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S1. Deterministic Bayesian inference

To this point we have really only considered using the posterior mode and Hessian derived

covariance matrix for the first stage normal approximation. For a large amount of data in

the first stage, this might be just fine. But, we might consider using the posterior mean

and variance of θi instead. If MCMC is used in the first stage, we calculate the sample

mean and covariance matrix. If this is the case, one might use the two-stage MCMC

procedures proposed and discussed by Hooten et al. (2021), Lunn et al. (2013), and Goudie

et al. (2019). If the number of parameters is relatively small, say ≤ 6, we propose using a

deterministic sampling procedure for approximating the posterior mean and variance (see

Johnson et al. 2011).

The deterministic procedure proceeds as follows for each i,.

1. Maximize [θ|y], to obtain the posterior mode, θ̂ and covariance matrix, Ŝ

2. Form the Eigen decomposition of the covariance matrix Ŝ = VΛV′

3. Explore the principle axes of [θ|y] via the parameterization θ(j) = θ̂ + VΛ1/2z, where

z is successively incremented from 0 one entry at a time by step length, say δz until

log[θ̂|y]− log[θ(j)|y] > δπ.

4. Repeat by successively incrementing each element of z by −δz.
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5. Finally, form a grid with every combination of the dimensionality θ(j) entries saved in

the previous two steps and retain with the same δπ criterion.

6. Form weights wj ∝ [θ(j)|y]

The main benefit of the deterministic approach is that it avoids having to select a proposal

distribution and assess chain convergence. The drawbacks of this approach, however, are

the unknown number of likelihood evaluations and the potential coarseness in high density

areas. As the number of parameters becomes large this method quickly succumbs to the

curse of dimensionality.
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S2. Additional details and results for Example II

S2.1. Model Details

Ring-recovery models are based on marking animals and releasing them back into the wild.

In subsequent years, the marked animals are then recovered after they have died. In this

study lapwings were released and recovered annually from 1963–1997. The likelihood for

this type of model is a product-multinomial where numbers of ring-recoveries in the

following years are multinomial distributed with cell probabilities

pit =



(1− φt−1)λt for t = i+ 1

(1− φt−1)λt
∏t−2
t′=I φt′ for i+ 2 < t ≤ T

1−∑J
t′=i pit′ for t = T + 1

,

where pit is the probability that an animal ringed in year i is recovered in year t. The last

year of the study is denoted with T , (t = T + 1 is for animals never recovered), λt is the

probability of recovering an animal in year t given it died over the previous year, and φt is

the probability of surviving from year t to t+ 1.

To assess the influence of weather on survival and trends in recovery, the ring-recovery

parameters are modeled with

logit(φyt) = ηy0 + ηy1xt, logit(φat) = ηa0 + ηa1xt,

logit(λt) = γλ0 + γλ1t,

(1)

where φyt is the survival of first year birds in year t (for animals ringed in year t− 1), φat is

adult female survival in year t, and xt is the number of days below freezing in year t.

The census index data consist of noisy measures of female adult lapwing abundance in

the study area, y2. These abundance measurements exist from 1965–1998. To make
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inference about population dynamics we use the state-space model of Besbeas et al. (2002),

Ny,t+1 = φytρtNat + εyt; εyt ∼ N(0, φytρtNat),

Na,t+1 = φat(Nyt +Nat) + εat; εat ∼ N(0, φat(1− φat)Nat),

yt ∼ N(Nat, σ
2),

(2)

where Nyt is the number of yearling females in year t, Nat is the number of adult females in

year t, ρt is the rate at which female offspring are produced in year t, and yt are the noisy

observations of adult female abundance. The survival parameters are the same as the

ring-recovery model, but the production is modeled on the log scale using

log(ρt) = γρ0 + γρ1t.

Adult birds are the only component of the bivariate abundance state that is (indirectly)

observed, so, there is little information in these data to inform all survival and production

parameters. The IPM melds the information in the two data sets to allow inference to be

made on all the parameters of the joint model,

η = (ηy0, ηy1, ηa0, ηa1)′,

γ1 = (γλ0, γλ1)′, and γ2 = (γρ0, γρ1, log σ, logNy0, logNa0)′.

Random unit-level θ parameters are not traditionally used, but see the analysis in Section

4.2 for an alternate version.

S2.2 Tabulated parameter estimates
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Table S1: Full results for Example II: Integrated data modelThe B&M 2019 results were

taken from Table 2 of Besbeas and Morgan (2019) and represent estimates from MCMC

analysis of the full model. In the 3-stage RE model, θi ∼ N(η, σθI).

Parameter B&M 2019 2-stage 3-stage 3-stage RE

ηy0 0.523 ( 0.067 ) 0.519 ( 0.068 ) 0.519 ( 0.068 ) 0.511 ( 0.070 )

ηy1 -0.023 ( 0.007 ) -0.024 ( 0.007 ) -0.024 ( 0.007 ) -0.03 ( 0.019 )

ηa0 1.521 ( 0.070 ) 1.500 ( 0.068 ) 1.500 ( 0.068 ) 1.496 ( 0.070 )

ηa1 -0.028 ( 0.005 ) -0.028 ( 0.005 ) -0.028 ( 0.005 ) -0.017 ( 0.014 )

γλ0 -4.563 ( 0.035 ) -4.566 ( 0.035 ) -4.566 ( 0.035 ) -4.568 ( 0.035 )

γλ1 -0.584 ( 0.064 ) -0.582 ( 0.065 ) -0.582 ( 0.065 ) -0.573 ( 0.065 )

γρ0 -1.178 ( 0.091 ) -1.175 ( 0.087 ) -1.115 ( 0.086 ) -1.128 ( 0.091 )

γρ1 -0.425 ( 0.076 ) -0.388 ( 0.081 ) -0.428 ( 0.077 ) -0.456 ( 0.087 )

log σ 5.049 ( 0.136 ) 4.884 ( 0.127 ) 5.052 ( 0.138 ) 4.965 ( 0.152 )

logNy0 5.966 ( 0.546 ) 6.039 ( 0.447 ) 5.985 ( 0.547 ) 6.001 ( 0.494 )

logNa0 7.015 ( 0.135 ) 7.019 ( 0.114 ) 7.016 ( 0.137 ) 7.019 ( 0.126 )

log σθ -4.062 (0.519)

5



References

Besbeas, P., Freeman, S. N., Morgan, B. J., and Catchpole, E. A. (2002). Integrating

mark–recapture–recovery and census data to estimate animal abundance and

demographic parameters. Biometrics, 58:540–547.

Goudie, R. J., Presanis, A. M., Lunn, D., De Angelis, D., and Wernisch, L. (2019). Joining

and splitting models with Markov melding. Bayesian Analysis, 14:81–109.

Hooten, M. B., Johnson, D. S., and Brost, B. M. (2021). Making recursive Bayesian

inference accessible. The American Statistician, 75:185–194.

Johnson, D. S., London, J. M., and Kuhn, C. E. (2011). Bayesian inference for animal

space use and other movement metrics. Journal of Agricultural, Biological, and

Environmental Statistics, 16(3):357–370.

Lunn, D., Barrett, J., Sweeting, M., and Thompson, S. (2013). Fully Bayesian hierarchical

modelling in two stages, with application to meta-analysis. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 62(4):551–572.

6


