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ABSTRACT

A computerized steady state mathematical model which calculates
dissolved oxygen levels at 16 locations in the lower Fox River and 17
locations in lower Green Bay has been developed. The oxidation-reduction
factors considered in the model are BOD, nitrogen, algal respirationm,
bottom sludge, atmospheric reaeration, dam reaeration, and photosynthesis.

The model is activated when values for nine parameters for any
particular day are inputed. These values represent DO and BOD of the
gource water for the Fox River from Lake Winnebago, the flow rate, water
temperature, total nitrogen, chlorophyl a, and secchi readings for the
Fox River and hours of daylight and month of the year for the inputed
day, Winkler readings from monthly grab samples taken at 10 locations
along the Fox from April, 1972 to April, 1973 verified the model accurate
to within 1 ppm for the winter months and 2 ppm for the summer months for
most of the sample locations.

The relative sensitivity of the nine daily inputs for the model were
then statistically determined using a 2-level fraction factorial design
in 16 runs with a foldover design to separace the effects and interactionms.
Three points of analysis were chosen. The importance of effects was
found to be a function of the analysis point. Generally, temperature,
chlorophyl a, turbidity, and flow were most important for the river
analysis polnts, while month of the year, chlorophyl a, turbidity, and
amount of daylight were mest Important for the bay aﬁ;iysis point.

Equatlons were developed to link a linear optimization computer
program developed by the U.,W, computing center and the DO medel. This
union allows the determination of the maximum BOD inputs for the 34
industrial and municipal scurces of BOD along the Fox while maintaining
ninimum DPNR DO standards in the river. Optimization runs for 6/15/72
and 8/15/72 have been made showing where BOD reductions were needed for
those days to maintain minimum DO standards.
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I. INTRODUCTION

The first work on the modeling of the lower Fox River from Lake
Winnebago to Green Bay, Wisconsin has been attributed to the Federal Water
Pollution Contr~l Administration [1]*, Since that time other models have
been developed to be used for prediction of the water quality of the lower
Fox River.

This work represents the construction of a dissolved oxygen model
which is gpecifically designed to model the lower Fox River and lower Green
Bay, Wisconsin for any season of the year, The need for developing a
model of this scope resulted from field observatioms of low dissolved
oxygen values in the river during the summer months and in the lower bay
during the winter months of the year, In addition to dissolved oxygen
modeling, management of the river and bay were also an objective of this
work. In angwer to this objective, the original model presented in this
paper was derived and written for adaptation to linear optimization of
BOD inputs to the river and statistical analysis to test the relative
importance of the input parameters to the model.

This model uses some standard biological equations, improves on some
assumptions and equations used in previous models and incorporates
original equations concerning dam reaeration and photosynthesis., Another
original aspect of this work is the application of statistical analysis
and linear optimization to a dissolved oxygen model of this complexity
for the purpose of water quality management.

IT. COMPUTER STATIONS, FLOW TIMES

The Lower Fox River from Lake Winnebage to Green Bay has been divided
into 15 segments bounded by 16 computer stations represented in Figure I,
Ten of these computer stations correspond to the grab sample locations
used by Sager and Wiersma [2]., The six additional computer stations are
at dam locations in the river that were not used for grab sample sites,
These six additional stations were chosen for simulating the possible dis-
¢ontinucus increase in dissolved oxygen content of the water at these
dams, A part of Lower Green Bay is also included in this computer mcodel.
The area considered is bounded on the west by the ship channel, on the
rorth by an imaginary l1ine between Long Taill Point and Point Au Sable, on
the south and east by the shoreline of the bay., This area in the lower
bay is divided into computer stations numbered 17 through 33, as shown in
Figure 2, These computer stations were determined by approximating equal
volumes of water and one day's flow time between the stations. The shape
of the stations represent flow of water in the bay determined by conduc-
tivity tests on June 26 and July 23, 1972, These two days were relatively
calm, sunny and warm.

*Numbers in brackets designate references at the end of the paper.
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The volume of water between each computer station in the river was
sccurately calculated using the U.S, Lake Survey Chart No. 720 published
by the Department of the Army Corpa of Engineers. Assuming a one-
dimensional flow of 1000 CFS, the flow time between each computer station
in the river was easily calculated, Using a navigation chart of the lower
bay, the volume of water between aach bay station was accurately calcu-
lated, Assuming that the Fox River was the only input to the lower bay
and one-dimensional flow prevailed, the time of flow between computar
atations in the bay was easily calculated. These flow times were called
ATBS in the wodel. The volumeg and flow times between stations for 1000
CFS flow {n the river are shown in Tsble 1. VWhen the model ig used in
simulating dissclved oxygen in the river and lower bay, the flow times
per 1000 CPS are adjusted by the model to correspond to the flow times of
the particular day being simulated. As an example, if the river flow on
& particular day is 2500 CFS the program adjusts the flow times by the
factor of 1/2.5,

The location of the 34 industrial and municipal BOD inputs to the
river that were considered in the model were determined with the aid of
the Lake Survey Chart. Knowing the location of these inputs, the flow
time of the river water, for 1000 CFsS flow, from one of these inputs to
the next station downatream, called ATBIS in the model, was determined.
The 34 inputs considered and the values of ATBIS for each input are shown
in Table 2. These flow times, corrected for actual flow rate, are then
used for the highly time-dependent biological oxidation-reduction equa—
tions discussed in Sectionm YII of this paper.

IIT. BIOLOGICAL OXTDATION - REDUCTION FACTORS*#

The basic equation in units of ppn of dissolved oxygen used in the
model to calculate the digsolved oxygen at any station m is:

DOA; = DOA, + SOURCES - SINKS (1)
where:
DOA; = dissolved oxygen content just above Station 1
SOURCES = sum of atmospheric reaeration at station m (DoIS ),
sum of dam reaeration at station m (DOICm), and
sum of the photosynthetic activity at station n

(PTC,) .

SINKS sum of BOD oxidation at station m (PPMCm), sum of

total nitrogen oxidation at station m (RNCm), sum of

**Units for constants are shown in Appendix III,
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algal resplration at station m(RACm) and sum of
pottom sludge oxidation at station m (RSLCm).
Substitution into (1) vields:

DOAm = DDA + DDICm + DOISm + PTC - PPMCm - RNCm - RACm - RSLC (2)

1

The only sources of BOD input to the river considered in the model
were Lake Winnebago and the 33 industries and municipalities in Table 2.
No BOD inputs to the lower bay were considered except from the Fox River.
Each industrial and municipal five-day BOD load in pounds/day was aver-
aged for the three months of June, July, and August 1972.[3] For inpute
not listed in [3), average values from [4] were used, These averaged
values were used in all simulations. It was assumed the effluent was
completely mixed with river water during the BOD oxidaticn process.
These loads were converted to ppm of river water by

- 2(B0D #/day) (4.53 X 10° 7B |

3
Q(FTYy (3600 Secy (24 HR) (28,32 Lo
SEC HR DAY FT-

PPMk

in which PP, is the BOD loading from industry K, Q is the river flow for
the simulated day, and 2 is the average ratio of ultimate to five-day L2D
Patterson [5]. The BOD oxidation egquation used for each industry K was

m
peMC = I [PRX (1 - e~ (KR)TBIS, (4)
k=1

where TBISk is the flow time between industry K and station m, KR is the

reaction rate from Eder [6} where

KR = 1.4 X 1077 (Q)(1.05(T-20) (5)
in which T = water temperature in °C.

Total nitrogen values in mg/l from 10 sampling stations on the lower Fox
River [2] were used in the model for nitrification calculations. No
nitrogen inputs to the lower bay were considered except from the Fax
River. The nitrification equation used was

m
RNC, = I 4.57(INIT,) (L - o~ 1. 43(RKN,)TBS (6)
A=l
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in which TNIT, is the inputed nitrogen values for each station. Field

A
data values were used when a computer station corresponded to a field
gample station and internally computed values were used when there was no
correepondence, as in the bay. In these cases TNITA+1 = TNIT, - amount

of nitrogen oxidized between station A+l and station A.
The rate of nitrification, 1.43 KNA, was used in which

KN, = PER, (1,02(T-20)), )
1.43 1s the maximum nitrification rate and PER, represents percent of
maximum nitrification as a function of dissolved oxygen content [6].
THS, in (6) represents the flow time between station A and station Atl.

Algal respiration was calculated using

m
RACm = Ail .l(PA*)TBSA (8}

in which PAA = maximum photosynthetic rete for each reach and .1 is the
conversion constant for algal respiration from photosynthesis [5].

It was postulated that oxidation of bottom sludge, RSL, was related

0
to sludge uptake, KS E;__g , bottom area per reach, A, water volume per
m“DAY

reach, VOL, flow time per reach, TBS, and a dimensional constant, K, as

- BSWTBS (yy &)

RS1 VoL

Since A = WL where W = average river width per reach, L = length of
reach, and VOL = WLH where H = average depth per reach, then

RsL = K8 * TBS (10

For dimensional consistency the dimensional constant



e
g o 207 oy || 1000 g m FT° co that
(woni | | FT gn 3,29 FT || 28.32%

RSL ~ 3.29SKSETBS
H (11)

for each reach. The temperature factor (1.06)(T“20) was also used [6].
Therefore total bottom sludge oxidation for any station m 1s represented

by

. 3.29(KS)(TBSA)(1.06)(T'20) (12)
A=l Hy

RSLC =

Since a rather wide spectrum of values for KS pertaining to the Fox River
exists in the given references, a constant value of 4.7, whilch is approx
imately an average of referenced values, was used in this madel.

The dissolved oxygen increase from atmospheric reaeration, DUIA,
assuming the concentration of dissolved oxygen is independent of depth
Wentz [7] was derived from

dm =g a(C - C 13
T3 KL(s p) (13)
in which dm = rate of 02 mass transfer

dt

reaeration constant

23

A = area of air-water interface

saturation value of dissolved oxygen

L]
L]

C. = present value of dissolved oxygen

Dividing both sides of (13) by volume and setting K, = KiA  yields
v

de = Ko (C, - cp). (1
dt

Separating varisbles and integrating from Co to C {Co = initial value of

dissolved oxygen) gives

¢, = Co = (c, - ¥ - e K2ty (15)
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The dissolved oxygen increase for any reach is represented by

DOIA, = (DOSAT - DOBA)(I -e ) (16)
where the reaeration constant
K2 = 2.3 | 300 (1.02 ) an
Hl.ﬁ?

tn which U = gtream velocity and H = average depth [7}. Using Q = HWU
in (17) the reaeration comstant for each reach is represented by

_ 11,56 @7 (1.02¢T720)y, (18)

A wA.97 HA2.64

K2

The reaeration constant used for the lower bay, K2B, was found from

k28 = .15 (1.02¢7-20)y, (19)

(19) was used rather than (18) because of the linear relationship
between W and H and Q and TBS in the bay portion of the model. The con-
stant was determined as .15 by using typical values for Q, H, and W.

The absence of atmospheric reaeration during the months when the water
surface 1s coversd with ice was approximated by setting the reaeration
constant to zero for the simulated days in November, December, January,
and February. The sum of atmospheric reaeration at any station m is
represented by

m
DOIS. = T DOIA . (20}
n™ I Ay

Dissolved oxygen increase from dam reseration was used in the model.
The increases from the Little Rapids and De Pere dams were determined by
analysing grab samples taken above and below these dams on 1/28/72,
5/16/72, 6/15/72, 7/14/12, 8/15/72, 9/7/72, 9/20/72, and 10/19/72. It
was found that the increase in dissolved oxygen could be represented by
a lipear relationship relating only the percent saturation of the water
above and below these dams. This relationship was found to be

PERSB = .GI{PERSA)+39 (21)

in which
PERSB = percent dissolved oxygen below the dams,

and PERSA = percent dissolved oxygen above the dams.
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Al.et dn tmapertics o0 each lock and dam on the civer, it was assumed
thet 'he ie-er tlu chivacteristics of the dame at Mepasha and Rapid
Croche woulu b- charauterized by (21) end the dams at Appleton and
Kimberly would be cne-half as effective inm reaeration as represented by

PERS# = ,BL{(PERSA)+19,5, (22)
The other locks and dams were assumed to be negligible in their reaera-
tion capabilities, Therefore the dissolved oxygen increase due to dam
reaeration was found by

DOID = DOB - DOA (23)

in which the dlssclved oxygen below the dam 1s represented by

DOB = PERSB(2ISAT (243
100
where NOSAT = saturation value of dissolved oxygen
and DOA 1s the dissclved oxygen content just above the dam, as

calculated by the model. If no dam exists at a particular
station, then DOB ias set =qual to DOA and therefore DOID = O,
The cumulative effect of dam reaeratiom at any station m 1is
represented by

1+ |
DoIC, = I  DOID (25)
Aml w

The increase in dissolved oxygen due to photosynthesis was assumed
in the model teo be a function of chl a, secchli reading, temperature,
water depth and hours of daylight. Assuming the photosynthetic rate 15]

PM = ,25(CHL) {26)

where CHL = chlorophyll & {ug/1), then the maximum possible produc-
tion rate [6]

PA = PM (1.02(T-20)), @7

Since the secchi readings for the river and lower bay were less than the
depth, it was assumed that the mass of water below the secchi value was
not oxygen productive due to photoeynthesis. Tt was further assumed that
photosynthetic production decreased linearly from a maximum at the sur-
€ace to zero at the secchi depth. Therefore the average value of produc-
tion

pq = PA(C)

2H (238)
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in which C = secchi reading (meters). The production rate as a function
of sunlight intensity at the water surface was represented by

. m
%Tﬁ'm" = K(DL) f PQ sin xdx (29)
]
or FT .
THE 2K(DL) PQ {30}

in which DL = houre of daylight and K -.%5 .

The addition of oxygen due to photosynthesis per reach 1e therefore
PT, = !-_ P
a™ @ (®Q) BL)(BS) (31

and the cumulative sum at any station m ia

n
PTCm = Ail PT,. . (32)

IV. MODEL ACTIVATION

The dissolved oxygen model for the lower Fox River and lower Green
Bay is represented by the computer program shown in Appendix 1. Tt was
written in the Fortran IV language, stored on disc and can be run with
either a portable teletypewriter or punched cards. Previously defined
data values and constants are also stored on disc. Theae include 33 values
of BOD, 33 values of ATBS, 34 wvalues of ATBIS, 15 values of PER (which
represents a table of percentage of maximum nitrification rates), 50
valuee of DOSAT (which represents a saturation table of dissolved oxygen
a8 a function of temperature}, 32 values of H, 15 values of W and KS.

When an individual, using a teletypewriter, activates the model to
simulate a particular day, the teletype responds with “ENTER @, DOA(1},
TEMP, PPM(1), DL, and MONTH (cme value per line followed by carriage a
return).” The values requested are data for the particular day to be
simulated by the model. They are the £low rate of the river, the
dissolved oxygen content of the water just sbove Station No. 1, the water
temperature of the river, the value of BOD in the water just above
Station 1, the mumber of hours of daylight, and the month of the year.
After these values are inputed by the operator the teletypewriter responds
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witr oW AT 1> AVERAGE OF 10 TNIT VALUES." The 10 INIT values refered
to are the tocal nitrogen values [2] from the 10 sampling stations along
the Fox Kiver. vhe program was originally written and can be easily
changed to ac:ep: each value rather than the average of the values. It was
found that th. meodel regsults were affected only slightly when an average
value of the LU was used instead of the individual 10 values. Therefore,
to conserve operator time, the average value wag used. After the average
of the total nitrogen values are entered by the operator, the teletypewriter
responds with "NOW ENTER THE AVERAGE OF 10 CHL VALUES." These values are
the chiorophyll a values from the 10 sampling stations along the river,
Cnuee again the average value was used for the same reasons as above. Aftex
this chlorophyll a value 1is entered by the operator the teletypewriter
responds with "NOW ENTER THE AVERAGE OF 10 C (SECCHIL) VALUES"., These 10
vaives refer to the secchi readings at the 10 sample stations and again

the average value is used for the above reasons. After the operator enters
this value the computer commences to calculate and print the dissolved
oxygen value at 3il the computer stations In the lower Fox River and lower
bay. After the princtout of these values the operator may simulate another
day by typing the word "RUN" after which the teletypewriter will respond
with "ENTER Q, DOA{l), etc." repeating the whole process with the values

of the next day to be simulated,

The amount of time needed for the operator to simulate one day's run

with this program is approximately two minutes. Therefore, if the operator
has at his disposal the adequate data, he can simulate several days in a
short period of time. After exhaustion of either the data or the operator,
the operator stops the simulation process by typing "BYE."

V. RESULTS AND VERIFICATION

Twelve simulation runs were made representing one day of each month
from April, 1972 through March, 1973, corresponding to those days in which
grab sample dissolved oxygen values were available for the river [2].
Figures 3-6 show the dissolved oxygen values predicted by the model for
each computer station and the dissolved oxygen values as determined by
laboratory tests from grab samples at the 10 sampling stations. Unfortu-
nately, no laboratory data was available for the computer stations in the
lower bay for the simulated days, and therefore no verification of the
dissolved oxygen values in the lower bay was available.

Comparison of the model values and the laboratory values shows rela-
tively good agreement throughout most of the year. A notable exception,
however, occurred in the simulation for July 14, 1972, in which the model
results differed greatly from the laboratory results. The reason for this
large discrepancy in values is at this time unknown. As shown by Figures
3-6, the best agreement occurs for the simulated runs representing April 4,
1972; Sept, 20, 1972; October 19, 1972; Dec. 26, 1972; Jan. 23, 1873,

Feb, 20, 1973; and March 6, 1973, in which the model and laboratery values
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agreed within 1.2 parts per million for all stations, The greateast varia-
tion for the May 3, 1972 simulation was 2.2 parts per million; for Jume 15,
1972 - four parts per million; for July 14, 1972 - 4.8 parts per million;
and for Auguet 15, 1972 - 4.2 parts per million, The simulated results

for November 28, 1972 were generally one part per million below the labora-
tory results for most of the stations with the exception of Station 16, in
vhich the discrepancy was 3.8 parts per millionm.

After analysing the results of the river portion of the model, it
appeared that the model simulates the river conditiona very closely for
the cold montha of the year and the model simulation is adequate except
for the July 14, 1972 run during the warm months of the year, During the
cold months of the year the river is at or near saturation, and therefore
the dam reaseration effecte are emall, Also, since the water temperature
is low the biological rates are small. Therefore dissolved oxygen values
are changing slowly and steady state model simuliaticn is relatively
accurata. During the warm monthe of the year the water temperature is
high and the bilological rates ara large. The percent saturation of
disgolved oxygen in the water i1s low, and therefore the effect of dam
reaaration ig great., Moet importantly, photosynthesis has been showm to
be very large based on continuocusly monitored dissolved oxygen values in
the river at the Wisconsin Public Service Pulliam Plant Wiersmala], This
study has shown that on warm, sunny days the dissolved oxygen content can
be more than doubled by photosynthesis during the day. Therefore, the
time of day that the laboratory grab sample was taken is an important
factor in the dissolved oxygen content at the sampling site. These effects
are difficult to simulate with a steady state model, and therefore the
prediction of dissolved coxygen at a station during this time of year is
relatively inaccurate.

After analysing the reaultas of the bay portion of the model it appeared
that thrae distinct types of interactions between dissolved oxygen addition
and reduction are shown in Figures 3-6. In the firat type of interaction
which occurred for the June, July, and August simulation, the bay water
becomes anserobic and then aerobic again at a later station. These results
dramatize the high rate of oxidation in reducing the latent BOD content in
the water finally being offset by the oxygen additions from photosynthesis
and atmospheric reaeration.

The second type of interaction which occurred for the March, April,
May, September, and October simulations is represented by the digsolved
oxygen being reduced, reaching a minimum sercbic value and then increas-
ing at later stationa. These results show a reduced rate of oxidation in
redueing the latest BOD content in the water due to lower water tempera-
ture being offset by the photosynthetic and atmospheric oxygen additioms.

The third type of interaction which occurred for the November, Decem-
ber, January, and February simulations is represented by a constant
decrease in dissolved oxygen to the northern limits of the model., This
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effect is affected by the slow rate of oxidation of latent BOD and the
absence of atmospheric reaeration due to ice cover on the bay.

These twelve simulation runs demomstrate the ability of this model
to predict the dissolved oxygen content in the lower Fox River and lower
bay at any time of the year within the accuracy implied by the results
shown in Figures 3-6.

Vi. PARAMETER SENSITIVITY

A two-level fractional factorial design was performed on the wmodel in
vhich the relstive importance of the nine parameters read into the tele-
typewriter was determined. Since a full factorial design in nine variables
requires 29 or 512 rums, which was not economically justifiable for this
experiment, a two-level fractional factorial design in 16 runs was chosen,
This requires that five generators must be defined according teo

(I

Rm 2(K-P)
vhere R = number of runs

K = number of variables
P = pnumber of generatora

The levels for each variable used in the analysis are shown in Table 3.
The design matrix with coded variable levels is shown in Table 4, Columns
5, 6, 7, 8, and 9 were generated from columns 1, 2, 3, and 4, as showmn in
the table, The firet generator, I;, waa formed by Colummn 5 resulting in

I; = 1.3.5. Sinilarly Ip = 1.2.3.6, I3 = 2.3.4.7, I; = 1.3.4.8, and Ig =
1.2.3.4.9.

The defining relation was found by multiplying all possible combina-
tions of the generators one, two, three, four, and five at a time as
follows:

I = 135 = 1236 = 2347 = 1348 » 12349 (one at 3 time)
256 w 12457 = 458 = 2459 = 1467 = 2468 = 469 = 1278 =

179 = 289 {two at a time)

34567, ete. {three at a time)
15678, etc. (four at a time)

23456789 {(five at a time)

The 16 runs were made using the high and low values for the 9 variables.
Three outputs were calculated by the model corresponding to the dissolved
oxygen at the mouth of the river, y;, the dissolved oxygen at Station 32,
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¥, and the dissolved oxygen at Station 10, yy3. The dats matrix and the
results from the model at these three stations are shown in Table 5.
Assuming three-factor and higher interactions negligible, the effects and
interactions were found by adding the model results and dividing by the
nunber of positive signs in the appropriate unit column., Negative model
results were aassigned a value of zero based on phyeical considerations.
Therefore, from the results at the mouth of the river, y,,

L1-1+35+79--.'*’.9-_3--z.5
8

L, = 2+ 56 +'39-§.g.9_- 1.1
Similarly, .

Ly = =6.1

L= ©

Lo~ .8

L= o4

L, = - .4

Lg = 1.1

Ly = 1.2

In order to separate the effects and interactions a fold-over design
was performed, The fold-over design matrix is shown in Table 6, and the
fold-over data matrix with the output values computed by the model are
shown in Teble 7. Therefore, from the fold-over design

L' =1- 35 - 79 = 2L:2 2 2.7
8

Lz'-z-se-sg-'é-_s - -8
8

Similarly,
L3' " =6,
L4' = -8
L5' = .3
Ls' - L4
L.t = .1
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The results of the two designs were combined yielding
Ey = h(Ly +1,") = }(2.5 + 2.7) = 2.6
and
Eysyqq = (L - L") = (2.5 - 2.7) = .1

The complete results are:

EPFECTS INTERACTIONS
Ey - 2.6 Eyg5e79 = =+ 1
Ep~ .2 Esgegg = 140
Ey = -6.1 g = -l
E, = - Esgre9 ™ A
Eg = .6 E)3rz6448 = 3
Eg = .4 Eyergg = O
B, = -.2 Eyg = -3
Ea - 1,1 E45+29 = 0
E9 - 1.3 EM:H-ZB T |

Based on this limited analysis, it is seen that water temperature is
the most important parameter, flow rate is second in importance, turbidity
is third, and chlorophyll a 1s fourth., From the calculaticns of inter-
actions it im seen that the moat important interaction is 56 + 89. The
other interactions are of much lesser importance.

A similar analysis was performed for the last station in the bay,
Station 32, with the following results:

EFFECTS INTERACTIONS
By =l E3se79 = =+2

E, = .3 Esgeg = 4-3
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E, = -.5 £ - -1
B, = =7 Esgpy = 15
Eg = 1.3 Ey3epge4s = 1.3
B = 5.7 R S |
E, = .5 £y - .1
Eg = 5.3 E;5429 3
By = 4.8 Eig428 .2

The results of this analysis show the month of the year, the chlorophyll a
concentration and the turbidity of the water are almost equally important
and the hours of daylight is relatively small in importance. The most
important interactive effects are between variables 56+89 and 58+69.

A similar analysis was performed for an intermediate station in the
river, Station 10, with the following results:

EFFECTS INTERACTIONS
By = .7 Eqs479 1
By = .6 Eggrgg = 11
Ey = -4.5 Eys - -1
E, - -.8 Bsgegg = 4
Bg = 7 El3e26448 = 3
B, = .6 Bysegg = O

E, = -.3 Eyq --5
Eg = 2.6 Bysi20 0

Eg = 1.6 Ey6:28 .2

This analysis shows water temperature i5 the most important, chloro—
phyll a is second in importance, turbidity is third, and flow and amount
of daylight are both fourth, The interactive effect between 56+89 1s
somewhat lmportant while the others are somewhat minor.

Past results of water analysis of the Fox River has shown that low
dissolved oxygen values usually occur during low flow periods; however,
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these periods usually correspond to high water temperatures. Separation

of these two effects in this analysis gshows the importance of water
temperature and relative unimportance of flow rate for the water quality

of the Fox River to Station 10, The implication of these results relate
to the theory of low flow augmentation in that a reasonable increase in
water quality does not result from increasing the flow rate of the river,
but results from a drop in water temperature during flow augmentation.

This temperature drop could be the result of using Lake Winnebago water
which has & lower temperature than the river water, compounded by reducing
the effect of solar heating, which is increased by stagnation of the river.

The relative importance of flow rate {ncreases between Station 10
and Station 16, but still remains less tham water temperature, This
change could be caused from a decrease In surface area and an increase in
depth of the river for this reach, thereby decreasing the mass of water
subject to photosynthesis which {ncreaged the relative importance of flow
rate. Since temperature and flow rate are the two most important effects
for this reach, flow augmentation would be more effective in increasing
the water quality in this portion of the river than in the upper portiom.

The most important parameters that {nfluence the water quality in
the lower bay are those related to atmospheric reaeration and photo-
synthesis. The parameter, month of the year, which is related to atmos-
pheric reaeration, is ghown to be the most important effect, This reflects
the major importance of the ice cover on the bay during the winter months
which retards the improvement of the water quality in the bay during this
time of the year.

The next three most important parameters, chlorophyll a, turbidity,
and hours of daylight are related to photosynthetic activity. This
reflects the major importance of photogynthesis in the improvement of the
water quality in the bay from depressed dissolved oxygen values at the
mouth of the Fox River.

Vil. LINEAR OPTIMIZATTION

A linear optimization subroutine available at the computing center
i{n Madison, Wisconsin was used in conjunction with the DO model to maxi-
mize the BOD inputs to the river from the 34 municipal and industrial
inputs, while maintaining minimum DNR standards for dissolved oxygen of
5 parts per million in the upper gection of the Fox River to Wrightstown,
and 2 parts per million in the jower section of the Fox River and lower
Green Bay. Although the union of the linear programming subroutine and
the DO model was successful, it was not possible to run the optimization
routine with the teletypewriter unit located in Greenm Bay because of the
difficulties in linking the computer at Green Bay to the computer at
Madison. Therefore, to run an optimization of a simulated day the program
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shown in Appendix YT was read into the machine with punched cards in Green
Bay, sent to Madimon for calculation, and the results sent back to Green
Bay. Therefore, unlike the very rapid and cheap simulation of dissolved
oxygen In the river uging the teletypevriter, the linear optimization run
was rather time conguming and somewhat expensive.

In order to muccessfully l1ink the duplex subroutine to the dissolved
oxygen model a few matrices had to be derived. The 15 unknowns in the
objective functione to be maximized by the routine were arranged in a
15 x 1 vector called the DPS array represented by

L
DPS(M) = 1 PPM(J) (34)
J=N

in which N = the identifying nunber of the first BOD input in the Mth
aection of the river, and L = the idantifzing number of the last input
in the Mth section of the river. If a Kt section of the river does not
contain any BOD inputs, the value for DPS(K) was set equal to zero. The
next derived array was a 15 x 34 matrix which was called the D array, or
the penalty factor array, which is represented by

15 34

PEM(J :
D(L,J) = I E (35)
Ie1 gag DES(D

in which I =» a2 river section and J = an identifying number of the input,
This matrix, which is part of the constraints, proportions the liability
of each input for each section of the river. For instance, if an input
was responsible fox 40X of the DPS in a particular reach of the river,
the duplex subroutine limits the industry to no more than 40% of the
optimum DPS calculated by the duplex routine., The locatiouns in the D
matrix that represent river reaches where BOD inputs do not exist were
get to zero, The third derived array is the P(K,J) array which is called
the fraction oxidized array, It is a 32 x 34 matrix representing the 15
river and 17 bay satations and the 34 BOD inputs to the river. This array
represents the fraction of the total amount of BOD from input J which has
been oxidized at Station (K+l). As an example, P(1,1) is equal to the
fraction of BOD oxidized from input 1 at Station 2 and P(32,34) equals
the fraction of BOD oxidized from input 34 at Station 33. Due to the
highly complex way 1In which the matrix is linked with the DO model, it is
best represented by computer statements 260-298 {n the program shown in
Appendix II, The fourth array fs a 64 x 32 matrix which is a combination
of the D and P matrices called the A matrix, This matrix represents the
constraints for the problem, The firat 32 rows of the A matrix are the
coefficients from D X P on the unknowns to be maximized, and the next 32
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rows represent cons:raints which limit the inputs to beins less than or
equal to the present DPS, Again, due to the complex union of these
equations and the DO model, they are best represented by computer state-
ments 405-446 in Appendix 1I. The last derived array 1is & 64 x 1 vector
called the RHS array, or the right hand side array. The values in this
array represent the boundary conditions which the unknowmns in the A matrix
must gatisfy., This array is calculated in three parts. The first eleven
rows are represented by

RHS(M) = DOA(M+1) + PPMC(M) -5 (36)
M =1, 11

in which a minimum dissolved oxygen level of 5 parts per million was
assumed between Stations 1 - 11, or from Lake Winnebago to Wrightstown.
The next 21 rows are represented by

RHS (M) = DOAQ#1) + PPMC(M) - 2 (17
M= 12, 32

in which a minimum dissoclved oxygen level of 2 parts per million was
assumed between Wrightstown and the northern~mest station in the bay.
The last 32 vows in the RHS array are represented by

RHS (M) = DPA(M-32) (38)
M = 33, 64

which limit the unknowns in the A matrix to be less than or equal to the
{nput DPS, The other arrays in the program were used for the initializa-
tion and output format of the duplex subroutine,

Two optimization runs were made for the simulations of June 15, 1972
and August 15, 1972, The results for the June 15 simulation showed that
a 397 decrease in the BOD ianputs between Station 1 and Station 2 should
have been made to maintain minimum DNR water quality standards in the
river and lower bay. Raeductions of BOD inputs in all other section of
the river were not needed. Referring to the DO profile of June 15 shown
in Figure 3, it can be seen that the dissolved oxygen decreases from
approximately 10 parts per million at Station 1 to 2 parts per million at
Station 5. Since there are no major inputs betweem Stations 2 and 5, it
is assumed that the depression in dissolved oxygen 1s still continuing
from the effect of inputs between Station 1 and 2. Note also that the
average dissolved oxygen from Station 5 to Station 14 is jdnereasing
slightly. Therefore the optimization results indicate, in effect, that
i{f the dissolved oxygen at Station 3 were raised to a greater value, the
offact of the other inmputs to the river below Station 3 would not decrease
the dissolved oxygen to below minimun standards,

The optimization results for the Auguat 15 simulation showed that a
527 decrease in the BOD inputs between Stations 1l and 12 should have been
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made to maintain minimum DO standards. Reductione of BOD inputs in all
other sections of the river were not needed, Referring to the DO profile
of August 15 in Figure 4, it can be seen that the dissolved oxygen con-—
tent of the river is decreasing to 3 parts per million at Statien 11
after which there are large oscillations of dissolved oxygen from Sta-
tions 11 to l4. Since the only major input to the river between Stations
11 and 14 ia between Stations 11 and 12, it 41s assumed that thils input

is causing the rapid depression of dissolved oxygen between Statioms 11
and 14, while the rapid increase in dissolved oxygen is caused by dam
reaeration at Stations 12, 13, and 14, The optimization results indicate
that if the BOD inputs between Stations 11 and 12 were reduced by 32%

the dissolved oxygen between Stations 11 and 12 would increase due to

dam reseration, and therefore the other inputs to the river below Station
14 would not depress the dissolved oxygen level below acceptable stand-
ards.

Table 8 shows the municipal and industrial inputs between Sections
1 and 2, and 11 and 12, the penalty factors for each imput, and the per-
cent reduction in BOD for each input for the two simulated days. As seen
in this table, major reductions in the BOD inputs from Lake Winnebago
and Bergstrom Paper Company were needed for the June 15 simulation,
while a major BOD reduction from Thilmany Pulp and Paper Company was
needed for the August 15 simulation to maintain minimum standards in the
river and lower bay. '

The results of the optimization of these two simulated days have
demonstrated the applicability of this program to the management of water
quality in the lower Fox River and lower Green Bay. The ability of this
program to assess liability for the depression in water quality caused
by the industriasl and municipal sources of BOD discharge to the river
using scientific methods 18 unique. The amount of field data needed to
affect the results of this program is relatively small, and considering
the significance of the results, the expenditure in time and money to
obtain these data are certainly juatified.
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TABLE 1

FLOW TIME BETWEEN STATIONS FOR 1000 CFS FLOW

Computer Water Volume ,mag (Daye)

Stations (x108 Fr3)
— = -
1-2 2.36 2.73
2-3 48 .56
3uh .05 .06
4-5 12 .14
5-6 .69 .80
6-7 .16 .18
7-8 .34 .39
8=9 .39 .45
9-10 .01 .01
10-11 .01 .01
11~12 1.11 1.29
12-13 1.10 1,27
13-14 2,13 2,47
14-15 2.46 2.85
15-16 2,49 2,88
16-17 1.33 1,54
17-18 1.24 1.43
18-19 1.77 2,06
19-20 2.09 2.42
20-21 1.83 2.12
21-22 1.91 2.22
22-23 1.86 2.16
23-24 1,97 2,28
24-25 2.30 2.66
25-26 2.23 2,58
26-27 3,03 2.35
27-28 2,30 2,66
28-29 1.90 2.20
29-30 1,83 2.12
30-31 1.55 1.80
31-32 1.94 2.24
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TABLE 2

AND FLOW TIMES FOR 1000 CF5 FLOW

No.

Input

2,
3.
4,
5.
6.
7.
8.

10.
11.
12,
13.
14,
15.
16,
17.
18.
19.
20.
21,
22,
23,
24,
25,
26,
217.
28.
29.
30.
il.
32.
33.
34,

Lake Winnebago

K~C {(Neenah)

K-C (Badger Globe)
Gilbert Paper

John Strange
Bergstrom

K=C STP

K-C (Lakeview)
Neenah-Menasha, City
G, A, Whiting
Menasha, Town of
Holiday Inn
Rivergide Paper
Foremosat Foods
Conaolidated Paper
Appleton, City of
K-C (Kimberly)
Kimberly, Village of
Combined Paper
Little Chute, Village
Kaukauna, City of
Thilmany
Wrightstown, Village
Charmin Paper
Hickory Grove Sanatorium
Nicolet FPaper

U.S5. Paper

De Pere, City of
Fort Howard

Fort Howard STP
American Can

Charmin

G. B. Packaging

G. B. MSD

Betwaen Mile ATBIS
Station Pt. (Days)
A

1-2 8.5 2,73
1-2 38.5 2,73
1-2 38.4 2.72
1~2 38.3 2.72
1-2 8.2 2.72
1-2 38.2 2,72
1-2 371.9 2.60
1-2 37.8 2.56
1-2 371.5 2.26
1-2 3.0 .82
1-2 35,8 .27
4~5 32.2 .10
4=5 3.5 .00
5=6 1.2 .76
5""6 3004 .58
6-7 27.9 .18
7-8 27.0 -39
89 26.2 a3
§-9 26.0 Y
11-12 23.7 1.29
11-12 23.6 1.23
12--13 17.6 1.00
13-14 13.3 2.47
13-14 12.2 2.21
14-15 7.1 2.81
14-15 6.9 2,51
14-15 6.1 2.16
14=15 3.7 .88
14=15 3.6 .88
15-16 1.2 1.38
15-16 o7 .99
15-16 1 .35
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TABLE 3

Computer Variable High (+1) Low (=1)
1. @ 5000 2800
2. DOA(L) 12 10
3. TEMP 19 4
4. PPM(L) 4 1.5
5. DL 14 10
6. MONTH 5 2
7. TNIT .7 b
8. CHL 40 7
9. ¢€ 1 .5
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TABLR

4

STATISTICAL DESIGN MATRIX

Run 1, 2, 3. |4 Variable
S$=13 | 6=123 | 7m234 | 8=134 | 9=1234
1 -1 -1 -1 -1 +1 -1 -1 -1 +1
2 +1 -1 -l -l -1 +1 -1 +1 -1
3 -1 +1 -1 -1 +1 +1 +1 -1 -1
4 . 41 +1 -1 .| -1 -1 -1 +1 +1 +1
5 : =1 -1 +1 -1 -1 +1 +1 +1 -1
6 [ +1 -1 +#1 | -1 +1 -1 +1 -1 +1
7 : -1 +1 +#1 | -1 -1 -1 -1 +1 +1
8 1T +1 +1 +1 -1 +1 +1 -1 =1 -1
9 ' -1 -1 -1 |+l +1 -1 +1 +1 -1
10 +1 -1 -1 |+ -1 +1 +1 -1 +1
11 ~1 +1 -1 +1 +1 +1 -1 +1 +1
12 +1 +1 -1 |+1 -1 -1 -1 -1 -1
13 -1 -1 +1 |41 -1 +1 -1 -1 +1
14 AT A B R S #“H {1 |1 |[#a |-
15 -1 +1 +1 |41 -1 -1 +1 -1 1
16 i+l +1 +1 |+ +1 +1 +1 +1 +1 |
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TABLE 5
DATA MATRIX
Variable
6. [7.
2 |5000.[10. [ 4.0 1.5 |10, |5.0 | .4 Wo.o | .5 | 9.3 | 6.6 | 11.7
3 |2800.{12. | 4.0 1.5 | 14. |5.0 [ .7 J7.0 | .5 | 6.4 | 4,7 | 10.7
4 ;5000.}12.|14.9n,5 |10, 2.0 | .7 %0.0 [1.0 §10.3 | 8.9 | 13.4
5 [2800.}10. 19.0 2,5 | 10. [5.0 |.7 0.0 | .5 | -1.4{ 4.8 | 6.3
6 ;sooo. 10, [19.0{1.5 |14, 2.0 | .7 {7.0 |1.0 | 3.2 | -.6 | 6.7
7 |2800.112, 19.0 (1.5 {10. 12.0 | .4 [40.0 (1.0 | 2.0 | 8.9 ] 10.3
8 i5000.{12, [19,011,5 §14. 15.0 | .4 17,0} .5 | 3.6 | 4.21 7.4
9 }2800,{10,} 4.0(4.0 {24, |2,0 .7 W0.0 | .5 | 6.1 {-2.0 | 11.1
10 [5000.]10.} 4,0l4.0 |10, |5.0 [.7 {7.0 (1,0 ] 8.6 | 5.3 | 10.8
11 {2800.(12. | 4,0[4.0 |14, |5.0 | .4 }40.0 {1.0 | 10.0 | 18.0 | 15.5
12 {5000.]12. | 4.0J4.0 }10. |2.0 [ .4 |7.0]| .5} 8.3 | ~.9 1 10.6
13 ;2800.}10, [19.04.0 |10, {5.0 |.4 [ 7.0 {1.0 | -1.0 [ 5.4 [ 4.9
14 {5000.|10. 19.0]4.0 |14. |2.0 [.4 [40.0} 5| 3.0 | 1.4} 7.2
15 {2800.(12. [19.04.0 }10. |2.0 |.7 | 7.0 | .5 | -2.8 |-14.2 | 3.5
116 |5000.112. 119.004.0 f14. 15.0 | .7 140.0 [1.0 | 5.4 | 14,7 | 10,1
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TABLE 6

Run 1 2 3 4 Variance

5=-13 6--123]?-—234 8u-134 [9m-1234
17 +1 +1 +1 +1 -1 +1 +1 +1 ¢ -1
1|1 la |+x |a a | -1 +] -1 +1
vwila |1 [+ s N B R +1
20 1 -1 | -1 1+ |u 1 | w1 -1} -1 -1
a2 |lw ta |1 |+u 1| R +1
22 -1 +1 -1 +1 -1 +1 =1 +1 -1
23 {4+ | -1 -1 {#a al #a ] -L -1
26 |11 | a |1 |#u ] a1 o wml s ow
5 |la {a |+ [ -1 | #n R " +1
% -1 |#a a1 |4 a | -1 N -1
27 v | -1 |+ |2 1| -1 ] -1 -1
28 -1 -1 +1 -1 +] +1 +1 +1 +1
29 |4 [+ (-1 |2 A | -1 | wu -1
0 -1 | #a | -1 | 1| o#a w1 -1 +
31 |91 | -1 |1 |-t a | u ] s +1
322 -1 f -1 -1} 2] 1] -1 -1
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RESULTS OF BOD OPTIMIZATION

Date Taput Foetor (1) roaoetion ()

6/15/72 | Lake Winnebago 57.8 22,5
K. C. (Neenah) 1 < .1
K. C. (Badger-Globe) .2 < .1
Gilbert Paper <.l < .1
John Strange 1.2 .3
Bergstrom Paper 29,2 11.4
XK. C. STP < .1 < .1
K. C. (Lakeview) .8 3
Neenah-Msnasha Sewage District 9.8 3.8
Whiting .3 .1
Menasha, Towm of o2 < .1
Holiday Imn < .1 < .1

8/15/72 | Thilmany Pulp & Paper 99.1 51.5
Kaukauna, City of .9 .7
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APPENDIX I

This appendix contains a listing of the computer program used for
teletypewriter operation.

1e d LANT ™
L) c jeF _PW AATF(CFS)
i C TEMTaTEURERATURE WF RIVER WATER(DIFGHEES CENT .
e C ~@h(1raaMagNT BF JITSSBLVFU axYGEN ABAVE STATION 1.
G t THSWwTIVF BETWEEN STATIHNS(DAYS)
& C THISeT]ME HBETWEEN TRDUSTUY (PBLLUTER) AND NEXT STATIAY DAWNSTRFAM
7. C ARDeRAD PUT INTY R1vEHBY INDUSTRY (LRGeS IAY)
e C PEMadAl CANVERTED T PPH
G C PRM”aTHTA, 3HD IXILILEL
10 C KNa~ATE Y9F NITRIFTCATIBN{X)
11. C TNIT=AMAURT 8F YITROAGFN SAMPLED AT FalH STATIRN(PPH)
12 - ot NAATTISSALYE) BRYGEN ABOVE A STATIAN{PYY)
135 L NESxAMBUNT AF DISSBLVFD RXYGEN BELOW STATIAN(PPY)
s L H{IANISSALVED AXYGEN TNCREASE DJE T2 DAHS(PEM} .
15« C NRSAT=AMYUNT BF DISHRLVYED AXYUEN [N SATJIRATED AATERIPEMN)
1he z PERSA=FFRCENT SATJRATIAN BF WATES AHAVE DA™,
17 L MERSHRRERCEST SATJRATIBN DF waTE? BFLHW GAM,
1Ka C NAIC = SJM AF [DAM REAERATIAN
13 ot DB ARDLISSRLVED AXYGEN [NCe JUE TH ATHRS. REAERATIAN
v < DBISwS UM BF D)SS9LVED HAYGEN INCREASE DUE Ta ATMA5. REA.
Al C KERATMASKLE~ILC REAERAT]IHY CREFFICIENT
22 C KPB e ATHASHWER]IC REAF QAT RN CHEFFICIENT FAR THE dAY
e o RAmALGAL RFSPIRATIBN
P4 C RACE CUMULATIVE RA
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S { DLe DAYL1GHT HBURS
LR C BTCa CUMULATIVE PT
ifia o PMMAX ] M PHETHSYNTHESIS RATE
. [ KGHABTTaNM &L JOGE CRNSTANT
12 C KRMMYSTERY TERM Can YHU FIND IT
3. C PTe OB INCREASE JUE TH PUlTRSYNTAHESTS
ET'Y INTEFGER LPJ,CH
5. REAL X2
36 REAL K23
it REAL KR
38 REAL XN
k- REAL ™M5aT
“(le QEAL K%
“ls INTEGFR XX
«Ps INTFGER Y
B3 INTESER WR
T DIMENSTHY ANT{ 34 ), PPM{ 4] » THIS (34 ), TIS(IS] 4 KN3RI LHERIISY,
L1 14Nt3ﬁlsJPM:(3514THIT(15:.RNC(351,Daar351:De%t?s:.uﬂaaTthols
Hhhe SPERRA(IS] S PERSEIIS),DRI0I3B), TTHRI3%),D]AI135),
Wl 3*?(15ladt15}:"(15!:H!l3h}oRiCt15!;HHI1510RSLI!HI;HTlﬁhI.HNIPal
Hie h;lThSt?H!aATdISI]hI.”I(1?Ip0?11?i.U1I12110¥!1#]:WHt1ﬁl.J&I1?lJ
4t “07€18J:JﬂtEOJan(PO!aH1HI?0)1011E??!;HIP!?31:”11tPSI;HluIiﬂl;
RIH AILBIIS) AP L30T g IPE LI i A (AR P AT s TIAGY A RHS LA L THSTLAL D,
Sle FIFIX (P2 s TALIE ),
LR RY(RS),501001CHL L&) APMI16),PALRR),I(14A)
KD OATA{T{ ) aJalsbs)/33eiH+, 2e1H shalr4,Pe iR 581+ 1TotH 7
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APPENDIX TI

This appendix contains a 1isting of the computer program used for
the linear optimization of BOD inmputs to the river.
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APPENDIX III

This appendix contains a listing of equation constants and the units
uged for each.

Parameter Units

A FT2

c METERS

cp, C, ppm

DOSAT ppm

H, H, FT

K, FT/DAY

KNA 1/DAY

KR 1/DAY

KS gm Ozlmz DAY

K,, K2B 1/DAY

PA, PA, ppm/DAY

PER % /DAY
A /

PERSA, PERSB © ppm

PM ug/

PPMk ppm

PQ ppm/ DAY

PT, PT, ppm

Q FI3/SEC

RSL ppni

TBIS, DAYS

TBS, TBS, DAYS

TNET A ppm

U FT /DAY

v, VOL o

W, Wy FT






