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Abstract 

Earth System Models (ESMs) are our main tools to quantify the physical state of the Earth 

and to predict how it might change in the future under ongoing anthropogenic forcing. In recent 

years, however, artificial intelligence (AI) methods have been increasingly used to augment or even 

replace classical ESM tasks, raising hopes that AI could solve some of the grand challenges of climate 

science. In this perspective, we survey the recent achievements and limitations of both process-based 

models and AI in Earth system and climate research and propose a methodological transformation, 

in which deep neural networks and ESMs are dismantled as individual approaches and reassembled 

as learning, self-validating, and interpretable Earth system model-network hybrids. Following this 

path, we coin the term ”Neural Earth System Modelling”. We examine the concurrent potential and 
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30 pitfalls of Neural Earth System Modelling and discuss the open question whether AI can infuse ESMs 

or, ultimately, even render them obsolete. 

For decades, scientists have utilized mathematical equations to describe geophysical and climate pro-

cesses and to construct deterministic computer simulations that allow for the analysis of such processes. 

Until recently, process-based models had been considered irreplaceable tools that helped to understand 

the complex interactions in the coupled Earth system and that provided the only tools to predict the 

Earth system’s response to anthropogenic climate change. 

Earth system models (ESMs)1 combine process-based models of the different sub-systems of the Earth 

system into an integrated numerical model that yields for a given state of the coupled system at time t 

a prediction of the system state for time t + 1. The individual model components, or modules, describe 

sub-systems including the atmosphere, the oceans, the carbon and other biogeochemical cycles, radiation 

processes, as well as land surface and vegetation processes and marine ecosystems. These modules are 

then combined by a dynamic coupler to obtain a consistent state of the full system for each time step. 

The inclusion of a vastly increasing number of processes, together with continuously rising spatial 

resolution, have led to the development of comprehensive ESMs to analyse and predict the state of the 

Earth system. From the first assessment report of the Intergovernmental Panel on Climate Change 

(IPCC) in 1990 to the fifth phase of the Climate Model Intercomparison Project (CMIP5)2 and the 

associated fifth IPCC assessment report in 2014, the spatial resolution has increased from around 500 

km to up to 70 km. In accordance, the CMIP results show that the models have, over the course of 

two decades, greatly improved in their accuracy to reproduce crucial characteristics of the Earth system, 

such as the evolution of the global mean temperatures (GMT) since the beginning of instrumental data 

in the second half of the 19th century, or the average present-day spatial distribution of temperature or 

precipitation3,4. 

The provocative thought that ESMs might lose their fundamental importance in the advent of novel 

artificial intelligence (AI) tools has sparked both a gold-rush feeling and caution in the scientific commu-

nities. On the one hand, deep neural networks have been developed that complement and aim to match 

the skill of process-based models in various applications, ranging from numerical weather prediction to 

climate research. On the other hand, most neural networks are trained for isolated applications under 

simplified conditions and lack true process knowledge. Regardless, the daily increasing data streams 

from Earth system observation (ESO), increasing computational resources, and the availability and ac-

cessibility of powerful AI tools, particularly in machine learning (ML), have led to numerous innovative 

developments that aim to resolve persistent shortcomings of current Earth system models. 

In the following, we survey the current state, recent achievements, and recognised limitations of 

both process-based modelling and AI in Earth and climate research. Based on this survey, we draw a 

perspective on an imminent and profound methodological transformation, hereafter named Neural Earth 

System Modelling (NESYM), that aims for a deep and interpretable integration of AI into Earth system 

modelling. We discuss emerging challenges of this perspective and highlight the necessity of new trans-

disciplinary collaborations between the involved communities. 
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Poorly known laws
Poorly known parameters

(eco-systems, carbon cycle, …)

Well known laws
Poorly known parameters

(oceanic convection,
ice sheet dynamics, …)
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energy flux

stochastic wind
extreme events

seasonal forcing cycle
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Figure 1: Symbolic representation of Earth system components in terms of knowledge clusters. Arrows 
indicate exemplary exchange of information between the clusters in terms of geophysical processes and 
coupling mechanisms. ML can take over different tasks depending on the cluster application, e.g., data 
exploration and analysis in case of poor process knowledge (green cluster), ESM enhancement by im-
proving insufficient parameterizations and other simplifications in process-based models (blue cluster), or 
emulation and acceleration of well-understood process-based simulations (orange cluster). Similarly, ML 
can be applied on coupling mechanisms and interaction processes (arrows), utilizing adjacent clusters as 
training data pools. 

68 Overview on Earth System Modelling and Earth System Obser-

69 vations 

70 For some parts of the Earth system, the primitive physical equations of motion are known explicitly, such 

71 as the Navier-Stokes equations that describe the fluid dynamics of the atmosphere and oceans (Fig. 1). In 

72 practise, it is impossible to numerically resolve all relevant scales of the dynamics and approximations have 

73 to be made. For example, the fluid dynamical equations for the atmosphere and oceans are integrated on 

74 discrete spatial grids, and all processes that operate below the grid resolution have to be parameterised 

75 to assure a closed description of the system. Since the multi-scale nature of the dynamics of geophysical 

76 fluids implies that the subgrid-scale processes interact with the larger scales that are resolved by the 

77 model, (stochastic) parameterization of subgrid-scale processes is a highly non-trivial, yet unavoidable, 

78 part of climate modelling5–7 . 

79 For other parts of the Earth system, primitive equations of motion, such as the Navier-Stokes equations 

80 for atmospheric motion, do not exist. Essentially, this is due to the complexity of the Earth system, where 
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81 many phenomena that emerge at a macroscopic level are not easily deducible from microscopic scales 

that may or may not be well-understood. A typical example is given by ecosystems and the physiological 

processes governing the vegetation that covers vast parts of the land surface, as well as their interactions 

with the atmosphere, the carbon and other geochemical cycles. Also for these cases, approximations in 

terms of parameterizations of potentially crucial processes have to be made. 

Regardless of the specific process, such parameterizations induce free parameters in ESMs, for which 

suitable values have to be found empirically. The size of state-of-the-art ESMs mostly prohibits systematic 

calibration methods such as, e.g., the ones based on Bayesian inference, and the models are therefore often 

tuned manually. The quality of the calibration as well as the overall accuracy of the model can only be 

assessed with respect to relatively sparse observations of the last 170 years, at most, and there is no way 

to assess the models’ skill in predicting future climate conditions8 . Although necessary, paramterizations 

can cause biases or structural model errors. The example of the discretized spatial grid suggests that the 

higher the spatial resolution of an ESM, the smaller the potential errors. Likewise, it is expected that the 

models’ representation of the Earth system will become more accurate the more processes are resolved 

explicitly. 

Despite the tremendous success of ESMs, persistent problems and uncertainties remain: 

(1) A crucial quantity for the evaluation of ESMs is the equilibrium climate sensitivity (ECS), defined 

as the amount of equilibrium GMT increase that results from an instantaneous doubling of atmospheric 

carbon dioxide9 . There remains a large ECS range in current ESM. From CMIP5 to CMIP6, the likely 

range of ECS has widened from 2.1–4.7◦C to 1.8–5.6◦C10,11. Reducing these uncertainties, and hence 

the uncertainties of future climate projections, is one of the key challenges in the development of ESMs. 

(2) Both theoretical considerations and paleoclimate data suggest that several sub-systems of the 

Earth system can abruptly change their state in response to gradual changes in forcing12,13. There is 

concern that current ESMs will not be capable of predicting future abrupt climate changes, because 

the instrumental era of less than two centuries has not experienced comparable transitions, and model 

validation against paleoclimate data evidencing such events remains impossible due to the length of the 

relevant time scales14 . In an extensive search, many relatively abrupt transitions have been identified in 

future projections of CMIP5 models15 , but due to the nature of these rare, high-risk events, the accuracy 

of ESM in predicting them remains untested. 

(3) Current ESMs are not yet suitable for assessing the efficacy or the environmental impact of carbon 

dioxide removal techniques, which are considered key mitigation options in pathways realizing the Paris 

Agreement16 . Further, ESMs still insufficiently represent key environmental processes such as the carbon 

cycle, water and nutrient availability, or interactions between land use and climate. This can impact 

the usefulness of land-based mitigation options that rely on actions such as biomass energy with carbon 

capture and storage or nature-based climate solutions17,18. 

(4) The distributions of time series encoding Earth system dynamics typically exhibit heavy tails. 

Extreme events such as heat waves and droughts, but also extreme precipitation events and associated 

floods, have always caused tremendous socio-economic damages. With ongoing anthropogenic climate 

change, such events are projected to become even more severe, and the attribution of extremes poses an-
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120 other outstanding challenge of Earth system science19 . While current ESMs are very skillful in predicting 

average values of climatic quantities, there remains room for improvement in representing extremes. 

In addition to the possible solutions to these fundamental challenges, improvements of the overall 

accuracy of ESMs can be expected from more extensive and more systematic integration of the process-

based numerical models with observational data. Earth system observations (ESOs) are central to ESMs, 

serving a multitude of purposes. ESOs are used to evaluate and compare process-based model perfor-

mance, to generate model parameters and initial model states, or as boundary forcing of ESMs20,21. 

ESOs are also used to directly influence the model output by either tuning or nudging parameters that 

describe unmodeled processes, or by the more sophisticated methods of data assimilation that alter the 

model’s state variables to bring the model output in better agreement with the observations22 . Gradient-

based optimization, as in four-dimensional variational (4DVar) schemes, is the current state of the art 

for efficiency and accuracy, but currently requires time consuming design and implementation of ad-

joint calculation routines tailored to each model. Ensemble-based Kalman filter (EnKF) schemes are 

gradient-free but produce unphysical outputs and rely on strong statistical assumptions that are often 

unsatisfied, leading to biases and overconfident predictions23 . The main problems of contemporary ESM 

data assimilation are 1) nonlinear dynamics and non-Gaussian error budgets in combination with the 

high dimensionality of many ESM components24–26 , and 2) constraining the governing processes over the 

different spatio-temporal scales found in coupled systems27,28. 

ESOs cover a wide range of spatio-temporal scales and types, ranging from a couple of centimeters to 

tens of thousands of kilometers, and from seconds and decades to millennia. The types of observations 

range from in-situ measurements of irregular times and spaces to global satellite-based data fields. Yet, 

the available observational data pool still contains large gaps in time and space that prevent building 

a holistic observation-driven picture of the coupled Earth system, which result from insufficient data 

resolution, too short observation time periods, and largely unobserved compartments of Earth systems 

like, for instance, abyssal oceans. The combination of these complex characteristics render Earth system 

observations both challenging and particularly interesting for AI applications. 

From Machine Learning-based Data Exploration Towards Learn-

ing Physics 

In contrast to other research branches29–32 , the usage of ML in Earth and climate sciences is still in its 

infancy. While current ML applications are mostly found in explorative studies and are still far away from 

operational usage, profound impact on research as well as on the supercomputing industry is expected33 . 

A key observation is that ML concepts from computer vision and automated image analysis can be 

isomorphically transferred to ESO imagery and time series34,35. Pioneering studies demonstrated the 

feasibility of ML for remote sensing data analysis, classification tasks, and parameter inversion already in 

the 1990s36–39 , and climate-model emulation in the early 2000s40 . The figurative Cambrian explosion of 

AI techniques in Earth and climate sciences, however, only began over the last five years and will rapidly 

continue throughout the coming decades. 
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157 ML has been applied across various spatial and temporal scales, ranging from short-term regional 

weather prediction to Earth-spanning climate phenomena. Significant progress has been made in de-

veloping purely data-driven weather prediction networks, aiming to explore alternative approaches to 

process-based model forecasts41–43 , or to emulate and accelerate computationally demanding compo-

nents of weather forecasting systems like the parameterization of gravity wave drag44 and the simulation 

of cloud processes 45 . However, current global data-driven ML weather forecasts operate on much lower 

resolution than state-of-the-art process-based models46 and the lack of available training data likely pre-

vents a closure of this gap in the near future47 . Yet, ML for emulation and acceleration tasks could play 

an even more important role in this context (orange knowledge cluster in Fig. 1), particularly during the 

advent of exascale computing48 and resolving related computational challenges and bottlenecks49 . ML 

contributed to the pressing need to improve the predictability of natural hazards, for instance, by uncover-

ing global extreme-rainfall teleconnections50 , or by improving long-term forecasts of the El Nino˜  Southern 

Oscillation (ENSO)51,52. ML-based image filling techniques were utilized to reconstruct missing climate 

information, allowing to correct previous global temperature records53 . Furthermore, ML was applied to 

analyze climate data sets, e.g., to extract specific forced signals from natural climate variability54,55 or to 

predict clustered weather patterns56 . In these applications, the ML tools function as highly specialized 

agents that help to uncover and categorize patterns in an automated way, which is particularly useful 

for observable processes that are only poorly described through physical laws or paramerizations (green 

knowledge cluster in Fig. 1). A key methodological advantage of ML in comparison to covariance-based 

spatial analysis lies in the possibility to map nonlinear processes 57,58 . At the same time, such trained 

neural networks lack actual physical process knowledge, as they solely function through identifying and 

generalizing statistical relations by minimizing pre-defined loss measures for a specific task59 . Conse-

quently, research on ML in Earth and climate science differs fundamentally from the previously described 

efforts of advancing ESMs in terms of methodological development and applicability. 

Concepts of utilizing ML not only for physics-blind data analyses, but also as surrogates and method-

ological extensions for ESMs have only recently started to shape60 . Scientists started pursuing the aim 

that ML methods learn aspects of Earth and climate physics, or at least plausibly relate cause and effect. 

The combination of ML with process-based modelling is the essential distinction from the previous ESO 

data exploration (blue knowledge cluster in Fig. 1). Lifting ML from purely diagnosis-driven usage to-

wards the prediction of geophysical processes will also be crucial for aiding climate change research and 

the development of mitigation strategies61 . 

Following this reasoning, ML methods can be trained with process-based model data to inherit a 

specific geophysical causation or even emulate and accelerate entire forward simulations. For instance, 

ML has been used in combination with ESMs and ESOs to invert space-borne oceanic magnetic field 

observations to determine the global ocean heat content62 . Similarly, a neural network has been trained 

with a continental hydrology model to recover high-resolution terrestrial water storage from satellite 

gravimetry63 . ML plays an important role for upscaling unevenly distributed carbon flux measurements 

to improve global carbon monitoring systems64 . The eddy covariance technique was combined with ML 

to measure the net ecosystem exchange of CO2 between ecosystems and the atmosphere, offering a unique 
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196 opportunity to study ecosystem responses to climate change65 . ML has shown success in representing 

subgrid-scale processes and other parameterizations of ESMs, given that sufficient training data were 

available. As such, neural networks were applied to approximate turbulent processes in ocean models66 

and atmospheric subgrid processes in climate models67 . Here, substantial computational savings could 

be achieved44,45, freeing resources that in turn could be used to improve the model simulations, e.g., by 

raising ensemble sizes or improve the numerical model’s resolution. Several studies highlight the potential 

for ML-based parameterization schemes68–72 , helping step-by-step to gradually remove numerically and 

human-induced simplifications and other biases of ESMs73 . Nevertheless, most ML parameterization 

schemes are still applied under idealized conditions, e.g., coarse model resolution, simplified physics, or 

reduced prognostic model variables. Transferring and testing these achievements on more complex ESM 

configurations remains an ongoing and open challenge74 . 

While some well-trained ML tools and simple hybrids have shown higher predictive power than tra-

ditional process-based models, only the surface of new possibilities, but also of new scientific challenges, 

has been scratched. So far, ML, ESMs, and ESO have largely been independent tools. Yet, we have 

reached the understanding that applications of physics-aware ML and model-network hybrids pose huge 

benefits by filling up niches where purely process-based models persistently lack reliability75 . 

The Fusion of Process-based Models and Artificial Intelligence 

While the idea of hybrids of process-based and ML models is not new 76 , the understanding of how ML 

can enhance process-based modelling has evolved based on the recent advances. The long-term goal 

will be to consistently integrate the recently discovered advantages of ML into the already decade-long 

source of process knowledge in Earth system science (Fig. 2). However, this evolution does not come 

without methodological caveats, which need to be investigated carefully. For the sake of comparability, 

we distinguish between weakly coupled NESYM hybrids, i.e., an ESM or AI technique benefits from 

information from the respective other, and strongly coupled NESYM hybrids, i.e., fully coupled model-

network combinations that dynamically exchange information between each other. 

The emergent development of weak hybrids is predominantly driven by the aim to resolve the pre-

viously described ESM limitations, particularly unresolved and especially sub-grid scale processes (left 

branch of Fig. 2). Neural networks can emulate such processes after careful training with simulation 

data from a high-resolution model that resolves the processes of interest, or with relevant ESO data. 

The next methodological milestone will be the integration of such trained neural networks into ESMs for 

operational usage. First tests have indicated that the choice of the AI technique, e.g., neural networks 

versus random forests, seems to be crucial for the implementation of learning parameterization schemes, 

as they can significantly deteriorate the ESM’s numerical stability77 . Thus, it is not only important to 

identify how neural networks can be trained to resolve ESM limitations, but also how such ML-based 

schemes can be stabilized in the model physics context and how their effect on the process-based simula-

tion can be evaluated and interpreted78 . The limitations of ML-based parameterization approaches can 

vary widely for different problems or utilized models and, consequently, should be considered for each 
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Physical Equation-driven Modelling Data-driven Machine Learning

Neural Earth System Modelling

Main tool for quantifying the Earth's
state under ongoing anthropogenic
forcing

Contains persistent error sources

Highly specialized agents that
uncover hidden patterns and

geophysical quantities

Lack of process knowledge

Process-based models and
neural networks will be coupled
as learning hybrid models

Physics-informed ML starts to
outperform traditional models

Successive research on explainable AI will make
hybrid models more physically interpretable

Combining the advantages of process-based
with machine learning models

Earth System Observation Data

Available data pool for neural
network training environments

Ground truth for the validation of
process-based models

Figure 2: Successive stages of the fusion process of Earth system models and artificial intelligence towards 
Neural Earth System Modelling (NESYM). The left and right branches visualize the current efforts and 
goals for building weakly coupled hybrids (blue and yellow), which converge towards strongly coupled 
hybrids with the support from explainable AI (green). Details on weak and strong hybrids are provided 
in the main text. 
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233 learning task individually79 . Nevertheless, several ideas have been proposed to stabilize ML parame-

terizations, e.g., by enforcing physical consistency through customized loss functions in neural networks 

and specific network architectures71,80, or by optimizing the considered high-resolution model training 

data72 . In addition, an ESM blueprint has been proposed, in which learning parameterizations can 

be targeted through searching an optimal fit of statistical measures between ESMs, observations, and 

high-resolution simulations81 . While this is not strictly applying ML, the approach is well posed for 

exploring parameterizations suitable for smooth climate solutions, avoiding the problems of the EnKF 

techniques. In such a context, further efforts have been made to enhance an ESM not with ML directly, 

but in combination with a data assimilation system22 . For instance, emulating a Kalman filter scheme 

with ML has been investigated82,83, an ML-based estimation of atmospheric forcing uncertainties used 

as error covariance information in data assimilation has been proposed84 , ML for nudged hindcasts74 , as 

well as further types of Kalman-network hybrids85,86. Despite the shown potential for combining data 

assimilation and ML, it should be highlighted that many current challenges of data assimilation need to 

be solved for respective ML approaches as well, such as robust quantification of model and observation 

uncertainties and the optimal use of sparse observations87 . 

In the second class of weak hybrids, the model and AI tasks are transposed, such that the information 

flow is directed from the model towards the AI tool (right branch of Fig. 2). Here, neural networks are 

trained directly with model state variables, their trajectories, or with more abstract information like sea-

sonal signals, interannual cycles, or coupling mechanisms (knowledge cluster connections in Fig. 1). The 

goal of the ML application might not only be model emulation, but also inverting non-linear geophysical 

processes 62 , learning geophysical causation88 , or predicting extreme events89,90 . In addition to these 

inference and generalization tasks, a key question in this sub-discipline is whether a neural network can 

learn to outperform the utilized process-based trainer model in terms of physical consistency or predictive 

power. ESOs play a vital role in this context, as they can serve as additional training constraints for a 

neural network training, allowing it to build independent self-evaluation measures 63 . 

The given examples generally work well for validation and prediction scenarios within the given 

training data distribution. Out-of-distribution samples, in contrast, pose a huge challenge for supervised 

learning, which renders the “learning from the past” principle possibly ill-posed for prediction tasks in 

NESYM. Because of the both naturally and anthropogenically induced non-stationarity of the climate 

and Earth system, it will be very challenging – and in many cases impossible – for purely data-driven 

AI methods to perform accurate climate projections on their own. Nevertheless, some hope for purely 

data-driven AI approaches may remain for problems for which it can be convincingly argued that, for 

instance, the data distributions for colder-climate training conditions and warmer-climate projections 

overlap. But in practise it will be hard to guarantee that the unseen domains of the data distributions 

corresponding to a warmer climate are not relevant for a given process under study. Moreover, in specific 

cases the scales of the processes under study may to a first approximation be separable from the scales 

relevant in the context of anthropogenic climate change, but guaranteeing this in practice will again be 

very difficult. 

Overcoming the overall limitations posed by the non-stationarity of the climate system requires a 
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272 deeper holistic integration in terms of strongly coupled hybrids and the consideration of further, less con-

strained training techniques like unsupervised training91 and generative AI methods69,92,93. For example, 

problems of pure AI methods with non-stationary training data can be attenuated by combining them 

with physical equations describing the changing energy-balance of the Earth system due to anthropogenic 

greenhouse-gas emissions94 . A key distinction of strongly coupled hybrids is that the ML component can 

be further improved by continued training. As such, the dynamic exchange of information does not 

only mean that the ML part is repeatedly called after being trained for usage in a weak hybrid, but 

can further evolve based on the current model state, newly available observations, etc. In addition, first 

steps towards physics-informed AI have been made by ML-based and data-driven discovery of physical 

equations95 and by the implementation of neural partial differential equations96,97 into the context of 

climate modelling98 . 

Continuous maturing of the methodological fusion process will allow building hybrids of neural net-

works, ESMs and ESOs that dynamically exchange information. ESMs will soon utilize output from 

supervised and unsupervised neural networks to optimize their physical consistency and, in turn, feed 

back improved information content to the ML component. ESOs form another core element and function 

as constraining ground truth of the AI-infused process prediction. Similar to the adversarial game of 

generative networks99 , or coupling mechanisms in an ESM100 , also strongly coupled NESYM hybrids 

will require innovative interfaces that control the exchange of information that are, so far, not avail-

able. As the methodical range of weak and strong hybrids is too large to be summarized through a 

single overarching definition, we formulate key characteristics and define goals of Neural Earth System 

Modelling: 

(1) Hybrids can reproduce and predict out-of-distribution samples and extreme events, 

(2) hybrids perform constrained and consistent simulations that obey physical conservation laws de-

spite potential shortcomings of the hybrids’ individual components, 

(3) hybrids include integrated adaptive measures for self-validation and self-correction, and 

(4) NESYM allows replicability and interpretability. 

While most studies implemented neural networks for ML in this context, the term Neural Earth System 

Modelling includes all AI techniques that help to achieve these goals. The ultimately goal of NESYM is 

to help scientists improving the current forecast limits of geophysical processes and to contribute towards 

understanding the Earth’s susceptible state in a changing climate. Consequently, not only the fusion of 

ESM and AI will be in the research focus, but also AI interpretability and resolving the common notion 

of a black box. 

Peering into the Black Box 

ML has emerged as a set of methods based on the combination of statistics, applied mathematics and 

computer science, but it comes with a unique set of hurdles. Peering into the black box and explaining 

the decision making process of the ML method, termed explainable AI (XAI), is critical to the use of 

ML tools. Especially in the physical sciences, adaptation of ML suffers from a lack of interpretability, 
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309 particularly supervised ML. In contrast and in addition to XAI stands the call for interpretable AI 

(IAI), i.e., building specifically interpretable ML models from the beginning on, instead of explaining ML 

predictions through post-process diagnostics101 . 

Ensuring that what is ‘learned’ by the machine is physically tractable or causal, and not due to 

trivial coincidences102,103, is important before ML tools are used, e.g., in an ESM setting targeted at 

decision making. Thus, interpretability and explainability provides the user with trust in the ML output, 

improving its transparency. This is critical for ML use in the policy-relevant area of climate science as 

society is making it increasingly clear that understanding the source of AI predictive skill is of crucial 

importance104,105. By analyzing the decision making process, climate scientists will be able to better 

incorporate their own physical knowledge into the ML method, ultimately leading to greater confidence 

in predictions. Perhaps least appreciated in geoscientific applications thus far is the use of IAI and XAI 

to discover new science103,106 and assist in theoretic advances107 . For example, when a ML model is 

capable of making skillful predictions, XAI allows us to ask “what did it learn?”. In this way, ML models 

can act as investigative tools for discovery. 

The power of XAI for climate, ocean and weather applications has very recently been demonstrated106,108–

Tools for developing XAI models are referred to as Additive Feature Attribution (AFA)111 . For exam-

ple, neural networks coupled with the XAI attribution method known as layerwise relevance propagation 

(LRP)112,113 have revealed modes of variability within the climate system, sources of predictability across 

a range of timescales, and indicator patterns of climate change55,106 . There is also evidence that XAI 

methods can be used to evaluate climate models against observations, identifying the most important 

climate model biases for the specific prediction task114 . However, these methods are in their infancy and 

there is vast room for advancements in their application, making it explicitly appropriate to employ them 

within the physical sciences103,110. In the context of the above, we emphasize, however, that IAI and 

XAI approaches should go side-by-side with well-posed physical research hypotheses. Also in this regard, 

we again highlight the importance of combining recent methods from AI with domain-specific physical 

understanding and the state of the art in process-based modelling. 

Unsupervised ML, can be intuitively IAI through the design of experiments. For example, applying 

clustering on closed model budgets of momentum ensures all relevant physics are represented, and can be 

interpreted in terms of the statistically dominant balances between terms115 . Similarly, ‘equation driven’ 

ML can be used to determine the salient terms given an array of mathematical operations, and suggest 

interpretable sub-gridscale parameterisation developments on this basis66,95. In this manner, dominant 

physical mechanisms or equation terms can be determined, generating new knowledge in physics and 

beyond91,115,116. Knowledge of dominant regimes can subsequently be used to engineer features for 

a well posed XAI application where the source of predictive ML skill is transparent110 . Adversarial 

learning has been an effective tool for generating super-resolution fields of atmospheric variables in climate 

models93 . Furthermore, unsupervised ML approaches have been proposed for discovering and quantifying 

causal interdependencies and dynamical links inside a system, such as the Earth’s climate88,117. Another 

example of an ML application that can be termed IAI is equation discovery, for example using Relevance 

Vector Machines (RVM), which has been applied for ocean eddy parameterizations95 . It is also of note 
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348 that a revolution of analysis tools has been called for to evaluate climate models, and ML is poised to be 

part of this change60,118,119 . 

Given the importance of both explainability and interpretability for improving ML generalization 

and scientific discovery, promoting collaborations between climate and AI scientists can help to develop 

methods that are tailored to the field’s needs. This is not just an interesting exercise - it is essential 

for the proper use of AI for NESYM development and use. Earth and climate scientists can aid the 

development of consistent benchmarks that allow evaluating both stand-alone ML and hybrids in terms 

of geophysical consistency120 . However, help of the AI community is needed to resolve other recently 

highlighted ML pitfalls. For example, identifying and avoiding shortcut learning121 in hybrid models, 

developing ESM concepts of adversarial examples and deep learning artifacts122 , and developing AFA123 

tools appropriate for physical applications such as within XAI110 . Only through combined efforts and 

continuous development of both ESM and AI can Neural Earth System Modelling emerge. 

Concluding remarks 

Our perspective should not only be seen as the outline of a promising scientific pathway to achieve a 

better understanding of the Earth’s present and future state, but also as an answer to the recent support 

call from the AI community124 . Based on the current state of applying AI to Earth system and climate 

sciences, further exploration of the full potential and, equally, the limits of AI in this field is important. 

Yet, this line of research is a high-risk venture with many potential pitfalls and dead ends. At this point, 

there is no guarantee that AI will be the missing key to overcome the grand challenges of Earth and 

climate sciences, some of which were described at the beginning of this perspective. In its current stage, 

it also seems unlikely that AI alone can solve the climate prediction problem. In the coming years, AI will 

necessarily need to rely on clear, physically meaningful research hypotheses, the geophysical determinism 

of process-based modelling, and on careful human evaluation against domain-specific knowledge. Along 

such lines, we believe that lasting progress beyond the current hype in applying AI to Earth system 

science will be possible. However, once we find solutions to the foreseeable limitations described above 

and can build interpretable and geophysically consistent AI tools, this next evolutionary step will seem 

much more likely. 
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