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Abstract: Above-surface radiance observations of water need to be corrected for refections 
on the surface to derive refectance. The three component glint model (3C) [Opt. Express 
25, A742 (2017)] was developed to spectrally resolve contributions of sky and sun glint to 
the surface-refected radiance signal Lr (λ), also for observations recorded at high wind speed 
and with fxed-position measurement geometries that frequently lead to signifcant sun glint 
contributions. 
Performance and limitations of 3C are assessed for all relevant wind speeds, clear sky 

atmospheric conditions, illumination/viewing geometries, and sun glint contamination levels. For 
this purpose, a comprehensive set of Lr (λ) spectra was simulated with a spectrally resolved sky 
radiance distribution model and Cox-Munk wave slope statistics. Refectances were also derived 
from an extensive 4-year data set of continuous above-surface hyperspectral observations from 
the Long Island Sound Coastal Observatory (LISCO), allowing to corroborate 3C processing 
results from simulations and measurements with regards to sky and sun glint contributions. 

Simulation- and measurement-derived Lr (λ) independently indicate that spectral dependencies 
of the sky light distribution and sun glint contributions may not be neglected for observations 
recorded at wind speeds exceeding 4 m/s even for sun glint-minimizing measurement geometries 
(Sun-sensor azimuth angle Δφ = 90 − 135◦). These fndings are in accordance with current 
measurement protocols for satellite calibration/validation activities. In addition, it is demonstrated 
that 3C is able to reliably derive water refectance for wind speeds up to 8 m/s and Δφ > 20◦ . 

© 2020 Optical Society of America 

1. Introduction 

Oceans and lakes are undergoing changes in their biogeochemical composition at an increasing 
pace due to e˙ects of climate change and other human impacts [1]. An in-depth understanding 
of the underlying cause-and-e˙ect chains is prerequisite to sustainable stewardship of these 
ecosystems [2]. Such an understanding crucially depends on timely and accurate observations of 
relevant biogeochemical parameters and their dynamics [3]. Satellite remote sensing is uniquely 
equipped for this task, observing the water color at ever-increasing spatio-temporal and spectral 
resolution [3]. However, calibration and validation of water color-derived data products from 
satellite imagery require high quality ground-based observations [4]. Also other applications, 
such as timely warnings of harmful algal blooms or regional water quality reporting, lean on 
ground-based observations, i.e. when overcast conditions prevail or when high spatial or temporal 
resolution requirements can not be met by satellite observations alone [5, 6]. 

However, accurately determining water color from near-surface observations, rather than from 
space, is a tricky task. Waves and ripples cause highly variable surface refections of the sky and 
potentially the Sun, which must be accounted for in order to accurately derive spectral signatures 
of the water body [7]. In this context, it is convenient to express water color in terms of remote 
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sensing refectance Rrs(λ), which is defned as the water-leaving radiance Lw (λ) normalized 
by the planar downwelling irradiance Ed (λ) to account for variable illumination conditions. 
Unfortunately, it is not possible to directly measure Lw (λ) from above water in free space 
(sky-light blocking approaches can mitigate this fundamental issue for foating instruments [8]), 
since surface-refected radiance Lr (λ) contributes to the observed total radiance Lt (λ): 

Lt (λ) − Lr (λ)Rrs(λ) = Ed (λ) Ed (λ) 
. (1) 

For a perfectly fat water surface, Lr (λ) is simply the refection of the sky radiance in the specular 
direction of the water-observing sensor, Ls(λ), scaled by the Fresnel refectance factor ρ f . While 
ρ f depends primarily on viewing zenith angle θv and the refractive index of water nw , matters 
are more complicated for a wind-roughened water surface. 

Di˙use sky radiance is spectrally distinct from direct sun light and several orders of magnitude 
lower in intensity [9]. In comparison to these contrasts, the di˙use sky light distribution o˙ers 
little variation with regards to spectral composition and magnitude. If sun glint can be assumed 
negligible, the net e˙ect of refected di˙use sky radiance on individual wave facets may therefore 
be approximated with an e˙ective di˙use sky refectance factor ρ to scale Ls(λ) observations [10]. 
Various approaches maintain Ls(λ) as a spectral approximation for Lr (λ) and focus instead on 
estimating ρ, e.g. [5, 11], with [10] as the probably most widely used scheme (further referred to 
as M99) providing values for the di˙use sky refectance factor ρ for a range of wind speeds and 
viewing geometries: 

Lt (λ) Ls (λ)Rrs (λ) = Ed (λ)
− ρ · Ed (λ)

− Δ, (2) 

with scalar refectance o˙set Δ to account for residual sun glint and potential white cap 
contributions [8]. This o˙set can be determined for open ocean situations (case 1) from 
refectance in the near-infrared (NIR) spectral region. For optically complex waters (case 2), 
where NIR refectance can not be neglected, various approaches exist to approximate Δ, e.g. [8,12]. 
For highly turbid waters, the shape of Rrs(λ) in the NIR spectral region can be anticipated and 
used for quality control purposes [13, 14]. 
M99 recommends a specifc viewing geometry to strike a balance between minimizing the 

impact of sun glint, which is not accounted for with the approach, and low Lr (λ) contributions 
that are stable over a large range of illumination conditions. This "Mobley geometry", i.e. 
observing Lt (λ) and Ls (λ) at θv = 40◦ from nadir and zenith, respectively, with an azimuth 
di˙erence between 90◦ and 135◦ (further referred to as Δφ = 90 − 135◦) to the Sun, endured two 
decades of scrutiny to be recommended also for the most demanding applications, i.e. satellite 
product calibration and validation [4,15]. However, M99 and all other approaches that derive 
Rrs(λ) in the context of Eq. (2) are built on the assumption of a spectrally isotropic di˙use 
sky radiance distribution, i.e. sky light only changes in intensity, not color [10, 16]. Several 
studies have pointed out that each wave facet of a wind-roughened sea surface refects a di˙erent 
part of the sky and potentially the Sun, both of which deviate in intensity and spectral shape 
from Ls(λ) [8, 9, 17–19]. A spectral dependency may therefore be assigned to the refectance 
factor ρ to justify the use of Ls(λ) in Eq. (2). This dependency is primarily a function of 
atmospheric composition and sea state [9], with polarization adding further complexity to its 
estimation [11, 17, 20]. Furthermore, for a given wind speed, M99 supplies only a single ρ value 
to remove surface glint from the highly variable water-leaving signal. For a typical measurement 
sequence, variability in Lt (λ) thus directly translates to the uncertainty budget of retrieved Rrs(λ). 
Averaging schemes have been proposed to mitigate this direct relationship, e.g. considering only 
the lowest 20% of a Lt (λ) measurement series when processing to Rrs(λ) with M99 [15] (further 
referred to as "Lrel "), assuming sun glint contamination for the rejected observations. Whilet 
this empirical approach considerably reduces estimated uncertainty levels, it also artifcially 
constricts Cox-Munk wave slope statistics [7] that are core to the M99 estimates for ρ, and was 
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thus restricted to wind speeds below 4 m/s in the context of high accuracy requirements (satellite 
calibration/validation) [15]. 

A range of natural phenomena in aquatic ecosystems exhibit distinct temporal patterns that can 
be revealed with consistent and continuous Rrs (λ) observations, e.g. tidal e˙ects [21]; BRDF 
patterns [22]; phytoplankton fuorescence yield variability [23]; phytoplankton photoprotective 
mechanisms [24]; phytoplankton functional types [25]; colored dissolved organic matter (CDOM) 
composition [26]. However, relying on established measurement protocols and correction 
schemes that artifcially limit the viable range of relative viewing azimuth directions, such 
consistent diurnal Rrs(λ) time series may often not be derived from variable- and especially 
fxed-direction radiometric data sets. Sampling from expansive platforms such as research vessels 
or moored coastal observatories poses additional challenges, e.g. constricted potential viewing 
azimuth directions [5], shading [27] and adjacency e˙ects [28,29], and altered wave statistics 
due to wind-shading or when observing underway. These and other factors typically lead to the 
rejection of vast amounts of valuable observations [5] during quality control, hampering full 
leverage of such data sets. 

Recently, a processing scheme was proposed to mitigate the impact of spectrally variable water 
surface refections on derived remote sensing refectance. The "3C method" [18] comprises a 
full-spectrum inversion to spectrally separate the water signal from surface-refected sky and sun 
glint components. This separation is carried out for each individual observation in a measurement 
sequence, which greatly increases the precision of derived Rrs(λ) without resorting to empirical 
averaging schemes like Lrel . A byproduct of each 3C inversion is the optimization residual t 
� , which can be used in conjunction with precision thresholds to e˙ectively fag measurement 
sequences that may not be adequately corrected with 3C. The scheme has been validated for a 
broad range of water bodies, illumination conditions, and measurement geometries [18,30–32]. 
For ideal measurement conditions, i.e. clear skies, low wind speed, and optimized viewing 
geometries, 3C was shown to perform equally to established methodologies, based on a number of 
comparisons between refectances derived from above- and sub-surface [18]. In addition, it was 
demonstrated that 3C allows the retrieval of relevant refectance spectra also for measurements 
collected in sub-optimal conditions, i.e. scattered clouds, rough water surfaces, and Sun-facing 
measurement directions [18]. In clear sky conditions, 3C also allows to derive Rrs (λ) when sky 
radiance observations are lacking, enabling straightforward processing of low-altitude airborne 
observations, i.e. from drones and planes [30]. These capabilities may greatly increase the 
amount of viable observations available to downstream applications, especially in the context 
of autonomous, high-frequency observations. However, a comprehensive assessment of error 
budgets attached to 3C-retrieved refectances is still lacking, specifcally with regards to sun-glint 
prone measurement geometries and high wind speeds, i.e. the conditions for which other 
established methodologies are not applicable. 
In this study, we assess the conditions under which 3C is capable of reliably separating sky 

and sun glint from the water-leaving signal. Reliable parameter retrievals are both accurate 
and precise, i.e. their distribution is centered close to the true value and features low variance. 
Retrieval accuracy and precision are thus examined separately, based on simulations for which 
the true value is known, and feld measurements for which realistic variances can be observed. In 
both assessments, we focus on observation geometry and wind speed as the main drivers for sky 
and sun glint contamination. 
In a frst step, Rrs(λ) retrieval accuracy is estimated from a simulated validation data set of 

above-water Lt (λ) observations. The simulations are representative for waters in the Western 
Long Island sound and cover all relevant clear sky atmospheric conditions, observation geometries, 
and water surface roughness levels. 
In a second step, Rrs (λ) retrieval precision is examined for an extensive 4-year data set 

of continuous above-surface hyperspectral observations from the Long Island Sound Coastal 
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Observatory (LISCO). During each cycle, measurements were conducted in burst mode for several 
minutes and thus yield a representative sample of Lt (λ) variability. Precision of Rrs(λ) retrievals 
was assessed for wind speeds ranging up to 10 m/s at all relevant observation geometries [33] 
and thus a wide range of sky and sun glint contamination. 
In support of airborne and satellite applications, it is further discussed to which extent Ls(λ)

measurements are required and benefcial for accurate and precise Rrs (λ) retrievals. 

2. Materials and Methods 

2.1. Simulated Data Set 

A wind-roughened water surface is composed of wave facets that each refect a di˙erent part of 
the sky, and potentially the Sun, into the solid angle that comprises the sensor feld of view Ωv : ¹ 

Lt (λ, Ωv) = Lw (λ, Ωv ) + p(Ω → Ωv ) · ρ f (Ω → Ωv) · Ls (λ, Ω) dΩ, (3) 
2π 

with Ω → Ωv indicating the solid angle of a sky patch refected into Ωv and p as the wave slope 
probability for that direction [9]. Wave statistics were calculated based on the slope distributions 
frst described by [7], with updated Gram-Charlier series coeÿcients from [34]. Dependencies 
on wind direction are weak according to Cox-Munk wave statistics [7] and were not investigated 
here, i.e. wind was assumed to be directed towards the sun azimuth position in all simulations. 
The spectral sky dome radiance distribution was calculated with an analytical model for 

sky [35] and sun light [36], further referred to as "HW12". HW12 is a fully analytical model 
evolved from earlier works by [37] with spectral output at 11 wavelengths ranging from the UV 
to the red (320 – 720 nm), accounting for all scattering orders, and ingesting ground albedo to 
describe adjacency e˙ects. [38] compared 8 clear sky models and attested HW12 a generally 
good spectral ft to their Radtran reference implementation, however, with a scaling error that 
was later corrected for in the here applied model reference implementation (version 1.4a, link). 

The sky light distribution was queried from the HW12 model for N randomly selected zenith 
(θ ranging from 0 to 90◦) and azimuth angles (φ ranging from 0 to 180◦), leveraging symmetries. 
The number of queries N = 92270 was chosen such that the area covered by each direction equals 
the solid angle of the sun disc Ωsun = 6.8096 · 10−5 sr to sample sun glint representatively. Sun 
disc radiance was calculated with a separate routine, sampling the complete disc as recommended 
by [36]. Input parameters for HW12 are sun zenith angle θsun, atmospheric turbidity, and 
bottom albedo. In this study, adjacency e˙ects were neglected by setting bottom albedo to zero. 
Atmospheric turbidity as defned in HW12 is represented by empirical relationships between 
aerosol optical depth and slope with values relevant to this study between 2 and 10, representing 
very clear to slightly hazy skies [35]. 

A comprehensive database of surface refectance spectra, Lr (λ)/Ed(λ), was populated following 
Eq. (3) for a fxed viewing angle θv = 40◦ and parameter ranges as follows: atmospheric turbidity 
ranging from 2 to 10 (5 steps); θsun ranging from 0 to 75◦ (6 steps); Δφ ranging from 0 to 180◦ 

(13 steps); vw ranging from 0 to 15 m/s (16 steps). Total downwelling irradiance Ed(λ) was 
calculated by cosine-weighting individual radiance distributions in a numerical integration over 
the complete radiance distribution. The analytical HW12 model was chosen with runtime quality 
control in mind, which could not be achieved with comparatively slow ray-tracing or Monte 
Carlo-based approaches. HW12 is limited to multi spectral output, which is not considered a 
limitation here, as small-scale spectral absorption features are absent in Rsky(λ) = Ls(λ)/Ed(λ)
spectra evaluated here. The multi-spectral Lr (λ)/Ed (λ) database that resulted from HW12 model 
runs was extrapolated to the relevant 350-900 nm range at 1 nm spectral resolution, following the 
Rsky (λ) model inversion procedure described in [28] and neglecting adjacency e˙ects, resulting 

https://cgg.mff.cuni.cz/projects/SkylightModelling/
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in highly satisfactory model fts for all considered situations (mean of absolute percent di˙erences 
|ψ | = 1.05 ± 0.87 %). 

2.2. Measured Data Set 

The Long Island Sound Coastal Observatory (LISCO) is located on an o˙shore platform at 
N40.57016◦, W73.20030◦. A Satlantic HyperSAS (Halifax, Canada) system had been installed 
from 2009 to 2014 at LISCO on top of a retractable tower at approximately 12 m above the 
water surface. Three spectrometers observed downwelling irradiance Ed(λ), sky radiance Ls(λ), 
and total water-leaving radiance Lt (λ) in the wavelength range 305 to 905 nm with 180 equally 
spaced channels. The Lt (λ) and Ls (λ) radiance sensors had a 3◦ full-angle feld-of-view and were 
oriented towards the West, observing water and sky at 40◦ from nadir and zenith, respectively. 
This fxed observation geometry caused the relative azimuth angle Δφ between Sun and radiance 
sensor to be variable and high sun glint contributions are generally to be expected towards the 
afternoon, depending on the time of the year [33]. Sensor calibrations were initially performed by 
Satlantic Inc. (Halifax, Canada) and regularly tracked at the CCNY Optical Remote Sensing Lab. 
The highly productive, phytoplankton and CDOM dominated waters [39] can safely be assumed 
optically deep in the vicinity of the platform and a water depth of approximately 15 m, depending 
on the tide. Further details on installation, setup, and calibration are briefy summarized below 
and an in-depth review of the data set and comparison to AERONET-OC observations recorded 
from the same platform can be found in [33]. 
Measurements were performed every 30 minutes during daytime, with all sensors recording 

for approximately 70 seconds in burst mode. Depending on the illumination conditions, 26 to 
47 (25% and 75% percentiles, respectively) individual observations were acquired on average 
during each measurement cycle, which is considered a representative sample of variability in 
Lt (λ). For the following analysis, 17294 measurement cycles during the period 1 January 2011 
to 11 April 2014 were considered, amounting to a total of 758396 refectance observations. All 
radiometric observations were screened for transmission errors, dark current and non-linearity 
corrected, and converted to physical units with the processing software Satlantic SatCon. All 
observations were then processed to remote sensing refectance spectra with the 3C method [18] 
and subsequently quality controlled, as detailed in the following section. 

Wind speed was derived from Copernicus Climate Change Service Information 2019, ECMWF 
ERA-5 reanalysis data set [40] and hourly wind speed components for 10 m above the ground 
were linearly interpolated in time to match measurement time stamps. 

2.3. Refectance Processing 

The 3C method allows to separate signal contributions from water surface refections and the water 
itself by means of full-spectrum inversion. 3C is applied here following the recommendations 
in [18], using the 3C Python implementation (link) that is publicly available under the LGPLv3 
license. Remote sensing refectance is derived from above-surface measurements of Lt (λ), Ls(λ), 
and Ed(λ): 

Lt (λ) Ls (λ)Rrs(λ) = Ed (λ)
− ρ · Ed (λ)

− Δ(λ), (4) 

Ls (λ)with the term ρ · representing a frst-order correction for sky glint refections on the water Ed (λ)
surface that is exact for a perfectly fat sea and ρ = ρ f . All other symbols are listed in Table 1. For 
wind-roughened water surfaces, parts of the sky and potentially the Sun are also contributing to 
the observed water radiance [9]. This e˙ect is accounted for with a spectrally resolved o˙set Δ(λ), 
which is derived for every measurement in a sequence during 3C model inversion. An analytical 
downwelling irradiance model [41] was adapted to spectrally resolve the o˙set parameter Δ(λ) in 

https://gitlab.com/pgroetsch/rrs_model_3C/
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Eq. (4): h i 
Δ(λ) = · Edd (λ) · Edsr (λ) + Edsa (λ) , (5)ρdd Ed (λ)π + ρds Ed (λ)π Ed (λ)π 

with ρdd and ρds as the refectance factors for downwelling direct irradiance Edd(λ), down-
welling Rayleigh-scattered di˙use irradiance Edsr (λ), and downwelling aerosol-scattered di˙use 
irradiance Edsa(λ). The bio-optical model currently implemented in 3C [42] was developed for 
optically complex waters and was initialized to refect the fndings of [39] for the Long Island 
Sound. Specifcally, CDOM absorption slope was set to S = 0.0147 and suspended particulate 
matter (SPM) backscattering was modeled with a power law bsm = SPM · 0.0042 · (λ/λ0)

γ, with 
b 

λ0 = 500 nm and γ = 0.23, in contrast to the spectrally fat bsm applied in [18]. Directionality 
b 

e˙ects due to variable viewing and sun zenith angles are implicitly taken into account when 
translating sub-surface refectance to above-surface Rrs(λ). Table 1 lists all model parameter 
starting values and search ranges, including the water constituent concentrations that were also 
initialized according to [39]. The constrained limited memory Broyden–Fletcher–Goldfarb– 
Shanno algorithm (L-BFGS-B) [43] was used to minimize the residual-sum-of-squares � between 
observed Lt (λ)/Ed(λ) and modeled Lm(λ)/Em(λ) with the bounding parameters listed in Table t d 
1 and weighting function W(λ). The residual � was calculated as Õi � 

Lm �2Lt (λi) t (λi )� = − · W(λi), (6)
EmEd (λi ) (λi )d 

and the spectral weighting function W(λ) = 1, except for the UV to visible (350-500 nm) and NIR 
(800-900 nm) spectral regions where W(λ) = 5. The spectral region around the deep oxygen A-
band rotational absorption lines were assigned a lower spectral weight W(760−775nm) = 0.1. The 
ft residual � is calculated in conjunction with W(λ), which is benefcial for rapid optimization 
convergence, however, it is a biased indicator of ft quality. In support of assessment and 
interpretation of ft residuals, root-mean-square-deviation RMSD were also calculated: vtÕi � 

Lm �2Lt (λi) t (λi )RMSD = − 
Em . (7)

Ed (λi ) (λi )d 

Chlorophyll a pigment fuorescence was accounted for in the bio-optical model with a fuorescence 
refectance component R f l 

(λ), based on [23, equation 7.36]: rs 

R f l −1 
rs(λ) = L f l(685 nm) · exp(−4 · ln(2) · [(λ − 685 nm)/25]2)/1.1 Wm−2nm . (8) 

Fluorescence radiance L f l(685 nm) was treated as a free parameter in the bio-optical model 
inversion. Accurate inversion of this parameter was enhanced by setting spectral weights 
W(660 − 710 nm) = 2. 

3. Results 

The full-spectrum inversion of the simulated Lt (λ) data set to Rrs(λ) is presented frst. Following, 
3C processed Rrs(λ) for four years of continuous observations at LISCO are summarized. 

3.1. Inversion of simulated data set 

The simulated Lt (λ) validation data set was derived according to Eq. (1), based on a comprehensive 
set of Lr (λ) spectra (see section 2.1) and twelve Rrs(λ) spectra representing monthly means of 
quality controlled (Level L3, see Table 2 and accompanying text in Section 3.2) and spectrally 
smoothed (boxcar, 10 nm window size) refectances at LISCO. Level L3 quality control restricts Δφ 
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Table 1. Free model parameters (upper section) in 3C model optimization. Values 
marked with an asterisks are modifed for the 3C parameterization making no use of 
Ls(λ) observations, see text. The lower section lists further reoccurring parameter names 

−1 −1)and acronyms that are used in this manuscript. Units for radiances (mWm−2nm sr 
and irradiances (mWm−2nm−1) are abbreviated with 1 and 2, respectively. 

Parameter Acronym, [unit] Start (min/max) 

Concentration of chlorophyll-a Chla, [mg m−3] 7.1 (0.01/100) 
Concentration of suspended particulate matter SPM, [g m−3] 2.9 (0/100) 
Colored dissolved organic matter absorption at 440 nm CDOM, [m−1] 0.3 (0.1/1) 
Fluorescence radiance (685 nm) L f l (665 nm), [1] 1 (0/3) 
Air-water interface refectance factor ρ, [−] ρ∗ (0/ρ f )f 

3C direct refectance factor ρdd, [−] 0.001 (0/4) 
3C di˙use refectance factor ρds, [−] 0.01 (-0.01/1) 
Ångström exponent α, [−] 1 (0/5) 
Aerosol optical thickness (550 nm) β, [−] 0.05 (0/1) 

Wavelength λ, [nm]

Sun zenith angle θsun, [◦] 
Viewing zenith angle θv , [◦] 
Relative azimuth angle to Sun Δφ, [◦] 
Wind speed vw, [m s−1]

Sky radiance Ls(λ), [1]

Total radiance Lt (λ), [1]

Water-leaving radiance Lw(λ), [1]

Water surface-refected radiance Lr (λ), [1]

Downwelling vector irradiance Ed(λ), [2]

Remote-sensing refectance Lw (λ)/Ed(λ) Rrs (λ), [sr−1]

Sky refectance Ls(λ)/Ed(λ) Rsky (λ), [sr−1]

Air-water interface refectance Lr (λ)/Ed(λ) Rre f l (λ), [sr−1]

Fresnel refectance factor (unpolarized) ρ f , [−]

Residual-sum-of-squares �, [sr−1]

Root-mean-square deviation RMSD, [sr−1]

Normalized RMSD NRMSD, [%]
Percent Di˙erence ψ, [%] 
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to 90-135◦, for which 3C results can be considered equivalent to established methodologies [18]. 
Reference Rrs (λ) spectra are presented in Figure 1. This simulated data set was then inverted 
to assess Rrs(λ) retrieval performance. Two 3C parameterizations and a reference model were 
considered in the inversion: 

1. 3C with Ls(λ)
Standard 3C parameterization according to Eq. (4). 

2. 3C without Ls(λ)
Spectrally resolved 3C-o˙set Δ(λ) only, disregarding Ls(λ) spectra by setting ρ = 0 in Eq. 
(4). 

3. Reference model 
According to Eq. (2) and [8], i.e. scaling Ls(λ) with scalar refectance factor ρ and o˙set 
Δ, which are determined with bio-optical model inversion [8]. The same bio-optical Rrs(λ)
model and parameter bounds as in 3C were used in the inversion procedure. 

Fig. 1. Monthly averages of quality controlled (level L3, see Table 2) remote sensing 
refectance Rrs(λ) for the period 2011-2014 at the LISCO site. The optically complex 
site features a signifcant and variable o˙set in the near-infrared spectral region. 

Two representative Rrs(λ) inversion results are shown in Figure 2 for Δφ = 135◦ (Mobley 
geometry) and 20◦ (sun glint-prone geometry), featuring Lr (λ) spectra that are dominated by 
sky and sun glint, respectively. Since Rrs(λ) reference spectra were known, ψ[Rrs (λ)] could be 
calculated for each inversion. Three spectral ranges were considered: ultra-violet (UV, 350-450 
nm), visible (VIS, 450-750 nm), and near-infrared (NIR, 750-900 nm). The ft bias was calculated 
for each model inversion as the mean of signed percent di˙erences ψ[Rrs(λ)] between reference 
Rrs(λ) and their modeled approximations Rm (λ):rs 

iÕ Rrs(λi) − Rm (λi )rs ψ[Rrs(λ)] = . (9)
Rrs(λi) 

Figure 3 shows ψ as a function of wind speed and relative azimuth angle for each correction 
scheme and the UV, VIS, and NIR spectral regions. Both the reference model and 3C (w/ Ls (λ)) 
tend to overestimate Rrs(λ) in all wavelength ranges, i.e. apply too low a glint correction for 
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lines), using the 3C confguration that makes no use of Ls(λ) spectra (dashed) and the 
reference model (dotted). Left panel: equal performance of both models at ideal relative 
azimuth angle Δφ = 135◦. Right panel: Sun-facing viewing geometry at Δφ = 20◦, 
causing considerable sun glint and large bias in reference model retrievals. The Rrs(λ)

reference spectrum is that of the month April at LISCO, see Figure 1. Simulations were 
carried out for a wind speed of 4 m/s and a sun zenith angle θsun = 30◦. 

relative azimuth angles larger than approximately 45◦ . This trend increases with wind speed 
and is most pronounced in the UV. For the Mobley geometry (Δφ = 90 − 135◦) the reference 
model consistently yields ψ > 7% from 5 m/s in the UV, while 3C (w/ Ls(λ)) reaches that 
threshold only at 10 m/s or remains below it (w/o Ls(λ)). Small relative azimuth angles in 
combination with wind-roughened water surfaces lead to increasing sun glint contributions. The 
reference model has no means to correct for sun glint, leading to very large ft errors in all spectral 
ranges for Δφ < 45◦. Please note that ρ was determined in the optimization of the reference 
model, which reduced errors considerably compared to ρ = ρ f as suggested in [8] (results not 
shown). In sun glint-dominated conditions, Lr (λ) can be several times the Lw (λ) signal (i.e. see 
Figure 2), yet 3C (both schemes) performs surprisingly well at all wind speeds, i.e. ψ = 0 − 2 
% except for the visible spectral range where ψ reaches 7 % for Δφ < 20◦. Trends in ψ with 
regards to sun zenith angle, and atmospheric conditions were generally small in comparison to 
dependencies on Δφ and wind speed, and have already been discussed exhaustively elsewhere [9]. 
However, in the ultra-violet spectral range, larger negative biases were observed for very clear 
skies than for hazy conditions. This is likely to be caused by high UV radiation levels due 
to Rayleigh-scattering at low aerosol concentrations. The 3C parameterization without Ls(λ)
resulted in a signifcant bias (ψ > 10 %) for observations recorded at θsun ≥ 60◦, which should 
be excluded from processing in this confguration. No consistent trend was found with regards 
to Rrs(λ) reference spectrum, indicating that the bio-optical model parameterization presented 
in section 2.3 is adequate to capture the range of Rrs(λ) variability at LISCO (see Figure 1), 
including the non-zero o˙set in the near-infrared spectral region. It was further investigated 
whether 3C ft residuals (e.g. RMSD) may serve as a quantitative measure for Rrs(λ) retrieval 
bias (e.g. ψ), however, correlations between RMSD and ψ for the 12 considered Rrs(λ) spectra 
(Figure 1) were found to be inconsistent. Despite the lack of clear linear correlation, large 
residuals were generally indicative of large retrieval biases. This observation supports the use of 
3C ft residual thresholds as a means of quality control, as further elaborated in the next section. 

3.2. Inversion and quality control of LISCO data set 

Four years (2011-2014) of radiometric observations at LISCO were processed with 3C (with 
and without Ls(λ) observations) and subsequently fltered to adhere to a range of quality levels. 
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Fig. 3. Fit bias as a function of wind speed and relative viewing azimuth angle 
Δφ. Bias is shown as signed percent di˙erences ψ[Rrs(λ)], averaged for atmospheric 
compositions, sun zenith angles, and reference refectance spectra (see Figure 1) 
and were determined for three correction schemes (rows: 3C without using Ls(λ)

observations, 3C using Ls(λ) observations, and the reference implementation) and 
spectral ranges (columns: UV [350-450 nm], VIS [450-750 nm], NIR [750-900 nm]). 
Values exceeding ±99 % were clipped. 

Quality control was carried out on a measurement cycle basis, with each cycle consisting of 
a number of individual observations, which were collected in burst-mode and within several 
minutes. Expressions that were evaluated are listed in Table 2, along with percentages of a˙ected 
measurement cycles for each fag. From these results, distinct quality levels were derived, which 
can be summarized as follows: 

• minimal (L0): basic radiometric consistency checks and 3C model convergence 

• intermediate (L1): L0 & restricted viewing geometry, limited variance on bio-optical 
parameter retrievals, representative Ls(λ) observations 

• intermediate/clear sky (L2): L1 & clear skies 

• strict (L3): L2 & restricted relative azimuth Δφ = 90 − 135. 

Most quality control fags are based on empirical thresholds that were derived from parameter 
histogram analysis and manual spectrum inspection of the LISCO data set, however, several fags 
may require additional explanation: 
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Table 2. Observation cycles that raised individual quality control fags, in percent 
and for each quality control level (L0 to L3). Dashes (–) indicate fags that were 
not allowed to be raised to pass a given quality control level. Please refer to Section 
3.2 for further explanations on quality levels. The last row lists the total counts and 
percentages of cycles that passed each quality control level. Symbols are according 
to Table 1, in addition to the coeÿcient of variation (cv), standard deviation (σ), 5 
%-percentile (P5), maximum value (max ), and oxygen-A absorption bands (O2). Each 
observation cycle consists of several individual observations that had been recorded 
in rapid succession. Flags were raised if any observation in a cycle was evaluated as 
true with the respective expression, except if indicated with an asterisks (*), where 
the median was used. Wavelength-averaged radiometric parameters were used except 
where specifc wavelength bands are provided. 

Flag Expression all L0 L1 L2 L3 

few measurements # Measurements < 10 0.21 – – – – 

high θsun θsun > 80◦ 19.21 2.38 – – – 

low Δφ Δφ < 20◦ 18.24 13.13 – – – 

sub-optimal Δφ Δφ < 90◦ or Δφ > 135◦ 82.98 78.23 72.85 70.49 – 

negative Ls (λ) Ls (λ) < 0 7.92 – – – – 

negative Lt (λ) Lt (λ) < 0 18.82 – – – – 

negative Ed(λ) 

low light 

clouds present 

Ed(λ) < 0 
2Ed(

max ) < 0.1 W/m nm 

−1Rsky (750 nm) > 0.1 sr

6.42 – – – – 

24.66 – – – – 

66.24 55.92 41.03 – – 

high variability Ls(λ) cv (Ls ) > 5% 35.22 30.99 21.71 – – 

high variability Ed (λ) cv (Ed) > 5% 21.07 15.25 11.25 – – 

Sun in Ls (λ) 

high variability Rr s(O2) 

Rsky (750 nm) > 2 / π 

−1σ(Rrs(O2)) > 0.0003 sr

10.63 4.00 – – – 

59.06 43.14 27.32 – – 

high variability Rr s(λ) cv (Rrs) > 10% 28.69 14.86 – – – 

high variability Chla cv (Chla) > 25% 42.38 28.72 – – – 

high variability SPM cv (SPM) > 25% 18.22 4.49 – – – 

high variability CDOM 

high RMSD 

cv (CDOM) > 25% 

RMSD > 0.002 sr−1 (*) 

26.22 12.73 – – – 

12.86 – – – – 

negative Rrs(λ) P5(Rrs (< 750 nm)) < 0 11.74 – – – – 

Cycles passed, [#] 

Cycles passed, [%] 

17294 11842 7149 3158 932 

100 68.5 41.3 18.3 5.4 
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i) The "high RMSD" fag was raised already at the frst quality control level if the median RMSD 
exceeded 0.002 sr−1, indicating that the 3C model optimization did not converge satisfactorily. 
This threshold is based on the median RMSD+3σ of all measurements that passed the minimal 
(L0) quality level with suspended "high RMSD" fag. While almost 13 % of all measurements 
were fagged by this metric, only 2.23 % and 1.30 % of L0 and L1 quality controlled measurements, 
respectively, were not also a˙ected by other fags. Furthermore, L2 and L3 quality controlled 
observations were not a˙ected at all. These fndings suggest that 3C ft residuals are reliable 
measures to fag inappropriate measurements, but should be regarded as just one element in a 
comprehensive quality control scheme. 
ii) More than 80 % of all observations were fltered out by the sub-optimal Δφ-fag, i.e. 

enforcing the Mobley geometry. This makes the Δφ-fag the single most important fag and is also 
the only constraint added from L2 to L3 where it still removes more than 70 % of otherwise fully 
quality controlled observations. This result clearly demonstrates the need for processing schemes 
like 3C that can reliably process observations also outside the constricting Mobley geometry. 

iii) Only approximately a ffth of all observations qualifed as clear sky conditions (L2), with 
more than 55 % of all L0 observations a˙ected by clouds. It was shown previously that 3C can 
reliably retrieve Rrs(λ) from overcast and scattered-cloud conditions [18]. For this reason we 
here focus on clear sky conditions. 
iv) Standard deviation in derived L0 Rrs(λ) at the Oxygen-A absorption bands at 760-775 

nm ("high variability Rrs(λ)(O2)") was signifcantly (p � 1 %) correlated with (mean) Lt (λ)
(R2 = 0.89), derived Lr (λ) (R2 = 0.63), and RMSD (R2 = 0.57), supporting its use as a quality 
indicator for intense sky and/or sun glint contamination. 

Figure 4 shows two representative examples for 3C processed measurement cycles that passed 
di˙erent quality control levels. Highly variable Lt (λ) observations are common to both examples, 
caused by elevated wind speed (6 m/s, left panel) and high sun glint contributions (right panel), 
respectively, and resembling the simulated cases shown in Figure 2. In both instances, 3C 
allowed to attribute the vast majority of this variability to surface refections and thus to retrieve 
Rrs(λ) with high precision. In the following section, we focus on the derived surface refection 
component. 

3.3. Variability in surface refections 

Variability inherent to the radiometric measurements as a function of wind speed is displayed in 
Figure 5 for the clear sky quality controlled (level L2, see Table 2) LISCO data set. Variability is 
presented as coeÿcient of variation cv per measurement cycle, averaged over wind speed bins of 
2 m/s. Variability for both Ls(λ) and Ed(λ) remain below 1 % for all considered wind speeds up 
to 10 m/s. The corresponding "high variability" quality control fag for both parameters capped 
cv only from 5 % and is therefore not considered artifcially constricting. Variability of Lt (λ)
increased with wind speed, exceeding the 5 % cv mark from 4 m/s, and reaching to almost 15 % 
at 8 m/s, on average. Variability of derived Rrs(λ) also increases with wind speed, however, at 
a much lower rate and remains, on average, below 5 % for wind speeds up to 8 m/s. Lacking 
Ls(λ) information in the 3C inversion proved benefcial to retrieving consistent Rrs(λ), with on 
average 30 % lower cv values as compared to retrievals incorporating Ls (λ) observations. 

These results clearly show that 3C successfully attributed a large part of the observed variability 
in Lt (λ) to refections at the air-water interface. This is in contrast to look-up-table approaches 
that yield a constant correction factor for a given wind speed, i.e. M99, and thus directly translate 
variability in Lt (λ) to measurement uncertainty in derived Rrs (λ). An o˙set correction may 
mitigate this issue partially, however, it is not straightforward for optically complex waters like 
at LISCO that feature non-negligible NIR refectance. For example, the scalar o˙set Δ in the 
reference model (Eq. (2)) had to be determined by bio-optical model inversion [8], essentially 
matching the processing complexity of 3C. Without o˙set correction, i.e. the original M99 
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August 2013, UTC 16:30 pm (left panel) and 30 June 2011, UTC 18:30 pm (right panel), 
with clear sky conditions and approximately 6 and 4 m/s wind speed, respectively. 
Yellow lines represent a frst-order correction with Ls(λ), scaled with refectance factor 
ρ. Statistics above each panel characterize measurement conditions and were used 
in quality control (see Table 2). The measurement cycle in the left panel passed the 
highest quality level (L3), while the right cycle was classifed L1 (see Table 2) due to 
sub-optimal Δφ angles and high variability in the Oxygen-A absorption bands. In both 
cases, Rrs (λ) was retrieved with high precision (see cv(Rrs)). Units for ft parameter 
results were omitted for readability and are given in Table 1. 

approach, much larger biases resulted for the reference model (not shown), which is specifcally 
of concern for coastal and inland waters that feature low refectance values in the blue and 
ultra-violet spectral regions. Exactly in those spectral regions 3C o˙ers the largest improvements 
over the reference model, also when applied in conditions without major sun glint contributions. 
Fit residuals (RMSD) for the 3C run with Ls(λ) average to 2.95 ± 3.97 × 10−4 sr−1 (L0), 

1.88 ± 1.68 × 10−4 sr−1 (L1), 1.32 ± 1.07 × 10−4 sr−1 (L2), and 1.49 ± 1.21 × 10−4 sr−1 (L3), 
and generally increase slightly with wind speed and towards smaller relative azimuth angles. The 
lowest average RMSD, 0.79 ± 0.32 × 10−4 sr−1, resulted for Δφ = 170 − 180◦ and L2 quality 
control. RMSDs of the 3C parameterization without Ls(λ) behave similarly (not shown). 

Derived Rre f l(λ) are shown in Figure 6 as a function of wind speed and relative azimuth angle. 
With increasing wind speed and decreasing relative azimuth angle, Rre f l (λ) rises in magnitude 
but fattens spectrally. This is a result of increasing sun glint in both cases, which is spectrally 
complementary to sky glint. Rayleigh scattering is most eÿcient at Δφ ≈ 180, which leads to 
pronounced UV to blue spectral contributions to Rre f l(λ) at those geometries. 

The sky refectance factor ρ was allowed to vary between 0 and 0.0256 (ρ f ) in the 3C model 
inversion that took Ls(λ) observations into account. The rationale behind the upper bound ρ f 
is that for a perfectly fat water surface, 3C (Eq. (4)) converges to Eq. (2) with Δ = 0 and 
ρ = ρ f . The spectrally resolved 3C-o˙set Δ(λ) may then account for deviations to this ideal 
situation when the water surface is wind-roughened, which makes the 3C parameters ρds and 
ρdd interpretable as additional sky and sun glint contribution levels. For situations when Ls(λ) is 
not spectrally representative at all, i.e. when sun glint contributes heavily, the model optimization 
can account for this by setting ρ < ρ f . However, the optimization predominantly retained the 
default value of 0.0256, with zero being the second most frequent outcome. While this is true 
for all flter levels, the percentage of ρ values at 0.0256 is considerably higher for the clear sky 
flter levels L2 (98.5 %) and L3 (97.84 %), as compared to less restrictive levels L0 (74.6 %) 
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Fig. 5. Measurement cycle average coeÿcients of variation cv for clear sky observations 
at LISCO (flter scheme L2, see Table 2) for the observed wind speed range (bins 
of 2 m/s) and for measured radiometric parameters downwelling irradiance Ed (λ), 
sky radiance Ls(λ), and total radiance Lt (λ), as well as derived remote sensing 
refectance Rrs(λ). The asterisks (∗) marks 3C model runs that did not make use of 
Ls(λ) measurements. Boxes represent the cv quartiles and whiskers extend 1.5 × the 
interquartile range. 

Fig. 6. Air-water interface refectance Rre f l (λ) for all LISCO observations, aver-
aged over relative azimuth angle Δφ (left panels) and wind speed vw (right panels). 
Observations passed quality control levels L2 (i.e. Δφ ≥ 20◦). 
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and L1 (78.28 %) that also include overcast conditions. This indicates that, on average, Ls(λ)
observations are less representative of surface refected Lr (λ) for scattered-cloud and overcast 
sky conditions, and that adding ρ as a bounded variable parameter to the optimization has no 
impact on the vast majority of clear sky observations. 

Average direct and di˙use refectance factors ρdd and ρds , respectively, are presented in Figure 
7 as a function of relative azimuth angle Δφ and wind speed. For the 3C model parameterization 
that accounted for Ls (λ) observations, the di˙use refection factor ρds and ρ are presented jointly 
as the latter resulted predominantly in a constant value (ρ f ). This representation illustrates the 
compensating role of ρds when omitting Ls(λ) observations from the 3C processing. However, 
whenever Ls(λ) observations are not spectrally representative of Lr (λ), 3C has to compensate for 
this e˙ect, which introduces signifcant di˙erences to both refectance factors resulting from 3C 
runs with and without Ls(λ). 

Fig. 7. Refectance factors as a function of relative azimuth angle to the Sun Δφ (left 
panel) and wind speed (right panel) for flter scheme L2. Dashed lines indicate the 3C 
parameterization making no use of Ls (λ) measurements. For the parameterization that 
uses Ls(λ) observations, sky and di˙use refectance factors ρ and ρds , respectively, 
were combined for comparability (ρ = 0.0256 for the majority of observations). The 
Mobley geometry is indicated in blue shades for Δφ = 90 − 135◦ in the left panel. 

. 

As already anticipated from the simulation results in section 3.1, Δφ ≈ 20◦ appears to be the 
tipping point below which sun glint is the dominating contribution to Lr (λ) (on average for all 
considered θsun). Sun glint contributions were – on average – negligible within the Δφ = 90−135◦ 

range and low wind speeds, which supports the fndings of [9]. A noticeable increase in ρdd was 
observed for Δφ < 90◦ and wind speeds above 4 m/s when processing with Ls(λ). However, 
residual sun glint contributions were regularly observed also within the Mobley window, i.e. 
the standard deviation from the low median of ρdd = 0.0001 amounts to 0.07451. A ratio 
ρdd/(ρds + ρ) > 1/3 can safely be assumed indicative for sun glint dominated Rre f l (λ) spectra, 
as direct downwelling irradiance amounts to approximately two thirds of total Ed(λ), see i.e. [44], 
depending on atmospheric conditions and sun zenith angle. This ratio is exceeded for almost 9.6 
% of all level L3 observations recorded at Δφ = 90 − 135◦ . When considering only observations 
that are below the 20 %-percentile of Lt (λ) in each measurement cycle, i.e. applying the Lrel 

t 
flter scheme, still 9.3 % of the respective subset are identifed as sun glint dominated. This 
indicates that Lrel is not particularly e˙ective in removing sun glint dominated spectra, at least t 
for observations that already adhere to the high L3 quality requirements. In addition, by selecting 
for the darkest Lt (λ) observations in each sequence, Lrel also changes the mean spectral shape t 
and magnitude of Lr (λ)/Ed (λ). Compared to the mean Lr (λ)/Ed (λ) spectrum per measurement 
cycle, this e˙ect amounts to ψ(350 − 900 nm) = 9.1 ± 9.2 % (ψ(350 − 450 nm) = 4.3 ± 4.9 %, 
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Fig. 8. Spectral shape of Rre f l(λ) variability (standard deviation of air-water interface 
refectance σ[Rre f l (λ)]) for all LISCO level L2 (i.e. Δφ ≥ 20◦) observations, as a 
function of Lt (λ) variability (coeÿcient of variation cv (Lt ), 1 % binning). Spectra are 
normalized (z-score: subtraction of mean and division by standard deviation) to enable 
visual comparison of spectral shapes. 

ψ(450 − 750 nm) = 8.8 ± 9.0 %, ψ(750 − 900 nm) = 12.8 ± 12.8 %) for level L3 observations. 
The impact of Lrel is further strongly dependent on wind speed with ψ(350 − 900 nm) < 10 % t 
up to vw = 4 m/s. Regardless the cause, sun glint contamination introduces spectrally distinct 
variability to Lt (λ) observations, which is illustrated in Figure 8: moving from low to high 
variability in Lt (λ) (cv(Lt )), the spectral shape of σ[Rre f l (λ)] transitions from resembling sky 
to sun refectance. While Figure 8 shows this for level L2 LISCO observations (Δφ > 20◦), 
the same pattern can be observed for level L3 observations at Δφ = 90 − 135◦. This indicates 
that cv (Lt ) and the shape of σ[Rre f l (λ)] are suitable indicators for sun glint contamination, and 
further illustrates why the reference model (Eq. (2)) with its spectral dependency fxed to Rsky (λ)
observations performs well for low variability conditions (see Figure 3), but fails once sun glint 
contributes more considerably. 

4. Discussion and Conclusions 

All existing approaches for the processing of in situ radiometric observations to Rrs(λ) in 
the context of Eq. (2) are built on two fundamental assumptions: i) negligible sun glint and 
ii) spectrally isotropic sky radiance distributions. Measurement protocols were adjusted to 
accommodate for these assumptions, i.e observations are ideally to be collected at i) Δφ = 90−135◦ 

to minimize sun glint contributions [10] and ii) wind speeds below 4 m/s to have waves facets 
refect the sky in close vicinity to the Ls(λ) observation [15]. However, in the context of the 
here considered LISCO data set, these constraints severely constrict the amount of observations 
available for analysis, i.e. less than 20 % adhere to Δφ = 90 − 135◦ (see Table 2, "sub-optimal 
Δφ") and the majority was collected for wind speeds of 4 m/s and above (see Figure 5). The 
3C model was developed to account for both sun glint and a spectrally variable sky radiance 
distribution, with the expressed aim to make more observations available for down-stream 
applications [18]. In the current work, we assessed to which extent these goals were reached by 
corroborating 3C inversions of simulated and measured above-surface radiometric observations. 
Simulated Lt (λ) spectra were inverted to derive retrieval bias in a realistic full-spectrum 
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inversion scenario for a range of representative Rrs(λ) spectra at the LISCO site. Comparable 
biases were observed between the reference model and either 3C implementation for Δφ = 
90−135◦ and wind speeds below 4 m/s, i.e. optimal conditions according to current measurement 
protocols for satellite calibration/validation activities. For observations outside of Δφ = 90−135◦, 
application of the reference model resulted in large errors, as expected due to sun glint contributions. 
Fit biases of approximately 5 % are in line with literature values for both theoretical uncertainty 
estimates and feld validation experiments, e.g. [4, 18, 45]. When processing with 3C, the 
presented results clearly indicate that this level of uncertainty can be maintained also for wind 
speeds up to 8 m/s and relative viewing azimuth angles Δφ > 20◦. In the following, these fndings 
and corresponding limitations are discussed in more detail. 
Cox-Munk wave statistics are based on measurement series at a single location (Hawaii), 

however, have been scrutinized and tuned in the many decades since publication [34]. More 
accurate methodologies, e.g. [11], promise improved accuracies specifcally for high solar zenith 
and viewing angles, which are not a focus in the current study. Coastal areas and bays like the 
Long Island Sound are likely to feature wave patterns that are not fully coherent with Cox-Munk 
slope statistics. This may specifcally be an issue for look-up-table approaches like M99 that rely 
on accurate wave slope statistics, in contrast to bio-optical inversion schemes like 3C or [8]. 
The presented 3C processing results further confrm general applicability of 3C for coastal 

water observations, within the specifcations of the applied bio-optical model [46]. For a reliable 
separation of sky and water signals with 3C, it is most relevant that the spectral shapes of all in-
water components are accurate in the UV and NIR spectral bands, i.e. where biological processes 
have little impact on the refectance spectrum. For example, spring bloom phytoplankton species 
composition at LISCO di˙ers quite substantially from the rest of the year. The default specifc 
phytoplankton absorption spectrum in 3C is not very suitable during that period and in the visible 
spectral bands. Processing with a more adequate phytoplankton parameterization for the spring 
period, however, had negligible impact on derived refectances (results not shown). Still, striving 
for an optimal model ft is the best approach to assure robust and accurate refectance retrievals. 
For this reason, 3C is not bound to a specifc bio-optical model for its Rrs(λ) component 
and researchers are encouraged to adjust and/or replace the currently implemented model if 
locally-tuned equivalents are available. 
Other natural phenomena also manifest themselves in observed above-water radiometry and 

are not (yet) accounted for in 3C. For example, white caps introduce spectral refectance features 
related to water absorption [47], and are likely contributing to rising ft residual averages with 
wind speed for the LISCO data set. White caps could be easily added to 3C as a spectral model 
component, supporting spectral decomposition by explaining a very distinctly shaped part of 
the observed variability in the NIR. While such an extension is out of scope for this publication, 
further research in this direction is highly encouraged. Spectral adjacency e˙ects, too, have 
spectrally distinct e˙ects on observed Rre f l(λ) in the NIR spectral region that could be accounted 
for in 3C [28] to support validation e˙orts for inland waters and coastal areas. Polarization of the 
downwelling light feld is altered by interactions with the air-water interface and the water itself, 
which a˙ects the magnitude of surface-refected radiance [11, 17]. However, these e˙ects are 
almost independent of wavelength in the here considered ranges and thus accountable for in the 
bio-optical model inversion. Minute wavelength dependencies in the water index of refraction 
nw [9] were not considered. 

The 3C ft residual � proved as a robust indicator for failed retrievals, however, our fndings do 
not support its use as a quantitative estimator for retrieval bias. Absolute values of � depend on the 
magnitude of retrieved Rrs(λ) and Lr (λ), the spectral resolution and noise level of all radiometric 
input parameters, the parameterization of the 3C bio-optical model, and many other potential 
factors. We therefore refrain from stating an absolute threshold for � to ensure model convergence 
for any particular retrieval, but rather recommend to analyze � (or RMSD) histograms to fnd 
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suitable thresholds. For the here presented LISCO data set, the threshold RMSD=0.002 sr−1 

(mean + 3σ) reliably separated obvious outliers while retaining the majority of spectra for further 
analysis. 
With increasing wind speed, larger parts of the sky are sampled than covered by the feld-

of-view of a Ls (λ) sensor. This issue could be mitigated with Ls(λ) sensor feld-of-views that 
vary with wind speed [17], e.g. derived from imaging spectrometer observations [19], or at 
least are optimized for typical conditions at a measurement site. Such an optimized Ls(λ)
feld-of-view would be considerably larger than that of the Lt (λ) sensor and depends on various 
parameters, i.e. average wind speed, instrument distance to the water, and integration times. 
For the LISCO data set, excluding Ls (λ) from the 3C processing yielded consistently lower 
cv(Rrs) at comparable ft residuals, indicating an improved separation of air-water interface 
and water signals and further substantiating the viability of this processing mode. Simulations 
indicated little dependency on wind speed for Rrs (λ) when derived without Ls(λ) observations, 
however, with considerable (ψ ≈ −7 %) bias in the UV. Limiting application to sun zenith angles 
θsun ≥ 60◦ reduced the average bias to levels comparable with the standard 3C parameterization. 
Sky refectance Rre f l (λ) spectra may further contain spectral information in addition to the 
the components already considered in 3C (Rayleigh and aerosol scattering, direct sun light). 

−1In overcast conditions, theory predicts a spectrally fat Ls (λ)/Ed (λ) ratio equal to π−1 sr . 
Particularly in overcast conditions, atmospheric path lengths for light reaching a sky radiance 
sensor are typically di˙erent from the average path length of photons collected by a Ed(λ) sensor, 
which introduces spectral absorption features into their ratio. Similarly, scattered cloud may 
or may not cover the Ls (λ) sensor feld-of-view and/or be refected on the water surface [31]. 
Furthermore, for Rrs (λ) observations nearby land, ground albedo can introduce adjacency e˙ects 
to the NIR spectral range [28]. All these e˙ects may not be accounted for when correcting Rrs(λ)
with Δ(λ) only. However, observations from airborne platforms like drones and and airplanes are 
typically acquired when clear sky conditions prevail and could therefore beneft from Ls (λ)-less 
Rrs(λ) retrievals with 3C, despite the limitations. Removing the strict requirement for Ls(λ)
observations could enable low-cost refectance instruments, i.e. in the context of citizen science 
or open-source projects. Last but not least, Ls (λ)-less processing is a precursor to application 
of 3C in the context of hyperspectral observations from space, e.g. as anticipated from NASA 
PACE [48]. 

Redundant Lt (λ) observations, i.e. acquired in rapid succession (>2 Hz) over several minutes, 
are essential to estimate the uncertainty in derived Rrs (λ). For such short periods of time, the 
water refectance signal can usually be assumed constant. Therefore, if a correction methodology 
is able to attribute a large share of Lt (λ) variability to air-water interface refections, Rrs(λ)
retrieved from a series of redundant Lt (λ) observations should match closely. For the LISCO 
data set, 3C achieved this goal with average cv (Rrs) < 5 % for all wind speed bins (see Figures 5, 
4). It should be noted that cv (Rrs) is indicative of retrieval precision, which is required yet not 
suÿcient to estimate uncertainty levels. 

Sun glint contributions to Lt (λ) are usually low when observing within the Mobley geometry 
constraints. This is partially because wave facets are rarely oriented such that they refect the 
Sun disc, and partially because the Fresnel refectance for these orientations is low. However, 
because yellow sun light is spectrally so profoundly contrasting blue sky light, even small sun 
glint contributions dominate the observed spectral variability of Rre f l (λ) (Figure 8). This is likely 
why our results suggest that averaging schemes like Lrel may be suitable for removing extreme t 
outliers, yet had very little e˙ect on already quality controlled observations and at the expense of 
artifcially altering the magnitude and spectral composition of resulting Rre f l(λ). Such fltered 
Rre f l (λ) do not adhere to Cox-Munk wave statistics that are core to tabulated ρ values of e.g. 
the M99 approach. However, variance in Rre f l(λ) sequences can directly be estimated from 
Lt (λ)/Ed(λ) observations (see Eq. (1)), without relying on elaborate processing schemes like 
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3C and assuming only a constant water signal during data acquisition. In essence, a σ[Lt /Ed]

spectrum that resembles the shape of Rsky (λ) indicates negligible sun glint contamination. 
This recommends Lt (λ) variance spectra as valuable assets for quality control purposes and 
we encourage researchers to leverage the wealth of information contained in redundant Lt (λ)
observations, rather than artifcially constricting it. 
In summary, we assessed Rrs(λ) retrieval bias for 3C (Eq. (4)) and a reference model (Eq. 

(2)), based on representative Rrs(λ) spectra at LISCO and a simulated Lr (λ) data set. Our results 
confrm the restrictions placed on retrievals with the reference model, i.e. Δφ = 90 − 135◦ 

(Mobley geometry) and wind speeds below 4 m/s, to ensure Ls(λ) observations to be spectrally 
representative of Lr (λ). For 3C, comparable retrieval errors were obtained for Δφ ≥ 20◦, i.e. 
only excluding directly Sun facing observations, wind speeds up to approximately 8 m/s, and all 
relevant sun zenith angles. These loosened restrictions allowed to confdently process the LISCO 
data set with 3C in its entirety, which was recorded at wind speeds predominantly above 4 m/s 
and with only about 20 % of all observations adhering to the Mobley geometry. Derived Rre f l(λ)
spectra and 3C parameter results are consistent with simulations and corroborate the established 
operation boundaries, for which a high level of Rrs(λ) retrieval precision (cv(Rrs) < 5 %) was 
maintained. 
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