Temporal variability associated with secondary CO,
manifesting most strongly in summer, is relatively low over much of the US Southeast where precursor VOC
emissions are highest but is elevated around the periphery of this region (e.g., Figures S6, S11, and S16). We
attribute this to transport-driven effects at the edges of a large and diffuse source region (Figures S11-S15).
In other seasons, temporal variability associated with secondary CO is small, with fossil fuel emissions,
biomass burning, and background CO playing more important roles (Figures S7-S9).
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4. Conclusions

We applied measurements from 13 airborne campaigns to develop new constraints on CO sources over
the central and eastern US. Data were collected over 1,000 flight hours across all seasons, representing the
densest airborne data set yet for CO source quantification over North America. Campaign-average PBL
(<2 km) mixing ratios ranged from 121 (summer) to 158 ppb (winter). Interpreting this data set with a
high-resolution version of the GEOS-Chem CTM driven by the US EPA’s NEIC2016v1 inventory, we find
that the model accurately captures the observed CO vertical profile shape but underestimates its abundance
(by 9-48 ppb) in all seasons except fall. This disparity partly reflects a bias in the model CO background,
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and after correction we infer an NEI overestimate of fossil fuel CO emissions, with a derived top-down
adjustment factor of 0.72 (0.54-0.87; best estimate and uncertainty range across all sensitivity tests and
seasons). For comparison, the US EPA estimates that national fossil fuel CO emissions decreased by 8%
from 2016 to 2019 (EPA, 2019). Our top-down estimate for the secondary CO source from North American
VOC emissions agrees well with the prior model value, with a derived scale factor of 0.91 (0.74-0.96). If the
above comparisons are nationally representative, the implied US fossil fuel CO source for 2016-2019 was 29
(22-36) Tg/y, compared to the prior NEIC2016v1 estimate of 41 Tg/y (for 2016).

After optimizing the model based on the airborne constraints, we find that the CO background represents
on average 55%-78% of the PBL CO sampled during the aircraft campaigns. During summer, North Amer-
ican fossil fuel sources account for only 9%-16% of the sampled PBL CO, and 32%-38% of the enhance-
ments associated with regional sources. Nonfossil sources from biogenic VOC oxidation and fires account
for 40%-45% of the above-background enhancements at this time, with the remainder mainly from regional
methane oxidation. In other seasons, however, fossil fuel emissions are the largest regional source of CO.

Application of CO as a fossil fuel tracer is challenged by the fact that, during the growing season, such sourc-
es account for only a modest fraction of the CO burden and its spatial variability across the US. However,
in and near most urbanized regions the temporal variability in CO is still dominated by fossil fuel sources.
The number of locations where this remains the case will likely diminish, as US fossil fuel CO emissions are
expected to continue declining with future vehicle emission regulations, advanced emission after-treatment
technologies, and fleet electrification (Nopmongcol et al., 2017; Winkler et al., 2018).

Data Availability Statement

The ACT-America, GEM, and ATom data sets are publicly available at https://doi.org/10.3334/ORN-
LDAAC/1593, https://doi.org/10.13020/f50r-zh70, and https://doi.org/10.3334/ORNLDAAC/1581. GE-
OS-Chem model code is publicly available at http://www.geos-chem.org. Tagged CO model code and
boundary conditions used here are available at https://doi.org/10.13020/p2ze-1y93.
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