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ABSTRACT: Recent research has shown that random forests (RFs) can create skillful probabilistic severe weather haz-
ard forecasts from numerical weather prediction (NWP) ensemble data. However, it remains unclear how RFs use NWP
data and how predictors should be generated from NWP ensembles. This paper compares two methods for creating RFs
for next-day severe weather prediction using simulated forecast data from the convection-allowing High-Resolution
Ensemble Forecast System, version 2.1 (HREFv2.1). The first method uses predictors from individual ensemble members
(IM) at the point of prediction, while the second uses ensemble mean (EM) predictors at multiple spatial points. IM and
EM RFs are trained with all predictors as well as predictor subsets, and the Python module tree interpreter (TI) is used to
assess RF variable importance and the relationships learned by the RFs. Results show that EM RFs have better objective
skill compared to similarly configured IM RFs for all hazards, presumably because EM predictors contain less noise. In
both IM and EMRFs, storm variables are found to be most important, followed by index and environment variables. Inter-
estingly, RFs created from storm and index variables tend to produce forecasts with greater or equal skill than those from
the all-predictor RFs. TI analysis shows that the RFs emphasize different predictors for different hazards in a way that
makes physical sense. Further, TI shows that RFs create calibrated hazard probabilities based on complex, multivariate
relationships that go well beyond thresholding 2–5-km updraft helicity.

KEYWORDS: Ensembles; Forecasting; Artificial intelligence; Decision trees; Machine learning; Model interpretation
and visualization

1. Introduction

Random forests (RFs; Breiman 2001) are appealing for
numerical weather prediction (NWP) postprocessing because
they can handle raw (i.e., nonnormalized) predictors, tend to
produce reliable probabilistic predictions (Breiman 2001), are
computationally efficient, and require little tuning compared to
other machine learning (ML) methods. Moreover, RFs have
recently demonstrated substantial skill in postprocessing precipi-
tation (e.g., Gagne et al. 2014; Herman and Schumacher 2018;
Loken et al. 2019) and severe weather (e.g., Gagne et al. 2017;
Burke et al. 2020; Loken et al. 2020; Hill et al. 2020) forecasts
from NWP ensembles. Indeed, Hill et al. (2020) found their
2- and 3-day lead-time RF-based severe weather forecasts had
higher Brier skill scores (BSSs) than corresponding Storm Pre-
diction Center (SPC) forecasts, while Loken et al. (2020) found
that RFs using convection-allowing ensemble (CAE) predictors
frequently produced more skillful day 1 hazard forecasts than
those from the SPC. RFs have also performed well in testbed set-
tings (e.g., Clark et al. 2021; Schumacher et al. 2021) and are
now even considered in real-time operations (e.g., Schumacher
et al. 2021).

Given the recent forecasting successes of RFs, it is natural and
important to ask the following questions: How do RFs use simu-
lated ensemble data to create skillful forecasts? What relation-
ships does the RF learn between ensemble forecast variables
and observed high-impact weather? Are current preprocessing

techniques optimal? This study seeks to address these questions
by comparing differently configured, severe-weather-predicting
RFs and interpreting their output using the Python-based tree
interpreter module (TI; Saabas 2016).

Uncovering the relationships learned by an ML algorithm is
important because doing so can confirm the MLmodel is working
as intended, build trust with product users, and provide new
insights into underlying weather prediction tools (e.g., ensembles,
satellites). There are multiple interpretability methods to help
users better understand RF models. Single- (Breiman 2001) and
multipass (Lakshmanan et al. 2015) permutation methods ran-
domly permute the predictor data, assigning the greatest impor-
tance to predictors associated with the greatest drop in RF
forecast skill after permutation. Forward (backward) feature selec-
tion (e.g., McGovern et al. 2019) involves retraining the RF after
adding (removing) the variable that increases (decreases) RF skill
the most (least). Partial-dependence plots (PDPs; Friedman 2001;
Molnar 2019; McGovern et al. 2019) show how the prediction
varies with a given predictor when all other predictors are held
constant at their mean values. Impurity importance (e.g., Breiman
2001; Louppe et al. 2013; McGovern et al. 2019) measures how
effectively each predictor sorts the training samples based on the
target variable (e.g., the occurrence of an observed storm report),
on average, after each split. Impurity importance is frequently
quantified by computing the mean change in Gini or entropy
score (e.g., McGovern et al. 2019) after each split, with greater
scores indicating more effective sorting based on the target vari-
able. These are all global methods because they explain RFs’ over-
all behavior (e.g., Molnar 2019). Local methods, meanwhile,Corresponding author: Eric D. Loken, eric.d.loken@noaa.gov
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explain specific predictions. Examples include individual condi-
tional expectation plots (Goldstein et al. 2015), which are PDPs
for individual predictions; locally interpretable model-agnostic
explanation (LIME; Ribeiro et al. 2016), which uses an easily
interpretable model (e.g., linear regression) trained on perturbed
predictor data to explain a model’s local predictions; Shapely val-
ues (Shapley 1953; Molnar 2019; Lundberg et al. 2019), which use
game theory to determine each predictor’s fair contributions to
the final prediction; and TI, a method that combines features of
impurity importance and Shapley values.

In this paper, the most important predictors for RF severe
weather hazard forecasts are determined using TI and by
evaluating RFs trained on different subsets of predictors,
since these methods are computationally feasible and easy to
understand. TI is also used to identify the learned relation-
ships between RF predictors and observed severe weather.
Two ways of obtaining predictors from CAE variables are
compared: using individual-member CAE variables at the
point of prediction (to potentially learn relationships from
individual ensemble members) and using ensemble-mean var-
iables at multiple spatial points (to potentially learn spatial
relationships). Through this analysis, this paper seeks to
determine the best way to condense simulated ensemble data
during preprocessing and understand how RFs leverage
CAEs to create skillful severe weather hazard (i.e., severe
hail, wind, and tornado) forecasts. A focus on these hazards is
adopted herein because they are highly impactful to lives and
property (NCEI 2021) yet extremely difficult to predict, owing
to their small scale relative to typical CAE grid spacing. This
study also intends to build on the work of Loken et al. (2020)
by investigating how RFs can attain such strong performance
for next-day severe weather hazard prediction.

The remainder of the paper is organized as follows: section 2
describes the methods and datasets, section 3 presents the
results, section 4 analyzes a representative case study forecast,
section 5 summarizes and discusses the results, and section 6
concludes the paper and offers suggestions for future work.

2. Methods

a. Datasets

The forecast and observational datasets contain 653 days
from April 2018 to May 2020 (Table 1). As in Loken et al.
(2020), the analysis domain covers the contiguous United
States (CONUS), and verification is performed on a grid with
approximately 80-km horizontal spacing (Fig. 1a) to match
the verification scales used by the SPC (i.e., 40 km from a
point). Next-day forecasts (lead times of 12–36 h, valid from
1200 to 1200 UTC) are analyzed.

As in Loken et al. (2020), observed local storm reports
(LSRs) are used for training and verifying RF forecasts. Unfil-
tered LSRs from the SPC website (SPC 2021a) are used for
wind, hail, and 2019/20 tornadoes, while 2018 tornado LSRs
were obtained from the SPC Storm Events Database (SSED;
SPC 2021c) because it provides a more accurate and complete
summary of tornado events. The spatial distribution of hail,

wind, and tornado LSRs over the full dataset is depicted in
Figs. 1b–d.

RF forecasts are trained based on predictors from the
High-Resolution Ensemble Forecast System, version 2.1
(HREFv2.1; Jirak et al. 2018; Roberts et al. 2020), an opera-
tionalized version of the Storm-Scale Ensemble of Opportu-
nity (SSEO; Jirak et al. 2012, 2016). Like the SSEO, the
HREFv2.1 is an assemblage of diverse, individually tuned
convection-allowing models (CAMs). The SSEO (Jirak et al.
2016) and HREFv2.1 have demonstrated high degrees of skill
for the prediction of severe convection, owing to their rela-
tively large member diversity compared to other ensemble
designs (Roberts et al. 2020). Indeed, the diversity, skill, and
operational status of HREFv2.1 make it ideal for this study,
which seeks to shed light on the optimal use of diverse con-
vection-allowing ensembles for severe weather prediction.
HREFv2.1 contains 10 members, which all use approximately
3-km horizontal grid spacing. Collectively, the members use
two dynamic cores, four microphysics schemes, and three
boundary layer parameterizations. Five of the members are
initialized at 0000 UTC, while the other five members are ini-
tialized at 1200 UTC the previous day. Full ensemble specifi-
cations are given Table 2.

b. RF method overview

RFs are ensembles of decision trees (Breiman 1984), which
work by recursively splitting a dataset based on the predictor
and value that maximizes a dissimilarity metric (e.g., informa-
tion gain) during training. Because individual decision trees
are prone to overfitting (e.g., Gagne et al. 2014), RFs include
multiple unique decision trees grown independently based on
a random subset of the training data, with each node’s
“optimal split” determined from a random subset of predic-
tors. After training, RFs can predict the probability of an
unseen testing sample belonging to a certain class (e.g., being
associated with an LSR) by running the sample through each
tree in the forest. RF probabilities are the mean fraction of
training samples associated with the given class at the relevant
leaf node across all trees. As in Loken et al. (2019, 2020), RFs
are created using random forest classifiers from the Python
module Scikit-Learn (Pedregosa et al. 2011).

TABLE 1. HREFv2.1 initialization dates.

Month 2018 2019 2020 Total

January } 2–23, 25–31 } 29
February } 1–28 } 28
March } 1–31 } 31
April 5–30 1–15, 17–30 27, 29–30 58
May 1–16, 18–31 1–31 1–29 90
June 1–6, 9–30 1–30 } 58
July 1–10, 13–31 1–31 } 60
August 1–4, 7–31 1–31 } 60
September 1–15, 17–30 1–26, 28–30 } 58
October 1–31 1–31 } 62
November 1–5, 8–20, 22–30 1–30 } 57
December 1–31 1–31 } 62
Total 260 361 32 653
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c. RF interpretability and the tree interpreter module

TI analyzes the path of a testing sample through each tree
in a RF and records how each predictor impacts the training
sample purity (i.e., the proportion of training samples associ-
ated with an LSR) at each node in the testing sample’s path.
Ultimately, TI sums each predictor’s contribution over all
nodes in each tree and reports the mean impact of each pre-
dictor over all trees in the RF. Like impurity importance, TI

measures how well predictors split the training samples at
each node; however, TI quantifies the impact of each split
using the change in the training sample climatology instead of
information gain or change in the Gini index. Moreover, TI is
a local method and so only considers the splits made along
the path (of each tree) taken by a testing sample. Thus, TI
only measures variable importance as it applies to a specific
set of testing data, unlike impurity importance, which evalu-
ates how predictors influence all splits in the forest, regardless
of whether those splits are utilized during testing.

A nice property of TI is that it decomposes the final RF
probability into the sum of a bias term (i.e., the overall clima-
tology of the training set) and the contribution from each pre-
dictor, a feature it shares with Shapley values. However, TI
and Shapley values are computed differently. As discussed
above, TI analyzes how each predictor along a testing path
contributes to the final RF probability based on how it splits
the training samples. In contrast, Shapley values aim to fairly
divide the output probability among predictors based on their
(weighted) marginal contributions to the final probability
(Molnar 2019). These marginal contributions are calculated
by computing how the RF probability differs, on average,
when a given predictor is added to a set of other predictors
(over all possible sets). Because of their different designs, TI
and Shapley values have different characteristics, strengths,
and weaknesses. For example, TI tends to assign more credit
to predictors deeper in the trees, while Shapley values do not
(Lundberg et al. 2019). Additionally, unlike TI, Shapley val-
ues are designed to satisfy multiple nice properties, including
efficiency (i.e., Shapley values from each predictor sum to the
final prediction), symmetry (i.e., Shapley values are the same
for two predictors with the same marginal contributions for
all possible predictor sets), dummy (i.e., Shapley values of 0
are assigned to predictors that do not change the final predic-
tion when added to any set), and additivity (i.e., Shapley val-
ues are additive in situations where the final output is
additive; Molnar 2019). However, Shapley values are also
expensive to compute and must be approximated in practice.
Moreover, when predictors are correlated, Shapley value
computations can include unrealistic predictor data, since
Shapley values involve computing RF probabilities from sets
with some predictors “excluded” (i.e., replaced by predictor
data from randomly chosen samples, which might not be
physical; Molnar 2019). TI does not have this problem
because it only analyzes the single set of predictors along each
tree’s testing path. Here, for simplicity, TI is used to examine
each predictor’s mean contribution to each forecast probabil-
ity, domain- and dataset-wide.

Predictors are analyzed singly as well as in groups of similar
variables (e.g., all storm-related variables). TI shows how
much, on average, each predictor (set) influences RF proba-
bilities positively, negatively, and overall. Greater overall
impact on RF probabilities implies greater “importance” of
the given predictor to the RF. TI probability contributions are
also stratified based on the observed class to determine
whether (and how much) predictors appropriately increase or
decrease probabilities. TI contributions are plotted against
the value of a given predictor for every testing sample in the

FIG. 1. (a) Verification domain (gray shading) and 80-km grid
points (blue dots). (b) Distribution of severe hail reports in the
observational dataset. (c),(d) As in (b), but for severe wind and tor-
nado reports, respectively.
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dataset to show how different values of a predictor influence
RF probabilities.

TI also contains a function that assesses how multiple predic-
tors interact to influence RF probabilities. This function ascribes
the change in training data purity at a given node to the combina-
tion of predictors at and above the given node in the testing path,
which results in more accurate contribution values. However, this
process of assessing multivariate contributions is very computa-
tionally expensive. Therefore, the function is only run on the test-
ing data associated with an LSR. For each severe weather hazard,

a scatterplot shows the probability contribution from the top two-
variable combinations for each sample in the testing dataset.

d. Creating RF forecasts

1) PREDICTOR FIELDS

Here, the RFs consider 32 input fields from the HREFv2.1
as well as latitude and longitude. Each field is categorized as
a storm, environment, index, or latitude/longitude variable
(Table 3). Nineteen of these represent derived fields (denoted

TABLE 2. HREFv2.1 specifications. Dynamic cores are from the Advanced Research version of the Weather Research and
Forecasting Model (WRF-ARW; Skamarock et al. 2008) and the Nonhydrostatic Multiscale Model on the B grid (NMMB; Janjić and
Gall 2012). Initial and lateral boundary conditions (ICs/LBCs) are from the North American Mesoscale Model (NAM; Janjić 2003),
operational Rapid Refresh (RAP; Benjamin et al. 2016), and the National Centers for Environmental Prediction’s Global Forecast
System (GFS; Environmental Modeling Center 2003). Microphysics parameterizations include the Thompson (Thompson et al. 2008),
WRF single-moment 6-class (WSM6; Hong and Lim 2006), Ferrier et al. (2002), and Ferrier–Aligo (Aligo et al. 2018) schemes.
Planetary boundary layer (PBL) parameterizations include the Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino
2004), Mellor–Yamada–Janjić (MYJ; Janjić 2002), and Yonsei University (YSU; Hong et al. 2006) schemes. HRW refers to the High-
Resolution Window model run. Note that the HREFv2.1 used herein differs slightly from that described in Roberts et al. (2020) in
that the time-lagged HRRR member is initialized at 1200 UTC instead of 1800 UTC (i.e., a 12- instead of 6-h time lag).

Member Dynamic core ICs/LBCs Microphysics PBL Initialization time

HRRR WRF-ARW RAP/RAP Thompson MYNN 0000 UTC
HRRR-12 WRF-ARW RAP/RAP Thompson MYNN 1200 UTC
HRW ARW WRF-ARW RAP/GFS WSM6 YSU 0000 UTC
HRW ARW-12 WRF-ARW RAP/GFS WSM6 YSU 1200 UTC
HRW NMMB NMMB RAP/GFS Ferrier MYJ 0000 UTC
HRW NMMB-12 NMMB RAP/GFS Ferrier MYJ 1200 UTC
HRW NSSL WRF-ARW NAM/NAM WSM6 MYJ 0000 UTC
HRW NSSL-12 WRF-ARW NAM/NAM WSM6 MYJ 1200 UTC
NAM NEST NMMB NAM/NAM Ferrier–Aligo MYJ 0000 UTC
NAM NEST-12 NMMB NAM/NAM Ferrier–Aligo MYJ 1200 UTC

TABLE 3. Predictor fields. The temporal aggregation strategy for each variable is noted in parentheses. An asterisk denotes a derived
quantity.

Simulated storm Simulated environment Simulated index Lat/lon

1-km reflectivity (24-h max) 0–3-km storm relative
helicity (24-h max)

MUCAPE (24-h mean) Supercell composite
parameter* (24-h max)

Latitude

Echo top (24-h max) 0–1-km storm relative
helicity (24-h max)

MUCIN (24-h mean) Significant tornado
parameter* (24-h max)

Longitude

Upward vertical velocity
(24-h max)

2-m temperature
(24-h mean)

SB/MUCAPE ratio*
(24-h mean)

Significant hail parameter*
(24-h max)

}

Downward vertical velocity
(24-h min)

2-m dewpoint temperature
(24-h mean)

700–500-hPa lapse rate*
(24-h mean)

0–1-km energy helicity
index* (24-h max)

}

2–5-km updraft helicity
(24-h max)

2-m and 925-, 850-, 700-,
and 500-hPa dewpoint
depression* (24-h
mean)

Critical angle proxy* (at
time of max STP)

0–3-km energy helicity
index* (24-h max)

}

0–3-km updraft helicity
(24-h max)

10-m–500-hPa wind shear
magnitude* (24-h mean)

Max 10-m wind speed
(24-h max)

Product of (MUCAPE) 3
(10-m–500-hPa wind
shear magnitude)* (24-h
max)

}

Number of grid points with at
least 30 dBZ simulated
reflectivity [at time of max
2–5-km updraft helicity (if
nonzero) or upward
vertical velocity]

10-m–925-hPa wind shear
magnitude* (24-h mean)

10-m wind direction (at
time of maximum 10-m
wind speed)

Lifted index (24-h min) }
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by an asterisk in Table 3). The most complex derived varia-
bles are described in the appendix.

2) DATA PREPROCESSING

Preprocessing is required to reduce the dimensionality of the
dataset to make ML computationally feasible. The general
method of preprocessing is similar to that described in Loken
et al. (2020). First, simulated HREFv2.1 data are aggregated in
time by computing a 24-h maximum, minimum, or mean,
depending on the variable (Table 3). Next, all forecast variables
are remapped to the approximately 80-km verification grid
using the method described in Loken et al. (2020). Namely, for
the variables using temporal maximum (minimum) aggregation,
remapping is done by assigning each 80-km grid box the maxi-
mum (minimum) value from all the 3-km points falling inside
of it. For the variables using temporal mean aggregation,
remapping is done using a neighbor budget method (Accadia
et al. 2003). Ultimately, RF probabilities are output and ana-
lyzed on this 80-km grid, as in Loken et al. (2020). Using an
80-km grid for 12–36-h lead time severe weather prediction
and verification is appropriate because 1) predictability is
unlikely to exist at smaller scales for those lead times,
2) local severe weather reports are likely underreported at
the smallest spatial scales (e.g., if the native 3-km grid were
used instead), and 3) an 80-km grid cell covers approxi-
mately the same area as the 40-km radius used by the SPC
for verification}although the use of an upscaled grid makes
verification much more computationally efficient. Moreover,
the use of an 80-km grid reflects the verification procedure
used by Loken et al. (2020), who showed that similar RF-
based severe weather forecasts were skillful compared to
SPC and updraft-helicity-based forecasts at 12–36-h lead
times.

Two different methods are used to obtain RF predictors in
the final step of preprocessing. Because HREFv2.1 is a highly
diverse CAE with members designed to be skillful on their
own, the first method involves using individual member fields
at the point of prediction as predictors. The RFs trained in
this way will be subsequently referred to as individual mem-
ber (IM) RFs. The second method uses predictors from each
field’s ensemble mean. To keep the number of predictors
approximately equal, the RFs trained using the second
method consider predictors at the point of prediction plus the
8 nearest grid points. Therefore, the RFs trained in this way
will be subsequently referred to as (3 3 3) ensemble mean
(EM) RFs.

To help account for the spatial uncertainty in the placement
of simulated storms in the IM RFs (which only consider simu-
lated CAE data at a single grid point), all storm fields (except
for n30dbz) are spatially smoothed using a two-dimensional
isotropic Gaussian kernel density function:

y � ∑N
n�1

yn
2ps2exp 2

1
2

dn
s

( )2[ ]
, (1)

where y is the spatially smoothed value at a given point, N is
the number of points in the analysis domain, yn is the raw

value at point n, dn is the distance between the nth point and
the given point, and s is the standard deviation of the
Gaussian kernel. Here, s is always taken to be 120 km for
simplicity. Unlike in Loken et al. (2020), this value is not
optimally tuned for each field and hazard. Rather, 120 km
is chosen based on past experience with 2–5-km updraft hel-
icity (UH2–5km); it is thought to be large enough to
enhance probability of detection (POD; i.e., correctly fore-
casting observed LSRs; e.g., Wilks 2011) but small enough
to preserve some sharpness and resolution. Importantly,
the smoothing is only done for the storm variables in the
IM RF. The EM RF uses unsmoothed storm variables
because it considers predictors at multiple spatial points.
Although spatial smoothing biases the IM RFs’ storm field
predictors lower (by the nature of the smoothing), the
smoothed fields retain a strong relationship with observed
severe weather and eliminate the need for the constituent
ensemble member to place storms perfectly.

Missing ensemble forecast data are also handled during
preprocessing. Because the time-lagged HRRR member only
extends to forecast hour 24 (as opposed to 36), it is excluded
from the ensemble mean. For the IM RFs, the member is
included but uses 12- rather than 24-h temporal aggregation
(excluding the HRRR member from the IM RFs does not
appreciably change the results presented herein). Addition-
ally, the two NAM members do not forecast radar echo top
(RETOP), 0–3-km UH (UH0–3km), critical angle, or signifi-
cant tornado parameter (STP). Therefore, the IM RFs do not
include NAM versions of these variables as predictors, and
the EM RFs use an 8-member ensemble mean for these
variables.

To help determine how storm, environment, and index vari-
ables influence RF skill, IM and EM RFs are trained using all
available predictors as well as different subsets.

3) RF TRAINING

All RFs are trained using Scikit-Learn and use the same set
of hyperparameters for simplicity: 200 trees, a maximum
depth of 15, and 20 minimum samples per leaf node. These
hyperparameters are selected based on previous experience
with forecasting precipitation and severe weather. Sensitivity
tests (not shown) indicate that the above combination of
hyperparameters frequently produces highly skilled forecasts.
With one exception (when trees are restricted to a depth of 5
or less), altering the hyperparameters within reasonable
ranges (i.e., from 50 to 500 trees, from 5 to 50 maximum
depth, and from 1 to 50 minimum samples per leaf node) does
not appreciably impact RF skill. Moreover, in all cases exam-
ined, varying the hyperparameters impacts EM and IM RF
skill similarly; thus, small differences in hyperparameters are
not expected to appreciably change the results presented
herein.

As in Loken et al. (2019, 2020), k-fold cross validation is
used to train and verify the RF forecasts, since this approach
allows RF forecasts to be trained using a (comparatively)
large training dataset. Here, 16 folds are used: the first 13
folds contain 41 days each, and the final 3 folds each contain
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40 days. Sixteen folds are chosen as a compromise between
computational expense and training dataset length. Sensitivity
tests (not shown) suggest that using more folds slightly
increases RF skill (due to the usage of a larger training set)
but at the cost of greater computational expense. However,
varying the number of folds from 4 to 64 impacts the verifica-
tion metrics of the EM and IM RF forecasts similarly, so the
results herein are likely not overly sensitive to the number of
folds.

Forecasts are verified on the pooled testing data from
each of the 16 folds, which enables verification to be done
on the full 653-day dataset. Importantly, TI analysis for a
given day is done using the RF from the appropriate fold.
Thus, the TI results are aggregated from multiple (but
appropriate) RFs.

e. Verification

RF forecasts are evaluated using area under the relative
operating characteristics curve (AUC; e.g., Wilks 2011), BSS
(e.g., Wilks 2011), performance diagrams (Roebber 2009),
and attributes diagrams (Hsu and Murphy 1986).

AUC measures the ability of a forecast system to discrimi-
nate between yes events (e.g., the occurrence of severe hail)
and no events (e.g., no occurrence of severe hail). Since AUC
depends on probability of false detection, it is sensitive to the
number of correct nulls. Thus, for severe weather, AUCs
above 0.9 are not uncommon (Loken et al. 2020). Here, AUC
is computed using the “roc_auc_score” function in Scikit-
Learn, which uses the trapezoidal approximation.

Another metric that assesses forecast quality is the Brier
score (BS; e.g., Wilks 2011), which measures the magnitude
of forecast probability errors. BS is negatively oriented, so
0 (1) is the best (worst) possible score. As with AUC, trivial
correct nulls can artificially improve the BS. To account for
this effect, the BSS (e.g., Wilks 2011) is used herein. Essen-
tially, the BSS compares the BS of a given forecast to that
of a reference forecast. As in Loken et al. (2020), the refer-
ence here is a constant forecast of (domain-wide) observed
climatological frequency for the given severe weather haz-
ard during the 653-day dataset. Unlike the BS, the BSS is
positively oriented. BSSs of 1 (below 0) indicate perfect
(negative) skill. This paper plots BSS against AUC to effi-
ciently show both metrics on a single graphic. Points closer
to the upper right-hand corner of this plot indicate more
skillful forecasts.

Performance diagrams (Roebber 2009) plot POD against
success ratio (SR) and additionally display lines of constant
bias and critical success index (CSI). These four metrics
are all optimized at a value of 1; therefore, more skillful
forecasts appear closer to the upper right-hand corner
of the diagram. Here, performance diagrams are created
by binarizing each set of forecasts at the following proba-
bility levels: 0%, 1%, 2%, 5%–15%, … , 85%–95%,
95%–100%.

Finally, attributes diagrams are used to measure reliability}or
how well a forecast system’s probabilities correspond with
observed event relative frequencies. Perfectly reliable forecasts

fall along the 1:1 diagonal line on the attributes diagram.
Forecasts that contribute positively (negatively) to the BSS
fall above (below) the no-skill line, and forecasts that have
no resolution are along the horizontal climatology line.
Attributes diagrams are created by binning the forecasts
using the same forecast probability levels used to create the
performance diagrams.

3. Results

a. RF verification

Performance diagrams (Figs. 2a–c) show that the EM RFs
have the same or greater CSI compared to the IM RFs at all
probability levels tested for all three hazards. Differences are
largest for severe wind (Fig. 2b) and at probability values
above 15% (Figs. 2a–c).

EM RFs trained with different predictor subsets achieve
different levels of skill. For all three hazards, environment-
only RFs are clearly inferior (Figs. 2d–f). Index-only RFs
clearly outperform environment-only RFs for hazards with a
relevant index predictor (i.e., hail and tornadoes; Figs. 2d,f),
while storm-only RFs perform nearly as well as all-predictor
RFs for all hazards. RFs that use index- and storm-related
predictors (i.e., the no-environment RFs) have greater CSI
than the storm-only RFs for tornadoes at most probability
levels (Fig. 2f) and similar CSI to the all-predictor RFs for
hail and wind (Figs. 2d,e).

All forecasts have good reliability for all three hazards
(Figs. 2g–i). The larger deviations from perfect reliability
seen at the higher forecast probabilities are likely due to
small sample size. Notably, these deviations happen at com-
paratively smaller probability levels for the environment-
only RFs, owing to those RFs’ reduced sharpness. The
storm-only RFs tend to produce the sharpest forecasts for
all three hazards.

AUC and BSS values from the differently configured
RFs reflect some of the key findings above, namely, that
EM RFs tend to be superior to corresponding IM RFs;
environment-only RFs are generally inferior; and the
no-environment, all-predictor, and storm-only RFs tend
to be the top-performing configurations for all hazards
(Figs. 2j–l). Interestingly, the no-environment RF for
severe wind and tornadoes has the highest BSSs and either
a better (Fig. 2j) or similar (Fig. 2l) AUC compared to the
corresponding all-predictor RF. This suggests that at least
modest benefits can be obtained by using both storm and
index predictors.

b. Influence of predictors on RF probabilities

1) HAIL

For severe hail prediction, storm-related variables exert the
most absolute impact on RF probabilities; this is true of both
IM and EM RFs (Figs. 3a–d). Overall, the storm variables
tend to appropriately decrease RF probabilities when no LSR
is present (Figs. 3a,b) and increase probabilities when an LSR
is present (Figs. 3c,d). Index variables exert comparatively
less impact on RF probabilities but also tend to move
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probabilities in the appropriate direction. Environment varia-
bles impact RF probabilities slightly less (more) than index
variables when no (an) LSR is present. However, environ-
mental fields, on average, tend to increase the probabilities
when no LSR is present (Figs. 3a,b) and increase probabilities
less than the storm and index variables when an LSR is pre-
sent (Figs. 3c,d). This result is interesting and counterintuitive,
since one would expect the most skillful variables to also
be the most important. One explanation is that more

environmental than index variables exist and thus get selected
more frequently as splitting criteria by the RF algorithm. Sim-
ilar logic can help explain the difference in latitude and longi-
tude contributions between the IM and EM RFs. In the IM
RFs, latitude and longitude are each represented once, while
in the EM RFs, latitude and longitude are represented nine
times (once for each spatial grid point examined), making it
more likely that they will be involved in a node’s splitting
criterion.

FIG. 2. (a) Performance diagram for all-predictor IM (filled circles) and EM (filled triangles) RFs for severe hail. (b),(c) As in (a), but
for severe wind and tornadoes, respectively. Note that the x axis spans from 0 to 0.75. (d)–(f) As in (a)–(c), but for all-predictor (black tri-
angles), storm-only (red triangles), environment-only (dark blue triangles), index-only (purple triangles), and no-environment (yellow tri-
angles) EM RFs. (g) Attributes diagram for the EM RF forecasts listed in (d) for severe hail. The number of forecasts in each forecast
probability bin are displayed with a dashed line of the appropriate color. Perfect reliability (dashed gray), no-skill (solid black), and hori-
zontal and vertical climatology lines (dashed black) are also shown. Note that the x axis is truncated at 0.75. (h),(i) As in (g), but for severe
wind and tornadoes, respectively. (j) BSS vs AUC plot for severe hail. IM RFs (filled circles) and EM RFs (filled triangles) are displayed.
All-predictor (black), storm-only (red), environment-only (dark blue), index-only (purple), no-environment (yellow), no-storm (green),
and no-index (light blue) RFs are shown.

L OKEN E T A L . 877JUNE 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/18/22 03:07 PM UTC



For both the IM and EM hail-predicting RFs, the two
“most important” predictor fields are UH2–5km and signifi-
cant hail parameter (SHIP; Figs. 4a–d). Both variables tend
to move the RF probabilities appropriately depending on
the presence or absence of an LSR. This is a nice result,
since UH2–5km has been used to predict severe hail by
many previous studies (e.g., Jirak et al. 2014; Gagne et al.
2017; Burke et al. 2020; Loken et al. 2020), and SHIP is
designed to indicate environments supportive of significant
severe hail. Thus, the RFs emphasize variables that make
physical sense.

Most of the environment variables rank low in terms of
their relative importance (i.e., how much they influence the
RF probabilities). This is somewhat surprising, given the
expected relationship between observed hail and most unsta-
ble convective available potential energy (MUCAPE) or

700–500-hPa lapse rate. It is speculated that these predictors
are relatively unimportant to the RFs because the information
they provide is already contained more efficiently in the
SHIP.

2) WIND

As with severe hail, storm-related variables exert the most
influence on the severe wind probabilities for both types of
RFs (Figs. 5a–d). In cases with (without) an LSR, the storm
variables exert a greater mean increasing (decreasing) influ-
ence on the RF probabilities compared to the environment
and index variables (Figs. 5a,b), indicating substantial skill.

In cases without an LSR, the environment and index varia-
bles exert a similar influence (Figs. 5a,b); this is relatively
unsurprising given that no “wind-specific” index is used as a

FIG. 3. (a) Mean TI negative (blue), positive (red), and summed (i.e., negative plus positive; black dot) RF probabil-
ity contributions (per grid point) from storm, index, environment, and latitude/longitude variables in the all-predictor
IM severe hail RF. Variable subsets are displayed in order of descending overall importance (i.e., the mean absolute
value of contributions). Results are shown for cases not associated with an observed hail storm report. (b) As in (a),
but for the all-predictor EM RF. (c),(d) As in (a) and (b), but for cases associated with an observed hail storm report.
Note the different x-axis scale in (a) and (b) compared to (c) and (d).
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FIG. 4. As in Fig. 3, but for contributions aggregated over the individual predictor fields.
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predictor in either RF. However, it is interesting that in
cases with an LSR, the environment variables are more
“important” but increase the RF probabilities less (on aver-
age) than the index variables (Figs. 5c,d). Again, it is possible
that this effect is due to the presence of more environment
variables (leading to greater TI “importance”) and more
direct relationships contained in index variables. IM and EM
RFs use storm, environment, and index variables similarly,
although the EM RFs place much more importance on lati-
tude and longitude predictors compared to the IM RFs.

For both RF configurations, top wind predictor fields
include UH2–5km, maximum downward vertical velocity
(MAXDVV), maximum upward vertical velocity (MAXUVV),
and UH0–3km (Figs. 6a–d). These variables all tend to
move the probabilities in the correct direction in instances
without (Figs. 6a,b) and with (Figs. 6c,d) an LSR. Latitude
and longitude also rank as relatively important predictors
for wind, especially in the EM RF. Thus, RFs appear to
learn systematic spatial relationships for predicting severe
wind. These relationships likely reflect some of the biases

present in the severe wind report observation database
(Edwards et al. 2018).

3) TORNADO

For tornadoes, storm, environment, and index variables
have similar levels of TI importance, in both the IM and EM
RFs (Figs. 7a–d). However, while environmental variables
move the probabilities most in cases with an LSR (Figs. 7c,d),
both storm and index variables correctly increase the proba-
bilities more in those cases.

Regardless of whether there is an observed LSR, UH0–3km is
the most important variable for tornado prediction in both the IM
and EM (Figs. 8a–d). This is consistent with Sobash et al. (2019),
who found UH0–3km performed better than UH2–5km for pre-
dicting tornadoes. Other important predictors include STP,
UH2–5km, maximum 1-km simulated reflectivity (MXREF1km),
and 0–1-km storm relative helicity (SRH). These fields make
physical sense: large values of STP (e.g., Thompson et al. 2002,
2003; Parker 2014) and low-level SRH (e.g., Davies-Jones et al.

FIG. 5. As in Fig. 3, but for severe wind.
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FIG. 6. As in Fig. 4, but for severe wind.
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1990; Johns and Doswell 1992; Rasmussen and Blanchard 1998;
Parker 2014; Coffer and Parker 2018) have been associated with
environments favorable for tornadoes, large UH2–5km suggests
deep rotating updrafts, while high MXREF1km indicates intense
storms.

4) MEMBER AND SPATIAL CONTRIBUTIONS

In the IM RFs, the set of non-time-lagged members influen-
ces the RF probabilities more than the time-lagged members
for all hazards (Figs. 9a–f). Moreover, the nonlagged mem-
bers decrease (increase) RF probabilities more when no (an)
LSR is present, indicating greater skill. This result makes
sense given that forecasts with shorter lead times should gen-
erally have greater skill and thus be given more “weight” for
determining a prediction. Another interesting finding is that,
for hail and wind, the NSSL predictors are found to be notice-
ably more important than predictors from other members
(Figs. 9a,b,d,e). It remains unclear if this result reflects some
systematically superior characteristic of the NSSL members
or a chance occurrence. For tornadoes, the NAM variables
are noticeably less important (Figs. 9c,f), likely because the

NAM does not include UH0–3km or STP, two of the most
important fields for tornado prediction (Fig. 8).

EM RF analysis shows that, for all hazards, the most impor-
tant predictors are the ones taken from the point of predic-
tion, although the distribution of importance values is not
isotropic (Figs. 10a–c). For hail and wind, the storm variables
at the point of prediction are noticeably more important than
storm variables at surrounding points (Figs. 10d,e). Interest-
ingly, this pattern is much less pronounced for the nonstorm
(i.e., environment and index) variables (Figs. 10g,h). A potential
interpretation of these results is that the RFs use environment
and index variables to assess the environmental conduciveness
to severe hail and wind near the point of protection while using
storm variables to “pinpoint” where storms are likeliest to
occur. The pattern is not as apparent for tornadoes (Figs. 10f,i),
however, perhaps due to the greater difficulty of tornado
forecasting.

c. Single-field relationships

IM RFs heavily rely on UH2–5km to construct forecasts for
all 3 hazards (Figs. 4, 6, 8). However, the IM RFs use

FIG. 7. As in Fig. 3, but for tornadoes.
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FIG. 8. As in Fig. 4, but for tornadoes.
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UH2–5km from different members in different ways, depend-
ing on the hazard (Figs. 11a–r). For example, larger values
of (non-time-lagged) HRRR and NSSL UH2–5km tend to
result in greater contributions to RF severe hail probability
(Figs. 11a,j)}which is not always true of the NMMB and
NAMmembers (Figs. 11g,m). For severe wind, larger UH2–5km
tends to increase RF probability contribution only up to a
point for most members, although that point varies by mem-
ber (Figs. 11b,e,h,k,n). For all hazards, the ensemble mean
(Figs. 11p–r) has a clearer association with UH2–5km prob-
ability contribution compared to any individual member
(Figs. 11a–o), showcasing the power of the ensemble mean.

Figure 11 illustrates two other important points. First, while a
definite relationship exists between each member’s UH2–5km
and the RF probability contribution, the sign of the contribution
does not necessarily discriminate between events (i.e., LSRs)
and nonevents (i.e., no LSRs), likely due to model error. Second,

Fig. 11 shows that the same UH2–5km value (for a given mem-
ber) can contribute differently to the overall RF probabilities
depending on the case. This variability is a consequence of other
variables interacting with UH2–5km. For example, a UH2–5km
value between 25 and 50 m2 s22 might be favorable or unfavor-
able for severe hail depending on the environment.

Different fields have different relationships with the probability
of observed severe weather, and these relationships vary based on
the hazard (Figs. 12a–r). For example, ensemble mean UH2–5km
has an “S-shaped” relationship with severe probability for severe
hail (Fig. 12a), while the relationship is more “sickle-shaped” for
wind (Fig. 12b) and “heavily flattened–S-shaped” for tornadoes
(Fig. 12c). Meanwhile, UH0–3km has a more direct relationship
with RF probability contribution for tornadoes (Fig. 12f) compared
to severe hail (Fig. 12d) or wind (Fig. 12e). As expected, SHIP
(Figs. 12g–i) and STP (Figs. 12j–l) are most influential for hail and
tornadoes, respectively, while MAXUVV (Figs. 12m–o) has the

FIG. 9. As in Fig. 3, but for contributions from the non-time-lagged, time-lagged, NSSL, NMMB, HRRR, ARW, NAM, and latitude/lon-
gitude predictors from the all-predictor IM RF. Cases not associated with an observed storm report are shown in (a)–(c), while cases with
an observed storm report are shown in (d)–(f). Results from (left) severe hail, (center) severe wind, and (right) tornado RFs. Note the dif-
ferent x-axis scales in each panel.
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strongest relationship with hail and wind probabilities. Interestingly,
MXREF1km (Figs. 12p–r) has the clearest relationship for severe
wind (Fig. 12q), showing negative contributions until approximately
50–55 dBZ and then mostly positive contributions.

d. Multifield relationships

The most important two-variable relationships in the IM RFs
involve either two storm predictors or one storm and one index pre-
dictor (Figs. 13a–i). For severe hail, the interaction between NSSL
UH2–5km and NSSL SHIP is the most important (Fig. 13a). The

same value of NSSLUH2–5km (e.g., 25 m2 s22) can result in nega-
tive (weak-to-moderate) hail probability contributions if the SHIP
is close to 0 (near 2). Similarly, a SHIP near 0 can result in negative
(weak-to-moderate) probabilities if UH2–5km is small [relatively
large (e.g., near 100 m2 s22)]. Thus, simulated storms with strongly
(weakly) rotating updrafts in marginal (favorable) simulated
environments can result in nonnegligible positive probability contri-
butions. Similar interaction effects are present in most other two-
variable combinations described in Fig. 13, although the specific
variables involved depends on the hazard. Collectively, the results

FIG. 10. (a) Mean absolute EMRF probability contributions from all predictors at the point of prediction [(0, 0)] and the 8 closest 80-km
grid points for severe hail. (b),(c) As in (a), but for severe wind and tornadoes. (d)–(f) As in (a)–(c), but for only the storm variables.
(g)–(i) As in (a)–(c), but for only the nonstorm variables. Note the different color bar scales between columns. Within each column, panels
in rows two and three have the same scales.
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FIG. 11. (a) IM RF probability contributions from the non-time-lagged HRRR member’s UH2–5km for severe hail for each sample in
the dataset. Samples associated with an (no) observed LSR are colored red (blue). Each point is semitransparent, so darker colors indicate
greater sample density. A 0.00 contribution is indicated by a black horizontal line. (b),(c) As in (a), but for severe wind and tornadoes.
(d)–(f),(g)–(i),(j)–(l),(m)–(o) As in (a)–(c), but for the non-time-lagged ARW, NMMB, NSSL, and NAM members, respectively. (p)–(r)
As in (a)–(c), but for the contributions from all members’ UH2–5km graphed against the (10-member) ensemble mean (smoothed)
UH2–5km.
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FIG. 12. (a) EMRF contributions from (0, 0) (unsmoothed) mean UH2–5km for each sample in the dataset for severe hail. Samples asso-
ciated with an (no) observed LSR are colored red (blue). Each point is semitransparent, so darker colors indicate greater sample density. A
0.00 contribution is indicated by a black horizontal line. (b),(c) As in (a), but for severe wind and tornadoes. Note that, unlike Fig. 11p–r, the
x axis in (a)–(c) refers to the unsmoothed, 9-member ensemble mean UH2–5km. (d)–(f),(g)–(i),(j)–(l),(m)–(o),(p)–(r) As in (a)–(c), but for
mean UH0–3km, SHIP, STP, MAXUVV, and spatially smoothed maximum 1-km above-ground simulated reflectivity, respectively.
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suggest that using a single-variateUH2–5km (orUH0–3km) thresh-
old (e.g., Sobash et al. 2011, 2016, 2019; Loken et al. 2017, 2020)
does not always give the most complete representation of the
severe weather threat.

The most important multivariate relationships from the EM
RFs (Figs. 14a–i) also include either multiple storm fields or one

storm and index field. While the most important EM RF combi-
nations involve variables at or close to the point of prediction,
most of the important combinations involve variables at different
spatial points (e.g., Figs. 14a–c,e,f,h,i). This is interesting because
it suggests an attempt by the RF to account for displacement
errors in the simulated storm and/or environment. For example,

FIG. 13. (a) IM RF probability contribution (shaded dots) resulting from the most important two-variable combination for all samples in
the dataset for severe hail prediction. (b),(c) As in (a), but for severe wind and tornado prediction, respectively. (d)–(f) As in (a)–(c), but
for the second-most-important two-variable combination for each hazard. (g)–(i) As in (a)–(c), but for the third-most-important two-
variable combination for each hazard. Note the different color scales for each hazard.
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the RF learns to maximize its probability of severe hail when
UH2–5km is large at and near the point of prediction (Fig. 14a).

4. Representative case study: 1200 UTC 23 May–1200
UTC 24 May 2020

Four main features helped drive the severe weather on this
day: a longwave trough in the western CONUS, a midlevel
low and associated surface cyclone in the Upper Midwest, a

shortwave trough in the South, and a dryline in the southern
High Plains. Figures 15a–l shows some (preprocessed, 9-member)
simulated ensemble mean data from HREFv2.1. The temporal
mean 2-m temperature (Fig. 15a) and dewpoint temperature
(Fig. 15b) fields suggest a (temporal mean) thermal and moisture
ridge over the central Plains, downstream of a longwave trough.
Daily maximum simulated 10-m wind speeds are highest in west-
ern Texas}reaching over 25 m s21 (55.9 mph) there}and
southwestern South Dakota (Fig. 15c). Maximum 0–1-km SRH

FIG. 14. As in Fig. 13, but for the most important two-variable combinations in the EMRFs.
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is at least 200 m2 s22 over a large swath of the Great Plains
and the Upper Midwest (Fig. 15d). Regions of greater than
80 m2 s22 UH2–5km are found in the Dakotas, Nebraska,
western Oklahoma and western Texas, northern Illinois,
and central Kentucky (Fig. 15e). Relatively large values of
UH0–3km (Fig. 15f) and MAXUVV (Fig. 15g) are found in
these same regions, and maximum simulated reflectivity
indicates (simulated) storms over a large portion of the east-
ern two-thirds of the CONUS (Fig. 15h). Important index
variables}including supercell composite parameter (SCP)
(Fig. 15i), SHIP (Fig. 15j), STP (Fig. 15k), and the product
of MUCAPE and 10-m–500-hPa wind shear (Fig. 15l)}are
also elevated throughout much of the Central Plains. STP is
maximized on the border of Nebraska and Kansas, but ele-
vated values of STP are also seen in northern Illinois and
the Texas Panhandle (Fig. 15k).

IM and EMRF probabilities generally highlight three regions
for all three hazards: the northern Great Plains (i.e., from North
Dakota to Nebraska), southern Great Plains (i.e., west Texas
and western Oklahoma), and parts of the Midwest near north-
ern Illinois (Figs. 16a–f). Additionally, both RFs show a severe
wind threat farther south, including 30% or 45% probabilities
in central Kentucky and a broad 5% probability for most of the

Southeast (Figs. 16c,d). The biggest differences between the RF
configurations are the probability magnitudes. For example, the
EM (IM) RF has 15% (5%) hail probabilities in northern Illi-
nois and central Kentucky (Figs. 16a,b). Since observed severe
hail occurred in northern Illinois, the EM RF has better POD
there and is rewarded with a slightly better hail AUC and BS.
For severe wind, the EM has higher probabilities in northern
Illinois}where a cluster of wind reports was observed}and in
central Kentucky and northern North Carolina, where no
severe wind LSRs were observed (Fig. 16d). As a result, the
EM RF has greater POD in northern Illinois but also more
false alarm in regions farther southeast, giving it just slightly
worse AUC and BS metrics compared to the IM RF (Figs.
16c,d). The EM tornado RF also has larger probabilities in
northern Illinois}giving it better POD there compared to the
IM RF}and in southwestern Nebraska}giving it more false
alarm there (Figs. 16e,f). Overall, the EM RF has slightly better
tornado AUC and BS values.

The IM and EM forecasts use similar fields to construct
their forecasts (Figs. 17a–f). The biggest difference is that
the EM RFs rely on latitude and longitude more than the
IM RFs for severe hail and wind prediction, consistent with
Figs. 3–6.

FIG. 15. Preprocessed (9-member) ensemble mean fields for (a) 2-m temperature, (b) 2-m dewpoint temperature, (c) maximum 10-m
wind speed, (d) 0–1-km storm relative helicity, (e) 2–5-km updraft helicity, (f) 0–3-km updraft helicity, (g) maximum vertical velocity, (h)
spatially smoothed daily maximum 1-km simulated reflectivity, (i) SCP, (j) SHIP, (k) STP, and (l) the product of MUCAPE and 10-m–500-
hPa vertical wind shear magnitude, valid 1200 UTC 23 May–1200 UTC 24May 2020.
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Figures 18 and 19 show the storm, environment, index,
and latitude/longitude probability contributions for the IM
and EM ensembles, respectively. In both cases, the storm
fields tend to exert the greatest influence on the probabilities
(Figs. 18a–c and 19a–c). The most obvious difference between
the IM and EM RFs is the latitude/longitude contributions
for the severe hail and wind forecasts. Unlike the IM RFs
(Figs. 18j,k), the EM RFs have large positive contributions for
severe hail in most of the Great Plains (Fig. 19j) and large

negative (positive) severe wind contributions in the Great
Plains (eastern United States) (Fig. 19k).

5. Summary and discussion

In this paper, the Python module TI was used to assess
how differently configured RFs use CAE variables to create
skillful severe weather forecasts. Two main configurations
of RFs were examined: RFs trained on individual-member

FIG. 16. (a) Severe hail forecast probability from the IM RF (shaded) and observed subsignificant (green dots) and
significant (black triangles) hail reports, valid from 1200 UTC 23 May to 1200 UTC 24 May 2020. Individual-day AUC
and BS are shown at the bottom of the panel. (b) As in (a), but for the EMRF. (c),(d) As in (a) and (b), but for severe
wind forecasts. Observed subsignificant (blue dots) and significant (black squares) are shown. (e),(f) As in (a) and (b),
but for tornado forecasts. Observed tornado reports (red dots) are shown. Note that the plotting software applies an
automatic linear interpolation between 80-km grid points.
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FIG. 17. (a) Mean TI negative (blue), positive (red), and summed (i.e., negative plus positive; black dot)
RF probability contributions (per grid point) from the 10 most important fields (aggregated over individual
members) for the all-predictor severe hail IM RF, valid from 1200 UTC 23 May to 1200 UTC 24 May 2020.
Analysis is done for the entire domain and fields are displayed in descending order of overall importance
(i.e., mean absolute value of contributions). (b) As in (a), but for the all-predictor EM RF. (c),(d) As in (a)
and (b), but for the severe wind RFs. (e),(f) As in (a) and (b), but for the tornado RFs.
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predictors using variables at the point of prediction (IM
RFs) and RFs trained on ensemble mean predictors using
variables at the point of prediction and the 8 closest grid
points (EM RFs). For each hazard (severe hail, wind, and
tornadoes), IM and EM RFs were trained with the full set of
34 predictor fields as well as various predictor subsets to
determine which types of variables contributed most to the
RFs’ skill.

For all hazards, the EM RFs objectively outperformed the
IM RFs when the same fields were used as predictors.
Although the skill of ensemble mean fields has long been
demonstrated (e.g., Epstein 1969; Leith 1974; Clark et al.
2009; Coniglio et al. 2010), this finding was somewhat unex-
pected. Rather, it was hypothesized that RFs would be able to
identify and exploit unique relationships between individual
HREFv2.1 and observed severe weather. However, ensemble

FIG. 18. (a) Aggregated IM RF probability contributions (shaded) from storm-related variables for severe hail prediction, with observed
subsignificant (green dots) and significant (black triangles) hail reports overlaid. (b) As in (a), but for severe wind prediction with observed
subsignificant (blue dots) and significant (black squares) overlaid. (c) As in (a), but for tornado prediction with observed subsignificant tor-
nado reports (red dots) overlaid. (d)–(f) As in (a)–(c), but for environment variables. (g)–(i) As in (a)–(c), but for index variables. (j)–(l)
As in (a)–(c), but for latitude and longitude variables.
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mean fields generally had clearer relationships with RF prob-
ability contribution (e.g., Figs. 11p–r; the pattern also exists
for other fields not shown), suggesting that the EM RFs had
higher signal-to-noise ratios, which enabled RFs to more eas-
ily learn associations between the CAE variables and
observed severe weather. Of course, the higher signal-to-noise
ratios are likely attributable to the greater skill of ensemble
mean fields compared to individual member fields. The EM
RFs are also advantageous because they do not require their
storm predictors to be spatially smoothed. Thus, the EM RFs
require less preprocessing and do not force simulated storms
to have an isotropic spatial uncertainty distribution.

To test the impact of the EM RFs’ use of predictors from
multiple spatial points, a third RF configuration was tested in
which ensemble mean predictors were only used at the point
of prediction (not shown). The skill of this configuration fell
between that of the EM and IM RFs, suggesting that the EM
RFs benefitted from both using ensemble mean predictors
and using predictors at multiple spatial points.

Nevertheless, IM RFs were still able to attain a high degree
of skill and highlighted similar areas for severe weather on
most days compared to the EM RFs (e.g., Fig. 16). Because
IM RFs learn relationships from individual member fields,
they may provide more insight into optimal ensemble use and

FIG. 19. As in Fig. 18, but for EM RFs.
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design compared to EM RFs. For example, Fig. 9 suggests
that not all members were utilized equally, especially for
severe hail and wind prediction, and that different members
had different levels of importance for predicting different haz-
ards. It is currently unclear why, exactly, this is the case and
how systematic this result is; however, it is a result that merits
further attention as it may have implications for model devel-
opment or ensemble design.

TI importance metrics and verification of the RFs trained
on predictor subsets showed that the storm-related variables
were the most important. Indeed, RFs trained on only storm
predictors were nearly as skillful as RFs trained on the entire
set of predictors; this finding held for IM and EM RFs for all
three hazards. Interestingly, RFs trained with storm and index
variables were slightly more skillful than using all predictors
for severe hail and tornado prediction. Meanwhile, RFs using
only environment-related predictors always produced the
worst verification metrics for all three hazards. Index-only
RFs were notably better than environment-only RFs for fore-
casting severe hail and tornadoes (i.e., when a hazard-specific
index variable was available).

Collectively, these results suggest that while nonstorm vari-
ables can provide relatively skillful next-day severe weather
forecasts (e.g., as in Hill et al. 2020), the storm fields from
CAEs provide crucial information that bolsters the forecast-
ing skill at next-day lead times. Thus, it makes sense why the
next-day RFs in Loken et al. (2020) performed objectively
better relative to SPC human forecasts than the day 1 RFs in
Hill et al. (2020).

At the same time, when storm-related fields are not available,
results in this study suggest that index variables (e.g., STP, SHIP,
the product of MUCAPE and deep-layer shear) can still be used to
create skillful severe weather forecasts. This result is consistent with
recent climate studies (e.g., Gensini and Brooks 2018; Gensini and
de Guenni 2019; Tang et al. 2019) that have associated index varia-
bles (e.g., STP, SHIP) from theNorthAmerican Regional Reanaly-
sis (NARR; Mesinger et al. 2006) with observed severe weather
reports to investigate past and/or predicted future U.S. severe
weather climatologies. An advantage of index variables is that they
require multiple “ingredients” for severe weather to “line up” in
space and time, which is a physical requirement for severe weather.
This approach may therefore be more useful for predicting severe
weather than merely taking a temporal mean of the constituent
index fields over the period of interest.

Importantly, both IM and EMRFs emphasized predictors and
learned relationships that made physical sense. For example,
SHIP was a top predictor for hail, while STP and 0–3-km
UH0–3km were top tornado predictors. Additionally, TI analysis
found that the UH2–5km from most individual members}as
well as the ensemble mean}had an S-shaped relationship with
severe weather likelihood, which supports the commonly used
method as treating a climatologically large value of UH2–5km as
a simulated surrogate severe weather report (e.g., Sobash et al.
2011, 2016, 2019; Loken et al. 2017, 2020; Roberts et al. 2020).

At the same time, results from this paper suggested several rea-
sons why this threshold method may be incomplete. Most impor-
tantly, the relationship between UH2–5km and, for example,
severe hail is not a perfect step function. With all else equal, larger

values of UH2–5km usually suggest larger severe hail probabili-
ties, and there is no threshold below which the probability of
severe hail is suddenly 0. Indeed, this study showed that the exact
value of UH2–5km, its value at surrounding grid points, and the
value of relevant index variables at nearby points are all important
for determining severe weather probabilities at a given point. This
makes sense intuitively but is hard to encode in an algorithm.
Some previous research has attempted to combine UH2–5km and
environmental information to improve UH2–5km-based severe
weather forecasts, with modest success. For example, Gallo et al.
(2016) reduced false alarm from UH2–5km-based tornado fore-
casts by additionally requiring simulated STP and other environ-
ment variables (e.g., lifting condensation level and the ratio of
surface-based to most unstable CAPE) to meet certain thresholds.
However, the current study suggests that this approach is subopti-
mal. For example, results herein show that relatively large hail
probability contributions can result from small UH2–5km values
if SHIP is relatively large (e.g., near 2)}which makes sense due
to the possibility of simulated storm initiation or displacement
errors. Conversely, severe hail probability contributions can still
be positive when SHIP is near 0 if UH2–5km is very large. This
type of “thinking” makes sense; essentially the RFs are learning
to properly calibrate severe weather probabilities in the face of
imperfect, “noisy” predictors.

6. Conclusions and future work

This paper analyzed RF-based severe weather forecast
probabilities using TI. Such analysis helped shed light on how
differently configured RFs make their forecasts. Having the
ability to dissect the “thinking” of a skillful RF can benefit
both forecasters and model developers. For example, a fore-
caster might confidently discount RF guidance when the algo-
rithm emphasizes irrelevant predictors (e.g., in the face of
contradictory observations), while unusual learned RF rela-
tionships could alert model developers to deficiencies in
model parameterizations and/or help researchers design bet-
ter ensemble prediction systems.

The work presented here provides a foundation for a wide
range of future research. One simple but important avenue for
future work is to stratify the results by region and season to
determine what spatiotemporal relationships are learned and
how these relate to the full-domain relationships. It will also be
important for future work to investigate why predictors are
important in certain circumstances, since the current study
merely sheds light on how RFs produce skillful forecasts. For
example, future work should investigate why the NSSLmembers
are more important than the other members for predicting
severe hail and wind. Investigating how the importance of differ-
ent predictors varies at different lead times and spatial scales will
also be worthwhile, since this type of analysis should enhance
our understanding of severe weather predictability. Indeed, given
the results presented here, future work should investigate
whether storm fields (and CAEs themselves) might still provide
substantial benefits at longer than 36-h lead times. Additionally,
future work should determine how much value RF interpretabil-
ity products provide to RF product users in real-time operational
or HWT SFE (e.g., Gallo et al. 2017; Clark et al. 2021) settings.
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While this study focused on interpreting RF-based forecasts,
other machine learning (ML) methods}such as neural networks
(e.g., Sobash et al. 2020) and deep learning (e.g., Lagerquist et al.
2020)}have also been recently used to create skillful severe
weather hazard forecasts. Future work may wish to compare inter-
pretability results from these methods to those obtained herein to
determine if all ML algorithms use simulated ensemble data in
similar ways. There is at least some chance that differentMLmeth-
ods tend to learn (or emphasize) different predictor–predictand
relationships, especially given Fleming et al.’s (2021) finding that
the mean prediction from multiple ML algorithms outperformed
any individual algorithm for water supply forecasts over the Amer-
ican West. Thus, as computing power increases, more work will be
needed to enhance, evaluate, and compare interpretability meth-
ods for different single- and multialgorithmMLmethods.
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APPENDIX

Select RF Derived Variables

a. SCP

Developed to identify environments supportive of right-
moving supercells, SCP (Thompson et al. 2003) is here
defined as

SCP � MUCAPE

1000 J kg21 3
SRH03
50m2 s22 3

SHR10–500

20m s21 3
2 40 J kg21

MUCIN
,

(A1)

where MUCAPE is most unstable convective available
potential energy (CAPE; J kg21); SRH03 is the 0–3-km
storm relative helicity (m2 s22), SHR10–500 is the magnitude
of the vector difference between the 10-m and 500-hPa
winds (m s21), and MUCIN is the most unstable convective
inhibition (CIN; J kg21). Before SCP is calculated, the
SHR10–500 term is set to 1 if SHR10–500 is greater than or
equal to 20 m s21 or 0 if SHR10–500 is less than 10 m s21,
and the MUCIN term is set to 1 if MUCIN is greater than
240 J kg21.

b. STP

STP (Thompson et al. 2003) is designed to distinguish
between significant and nonsignificant tornadic supercell
environments. The STP used here is a fixed-layer version of
the updated formulation described in Thompson et al.
(2012), namely,

STP � SBCAPE

1500 J kg1
3

2000m 2 LCL
1000m

3
SRH01| |

150m2 s22

3
SHR10–500

20m s21 3
200 1 SBCIN

150 J kg21 , (A2)

where SBCAPE is surface-based CAPE (J kg21), LCL is
the lifted condensation level (m) [which is computed here
using the approximation 125 3 2-m dewpoint depression
(K)], SRH01 is 0–1-km storm-relative helicity (m2 s22),
SHR10–500 is the magnitude of the vector difference
between the 10-m and 500-hPa winds (m s21), and SBCIN
is surface-based CIN (J kg21). Before the final value of
STP is calculated, the following adjustments are made: the
LCL term is set to 1 if the LCL is less than 1000 m or 0 if
the LCL is greater 2000 m, the deep-layer shear term is set
to 1.5 if SHR10–500 is greater than or equal to 30 m s21 or 0
if SHR10–500 is less than 12.5 m s21, and the SBCIN term is
set to 1 if SBCIN is greater than 250 J kg21 or 0 if SBCIN
is less than 2200 J kg21.

c. SHIP

Designed to distinguish between significant and nonsignif-
icant hail-producing environments, SHIP (SPC 2021b) is
here defined as

SHIP � MUCAPE 3 MR 3 LR700–500 3 2 T500 8C( ) 3 SHR102500

42 000 000
, (A3)

where MUCAPE is the most unstable CAPE, MR is the mix-
ing ratio (g kg21), LR750–500 is the 700–500-hPa lapse rate
(K km21), T500 is the 500-hPa temperature (8C), and SHR10–500

is the magnitude of the vector difference between the 10-m and
500-hPa winds (m s21). This initial value of SHIP is then modi-
fied according to the following rules (executed sequentially):
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1) if MUCAPE is less than 1300 J kg21, SHIPfinal �
SHIP3 (MUCAPE=1300J kg21), and

2) if LR700–500 is less than 5.8 K km21 but greater than 0 K km21,
SHIPfinal � SHIP3 (LR700–500=5:8K km21), or if LR700–500

is greater than 0 K km21, SHIPfinal = 0.

Ordinarily, a third condition adjusts the SHIP based on the
height of the freezing level (SPC 2021b); however, this is
not done here since simulated freezing level height data
were not available.

d. EHI

Energy helicity index (EHI) is the product of surface-
based CAPE and SRH over a given vertical layer (e.g., 0–1
km or 0–3 km).

e. SB/MUCAPE ratio

The ratio of SBCAPE to MUCAPE is intended to help
identify elevated convection. The ratio is set to 1 when
MUCAPE is 0.

f. Critical angle proxy

Critical angle, which Esterheld and Giuliano (2008) defines as
the angle between the 0–500-m shear vector and 10-m above-
ground-level storm-relative inflow, is approximated here as the
angle (8) between the 10-m–925-hPa shear vector and the storm-
relative 10-m wind.

g. n30dbz

The number of grid points with at least 30-dBZ simulated
reflectivity (n30dbz) represents the number of native 3-km
HREFv2.1 grid points in an approximately 80 km 3 80 km
box that contain simulated reflectivity of 30 dBZ or greater
at the time of maximum MAXUVV. This variable is a
potential proxy for storm mode.
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