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Abstract
I suggest a method for converting geodetic height and latitude from one oblate ellipsoid of revolution to another having the
same center and symmetry axis. Unlike other approaches, the method here does not obtain height and latitude from Earth-
centered, Earth-fixed (ECEF) Cartesian coordinates; this feature allows height conversion with high accuracy even in cases
where the data format limits the precision of the latitude data. Height and latitude conversions can be expressed as a Fourier
series in even multiples of latitude, with height changes having only cosines and latitude changes having only sines. The
absolute difference of the flattenings of the two ellipsoids furnishes a simple upper bound on the maximum absolute latitude
change. Conversions between the TOPEX and WGS84 ellipsoids, a practical necessity for the inter-mission comparison of
satellite laser and radar altimeter data, illustrate the findings. Because the differences in the flattenings and semi-major axes
of these ellipsoids are small, truncating the Fourier series after the term in twice the latitude gives an approximate conversion
with an error less than 9 × 10–12 radians of latitude and about 6 × 10–6 m of height.
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1 Introduction andmotivation

Satellite laser and radar altimeter mission data report Earth’s
ocean and ice surface heights referred to various ellipsoids.
The TOPEX/POSEIDON and Jason series of radar altime-
ters, and the ICESat laser altimeter, refer height to theTOPEX
ellipsoid, while the Sentinel-3 radar and ICESat-2 laser
altimeters refer height to the WGS84 ellipsoid. Height and
latitude on one ellipsoid differ from height and latitude on the
other, and the differences are functions of latitude because
these two ellipsoids have different shapes as well as different
sizes (Table 1). In order to use the current and historic con-
stellation of altimeters to observe temporal changes in sea
level and/or ice height, one must first put all the observations
into the same geodetic ellipsoidal height system. Progress
in climate science requires measurement of sea level rise
rates with errors less than 0.3 mm/year (World Meteoro-
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logical Organization, 2011). The conversion of height from
one ellipsoid to another should therefore be made with an
accuracy of at least 0.1 mm, and ideally much better than
that.

The usual approach to height conversion (Kotsakis 2008),
like more general conversions (Badekas 1969; Deakin 2004;
Reit 1998, Soler 1976; Watson 2006), moves from one
geodetic system through Earth-centered, Earth-fixed (ECEF)
Cartesian coordinates and then to the second geodetic sys-
tem. The calculation of ECEF from geodetic coordinates is
elementary, but calculating geodetic from ECEF requires
either the solution of a quartic equation or iteration of
a sequence of successive approximations for latitude, φ,
and height, h [e.g., Bowring (1976), Fok and Iz (2003),
Fukushima (1999), Vermeille (2002), Zhu (1994)]. The pro-
cess is computationally expensive, and unless an algorithm
is particulary robust and intelligently coded, it may have
errors that vary systematically with latitude (Fukushima
1999; 2006).

The accuracy of height and/or latitude conversions com-
puted by moving from (h, φ)E1 to ECEF and then from
ECEF to (h, φ)E2 (the subscripts indicate positions referred
to ellipsoid E1 and ellipsoid E2) is limited. The magni-
tude of an ECEF vector is more than 6 × 1010 larger than
0.1 mm, and computing small differences between large
quantities is numerically inaccurate (Acton 1990). The accu-
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Table 1 Defining constants of the TOPEX and WGS84 ellipsoids

Ellipsoid Semi-major axis, a,
in meters

Reciprocal
flattening,1/ f

TOPEX (Aviso
1996)

6,378,136.3 298.257

WGS84 (NIMA
2000)

6,378,137.0 298.257223563

racy of the ECEF computed from (h, φ)E1 values given
in the data may also be limited by the data product for-
mat. The TOPEX altimeter data product format (AVISO
1996), for example, rounds the geo-location information
to the nearest integer 1 mm, which limits the accuracy
of the height conversion that can be calculated via ECEF
(Fig. 1).

The above considerations motivate the present paper. The
investigation here applies when E1 and E2 are oblate ellip-
soids of revolution having the same center and symmetry
axis, so that ECEF x, y, z coordinates are invariant during
the conversion from E1 to E2. In this case, longitude need
not be considered; the useful ECEF coordinates are (p, z),
in which p � (

x2 + y2
)1/2

.

2 Definitions: ellipsoid specification, ECEF
Cartesian and geodetic coordinates,
orthogonality

An oblate ellipsoid of revolution is defined by two real
positive constants, at least one of which must have length
units. For purposes of illustration, this paper will take the
WGS84 ellipsoid as E1 and the TOPEX ellipsoid as E2, as
then the change in height, �h � hE2 − hE1, is positive.
The defining parameters of these ellipsoids are their semi-
major axis, a, and reciprocal flattening, 1/ f (Table 1, AVISO
1996;NIMA2000). The expressions here arewritten in terms
of a and f � (a − b)/a. The semi-minor axis, b, and the

eccentricity, e � (
a2 − b2

)1/2
/a, may also be used where

they simplify an expression.

Define S( f , φ) ≡ [
cos2 φ + (1 − f )2 sin2 φ

]1/2 ≡
(
1 − e2 sin2 φ

)1/2
. The radius of curvature of the prime

vertical, N (a, f , φ) ≡ aS−1. The equations of the ECEF
coordinates

p � [h + N (a, f , φ)] cosφ

z �
[
h +

(
1 − e2

)
N (a, f , φ)

]
sin φ

combine to give h � p cosφ + z sin φ − aS( f , φ). Treat-
ing p and z as constants one finds ∂h/∂φ � 0, identically,
because on any one ellipsoid h and φ are orthogonal coor-
dinates. Orthogonality guarantees that on any one ellipsoid,
infinitesimal changes in h and φ are independent, but it does
not guarantee that the finite �h and �φ which occur while
changing ellipsoids may be handled separately. Therefore, in
the next section, I find a strict bound on|�φ|.

3 Latitude conversion

The geocentric latitude of a point, θ � arctan(z/p), does
not change as the specification of the ellipsoid changes. The
ECEF coordinate equations on any given ellipsoid yield

tan(θ) �
[
1 − e2(1 + h/N )−1

]
tan(φ)

and if the point is on the ellipsoid this reduces to tan
(θ) � (

1 − e2
)
tan(φ), in which case one has also tan(ρ) �

(1 − f ) tan(φ), and tan(θ) � (1 − f ) tan(ρ), where ρ is
the parametric, or “reduced”, latitude. All of these equations
have the form tan(uK ) � αJ K tan(uJ ), where uJ and uK are
different kinds of latitudes; as such, their difference uK −uJ

is zero at the equator and the poles, and therefore, the differ-
ence can be developed in a Fourier sine series in sin(2nuJ )

Fig. 1 Calculating the height
change by passing through
ECEF (p, z) with data position
accuracy limited to 1 mm by the
data format, as in the TOPEX
data product (Aviso 1996),
introduces errors (wiggly line);
the method of this paper
calculates the correction shown
as the smooth line
independently of the accuracy or
precision limitations of the data
position coordinates 700
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with terms for positive integer n. This Fourier sine series is
obtained as follows.

tan (uK − uJ ) � tan uK − tan uJ

1 + tan uK tan uJ
� (αJ K − 1) tan uJ

1 + αJ K tan2 uJ

� βJ K sin (2uJ )

1 − βJ K cos (2uJ )

The right-most equality is obtained from the one on its
left by multipling numerator and denominator by cos2(uJ ),

using double angle formulae, and setting βJ K � (αJ K − 1)/
(αJ K + 1). Then

uK − uJ � arctan

(
βJ K sin (2uJ )

1 − βJ K cos (2uJ )

)

� Im
{
log

[
1 − βJ K exp (−i2uJ )

]}

and since |w ≡ −βJ K exp(−i2uJ )| < 1, one may use

log(1 + w) �
∞∑

n�1

(−1)(n+1)
1

n
wn

and so one has

uK � uJ +
∞∑

n�1

1

n
βn
J K sin(2nuJ )

The order of the subscripts on αJ K and βJ K in the above
indicates that they express latitude uK as a sine series in lati-
tude uJ . Reversing the roles of the “input” and “output” one
has αK J � 1/αJ K , and βK J � −βJ K . Consequently, one
may express one or the other of the differences ±(uK − uJ )

as a series which is majorized by an alternating power series,
and therefore truncating the series at the n th term gives the
latitude difference with an error smaller than |βJ K |n/n.

If φE1 and φE2 are the geodetic latitudes, referred to ellip-
soids E1 and E2, of a point with geocentric latitude θ , then
their difference can be expressed as

φE2 − φE1 � (φE2 − θ ) − (φE1 − θ)

�
∞∑

n�1

1

n
sin (2nθ )

(
βn
E2 − βn

E1

)

using beta values βE1 and βE2 that express geodetic lati-
tude on the subscripted ellipsoids in terms of a sine series
in geocentric latitude. βE1 � e2E1κE1/

(
2 − e2E1κE1

)
, with

κE1 � NE1/(NE1 + hE1), and likewise for E2. At the alti-
tude of the Sentinel-3 satellites κ ≈ 8/9, while if h is the
height of sea level above or below the ellipsoid then κ ≈ 1,
with an error less than 2 × 10–5. β ≈ e2/2, to first order in
e2, and the alternating series argument yields a simple bound
on |φE2 − φE1|:

|φE2 − φE1| < |βE2 − βE1| < 1

2

∣
∣∣e2E2 − e2E1

∣
∣∣ < | fE2 − fE1|

As an example, f TOPEX − f WGS84 ≈ 2.5× 10–9, and pos-
itive; therefore, the difference in latitude on the two ellipsoids
is less than a few nanoradians, with TOPEX latitude more
polar than WGS84 latitude in middle latitudes. A latitude
change of this size represents a north–south displacement of
less than 2 cm on the Earth’s surface, which may be negligi-
ble for many applications. The displacement is an apparent
one, caused by the change in flattening; the (p, z) position
of the data remains invariant as the ellipsoid changes.

In theory, the kappa values on the right-hand side depend,
through N and h, on the φ values on the left-hand side,
but for practical purposes, one may treat both κE1 and κE2
as constants and use only the first term in the series. The
upper bound estimate, shown as the dashed curve in Fig. 2,
is obtained with κE1 � κE2 � 1. The solid curve in
Fig. 2 is obtained with κ WGS84 � 1 and κ TOPEX � a/(
a + h

)
, in which a is N TOPEX evaluated at 45˚ latitude,

a � a/
√
1 − e2/2, and h � δ0 is the mean value of the

�h from WGS84 to TOPEX. The solid line approximation
differs from the total latitude change by less than 9 × 10–12

radians, an invisible difference in Fig. 2. If this level of lati-
tude error is tolerable, then one need not compute θ � tan−1

(z/p), as only sin(2θ) � (pz)/
(
p2 + z2

)
is needed.

4 Height conversion

To secondorder theTaylor series expressing�h � hE2−hE1

in terms of �a � aE2 − aE1 and � f � fE2 − fE1 has the
form

�h � �a
∂h

∂a
+ � f

(
∂h

∂ f
+ �a

∂2h

∂a∂ f

)
+

(� f )2

2

∂2h

∂ f 2
+ . . .

because ∂nh/∂an � 0 for n > 1. The partial derivatives,
to be evaluated at E1, are

∂h

∂a
� −S

∂h

∂ f
� a(1 − f ) sin2 φS−1

∂2h

∂a∂ f
� (1 − f ) sin2 φS−1

∂2h

∂ f 2
� −a sin2 φ cos2 φS−3

The Sk factors are of order 1, so the first-order terms in�h
have magnitudes of order �a and b� f /2; the second-order
terms are of order �a� f /4 and a(� f )2/8. For the conver-
sion from WGS84 to TOPEX, the maximum magnitudes of
these terms are about 0.7m, 16mm, 1.8 nm, and 5 pm, respec-
tively. These are shown in Fig. 3, with one or two subscripts
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Fig. 2 The exact and one-term
approximations (solid line) and
simple upper bound (dashed
line) for the latitude change, in
nano-radians (10–9 rad), from
the WGS84 to the TOPEX
ellipsoids
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Fig. 3 The first four terms in the Taylor series expansion of the height change in moving from theWGS84 to the TOPEX ellipsoid. The subscripts on
�h indicate the derivatives of the corresponding Taylor series term. The y axis labels mm, nm, pm indicate millimeters, nanometers, and picometers,
respectively

Table 2 Fourier coefficients of
�h � hT OPEX − hWGS84 to
2nd order, in microns (µm)

δ0 706,834.9

δ1 − 6841.1

δ2 6.2

on�h indicating the partial derivatives corresponding to that
term, e.g. �ha f � �a� f ∂2h/∂a∂ f .

The Fourier series for �h � δ0 + δ1cos(2φ) + δ2cos
(4φ)+· · ·. The Fourier series for S1 and S−1 each have an infi-
nite number of terms with coefficients formed by recursions
on complete elliptic integrals of the first and second kinds

(Cvijovic, 2010). The Fourier series coefficients for �h can-
not be expressed analytically, but one may evalute �h at a
uniformly spaced sequence of latitudes and then compute
the coefficients by least-squares. The first three coefficients
obtained this way from E1�WGS84 and E2� TOPEX are
given in Table 2.

4.1 Simple approximation of1h

Figure 3 shows that three of the first four terms in the Taylor
series expansion for �h have a component in cos(2φ), and
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the Fourier series terms in higher frequencies are likely to
be very small compared to the cos(2φ) term; therefore, one
may expect that there is a good approximation in the form
�h ≈ δ0 + δ1cos(2φ). It can be found most accurately by the
least-squares approach above, but the following approach is
nearly as accurate and yields an alternative expression.

In the equatorial plane, z � 0, S � 1, and �h(φ � 0) �
(aE1 − aE2). On the polar axis, p � 0, S � (1 − f ), and�h
(|φ| � π/2) � (bE1 − bE2). Using these “boundary condi-
tions” to set the two constants in �h ≈ δ0 + δ1cos(2φ) one
obtains a result which can be rearranged into the form �h �
(aE1 − aE2)cos2φ+(bE1 − bE2)sin2φ. An IDL script evalu-
ating this equation is included in a set of IDL scripts furnished
by the U.S. National Snow and Ice Data Center and known
as the ICESat/GLASTools; according to the “README.txt”
file included with the tools, this form was found empiri-
cally by Terry Horan. For the transformation from WGS84
to TOPEX, this form has a maximum error of 12.48 µm.

5 Notes on computation

Height conversions in this paper use Sk( f , φ) for k ∈
{−1, 1}, and if picometer accuracy is desired, then also
for k � −3. If the computing environment has “log1p”
to evaluate log(1 + ξ) when |ξ | � 1, then Sk � exp[
klog1p

(−e2sin2φ
)
/2

]
can be used for all k. If the environ-

ment has “hypot” to evaluate
(
ξ2 + η2

)1/2
, then S � hypot

[cosφ, (1 − f )sinφ] may be more accurate than S � sqrt(
1 − e2sin2φ

)
. One should not compute Sk( f , φ) by expand-

ing the square root in a binomial series in e2sin2φ as the series
truncation error will increasewith latitude. All threemethods
of computing S are available in the author’s computing envi-
ronment and give S−1 with relative error magnitude equal to
2−52, or about 2.22 × 10–16.

Above, approximations were compared to a “truth”
obtained by conversions through ECEF as (φ, h)E1 →
(p, z) → (φ, h)E2. The many algorithms for estimating
(φ, h) from (p, z) distribute error across latitude differently
(Fukushima 1999), and error distribution in iterativemethods
depends onwhether the stopping criterion examines h or p or
z or φ (Fok and Iz 2003). I used the Matlab mapping toolbox
routine “geodetic2ecef”, and as I didn’t knowwhat algorithm
it used, I also coded my own routines for the simple iteration
and Bowring’s (1976) methods, and checked that all three
algorithms agreed towithin 2nm inh and3 femtoradians inφ.

6 Concluding remarks

Transforming geodetic height and latitude coordinates from
one ellipsoid to another by passing through ECEF coordi-
nates can introduce error (Fig. 1), is computationally slow,

andmay distribute error unevenly across latitude (Fukushima
1999, 2006; Fok and Iz 2003). I have presented a method
for coordinate conversion that does not obtain (φ, h) from
(p, z), and allows the conversion of either φ or h to be done
independently of the other. Each coordinate’s conversion is
expressible as a Fourier series in even multiples of latitude,
with height changes having only cosines and latitude changes
having only sines. The derivation of the sine series for lati-
tude allows an upper bound on the maximum latitude change
to be stated simply in terms of the flattenings of the two ellip-
soids. In converting between modern Earth ellipsoids, it will
be sufficient for most applications to use the Fourier series
only as far as the term in twice the latitude. For the con-
version between WGS84 and TOPEX, this gives the latitude
conversion with an error less than 9 × 10–12 radians and the
height conversion within about 6 microns.
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