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Supporting Information (SI)

SI Table.

Table S1. All model parameters, definitions and corresponding models.

Variable Meaning
t time
x, y locations
nt(x) population density at location x and time t
Parameter Meaning
a Allee effect threshold
r intrinsic growth rate (overcompensatory model)
λ low-density per capita reproductive rate (propensity and distance models)
n̂ dispersal density midpoint parameter (propensity and distance models)
p fraction of offspring that disperse
p0 minimum dispersal propensity (propensity model)
pmax maximum dispersal propensity (propensity model)
α propensity shape parameter (propensity model)
σ2 variance of the dispersal kernel
σ2

0 minimum dispersal variance (distance model)
σ2

max maximum dispersal variance (distance model)
β distance shape parameter (distance model)
Function Meaning
k(x− y) dispersal kernel
f(nt(x)) growth or offspring density
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Fig. S1. Reproduction and dispersal functions used in the overcompensatory, propensity, and distance models (described in Materials and Methods). (a) The reproductive rate
f(n) as given by Eq. 3 where r = 0.9 and a = 0 (same parameterization as Eq. 3 for Fig 1a, black), r = 2.7 and a = 0 (same parameterization as Eq. 3 for Fig 1b, dark gray
solid), r = 2.7 and a = 0.4 (same parameterization as Eq. 3 for Fig 1c, light gray dashed). (b) The reproductive rate f(n) as given by Eq. 4 when a = 0.5 and λ = 0 (light
gray), λ = 1.5 (dark gray), λ = 2 (black). Parameterization here is close to that of Fig 1d-f, except a is smaller here to more clearly visually demonstrate the differences
between strong, weak and no Allee effects. (c) The propensity to disperse when altered by density dependence as given by Eq. 5 for different α. (d) The variance of the
dispersal kernel when altered by density dependence Eq. 6 for different β values.
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Fig. S3. The periodicity of the invasion speed through time for the overcompensatory model - Allee effects and overcompensation. In panels a-b, the wave position is plotted at
time t vs time t + 1. The wave speed ranges in periodicity across values of the Allee effect threshold a. At small values of a the invasion speed is constant (a), and at larger a
values (b), the wave speed becomes chaotic until a becomes so large the population goes extinct. In panel (c), the range of invasion speeds represents the amplitude of
fluctuations. At each plotted a value, the invasion speed for the previous 100 time steps are plotted. When points appear as hollow points, the same invasion speed is being
plotted over itself many times. Here, σ2 = 0.25.
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Fig. S4. Simulation of model (Eq. 2 from SI Appendix), with a1 = 20, a2 = 2, a3 = 10, µ = 10, τ = 5, and D = 0.1. For these parameters the undelayed ordinary
differential equation (Eq. 2 from SI Appendix withD = 0 and τ = 0) exhibits a strong Allee effect, evident by comparing the mortality rate (dashed blue line) to the reproduction
rate (solid red curve) in panel (b) (note the logarithmic scale). With delays, the model without movement (Eq. 2 from SI Appendix with D = 0) exhibits sharp generational
cycles (a). The simulation of the partial functional differential equation (Eq. 2 from SI Appendix; initialized with n = 2 for |x − 15| ≤ 0.5 and 0 ≤ t ≤ τ , and n = 0
otherwise) exhibits complex dynamics behind the invading fronts (c). These oscillations push the wave forward with a variable speed (d,e).
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Fig. S5. Simulation of model (Eq. 2 from SI Appendix), with a1 = 20, a2 = 2, a3 = 10, µ = 0.05, τ = 1, and D = 0.1. For these parameters the undelayed ordinary
differential equation (Eq. 2 from SI Appendix withD = 0 and τ = 0) exhibits a strong Allee effect, evident by comparing the mortality rate (dashed blue line) to the reproduction
rate (solid red curve) in panel (b) (note the logarithmic scale). With delays, the model without movement (Eq. 2 from SI Appendix with D = 0) exhibits decay to a stable
equilibrium (a). The simulation of the partial functional differential equation (Eq. 2 from SI Appendix; initialized with n = 2 for |x− 15| ≤ 0.5 and 0 ≤ t ≤ τ , and n = 0
otherwise) exhibits simple dynamics behind the invading fronts (c). High population densities behind the wave front push the invasion forward with a constant speed (d,e).

6 of 10 Sullivan et al. 10.1073/pnas.1618744114



3.5 �-�--��-�--�-� 0.1 �--�---�--�--� 

3 0.08 

2.5 
0.06 

2 

0.04 
1.5 -

0.02 1 

0.5 
0 100 200 300 400 500 0.5 1 1.5 2 

t n 

500 

400 

1.5 
300 

..... 

200 

100 0.5 

0 

5 10 15 20 25 30 35 40 45 50 
X 

50 0.25 

45 0.2 

0 

� 40 \) 0.15 
{.) Q) 
0 Q) 

� 35 0.1 

30 0.05 

25 0 
0 200 400 600 200 250 300 350 400 

time time 

n 

n 

(d) (e)

(c)

(a) (b)

Fig. S6. Simulation of model (Eq. 2 from SI Appendix) with a1 = 0.5, a2 = 2, a3 = 1, µ = 0.02, τ = 45, and D = 0.05. For these parameters the undelayed ordinary
differential equation (Eq. 2 from SI Appendix with D = 0 and τ = 0) does not exhibit any Allee effect, evident by comparing the mortality rate (dashed blue line) to the
reproduction rate (solid red curve) in panel (b) (note the arithmetic scale). With delays, the model without movement (Eq. 2 from SI Appendix with D = 0) produces oscillations
in population density (a). The simulation of the partial functional differential equation (Eq. 2 from SI Appendix; initialized with n = 0.5 for |x− 25| ≤ 0.5 and 0 ≤ t ≤ τ , and
n = 0 otherwise) exhibits oscillatory dynamics behind the invading fronts (c); however, the wave is “pulled” by growth at low densities, so a constant invasion speed is achieved
despite the fluctuations at high densities (d,e).
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Fig. S7. Bifurcation diagram indicating fluctuations in invasion speed across a range of Allee effect strength for the propensity Model – when density dependence alters
dispersal propensity (a-c), and the distance model – when density dependence alters dispersal distance (d-f). Here, we also show a range of dispersal thresholds (n̂) relative to
Allee effect threshold used for these models in the text (a = 0.2), including n̂ = 0.1 < a (blue circles), n̂ = 0.7 > a (red circles), and n̂ = 0.9 >> a (gray circles). All
other parameters are the same as Fig. 2. Fluctuations in invasion speed only occur when Allee effects are strong, when the dispersal threshold is high, and when α > 0
(propensity model (a-c)) or across a range of positive and negative β′s (distance model (d-f)).
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Fig. S8. The periodicity of the invasion speed through time for the propensity model (Allee effects and density-dependent dispersal propensity; a-d) and distance model (Allee
effects and density-dependent dispersal distance; e-h). In panels a-c and e-g, the wave position is plotted at time t vs time t + 1. In panels d and h, the range of invasion
speeds represents the amplitude of fluctuations. For each parameter value, the invasion speed for the previous 100 time steps are plotted. When points appear as hollow
points, the same invasion speed is being plotted over itself many times. For the propensity Model, when fluctuating, the wave speed is nearly always periodic across values of
the Allee effect threshold a. At small values of α the invasion speed is constant (a), at small positive α the invasion speed fluctuates in a quasi-periodic fashion (b), and most
positive α values, for example α = 100 (c), the wave speed is periodic. Here, n̂ = 0.9, λ = 0, σ2 = 0.25, p0 = 0.05, pmax = 1, and a = 0.2. For the distance model,
we demonstrate that the invasion speed appears to be more chaotic for some negative values of the density-dependent dispersal threshold (β) (e), is constant for some values
of β (f), and has a quasi-periodic attractor for some positive values of β (g). Here, n̂ = 0.9, λ = 0, σ2

0 = 0.05, σ2
max = 1, and a = 0.2.



SI Appendix.

Here we construct a continuous-time model that we conjecture produces variable-speed invasions. We begin with a
modification of a delay-differential equation model used by Gurney et al. [1] to study the dynamics of “Nicholson’s blowflies:”

dn

dt
= −µn+ a1n(t− τ) e−a2n(t−τ). [1]

In this model, n is the population size of mature animals, and τ is the maturation time. The change in the adult population
size is due to constant per captia mortality (at rate µ) and recruitment of juveniles, born τ time units ago, into the adult class.
The per captia birth rate at low density (a1) is reduced (exponentially at the rate a2) at larger population densities. This
model produces large swings in adult population size when the maturation time is sufficiently large [1].

We modify the model (1) to include the potential for a strong Allee effect (when the parameter a3 > 1) and to include the
random movement of adults via diffusion:

∂n

∂t
= −µn(x, t) + a1[n(x, t− τ)]a3 e−a2 n(x,t−τ) +D

∂2n(x, t)
∂x2 . [2]

Immature individuals are assumed to be sedentary.
The special case of model (2) with a3 = 1 (without Allee effects) has been thoroughly studied (see, e.g., Lin et al. [2] and

Solar and Trofimchuk [3] and references therein). The dynamics of this model in this case can be quite complex behind the
leading invasion front, but, for biologically realistic initial conditions solutions, solutions exhibit an asymptotically constant
spreading speed.

Much less is know about the dynamics of equation (2) when a3 > 1, but the model would seem to have the features necessary
to generate variable invasion speed. Density-dependent reproduction, along with the maturation time delay, induce population
fluctuations at high density, and the Allee effect should generate a pushed wave. Our numerical simulations suggest that this is
indeed the case (Fig. S4). When, in contrast, the population dynamics converge to an equilibrium point behind the invasion
front, the invasion speed is eventually constant, even in the presence of an Allee effect (Fig. S5). In the absence of Allee effects
(a3 = 1), simulations of the model (2) produce constant speed invasions (Fig. S6), even if there are oscillatory dynamics behind
the front, in agreement with prior theory.

1. Gurney, W.S.C., Blythe, S. P. and Nisbet, R. M. 1980. Nicholson’s blowflies revisited. Nature 287:17–21.
2. Lin, C-K., Lin, C-T, Lin, Y, and Mei, M. 2014. Exponential stability of nonmonotone traveling waves for Nicholson’s blowflies equation. SIAM Journal on Mathematical Analysis 46:1053–1084.
3. Solar, A. and Trofimchuk, S. 2015. Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction. Nonlinearity 28:2027–2052.
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