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Abstract 23 

Climate change is transforming ecosystems and affecting ecosystem goods and services. Along 24 

the Gulf of Mexico and Atlantic coasts of the southeastern United States, the frequency and 25 

intensity of extreme freeze events greatly influences whether coastal wetlands are dominated by 26 

freeze-sensitive woody plants (mangrove forests) or freeze-tolerant grass-like plants (salt 27 

marshes). In response to warming winters, mangroves have been expanding and displacing salt 28 

marshes at varying degrees of severity in parts of north Florida, Louisiana, and Texas. As winter 29 

warming accelerates, mangrove range expansion is expected to increasingly modify wetland 30 

ecosystem structure and function. Because there are differences in the ecological and societal 31 

benefits that salt marshes and mangroves provide, coastal environmental managers are 32 

challenged to anticipate effects of mangrove expansion on critical wetland ecosystem services, 33 

including those related to carbon sequestration, wildlife habitat, storm protection, erosion 34 

reduction, water purification, fisheries support, and recreation. Mangrove range expansion may 35 

also affect wetland stability in the face of extreme climatic events and rising sea levels. Here, we 36 

review current understanding of the effects of mangrove range expansion and displacement of 37 

salt marshes on wetland ecosystem services in the southeastern United States. We also identify 38 

critical knowledge gaps and emerging research needs regarding the ecological and societal 39 

implications of salt marsh displacement by expanding mangrove forests. One consistent theme 40 

throughout our review is that there are ecological trade-offs for consideration by coastal 41 

managers. Mangrove expansion and marsh displacement can produce beneficial changes in some 42 

ecosystem services, while simultaneously producing detrimental changes in other services. Thus, 43 

there can be local-scale differences in perceptions of the impacts of mangrove expansion into salt 44 

marshes. For very specific local reasons, some individuals may see mangrove expansion as a 45 
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positive change to be embraced, while others may see mangrove expansion as a negative change 46 

to be constrained. 47 

 48 

Keywords: climate change, coastal wetland, ecosystem services, mangrove, range expansion, 49 

winter climate change 50 

51 
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Introduction 52 

In response to warming air and ocean temperatures, temperate ecosystems are being transformed 53 

by tropical organisms whose range limits are expanding poleward (Vergés et al. 2014; Osland et 54 

al. 2021). In North America, the transition between tropical and temperate ecosystems is greatly 55 

influenced by the frequency and intensity of winter temperature extremes, as the northern range 56 

limits of most tropical organisms are governed by extreme freezing temperatures (Boucek et al. 57 

2016; Osland et al. 2021). Climate change is producing warmer winters with fewer extreme 58 

freeze events (USGCRP 2017; Carter et al. 2018), which allows tropical organisms to move 59 

north of their current range limits. Coastal environmental managers near tropical-temperate 60 

transitions are increasingly faced with making natural resource management decisions related to 61 

the range expansion of these tropical organisms. Thus, there is a need to advance understanding 62 

of the ecological implications. In this communication, we review the literature on the ecological 63 

and societal impacts of warming winters and tropical range expansion within coastal wetland 64 

ecosystems in the southeastern United States, where tropical mangrove forests are expected to 65 

invade and ultimately displace salt marshes as they continue to move north (Osland et al. 2013; 66 

Cavanaugh et al. 2014; Gabler et al. 2017).  67 

Mangrove forests and salt marshes are both highly productive coastal wetland ecosystems 68 

that occupy very similar geomorphic positions within tidal saline environments (Cahoon et al. 69 

2020). Thus, there are many similarities in the ecosystem goods and services provided by these 70 

tree- and grass-dominated coastal wetlands. Both ecosystems are frequently ranked among the 71 

most valuable ecosystems on the planet (Costanza et al. 2014). In addition to providing habitat 72 

for fish and wildlife species, mangrove forests and salt marshes sequester large quantities of 73 

CO2, protect coastlines from storms, reduce erosion, improve water quality, support productive 74 

fisheries, and provide recreational opportunities (Barbier et al. 2011).  75 
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Despite the similarities in the ecosystem goods and services provided by mangrove 76 

forests and salt marshes (Table 1), there are trade-offs and differences in the magnitude, 77 

spatiotemporal scale, and characteristics of the good or service provided (Ewel et al. 1998; 78 

Barbier et al. 2011; Kelleway et al. 2017). Research on the ecological effects of mangrove 79 

expansion in the southeastern United States has accelerated rapidly in recent years (Figure 1). 80 

Here, we synthesize this recent knowledge to review current understanding of the effects of 81 

mangrove range expansion and displacement of salt marsh on the ecosystem services provided 82 

by coastal wetlands in the southeastern United States. We begin with a background section that 83 

describes the history and expected future of mangrove expansion within this region. Next, based 84 

on the current state of knowledge, we review changes in wetland ecosystem services that occur 85 

as salt marshes are replaced by mangroves. We also identify critical knowledge gaps and 86 

emerging research needs for improving our understanding and management of mangrove 87 

expansion and salt marsh displacement in the southeastern United States. 88 

 89 

Background: mangrove range expansion in the southeastern United States 90 

The Gulf of Mexico and Atlantic coasts of North America are global hotspots for mangrove 91 

range expansion (Osland et al. 2017b; Cavanaugh et al. 2018) (Figure 2). Coastal wetlands are 92 

abundant in the southeastern United States due to the region’s expansive low-lying coastal plains 93 

(Deegan et al. 1986; Enwright et al. 2016). In warmer and more tropical southern coastal 94 

reaches, tidal saline wetlands are dominated by mangrove trees and shrubs (Odum et al. 1982), 95 

with the three most common mangrove species in the region being Avicennia germinans (black 96 

mangrove), Rhizophora mangle (red mangrove), and Laguncularia racemosa (white mangrove). 97 

The northern range limits of these mangrove species (Figure 2) are controlled by extreme freeze 98 
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events, which can lead to physiological damage and/or mortality (Sherrod & McMillan 1985; 99 

Pickens & Hester 2011; Cavanaugh et al. 2014; Bardou et al. 2021). Thus, along cooler, northern 100 

coastal reaches, tidal saline wetlands are dominated by grass-like salt marsh plants (i.e., grasses, 101 

sedges, and rushes) (Gabler et al. 2017; Osland et al. 2019a), because salt marsh plants can 102 

tolerate freezing temperatures via winter dormancy. Conversely, mangroves outcompete salt 103 

marsh plants along southern coastal reaches where temperatures are suitable for mangrove 104 

growth and canopy development (Kangas & Lugo 1990; Feher et al. 2017). 105 

The northernmost mangrove populations in the region are present in Texas (Sherrod & 106 

McMillan 1981; Armitage et al. 2015), Louisiana (Osland et al. 2017a; Day et al. 2020; Osland 107 

et al. 2020b), and the Gulf of Mexico and Atlantic coasts of northern Florida (Stevens et al. 108 

2006; Simpson et al. 2017; Snyder et al. 2021). Isolated mangrove individuals have also been 109 

found on Mississippi’s barrier islands (Scheffel et al. 2013; Scheffel et al. 2017; Macy et al. 110 

2019). In the past century, mangrove range limits have expanded across the region during freeze-111 

free years and contracted due to mass mortality during extreme freeze events (Sherrod & 112 

McMillan 1985; Brown et al. 2016; Osland et al. 2017a; Cavanaugh et al. 2019). The last major 113 

freeze event resulting in region-wide mass mangrove mortality and range contraction occurred in 114 

December 1989 (Lonard & Judd 1991; Stevens et al. 2006; Osland et al. 2017a). Since then, 115 

mangroves have been expanding in parts of northern Florida, Louisiana, and Texas. Although 116 

1989 was the last cold event to affect mangroves across the entire northern Gulf of Mexico, there 117 

have been several smaller, less intense cold events (e.g., 1996, 2000, 2001, 2002, 2003, 2010, 118 

2011, 2014, 2018, 2021), which have caused short-term mangrove damage, mortality, and/or 119 

local reductions in coverage (e.g., Osland et al. 2015; Osland et al. 2017a; Osland et al. 2019b; 120 

Osland et al. 2020a; Osland et al. 2020b; Snyder et al. 2021). The most recent event (February 121 
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2021) caused varying levels of mangrove damage and mortality across the Texas coast [Anna 122 

Armitage (Texas A&M Galveston) and Kathleen Swanson (Mission Aransas National Estuarine 123 

Research Reserve), oral communication, March 2021). In response to future warming, mangrove 124 

forests are expected to expand farther north and displace salt marshes in much of Texas, 125 

Louisiana, and northern Florida (Osland et al. 2013; Cavanaugh et al. 2015; Gabler et al. 2017; 126 

Cavanaugh et al. 2019).  127 

Inundation and salinity regimes are critical abiotic factors that govern ecosystem 128 

structure and function in coastal wetlands (Ibáñez et al. 2012; Twilley & Day 2012). Thus, 129 

across the southeastern United States, there is some variation in the salt marsh plant communities 130 

that are being replaced by range-expanding mangrove forests (Yando et al. 2016; Gabler et al. 131 

2017; Osland et al. 2019a) (Figure 3). In general, salt marshes are dominated by grass-like 132 

(graminoid) plants (e.g., Spartina alterniflora, Juncus roemerianus, Spartina patens, 133 

Schoenoplectus americanus) near mangrove range limits in northern Texas, Louisiana, and 134 

northern Florida (Yando et al. 2016; Brockmeyer et al. 2017; Gabler et al. 2017; Osland et al. 135 

2019a; Chapman et al. 2021). Salt marshes in all three of these areas receive comparatively large 136 

freshwater inputs that maintain salinities below or near ocean waters (NOAA 1990; USEPA 137 

1999; Osland et al. 2014). In contrast, along more arid coasts that receive less rainfall and 138 

smaller riverine freshwater inputs, such as the lower and central Texas coast, hypersaline 139 

conditions can develop when high evaporation concentrates oceanic salts (Longley 1995; 140 

Withers 2002b; Montagna et al. 2007; Osland et al. 2014). Halophytic succulent plant species 141 

(e.g., Batis maritima, Salicornia depressa, Borrichia frutescens, Monanthochloe littoralis) tend 142 

to dominate hypersaline salt marsh plant communities (Yando et al. 2016; Gabler et al. 2017; 143 

Osland et al. 2019a). Limited connectivity with the ocean can also produce hypersaline 144 



8 
 

conditions and halophytic succulent plant-dominated salt marshes, as in parts of the Indian River 145 

Lagoon along the Atlantic coast of Florida (Brockmeyer et al. 2017; Simpson et al. 2019; 146 

Chapman et al. 2021). These examples show that regional variation in climate- and hydrology-147 

controlled salt marsh plant community composition and structure is important to consider as it 148 

can influence how wetland ecosystem services change due to mangrove expansion and salt 149 

marsh displacement. 150 

How do mangrove range limits in the southeastern United States compare with other 151 

mangrove range limits across the world? At the global scale, mangrove range limits are governed 152 

by many factors including winter air temperature regimes, aridity, ocean temperatures, and 153 

dispersal limitations (Duke et al. 1998; Saenger 2002; Osland et al. 2017b; Van der Stocken et 154 

al. 2019a). Winter air temperatures affect mangrove range limits to varying degrees in Australia, 155 

New Zealand, South Africa, Brazil, and China (Quisthoudt et al. 2012; Osland et al. 2017b). Due 156 

to the movement of cold air outbreaks from the arctic across continental land masses in the 157 

Northern Hemisphere, mangrove range limits in the Northern Hemisphere (i.e., North America 158 

and China) are affected by colder winter air temperature extremes than range limits in the 159 

Southern Hemisphere (i.e., Australia, New Zealand, South Africa, Brazil) (Osland et al. 2017b; 160 

Smith & Sheridan 2020; Osland et al. 2021). Thus, mangrove range expansion is more dynamic 161 

and more strongly influenced by cold temperature extremes in the southeastern United States 162 

(Osland et al. 2017a; Cavanaugh et al. 2018; Cavanaugh et al. 2019) and China (Chen et al. 163 

2017) compared to Australia, New Zealand, South Africa, and Brazil (Osland et al. 2017b).  164 

While mangrove expansion is occurring on several other continents, there is much 165 

variation in the environmental settings and the drivers responsible these changes (Saintilan & 166 

Williams 1999; Saintilan et al. 2014; Rogers & Krauss 2019). For example, changing rainfall 167 
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regimes (Diop et al. 1997; Eslami-Andargoli et al. 2009), rapid sedimentation (Lovelock et al. 168 

2010; Asbridge et al. 2015; Walcker et al. 2018), hydrologic alterations (Raabe et al. 2012), and 169 

rising sea levels (Krauss et al. 2011; Howard et al. 2020) are all common drivers of mangrove 170 

expansion. These drivers and the accompanying differences in environmental setting (e.g., 171 

geomorphology, climate, and the ecosystem properties of the interacting salt marshes and 172 

mangrove forests) greatly influence the ecological implications of mangrove expansion. Our 173 

review focuses primarily on the southeastern United States to avoid confounding interpretations 174 

due to such differences. 175 

 176 

Local impacts and trade-offs 177 

At global and regional scales, coastal wetlands are typically valued for their support of multiple 178 

ecosystems services (Barbier et al. 2011; Costanza et al. 2014). However, at local scales (e.g., a 179 

specific wetland within a refuge, park, or neighborhood), coastal management actions are 180 

sometimes motivated by an interest to maintain or enhance a specific ecosystem good or service. 181 

For example, if a wetland is valued for waterfowl hunting, management actions may be guided 182 

primarily by an interest to maintain or enhance waterfowl habitat (Mitchell et al. 2006). 183 

Conversely, if an urban municipal wetland provides valuable recreation opportunities, wetland 184 

management may be driven by an interest to optimize public recreation (Zedler & Leach 1998). 185 

Across the southeastern United States, there is much variation in the coastal wetland ecosystem 186 

services that are prioritized by coastal communities and managers (Feagin et al. 2010; Engle 187 

2011; Yoskowitz et al. 2012). Thus, there can be local-scale differences in perceptions of the 188 

ecological and societal impacts of mangrove expansion into salt marshes. For very specific local 189 

reasons, some individuals may see mangrove expansion as a positive change to be embraced, 190 
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while others may see mangrove expansion as a negative change to be constrained (Table 2; 191 

Figure 4). At several points in this communication, we have included specific examples that 192 

illustrate some of the variation in local perceptions of the impacts and tradeoffs associated with 193 

mangrove expansion. 194 

 195 

Carbon sequestration 196 

How will mangrove range expansion and encroachment into salt marshes affect carbon cycling 197 

and storage in coastal wetlands? The short answer is that mangrove expansion is expected to 198 

universally increase aboveground carbon storage, but the effects of mangrove expansion on soil 199 

carbon storage are variable and heavily influenced by site-specific abiotic and biotic conditions, 200 

as described below.  201 

One of the most striking and consistent effects of mangrove expansion is an increase in 202 

canopy height and aboveground carbon stocks (Yando et al. 2016; Feher et al. 2017; Gabler et 203 

al. 2017; Simpson et al. 2017). Mangroves are woody plants that can rapidly accumulate 204 

aboveground carbon stocks during the early stages of forest development (Lovelock et al. 2010; 205 

Walcker et al. 2018; Osland et al. 2020d; Chapman et al. 2021). In contrast, salt marshes are 206 

dominated by herbaceous plants that lose their aboveground biomass each year during winter 207 

senescence (Macy et al. 2020). Thus, mangrove forests are typically taller and contain more 208 

aboveground biomass than their salt marsh counterparts. Studies conducted in mangrove-marsh 209 

ecotones across the southeastern United States have consistently shown that mangrove expansion 210 

into salt marsh results in taller plants, more aboveground biomass, and increases in aboveground 211 

carbon stocks (Perry & Mendelssohn 2009; Doughty et al. 2016; Hutchison 2016; Yando et al. 212 

2016; Hutchison et al. 2018; Simpson et al. 2019; Charles et al. 2020; Macy et al. 2020). 213 



11 
 

However, the magnitude of those increases in aboveground carbon stocks and storage rates can 214 

be influenced by other factors, including geomorphic position and interactions between aridity, 215 

salinity, and plant productivity (Yando et al. 2016; Gabler et al. 2017; Osland et al. 2018b). 216 

 What are the implications of mangrove expansion for belowground carbon cycling and 217 

storage? Soil carbon burial represents the largest long-term carbon storage pathway within 218 

coastal wetlands (Chmura et al. 2003; Breithaupt et al. 2012). Thus, there has been much interest 219 

and debate regarding the soil carbon implications of mangrove expansion. Mangrove forests and 220 

salt marshes are both highly productive ecosystems that, on a per unit area basis, have the 221 

potential to support soil carbon burial rates that are among the highest on the planet (Donato et 222 

al. 2011; Mcleod et al. 2011). The factors that contribute to rapid soil organic matter 223 

development in both mangrove forests and salt marshes include high rates of primary 224 

productivity, prolific belowground root production, low rates of decomposition due to anaerobic 225 

conditions, and continued organic matter burial as wetlands trap sediments and build elevation to 226 

adjust to rising sea levels (Cahoon et al. 2020). As in terrestrial grasslands, where there is much 227 

variation in the edaphic effects of woody plant encroachment due to climate-plant trait 228 

interactions (Barger et al. 2011; Eldridge et al. 2011; Archer et al. 2017), studies in coastal 229 

wetlands have revealed divergent, nuanced results regarding the effects of mangrove expansion 230 

on soil carbon cycling and storage. While some studies have found no measurable effect of 231 

mangrove expansion on soil carbon stocks (Perry 2007; Perry & Mendelssohn 2009; Henry & 232 

Twilley 2013; Doughty et al. 2016; Yando et al. 2018; Charles et al. 2020; Macy et al. 2020), 233 

others have found increases in soil carbon associated with mangrove expansion (Bianchi et al. 234 

2013; Simpson et al. 2019; Vaughn et al. 2020). When viewed collectively, these studies indicate 235 

that the edaphic and soil carbon effects of mangrove expansion are highly site dependent and 236 
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greatly influenced by the plant traits and ecosystem properties of the interacting salt marshes and 237 

mangrove forests (Yando et al. 2016; Osland et al. 2018b; Charles et al. 2020) (Figure 3). In the 238 

subsequent paragraphs, we briefly examine several alternative hypotheses regarding the 239 

divergent soil carbon-focused findings in the literature. 240 

Biomass-based hypotheses regarding changes in soil carbon cycling and storage due to 241 

mangrove expansion presume that increases in aboveground biomass will be accompanied by 242 

concomitant increases in belowground carbon storage. Across some coastal wetland abiotic 243 

gradients (e.g., nutrient limitation gradients or extreme salinity gradients), there can be strong 244 

positive relationships and positive feedbacks between coastal wetland plant biomass, plant 245 

productivity, and soil carbon stocks and cycling (McKee et al. 2007; Kauffman & Bhomia 2017; 246 

Osland et al. 2018b; Rovai et al. 2018). However, aboveground biomass increases due to 247 

mangrove expansion do not necessarily affect net soil carbon cycling and storage. Indeed, across 248 

the tropical-temperate transition zone in eastern North America, which spans productive 249 

mangrove forests in the warmer south and productive salt marshes in the colder north, coastal 250 

wetland aboveground biomass varies greatly but is not correlated to soil carbon stocks or soil 251 

carbon burial (Chmura et al. 2003; Feher et al. 2017; Holmquist et al. 2018; Osland et al. 252 

2018b). Under comparable geomorphic conditions, mangrove forests and salt marshes have the 253 

potential to support similarly high soil carbon stocks and soil carbon accumulation rates. Thus, 254 

instead of being linked directly to aboveground biomass, mangrove-triggered changes in coastal 255 

wetland soil properties and soil carbon burial rates, where present, are more likely linked to 256 

changes in other processes (e.g., productivity, decomposition). Moreover, where mangrove 257 

expansion is occurring across a salinity or elevation gradient (e.g., Ross et al. 2000; Krauss et al. 258 

2011; Lewis et al. 2021), the effects of mangrove expansion may be due to concomitantly 259 
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changing abiotic conditions that are governed by other drivers (e.g., saltwater intrusion, rising 260 

sea levels). 261 

In general, more productive coastal wetland ecosystems tend to support higher soil 262 

carbon burial rates and the rapid development of soil carbon stocks (McKee et al. 2007; 263 

Kauffman & Bhomia 2017; Osland et al. 2018b; Rovai et al. 2018). Thus, where decomposition 264 

rates are similar (e.g., Geoghegan et al. 2020), the soil carbon implications of mangrove 265 

expansion may be heavily influenced by the productivity of the interacting salt marsh and 266 

mangrove plant communities. Due in part to differences in leaf C:N ratios, aboveground leaf 267 

litter decay rates can be higher in A. germinans compared to S. alterniflora (Perry & 268 

Mendelssohn 2009; Smith et al. 2019; Simpson et al. 2020). However, the belowground abiotic 269 

conditions in mangroves and marshes along Florida’s Atlantic coast produced similar 270 

belowground decomposition rates (Simpson et al. 2020). If a salt marsh and an expanding 271 

mangrove forest both support similarly high productivity rates and similar belowground 272 

decomposition rates, then there may be no effect of mangrove expansion on soil carbon burial 273 

rates. For example, studies conducted within highly productive salt marshes dominated by 274 

graminoid plants in Louisiana and Florida have found no changes in soil carbon storage due to 275 

mangrove expansion (Perry 2007; Perry & Mendelssohn 2009; Henry & Twilley 2013; Doughty 276 

et al. 2016; Yando et al. 2016; Yando et al. 2018; Macy et al. 2020). In contrast, soil carbon 277 

burial may increase if the expanding mangrove forest supports higher rates of productivity, 278 

especially belowground (root) productivity, compared to the incumbent salt marsh. For example, 279 

several studies conducted within salt marshes dominated by succulent plants along the central 280 

Texas coast (Bianchi et al. 2013; Yando et al. 2016), in Australia (Kelleway et al. 2016), and in 281 

Florida (Simpson et al. 2019) have noted soil carbon increases associated with mangrove 282 
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expansion. Beyond just carbon quantity, soil carbon quality can be affected by mangrove 283 

expansion (Lewis et al. 2014; Breithaupt et al. 2020; Charles et al. 2020; Vaughn et al. 2020). 284 

For example, along the central Texas coast, succulent marsh plant (B. maritima) leaf and root 285 

breakdown rates were 1000% and 35% faster, respectively, than A. germinans (Charles et al. 286 

2020). The effects of mangrove expansion on autochthonous detrital inputs and allochthonous 287 

carbon burial via changes in sedimentation (Guo et al. 2017; Chen et al. 2018; Charles et al. 288 

2020; McKee et al. 2020; Kuhn et al. 2021) also warrant further investigation.  289 

In summary, although mangrove expansion is universally expected to increase 290 

aboveground carbon storage, the effects on soil carbon storage are highly variable and warrant 291 

closer investigation via field- and greenhouse-based manipulative experiments as well as 292 

measurements from a larger number of mangrove-marsh ecotones across the region (Table 3). 293 

There is also a pressing need for studies that, instead of measuring carbon stocks, directly 294 

measure critical processes (e.g., root productivity, decomposition, sediment deposition) that 295 

directly affect soil carbon storage and cycling. Species-specific effects on soil carbon quality and 296 

quantity also warrant further investigation. For example, most studies have focused on the effects 297 

of A. germinans expansion, but due to differences in plant traits, the edaphic effects of R. mangle 298 

expansion may differ from A. germinans (McKee 1993). There is also a need for species-specific 299 

salt marsh research that moves beyond just S. alterniflora. Although there are 24 dominant 300 

foundation plant species in tidal saline wetlands across the conterminous United States, 45 301 

percent of publications have been focused on S. alterniflora (Osland et al. 2019a).  302 

 303 

Soil elevation change and vertical adjustments to sea-level rise 304 
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Mangrove forests and salt marshes have the potential to adjust to moderate rates of rising sea 305 

levels via soil elevation gains that are driven by positive feedbacks between inundation, plant 306 

growth, and sediment deposition (Morris et al. 2002; Krauss et al. 2014b). Given the 307 

vulnerability of coastal wetlands to accelerated sea-level rise, will mangrove expansion increase 308 

soil elevation building capacity and the ability of coastal wetlands to adjust to rising sea levels? 309 

This question has been investigated through the use of radioisotopes, sediment traps, marker 310 

horizons, and surface elevation tables. Many of the processes that affect soil carbon storage and 311 

cycling (e.g., root productivity, belowground decomposition, and sediment deposition) are also 312 

the primary processes that govern soil elevation change. Thus, given the variable and highly site-313 

specific effects of mangrove expansion on soil carbon storage, we expect that the effects of 314 

mangrove expansion on soil elevation change dynamics are also highly context-dependent and 315 

governed by site- and species-specific conditions (e.g., geomorphology, abiotic conditions, and 316 

the ecosystem properties of the interacting salt marsh and mangrove forest).  317 

The surface elevation table-marker horizon (SET-MH) approach (Cahoon et al. 2002; 318 

Lynch et al. 2015) has been used to directly measure shorter-term (e.g., 5 to 30 year) soil 319 

elevation change dynamics and quantify the contributions of critical above and belowground 320 

processes (e.g., accretion, erosion, subsurface root zone expansion, subsurface subsidence). 321 

There are only a few studies that have directly measured the soil elevation change implications 322 

of mangrove expansion using the SET-MH approach. An SET-MH study conducted along the 323 

Atlantic coast of Florida within Distichlis spicata-dominated marshes found higher elevation 324 

gains associated with warming temperatures and mangrove (L. racemosa) expansion; vertical 325 

accretion was about threefold higher in mangrove plots exposed to a warming temperature 326 

treatment compared to salt marshes exposed to the same treatment (Coldren et al. 2019). In 327 
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contrast, an SET-MH study conducted in Louisiana found similar rates of soil elevation gain in 328 

creekbanks dominated by A. germinans, S. alterniflora, or a mixture of both species (McKee & 329 

Vervaeke 2018). A hurricane sediment-focused study conducted using soil cores from within the 330 

same Louisiana mangrove-marsh ecotone found no difference in sediment capture by stands 331 

dominated by S. alterniflora or A. germinans (McKee et al. 2020). A comparison of short-term 332 

accretion rates in the Louisiana mangrove-marsh ecotone, measured using sediment traps 333 

(biweekly accretion) and feldspar marker horizons (annual accretion), also found no difference in 334 

stands dominated by S. alterniflora or A. germinans (Perry & Mendelssohn 2009). These results 335 

suggest that replacement of marsh by mangroves would have no effect on sediment capture in 336 

the Louisiana mangrove-marsh ecotone. However, as discussed in these papers and others across 337 

the region, the lack of a difference may be unique to the sedimentary setting, the size and 338 

developmental stage of the mangroves, and/or to the specific species compared (Perry 2007; 339 

McKee & Vervaeke 2018; Charles et al. 2020; McKee et al. 2020; Kuhn et al. 2021).  340 

These divergent findings indicate that there is a need to further investigate the effects of 341 

mangrove expansion on soil elevation change dynamics (Table 3). Most existing studies have 342 

compared adjacent mangrove and marsh stands. However, these is also a need for manipulative 343 

experiments in which marsh plots are experimentally planted with mangrove seedlings and 344 

compared to marsh plot controls. Such comparisons would enable direct measurements of 345 

changes in soil elevation dynamics that may occur when marsh is replaced by mangroves.  346 

Although there have been several studies that have used radioisotope-based methods to 347 

compare vertical accretion rates in mangroves and salt marshes near poleward mangrove range 348 

limits in eastern North America (Perry & Mendelssohn 2009; Comeaux et al. 2012; Bianchi et 349 

al. 2013; Vaughn et al. 2020), century- and multi-decadal scale mangrove expansion patterns 350 
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near range limits can be dynamic and include freeze-controlled mangrove-marsh expansion and 351 

contraction cycles (Osland et al. 2017a; Cavanaugh et al. 2019). Thus, radioisotope-based 352 

approaches should ideally be paired with historical analyses of imagery (e.g., Perry & 353 

Mendelssohn 2009) and climate data to identify freeze event-driven oscillations in mangrove 354 

and/or salt marsh coverage during the time periods represented by soil cores.  355 

 356 

Water quality: nutrient and sediment retention  357 

How does mangrove expansion and salt marsh displacement affect the water quality-based 358 

ecosystem services provided by coastal wetlands? Salt marshes and mangroves lie at the land-359 

ocean interface, where they can improve water quality by filtering pollution inputs both from the 360 

ocean (e.g., tidal and wave-driven inputs) and from the inland watershed (e.g., surface and 361 

groundwater inputs) (Mitsch & Gosselink 2007; Mitsch et al. 2015). The main mechanisms 362 

through which nitrogen inputs are filtered in these coastal wetlands are plant uptake and 363 

denitrification (Sparks et al. 2015; Steinmuller et al. 2019). While denitrification represents a net 364 

loss of nitrogen from the system, and thus complete filtration, plant uptake only constitutes 365 

temporary filtration, because the nutrients bound to plant tissues can be delivered back into the 366 

coastal environment through decomposition. There have been many studies of nutrient cycling 367 

and storage in salt marshes and mangroves (e.g., Mozdzer et al. 2011; Simpson et al. 2013; 368 

Hunter et al. 2015; Weaver & Armitage 2018; Dangremond et al. 2020; Craig et al. 2021; Martin 369 

et al. 2021; and references cited therein). 370 

 Based on the current literature, it is difficult to predict how the replacement of salt 371 

marshes by mangroves may affect nutrient pollution filtration in coastal wetlands as the existing 372 

studies are spatially and temporally disjointed. Many environmental factors other than changes in 373 
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dominant vegetation can affect the differences observed between salt marsh- and mangrove-374 

focused studies. Long-term studies that directly record changes in nutrient cycling and storage as 375 

mangroves replace salt marshes would be informative; however, we are unaware of such studies. 376 

Another alternative is a ‘space-for-time substitution’ approach (Pickett 1989), where nutrient 377 

cycling and storage are compared between contiguous stands of salt marsh and mangroves 378 

present across ecotones where the expansion of mangroves and replacement of salt marshes is 379 

actually occurring. A few such ‘space-for-time substitution’ studies exist (e.g., Henry 2012; 380 

Macy et al. 2019; Steinmuller et al. 2019; Macy et al. 2020) and provide some indication of the 381 

changes that will occur with mangrove expansion. These studies show higher nitrogen content in 382 

the aboveground tissues of black mangroves (A. germinans) than in marsh smooth cordgrass (S. 383 

alterniflora) (McKee & Rooth 2008; Macy et al. 2020). Higher aboveground biomass and 384 

aboveground nitrogen stocks (Macy et al. 2020) suggest higher nitrogen uptake from the soil by 385 

plants in A. germinans than in S. alterniflora stands, which is consistent with the lower nitrogen 386 

concentrations observed in the soil porewater of A. germinans in comparison with S. alterniflora 387 

stands (Macy et al. 2020). All together, these results suggest that A. germinans, by removing 388 

larger quantities of nitrogen from the soil, may be larger filters of nitrogen pollution than S. 389 

alterniflora. However, more studies are needed for a clear and robust description of the effects of 390 

salt marsh replacement by mangroves on nitrogen cycling and storage, and ultimately nitrogen 391 

pollution filtration in coastal wetlands.  392 

Sediment and sediment-bound phosphorus retention is another process through which salt 393 

marshes and mangroves can improve water quality in coastal ecosystems. Wetlands with more 394 

near-surface plant structural complexity (e.g., greater stem density, biomass, flexibility) can be 395 

more effective at retaining sediments by slowing down the flow of incoming and outgoing waters 396 
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(Feagin et al. 2015; Chen et al. 2018; McKee et al. 2020). A hurricane-focused study conducted 397 

in Louisiana found that despite differences in plant structure there was no difference in hurricane 398 

sediment capture within stands dominated by S. alterniflora or A. germinans (McKee et al. 399 

2020). Conversely, a study conducted along the central Texas coast within a mangrove-marsh 400 

ecotone that included A. germinans and succulent plants (e.g., B. maritima) found that hurricane 401 

sediment accretion decreased with increasing mangrove cover (Kuhn et al. 2021). Despite these 402 

two hurricane-focused studies, there are no studies that fully examine how salt marsh 403 

replacement by mangroves in this region may alter wetland sediment retention and soil build-up 404 

under dynamic conditions ranging from daily tidal cycles to storms. More research is needed to 405 

better understand how salt marsh replacement by mangroves alters wetland sediment retention, 406 

nutrient retention, and associated water quality-based ecosystem services (Table 3). 407 

 408 

Coastal protection 409 

Given the high vulnerability of coastal communities to storms, what is the potential for 410 

mangrove expansion to enhance the coastal protection benefits provided by coastal wetlands? 411 

Mangroves and salt marsh ecosystems both can reduce the height and energy of waves passing 412 

through them (Gedan et al. 2011; Marois & Mitsch 2015), increase soil strength (Sasser et al. 413 

2018; Jafari et al. 2019), and facilitate sediment deposition (Cahoon et al. 2020). These plant-414 

controlled processes can lead to reductions in shoreline erosion, decreases in flooding extent, and 415 

avoided damages to infrastructure (Arkema et al. 2013; Barbier 2016; Narayan et al. 2019). The 416 

ability of wetlands to support these coastal protection ecosystem services is dependent upon 417 

multiple factors ranging from the characteristics of the individual wetland plants to landscape-418 

scale ecosystem coverage and configuration. Coastal protection services are also influenced by 419 
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geomorphology and the types and magnitudes of the hazard forces. The structural differences 420 

between mangroves and salt marshes, with mangroves being generally larger, more complex and 421 

rigid, have led to the hypothesis that coastal protection services may increase following 422 

mangrove expansion into salt marsh.  423 

Existing data, from a range of modeled computer simulations, natural experiments, wave 424 

tank studies, and semi-controlled field experiments indicate that mangroves may provide more 425 

coastal protection value than salt marshes. For example, in a recent field study conducted within 426 

large experimental mangrove removal plots in Texas, Pennings et al. (2021) found that 427 

mangroves are more effective at preventing erosion than succulent plant-dominated salt marshes, 428 

presumably due to: (1) the enhanced wave-buffering effects of taller, stiffer mangrove stems; and 429 

(2) the soil-strengthening effects of greater mangrove root biomass. In a model-based assessment 430 

that was parametrized with local field-based measurements of vegetation structure along the 431 

Atlantic coast of Florida, Doughty et al. (2017) found that wave attenuation and erosion 432 

prevention were greater in mangroves than graminoid-dominated salt marshes, which was 433 

attributed to the larger canopy heights and stem diameters of mangrove trees. Similarly, in a 434 

model-based comparison of mangroves and graminoid-dominated marshes in Louisiana, Hijuelos 435 

et al. (2019) noted that wave attenuation was greater in mangroves than graminoid-dominated 436 

marshes. All three of these studies indicate that there may be a gain in coastal protection services 437 

associated with mangrove expansion, which is especially important given that climate change is 438 

increasing the frequency of major hurricanes (Kossin et al. 2017). However, there is a need for 439 

more empirical evaluations of how salt marsh versus mangrove shorelines influence wave 440 

attenuation and storm impacts on civic infrastructure. 441 
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Within the context of coastal erosion, there is interest in advancing understanding of 442 

mangrove expansion effects on the ability of wetlands to tolerate and recover from extreme 443 

events and other disturbances (e.g., droughts, hurricanes, floods, freezes, and oil spills). For 444 

example, in the Galveston region, frequent oil spills are a concern for resource managers because 445 

they can lead to vegetation dieback (Rozas et al. 2000; Williams et al. 2017). For many coastal 446 

wetland practitioners in the Galveston area, there is interest in maximizing the ability of wetlands 447 

to recover from potential future oil spills [Cherie O’Brien (Texas Parks and Wildlife 448 

Department), oral communication, 24 May 2021]. However, there is some local concern that 449 

expanding mangroves (A. germinans) may decrease wetland resilience to oil spills [Cherie 450 

O’Brien (Texas Parks and Wildlife Department), oral communication, 24 May 2021] (but see: 451 

Hughes et al. 2018). Thus, during coastal wetland restoration efforts in the Galveston area within 452 

the past decade, S. alterniflora has typically been the targeted species, and very few Texas Parks 453 

and Wildlife permits (i.e., the Permit to Introduce Fish, Shellfish or Aquatic Plants into Public 454 

Waters) have been granted to plant mangroves [Cherie O’Brien (Texas Parks and Wildlife 455 

Department), oral communication, 24 May 2021]. This example highlights the importance of 456 

considering the effects of extreme events on wetland stability and coastal protection benefits. 457 

Another example in this arena comes from Louisiana, where landscape-scale marsh and 458 

mangrove dieback can be triggered by extreme events. For example, drought can lead to marsh 459 

dieback (McKee et al. 2004; Alber et al. 2008) and extreme cold events can lead to mangrove 460 

dieback (Osland et al. 2017a). Mangroves (A. germinans) may be more drought tolerant than S. 461 

alterniflora marshes in Louisiana due to lower water use (Krauss et al. 2014a). Conversely, 462 

extreme freeze events similar to the 1989 freeze could lead to landscape-scale mangrove mass 463 

mortality, peat collapse, and accelerated erosion (McBride & Byrnes 1997; Penland et al. 2003; 464 
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Osland et al. 2020b), which would compromise the coastal protection benefits provided by 465 

expanding mangrove forests.  466 

 467 

Coastal food webs and fisheries 468 

Marshes and mangrove forests support critical coastal food webs and fisheries-based ecosystem 469 

services (Rönnbäck 1999; Beck et al. 2001; Minello et al. 2003; Nagelkerken et al. 2008; Engle 470 

2011). However, due to the structural and functional differences between the two ecosystems, 471 

how will mangrove range expansion and marsh displacement affect coastal food webs, fish 472 

communities, and key ecosystem services (e.g., fisheries, fisheries-based recreation)? 473 

Overall, the current evidence suggests that mangrove range expansion may lead to 474 

changes in associated fish and invertebrate community composition (Armitage et al. 2021), but 475 

there is less evidence that mangroves will substantially alter the major production sources to 476 

aquatic food webs. Stable isotope analyses indicate that microphytobenthos and phytoplankton 477 

are the dominant energy channels that directly support many aquatic consumer groups (e.g., 478 

fishery species, wetland specialists, zoobenthivores, phytodetritovores, and planktivores) (Baker 479 

et al. 2021). Contributions from both mangrove and marsh plants typically flow through the 480 

detrital pathway and play a lesser role in directly supporting food webs (Nelson et al. 2019; 481 

Baker et al. 2021). In Louisiana, no detrital inputs from mangroves contributed significantly to 482 

the dominant consumers in the food web (Nelson et al. 2019). It is uncertain if mangroves will 483 

ultimately replace marsh grass detritus as an energy source (Nelson et al. 2019; Harris et al. 484 

2020; James et al. 2020). However, reductions in marsh habitat as a result of mangrove 485 

expansion may lead to a decline in energy supplied to some consumers, as mangrove detritus is 486 

not readily used as a food source by the current nekton species in Louisiana (Harris et al. 2020). 487 
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A study in Texas also noted that differences in leaf nutritive quality (e.g., higher tannin, 488 

phenolic, and lignin contents) may be linked to lower fitness for benthic consumers that consume 489 

mangrove detritus (Goeke & Armitage 2021). 490 

Most comparative studies of mangroves and marshes have detected differences in food 491 

webs and community structure; however, those differences are not universal and can vary 492 

depending on the measured taxonomic group, community metric, or functional attribute (Diskin 493 

& Smee 2017; Loveless & Smee 2019; Walker et al. 2019; Armitage et al. 2021). For instance, 494 

the relative abundance and species richness of nektonic fish and invertebrates in Texas were 495 

similar between sites with and without mangroves, though individual species varied considerably 496 

across those same sites (Armitage et al. 2021). Differences among areas with and without 497 

mangroves can also be masked by abiotic conditions or disturbances that influence associated 498 

faunal abundance and diversity (Diskin & Smee 2017). For example, Smee et al. (2017) found 499 

significant differences in nekton and infaunal community structure in stands of smooth cordgrass 500 

(S. alterniflora) bordered by mangroves (A. germinans) versus stands without mangrove. 501 

Infaunal organisms, blue crabs (Callinectes sapidus), and shrimp (Farfantepenaeus aztecus, 502 

Palaemonetes spp.) were less abundant in marshes bordered by mangroves than in marshes 503 

without mangroves, whereas mud crabs (Xanthidae/Panopeidae) and fish were more abundant in 504 

marshes bordered by mangroves (Smee et al. 2017). Similarly, macrofaunal communities 505 

differed in marsh- versus mangrove-dominated vegetation along the Atlantic coast of Florida, 506 

due to the influence of fine-scale plant structural differences and stand-level habitat attributes 507 

(Johnston & Gruner 2018). Along the Atlantic coast, studies have noted differences in detrital-508 

based epifaunal communities (Smith et al. 2019) and subtidal nekton communities (Kimball & 509 

Eash-Loucks 2021) associated with mangroves compared to marshes. For example, Smith et al. 510 
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(2019) found that crabs were 2-7 times more abundant in S. alterniflora detritus than A. 511 

germinans detritus. In an early study comparing nekton communities in marsh and mangroves in 512 

Louisiana, Caudill (2005) found that while fishes [e.g., gulf killifish (Fundulus grandis) and 513 

sheepshead minnow (Cyprinodon variegatus)] were more abundant in S. alterniflora-dominated 514 

marshes, white shrimp (Litopenaeus setiferus) were more abundant in A. germinans-dominated 515 

mangrove stands.  516 

Beyond just the direct effects to animals, mangrove expansion can also affect microbial 517 

(Barreto et al. 2018) and rhizosphere communities (Chen et al. 2020), which can affect abiotic 518 

conditions, biotic interactions, and biogeochemical cycling. The effects of mangrove expansion 519 

on coastal food webs and fisheries may also increase with time due to the influence of forest 520 

developmental stage (Barimo & Serafy 2003; Scheffel et al. 2018). Linkages to adjacent 521 

ecosystems can also be important. For example, along the northwestern coast of Florida, 522 

mangrove expansion affects the seasonal delivery of organic matter to adjacent seagrass 523 

ecosystems, which can alter epifaunal communities, subtidal environmental conditions, gas 524 

fluxes, and seagrass standing biomass (Sullivan et al. 2021).  525 

Mangroves can also impact coastal food webs via changes in habitat complexity that 526 

affect key species or predator-prey interactions (Scheffel et al. 2017; Johnston & Smith 2018). 527 

Habitat complexity influences feeding efficiency and predation rates in fishes (Gotceitas & 528 

Colgan 1989; Ahrens et al. 2012), and thus we expect that a shift from salt marsh to mangrove 529 

will influence fish foraging and community composition. From the existing studies, the 530 

consensus is that grass shrimps (Palaemonetes spp.), blue crabs (C. sapidus), and some marsh-531 

associated fishes (e.g., F. grandis) are more abundant in marshes compared to mangrove habitats 532 

(Caudill 2005; Johnston & Caretti 2017; Smee et al. 2017; Armitage et al. 2021). However, there 533 
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are some inconsistencies in findings for penaeid shrimp that may be attributed to the type of 534 

predators present at a given location. For example, penaeid shrimp preferred marsh grass over 535 

mangroves in experimental trials, likely due to increased protection from predatory gray snapper 536 

(Lutjanus griseus) (Scheffel et al. 2017). On the other hand, benthic invertebrates, such as 537 

penaeid shrimp and the marsh periwinkle (Littoraria irrorata), were less vulnerable to predation 538 

by blue crabs in the presence of mangroves in mesocosm and field studies, respectively (Glazner 539 

et al. 2020; Glazner et al. 2021). The aerial root structures of mangroves (i.e., pneumatophores 540 

and prop roots) can provide refuge from benthic predators, which could lead to shifts in predator-541 

prey interactions and altered trophic dynamics (Glazner et al. 2020; Glazner et al. 2021). In 542 

Louisiana, penaeid shrimp foraging in mangroves had higher trophic levels than those foraging 543 

in marsh-dominated habitats (Nelson et al. 2019). Increased predation on small benthic infauna 544 

could feedback to other parts of the food web with uncertain consequences. Mangroves can have 545 

additional negative impacts on blue crabs beyond the crab-shrimp interaction, with juvenile crabs 546 

exhibiting a habitat preference for and higher survival in marsh grasses in experimental trials 547 

(Johnston & Caretti 2017).  548 

Much of the existing literature has focused on the effects of A. germinans expansion; 549 

however, the impacts due to the range expansion of other common mangrove species may be 550 

different. For example, the habitat quality characteristics for fishes differ between red mangrove 551 

(R. mangle) and black mangrove (A. germinans), with the former having prop roots and the 552 

ability to grow at lower intertidal elevations, thus influencing fish habitat inundation time and 553 

depth. In areas where R. mangle occurs, overhanging limbs and prop roots can extend fringing 554 

shoreline habitat another 10 m into the water. The overhanging vegetation and prop roots support 555 

fishes by providing shade and cover (Ley et al. 1999; Ley & McIvor 2002). Because mangroves 556 
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are almost always located in shallow water and often in sheltered environments, it can be 557 

difficult to isolate the effects of R. mangle prop roots as fish habitat (Ellis & Bell 2004). A study 558 

using an experimental design with artificial mangroves found that the structure provided by R. 559 

mangle prop roots can support unique juvenile fish assemblages (Nagelkerken & Faunce 2008). 560 

In estuaries of southwestern Florida, R. mangle-dominated shorelines provide habitat for larger-561 

bodied species such as common snook (Centropomus undecimalis), sheepshead (Archosargus 562 

probatocephalus), striped mullet (Mugil cephalus), gray snapper (L. griseus), redfin needlefish 563 

(Strongylura notata), striped mojarra (Eugerres plumieri), and Atlantic spadefish 564 

(Chaetodipterus faber) (Greenwood et al. 2007). The large-bodied species that associate closely 565 

with R. mangle prop roots are often plastic in their habitat use and may not be fully dependent on 566 

mangroves (e.g., Stevens et al. 2018). However, there are other species that exhibit greater 567 

dependency on R. mangle habitat, such as juvenile smalltooth sawfish (Pristis pectinata) and 568 

goliath grouper (Epinephelus itajara). Studies of fine-scale habitat use show that juvenile 569 

smalltooth sawfish feed on shallow flats during the night and occupy protected R. mangle-570 

dominated embayments during the day (Lear et al. 2014; Huston et al. 2017), and specific use of 571 

R. mangle prop roots to avoid predators has been observed (Poulakis et al. 2011). Juvenile 572 

goliath grouper are found under overhanging mangroves and associated R. mangle prop roots in 573 

areas where currents create deep undercuts in creek banks (Koenig et al. 2017). Adult goliath 574 

grouper move long distances to aggregate in south Florida during the spawning season, which 575 

occurs when mangroves are most flooded and thus most available as habitat for juveniles 576 

(Koenig et al. 2017).  577 

In the southeastern United States, mangrove expansion is just one of many dynamic 578 

aspects of global change that challenge our ability to predict the future of coastal food webs and 579 
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fisheries. For example, accelerated sea-level rise is expected to ultimately lead to wetland 580 

fragmentation, loss, and the transformation of coastal landscapes (Kirwan & Megonigal 2013; 581 

Enwright et al. 2016; Couvillion et al. 2017; Borchert et al. 2018; Stagg et al. 2020). In the short 582 

term, wetland loss and fragmentation could lead to ephemeral increases in fisheries production 583 

due to increases in the amount of valuable edge habitat (Baker et al. 2020; Harris et al. 2020). 584 

However, in the long-term and under higher rates of sea-level rise, the landscape-scale loss of 585 

coastal wetlands (Saintilan et al. 2020; Törnqvist et al. 2020) and the associated edge habitat are 586 

expected to have a negative impact on fisheries. 587 

The northward range expansion of tropical fish and invertebrate species is another aspect 588 

of climate change that will interact with mangrove expansion to affect coastal food webs and 589 

fisheries (Vergés et al. 2014; Osland et al. 2021). Warming winter water temperatures could 590 

transform fish and invertebrate assemblages across the southeastern United States. Thus, in 591 

addition to shifts in vegetation structure due to mangrove encroachment and sea-level rise, 592 

coastal food webs and fisheries in the region may also change as new tropical species migrate 593 

northward in response to warming winter water temperatures (Vergés et al. 2014). In North 594 

America, the northern distributions of tropical, cold-sensitive fish species are governed by the 595 

frequency and intensity of extreme cold water temperatures (Martin & McEachron 1996; Boucek 596 

& Rehage 2014; Stevens et al. 2016). For example, the northern limits of common snook (C. 597 

undecimalis) (Howells et al. 1990), gray snapper (L. griseus) (Hare et al. 2012), and tarpon 598 

(Megalops atlanticus) (Mace et al. 2017) are governed by winter cold temperature extremes, 599 

which can lead to mass mortality events (i.e., fish kills). Conversely, warming winters can lead to 600 

population growth and range expansion. For example, the common snook expanded northward 601 
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along Florida’s Gulf of Mexico coast (Anderson et al. 2020; Purtlebaugh et al. 2020) after a 602 

2010 cold event that resulted in mass mortality and range contraction (Stevens et al. 2016).  603 

In contrast to mangroves, which rely on passive water transport of propagules for 604 

dispersal and migration (Van der Stocken et al. 2019a; Van der Stocken et al. 2019b), fish are 605 

actively mobile organisms. The high adaptive capacity of many coastal fish and invertebrate 606 

species to warming winter waters indicates that some fish and invertebrate species will move 607 

northward at rates that exceed the northward migration of mangroves (Riley et al. 2014; 608 

Cannizzo et al. 2020; Stevens et al. 2021). Anthropogenic habitat and microclimatic refugia can 609 

aid in the expansion of mangrove fauna. For example, the occupation of warm-water springs 610 

allows common snook to overwinter in a climate where coastal water temperatures can still drop 611 

below their lethal limits (Stevens et al. 2018). Along the Atlantic coast of North America, the 612 

northern range limit of mangrove tree crabs (Aratus pisonii) is currently in Georgia (Riley et al. 613 

2014), which is north of mangrove forests’ current range limit in Florida. Interestingly, in the 614 

absence of mangrove trees, mangrove tree crabs can adapt to suboptimal novel marsh 615 

environments by: (1) shifting behavioral strategies from predator evasion (i.e., tree climbing) to 616 

autotomy (i.e., leg dropping) to optimize survival (Johnston & Smith 2018); or (2) using 617 

anthropogenic structures like docks (Cannizzo et al. 2018; Cannizzo & Griffen 2018; Cannizzo 618 

& Griffen 2019; Cannizzo et al. 2019; Cannizzo et al. 2020). Anthropogenic structures such as 619 

bridges and docks may also provide habitat for juvenile goliath grouper in the northern Gulf of 620 

Mexico where adult spawning sites have been recently documented (Malinowski et al. 2019).  621 

In addition to affecting the distribution and abundance of fish, mangrove expansion can 622 

affect the recreational fishing experience in positive and negative ways. For example, along the 623 

central Texas coast near San Jose Island, many anglers fly fish for redfish (Sciaenops ocellatus) 624 
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(Figure 4), but mangrove expansion has reduced the amount of viable fishing area. While fly 625 

fishing is possible within the region’s grass and succulent plant-dominated salt marshes, fly 626 

fishing is not possible within dense meter-tall mangrove stands [Chuck Naiser, oral 627 

communication, 26 May 2021]. However, on windy days, the same mangroves can have a 628 

positive effect on the fishing experience by buffering winds (Guo et al. 2017), which can 629 

improve boat control, water clarity, and the ability to sight cast [Billy Trimble, oral 630 

communication, 24 May 2021]. Interestingly, by hindering airboat access into wetlands, 631 

mangroves may also prevent damage to wetland vegetation and sediments, which has the 632 

potential to reduce rates of erosion, hydrologic change, and wetland loss in areas with high boat 633 

and angler concentrations [Billy Trimble and Chuck Naiser, oral communication, 24 and 26 May 634 

2021].  635 

 636 

Avian communities 637 

What are the effects of mangrove expansion on avian communities? The response of migratory 638 

and resident avifauna is arguably one of the least understood consequences of mangrove 639 

expansion in the southeastern United States. However, these responses are likely to have a broad 640 

range of consequences for ecosystem functions and services. Birds serve as vectors of 641 

connectivity between coastal wetland habitats and adjacent systems, and are thus critical and 642 

wide-ranging influencers of ecosystem connectivity, including fluxes of energy and nutrients 643 

(Buelow & Sheaves 2015). Mangroves in the Gulf of Mexico are important habitat for foraging, 644 

resting, nesting, and migrant avifauna (Burger 2017). However, many of these birds do not use 645 

mangroves year-round, instead relying on a species-dependent matrix of mudflat, marsh, and 646 

other coastal habitats during migration, nesting, and wintering. Therefore, the consequences of 647 



30 
 

mangrove expansion into salt marshes for birds could be substantial yet variable across taxa. The 648 

following sections address known and hypothesized consequences of mangrove expansion for 649 

four major taxonomic groups of coastal birds: wading birds, shorebirds, marsh birds, and 650 

passerines. 651 

Wading birds (hereafter waders) are large and conspicuous wetland-dependent birds, 652 

including members from Families Ardeidae, Threskiornithidae, and Gruidae. Many waders nest 653 

in trees or shrubs, including mangrove stands found across much of the southeastern United 654 

States (Portnoy 1977; Davis et al. 2005; Burger 2017). Thus, mangrove expansion may improve 655 

nesting habitat for some wading birds. However, the effects of expanding mangroves on foraging 656 

behaviors may be less beneficial, as ibis and herons select areas with lower mangrove cover to 657 

feed (Guo et al. 2017; see also the whooping crane section below). Wader species richness tends 658 

to be lower at encroached sites on the Texas coast, though relative abundances for most common 659 

species are generally similar between marsh and mangrove sites (Armitage et al. 2021).  660 

Shorebirds comprise four major families (Scolopacidae, Charadriidae, Recurvirostridae, 661 

Haematopodidae) and dozens of genera. These mostly small and often gregarious birds 662 

frequently forage and roost in large groups within coastal estuaries. The northern Gulf of Mexico 663 

is a particularly important part of the North American central migratory flyway (Withers 2002a). 664 

Although some shorebirds will use mangrove shrubs for nesting or roosting (Zwarts 1988), 665 

mangroves produce extensive aerial root complexes that may reduce the accessibility of tidal 666 

flats or ponds, which are the preferred foraging habitat for many shorebird species (Withers 667 

2002a; Darnell & Smith 2004). In addition, dense mangrove stands may conceal and attract 668 

predators, and nonbreeding shorebirds will actively avoid areas with mangroves in favor of salt 669 

marshes, tidal flats, and other coastal habitats (Straw & Saintilan 2006; Kelleway et al. 2017; 670 
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Vitale et al. 2021). For example, optimal high-tide shorebird roosts were located far from woody 671 

vegetation at a critical wintering and migratory stopover site in Florida’s Big Bend (Brush et al. 672 

2017). There could be survival and energy costs associated with antipredator behaviors and 673 

increased predation if alternative roosting and foraging habitats are not available (e.g., due to 674 

human disturbance or habitat loss) (Rogers et al. 2006). Because shorebirds are relatively long-675 

lived, their populations are greatly affected by small changes to demographic parameters, such as 676 

adult mortality (Colwell 2010). One study concluded that mangrove expansion into roosting 677 

habitats likely contributed to local declines of wintering shorebird populations and biodiversity 678 

(Woodley 2004). Accordingly, surveys of wintering shorebirds on the Texas coast revealed that 679 

diversity and relative abundance are higher in marshes than at sites with high mangrove cover 680 

(Whitt 2016; Armitage et al. 2021).  681 

Marsh birds are coastal marsh-dependent and live at the ecotone between aquatic and 682 

terrestrial ecosystems. These often cryptic colored and elusive species include members from the 683 

families Rallidae, Troglodytidae, and Passerellidae. Marsh habitat loss, regardless of 684 

environmental or anthropogenic drivers, can have detrimental impacts on marsh-dependent 685 

species. For example, nearly 50% of marsh birds found in the northern Gulf of Mexico are of 686 

conservation concern primarily due to loss of wetland habitats (Woodrey et al. 2019). Species 687 

that are dependent on graminoid marsh plants [e.g., seaside sparrows (Ammospiza maritima) or 688 

marsh wrens (Cistothorus palustris)] are unlikely to utilize mangrove-encroached wetlands 689 

(Schwarzer et al. 2020). There could be direct or indirect impacts of mangrove expansion into 690 

high marsh habitats that are critical for the eastern black rail (Laterallus jamaicensis) (Watts 691 

2016). More information is also needed to understand the migratory ecology of marsh bird 692 
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species to determine potential impacts of mangrove expansion in different parts of their 693 

geographic range.  694 

The passerine group (Order Passeriformes) includes many species of conspicuous 695 

migratory warblers that are highly sought-after targets by birdwatchers and photographers. 696 

During migration stopovers, these birds roost on coastal shrubs and trees, sometimes including 697 

mangroves. Thus, it is often hypothesized that mangroves could increase migratory stopover 698 

habitat quality for warblers and other passerines (Kelleway et al. 2017). However, there is little 699 

data from the Gulf of Mexico or Atlantic coast to quantitatively support this hypothesis, largely 700 

due to the challenges of accurately censusing populations of these small, active birds. Analyses 701 

derived from eBird, a community science data repository, suggest that birdwatchers detect 702 

substantially more warblers in marsh than in mangrove habitats on the Texas coast (Whitt 2016). 703 

Additional species- and community-level analyses are needed for a more robust evaluation of 704 

whether mangrove expansion will be a net benefit or detriment to passerine assemblages. 705 

Birds are visible and iconic users of coastal wetlands, attracting recreational users and 706 

supporting a vigorous ecotourism industry (Barbier et al. 2011) that brings millions of dollars to 707 

the southeastern United States’ coastal economies each year (Kildow et al. 2008; NRDC 2010). 708 

Mangrove expansion into salt marshes in the southeastern United States may alter the perceived 709 

and actual value of coastal wetland habitats for avifauna. For example, in coastal Texas, 710 

birdwatchers spend more time visiting coastal marsh sites with fewer mangroves (Whitt 2016; 711 

Armitage et al. 2021). The reasons for that preference may be linked to accessibility or visibility. 712 

Identifying the drivers behind this pattern is an area ripe for future study that reaches across 713 

social and life science disciplines. 714 
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For some coastal parks and refuges, coastal resource managers’ perspectives on 715 

mangrove expansion can be heavily influenced by their organizations’ local avian priorities. For 716 

example, on Louisiana’s barrier islands, dense mangrove stands provide valuable habitat for 717 

nesting colonies of brown pelicans (Pelecanus occidentalis) (Figure 4), which is the state bird 718 

and a species with a rich conservation history. Following pesticide-driven extirpation and 719 

reintroduction in the 1960s, brown pelican populations have rebounded to the extent that they 720 

were removed from the endangered species list in 2009 (Walter et al. 2013a). Nevertheless, 721 

barrier island habitat losses in Louisiana have been very high (Martinez et al. 2009), and pelican 722 

nesting habitat has become a priority during recent coastal restoration efforts. Pelicans prefer to 723 

place nests on mangroves, which provide strong nesting platforms that are tall enough to avoid 724 

flooding during island overwash events (Hintgen et al. 1985; Visser et al. 2005; Walter et al. 725 

2013b). Thus, mangrove expansion and growth on these islands is viewed as a positive change 726 

for pelicans, and therefore is sometimes facilitated during barrier island restoration efforts [Darin 727 

Lee (Louisiana Coastal Protection and Restoration Authority), oral communication, 21 May 728 

2021].  729 

 Another example of how avian habitat priorities can affect local perspectives on 730 

mangrove expansion can be found in the Aransas National Wildlife Refuge (ANWR) in Texas. 731 

The salt marshes within and near ANWR provide critical wintering grounds for the rare and 732 

endangered whooping crane (Grus americana). Whooping crane populations declined during the 733 

late 19th and early 20th century to the point where less than 25 individuals remained in the early 734 

1940s (Allen 1952; Erickson & Derrickson 1981). The only self-sustaining population that 735 

persists today is the Aransas-Wood Buffalo population, which winters in coastal Texas in the 736 

ANWR region and migrates to its summer breeding grounds in north-central Canada. During the 737 
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winter of 2019-2020, the Aransas-Wood Buffalo population was estimated to contain just 506 738 

individuals (Butler et al. 2020). While wintering in coastal Texas, whooping cranes forage within 739 

salt marshes for blue crabs (C. sapidus), wolfberries (Lycium carolinianum), and other foods 740 

(Hunt & Slack 1989; Chavez-Ramirez 1996). However, the ANWR region is a recent hotspot for 741 

mangrove expansion in Texas (Armitage et al. 2015; Brown et al. 2016), and there is concern 742 

that mangrove replacement of salt marsh will negatively affect the habitat and food resources 743 

available for whooping cranes (Stehn & Prieto 2010; Chavez-Ramirez & Wehtje 2012). Blue 744 

crabs are an especially important food source for cranes (Hunt & Slack 1989; Chavez-Ramirez 745 

1996), and blue crab abundance may have a positive relationship with whooping crane survival 746 

(Pugesek et al. 2013). Thus, mangrove expansion effects on blue crabs and other foods are a 747 

concern. Several studies have indicated that blue crab abundance may decrease with mangrove 748 

expansion (Johnston & Caretti 2017; Smee et al. 2017; Glazner et al. 2020). For coastal 749 

managers at ANWR, maintaining the region’s whooping crane population is a high priority; 750 

however, managers are concerned that continued mangrove expansion could have a negative 751 

impact [Andrew Stetter and Colt Sanspree (U.S. Fish and Wildlife Service), oral communication, 752 

30 March 2021]. In addition to research that better characterizes the effects of mangrove 753 

expansion on whooping cranes, coastal managers in the ANWR region are interested in 754 

management strategies for limiting mangrove expansion into the salt marshes used by whooping 755 

cranes [Andrew Stetter and Colt Sanspree (U.S. Fish and Wildlife Service), oral communication, 756 

30 March 2021]. 757 

 758 

Insects, other terrestrial arthropods, and mangrove honey 759 
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How might mangrove expansion affect insects, other terrestrial arthropods, and associated 760 

ecosystem services (e.g., mangrove honey)? In a study conducted in Texas, insect abundance and 761 

biomass decreased with mangrove abundance, whereas insect richness and diversity increased 762 

(Loveless & Smee 2019). An arthropod-focused study conducted along Florida’s Atlantic coasts 763 

also found distinct arthropod communities in mangrove- and marsh-dominated wetlands, 764 

indicating that mangrove expansion may increase habitat heterogeneity, which would produce an 765 

increase in arthropod diversity (Nathan 2020). In marsh-dominated coastal wetlands, mangroves 766 

may provide a novel resource for insects and other terrestrial arthropods in the form of nectar-767 

producing flowers (Nathan 2020). However, more data are needed to evaluate the effects of 768 

mangrove encroachment on terrestrial arthropods and the terrestrial portion of coastal wetland 769 

food webs (see Loveless & Smee 2019; Nathan 2020). 770 

 In areas that historically supported salt marsh plants, expansion of mangroves with 771 

nectar-producing flowers (Nathan 2020) may provide a novel kind of honey for beekeepers along 772 

northern coastal reaches of the southeastern United States. Along many tropical coastlines, 773 

mangrove forests are popular honey-producing areas for beekeepers and honey hunters 774 

(Bradbear 2009). In Florida, which is one of the largest honey-producing states of the United 775 

States, mangroves are a popular source of nectar for honey production (Sanford 2016). For this 776 

reason, in some of the scientific literature and in herbarium records from the early 20th century, 777 

the common name used for A. germinans was honey mangrove (e.g., Penfound & Hathaway 778 

1938). Currently, mangrove honey in the southeastern United States is produced primarily along 779 

the southern and central coasts of Florida. However, as mangroves expand further north, there is 780 

the potential for mangrove honey to be produced along Florida’s northern coasts. For example, in 781 

the Apalachicola region, where freshwater swamps have historically supported tupelo honey-782 
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specialty businesses for more than a century, the recent expansion of mangroves on the region’s 783 

barrier island ecosystems (Snyder et al. 2021) has prompted interest to also produce mangrove 784 

honey [George Watkins, oral communication, 24 May 2021].  785 

 786 

 787 

Recreation 788 

Generally, the recreational value of coastal wetlands is underpinned by many of the ecological 789 

and biophysical characteristics described in previous sections of this review, as well as numerous 790 

other socioeconomic factors (Hamilton & Snedaker 1984). For instance, many of the recreational 791 

benefits of mangroves and marshes result from the diverse species and food webs that depend on 792 

these habitats (Kelleway et al. 2017). Rare, exotic, and charismatic species can be particularly 793 

important for recreation in wetlands. More broadly, the aesthetic appeal or scenery, uniqueness 794 

of a site, proximity to population centers, trail and water access, and overall public awareness are 795 

key landscape and socioeconomic factors that influence recreational use, value, and satisfaction 796 

of people (Hamilton & Snedaker 1984; Harty 2009; Lundquist et al. 2014).  797 

Similar to other ecosystem services, mangrove expansion in marshes is likely to have 798 

variable and site-specific impacts on recreation (Kelleway et al. 2017). For instance, shifting 799 

assemblages of birds may impact, either positively or negatively, recreational demand and 800 

satisfaction among bird watchers (Whitt 2016; Armitage et al. 2021). Likewise, the same 801 

scenario would apply to recreational fishers if expanding mangroves support different fish 802 

communities than salt marshes. These impacts are likely to be greatest among highly specialized 803 

recreational users who may value specific places or prioritize certain species that could become 804 

more or less common (Oh et al. 2013). The expansion of mangroves may also impact water 805 



37 
 

access and viewscapes (Kaplowitz 2001; Harty 2009; Lundquist et al. 2014; see also coastal food 806 

webs and fisheries section). Both mangroves and marshes are appreciated for their aesthetic or 807 

scenic values (Kaplowitz 2001), but water access is more difficult in areas with dense mangrove 808 

forests. In general, recreation-related attitudes, preferences, and behaviors represent a major gap 809 

in the literature on mangrove ecosystem services, especially within the context of mangrove 810 

expansion into salt marshes.  811 

Where mangrove expansion is occurring near residential areas, mangrove replacement of 812 

marsh can have striking effects on residents’ recreational activities and interactions with their 813 

coast (Harty 2009; Lundquist et al. 2014). For example, in the 1990s following the major freeze 814 

events of the 1980s, many residents in the Cedar Key area of Florida had wide-ranging views 815 

that looked out onto expansive wetlands dominated by salt marsh grasses (Stevens et al. 2006). 816 

However, expanding mangrove forests have grown to heights greater than 6 m (Yando et al. 817 

2016), which is tall enough to block valuable landscape views of the salt marsh [Andrew Gude 818 

(U.S. Fish and Wildlife Service) and Michael Allen (University of Florida), oral communication, 819 

19 May 2021]. Despite the potential gains in coastal protection supported by mangrove 820 

expansion (Doughty et al. 2017; Hijuelos et al. 2019; Pennings et al. 2021), the loss of salt 821 

marsh views is a critical and overarching concern for many Cedar Key residents, and some 822 

residents are interested in managing the expanding mangrove forests to regain the previously 823 

present salt marsh views and access [Andrew Gude (U.S. Fish and Wildlife Service) and Michael 824 

Allen (University of Florida), oral communication, 19 May 2021]. Further, by reducing wind 825 

speeds, the mangrove forests can also increase the number of mosquitos and other nuisance 826 

insects near residences [Andrew Gude (U.S. Fish and Wildlife Service) and Michael Allen 827 

(University of Florida), oral communication, 19 May 2021]. Conversely, from a practical 828 
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landscape maintenance perspective, mangrove expansion can reduce the amount of storm debris 829 

(i.e., marsh wrack) that is transported and deposited onto waterfront properties [Andrew Gude 830 

(U.S. Fish and Wildlife Service) and Michael Allen (University of Florida), oral communication, 831 

19 May 2021]. Thus, mangroves can be viewed as both positive (shoreline protection) and 832 

negative (impeding ocean views and thus reducing property values) by local homeowners. 833 

 834 

Knowledge gaps and emerging research needs 835 

The majority of research regarding the effects of mangrove expansion has focused on coastal 836 

food webs and fisheries (Figure 1e; 31 papers) and carbon sequestration (Figure 1a; 27 papers). 837 

Less research has examined soil elevation dynamics (Figure 1b; 12 papers), water quality and 838 

nutrient cycling (Figure 1c; 12 papers), avian communities (Figure 1f; 9 papers), coastal 839 

protection (Figure 1d; 4 papers), recreation (Figure 1h; 4 papers), and insects and terrestrial 840 

arthropods (Figure 1g; 2 papers). Within the ecosystem service-focused sections of this review, 841 

we have identified knowledge gaps and emerging research needs. In Table 3, we summarize this 842 

information to: (1) rank the level of knowledge regarding the impacts of mangrove expansion on 843 

specific ecosystem services; and (2) summarize the most critical knowledge gaps and research 844 

needs. 845 

 846 

Interactions with other aspects of climate change 847 

Our review focuses primarily on the ecological effects of mangrove expansion driven by 848 

warming winter temperatures. However, coastal wetlands in the southeastern United States are 849 

vulnerable to many different aspects of climate change. In addition to warming winter 850 

temperatures, coastal wetlands in the region are affected by rising sea levels, saltwater intrusion, 851 
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and changes in the frequency and intensity of extreme climatic events (USGCRP 2017; Carter et 852 

al. 2018; Osland et al. 2018a). For example, rising sea levels can lead to wetland conversion to 853 

open water (Couvillion et al. 2017; Saintilan et al. 2020; Törnqvist et al. 2020) and the landward 854 

migration of wetlands (Enwright et al. 2016; Borchert et al. 2018). Landscape-scale wetland 855 

vegetation dieback events can be triggered by extreme drought (Alber et al. 2008; Duke et al. 856 

2017; Lovelock et al. 2017; Sippo et al. 2018), flooding (Stagg et al. 2021), hurricanes (Cahoon 857 

et al. 2003; Osland et al. 2020c), and freeze events (Osland et al. 2017a). Macroclimate drivers 858 

govern foundation plant communities in the region, which means that changing temperature and 859 

precipitation regimes can transform coastal wetlands (Gabler et al. 2017; Osland et al. 2019a). 860 

Climate change is also expected to increase the frequency of major hurricanes, which affects the 861 

dispersal of mangroves beyond current range limits (Kennedy et al. 2016; Van der Stocken et al. 862 

2019a; Kennedy et al. 2020). Collectively, these examples show that mangrove range expansion 863 

dynamics will be greatly influenced by interactions between many different aspects of climate 864 

change. 865 

 866 

Conclusions 867 

In the past two decades, there has been a rapid increase in the number of studies investigating the 868 

effects of mangrove range expansion on ecosystem goods and services in the southeastern United 869 

States (Figure 1). This review synthesizes that information with an emphasis on impacts to 870 

carbon sequestration, wildlife habitat, storm protection, erosion prevention, water purification, 871 

fisheries support, and recreation. One consistent theme throughout this work is that there are 872 

ecological trade-offs for consideration by coastal scientists and natural resource managers (e.g., 873 

Table 2; Figure 4). Mangrove expansion and marsh displacement can produce beneficial changes 874 
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in some ecosystem services, while producing detrimental changes in other services. As a result, 875 

there is much variation in opinions regarding the social and ecological consequences of 876 

mangrove expansion. For the same location, some individuals may view mangrove expansion as 877 

a positive transformation to be fostered, while others may see it as a negative change to be 878 

prevented. Such variation in perceptions and impacts highlights the benefits of careful planning 879 

and discussion preceding management efforts (e.g., mangrove planting or removal) that could 880 

accelerate or constrain the pace of mangrove expansion. 881 
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Table 1. Mangrove forests and salt marshes are both frequently ranked among the most valuable 1635 

ecosystems on the planet (Costanza et al. 2014). There are many similarities in the ecosystem 1636 

goods and services provided by these tree- and grass-dominated coastal wetlands. The left 1637 

column shows broad ecosystem service categories supported by mangrove forests and salt 1638 

marshes (partially adapted from Barbier et al. 2011), and the right column provides more specific 1639 

examples within those categories. 1640 

Ecosystem services provided by 

mangrove forests and salt marshes 

Examples 

Carbon sequestration 

 

Plant carbon storage, soil carbon storage 
Land loss avoidance 

ion control 

 

Elevation gains to offset relative sea-level rise 

Erosion control 

Water  

Shoreline erosion reduction 

Water purification Nutrient and sediment removal 

Coastal protection Wave and wind attenuation 

Maintenance of fisheries Fish, shrimp, and crabs 

Maintenance of avifauna Wading birds, shorebirds, marsh birds, and passerines 

Recreation and tourism 

 

Fishing, birdwatching, kayaking 

Raw materials and food Mangrove honey 

 1641 

  1642 
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Table 2. Mangrove expansion can produce beneficial changes in some ecosystem services while 1643 

producing detrimental changes in other ecosystem services. Cedar Key (Florida) and Aransas 1644 

(Texas) are two prominent areas where such trade-offs are observed. The table below shows 1645 

some of the positive and negative changes associated with mangrove expansion in these two 1646 

locations.  1647 

Location Positive change associated with 

mangrove expansion 

Negative change associated with 

mangrove expansion 

Cedar Key (Florida) *Improved coastal protection 

*Storm debris reduction 

*Enhanced pelican habitat 

*Increased aboveground carbon storage 

*Altered food webs and fisheries 

*Loss of coastal views 

*Increased nuisance insects 

*Increased freeze vulnerability 

*Altered food webs and fisheries 

Aransas (Texas) *Improved coastal protection 

*Improved wind protection for fishing 

*Improved erosion control 

*Enhanced pelican habitat 

*Increased aboveground carbon storage 

*Increased soil carbon storage 

*Altered food webs and fisheries 

*Reduced access to fishing grounds 

*Reduced whooping crane habitat and 

food resources 

*Increased freeze vulnerability 

*Altered food webs and fisheries 

 1648 
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Table 3. Level of knowledge and critical research gaps regarding the impacts of mangrove expansion on ecosystem goods and 1649 

services.  1650 

Ecosystem good and 

service 

Level of 

Knowledge 

Critical Research Gaps 

Carbon sequestration 

 

Better 

understood 

Why is there so much variability in the effects of mangrove expansion on soil carbon storage 

and cycling? What is the role of site- and species-specific conditions (e.g., geomorphology, 

environmental variables, and the ecosystem properties of the interacting salt marsh and 

mangrove forest)?  

 

 

Soil elevation change 

and vertical 

adjustments to sea-

level rise 

 

Somewhat 

understood 

What are the effects of mangrove expansion on soil elevation dynamics and the ability of 

coastal wetlands to adjust to sea-level rise? How are these effects influenced by 

geomorphology, environmental conditions, and the ecosystem properties of the interacting 

salt marsh and mangrove forest? 

Water quality: nutrient 

and sediment retention 

Somewhat 

understood 

What are the effects of salt marsh replacement by mangroves on nitrogen cycling and storage, 

and ultimately nitrogen pollution filtration by coastal wetlands? 

Coastal protection Poorly 

understood 

How does mangrove expansion affect coastal protection against storms, including wave and 

wind attenuation? What are the effects of salt marsh replacement by mangroves on soil 

erosion rates, shear strength, and sediment deposition? 

Coastal food webs and 

fisheries 

Better 

understood 

How are the effects of mangrove expansion on coastal food webs and fisheries influenced by 

site- and species-specific conditions (e.g., geomorphology, environmental conditions, and the 

ecosystem properties of the interacting salt marsh and mangrove forest)? 

Avian communities Poorly 

understood 

How does mangrove expansion affect communities of wading birds, shore birds, marsh birds, 

and passerines? How are the perspectives of coastal resource managers on mangrove 

expansion influenced by avian conservation priorities of local organizations?  

Insects, other terrestrial 

arthropods, and honey 

Poorly 

understood 

Can mangrove expansion provide a novel kind of honey for beekeepers? How does mangrove 

expansion affect terrestrial arthropod communities? 

Recreation 

 

Poorly 

understood 

How does mangrove expansion affect recreation and tourism through changes in water access, 

viewscapes, birdwatching, and fishing? 

  1651 
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Figure 1. The cumulative number of publications investigating the effects of mangrove 1652 

expansion in the southeastern United States on (a) carbon sequestration; (b) soil elevation change 1653 

and vertical adjustment to sea-level rise; (c) water quality, specifically nutrient and sediment 1654 

retention; (d) coastal protection; (e) coastal food webs and fisheries; (f) avian communities; (g) 1655 

insects and other terrestrial arthropods; and (h) recreation. 1656 

 1657 

 1658 

  1659 
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Figure 2. Map showing the distribution of mangroves in the southeastern United States. 1660 

Mangrove expansion hotspots in Texas, Louisiana, and north Florida are shown with the four 1661 

black ovals. Mangrove species’ poleward range limits are shown with the black, red, and grey 1662 

lines. Mangrove distribution data are from: (1) Mexico: CONABIO (2016); (2) Cuba: Giri et al. 1663 

(2011); (3) south and central Florida: FDEP (2016); (4) northwestern Florida: Snyder et al. 1664 

(2021); (5) Louisiana: Day et al. (2020); (6) Texas: Sherrod and McMillan (1981) and Armitage 1665 

et al. (2015). Map updated and adapted from Osland et al. 2018. 1666 
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Figure 3. The effects of mangrove expansion on ecosystem goods and services are highly 1669 

dependent upon the structure and composition of: (1) the expanding mangrove forests; and (2) 1670 

the salt marsh that is being replaced. These photos illustrate some of the variation in marsh and 1671 

mangrove plant communities near mangrove range limits in the southeastern United States. 1672 

Upper photo: A mangrove-marsh ecotone in north Florida (near Cedar Key), which contains 1673 

highly productive grass- and succulent plant-dominated marshes and comparatively tall (>6 m 1674 

height) mangrove plants. Lower photo: A mangrove-marsh ecotone in south Texas (within 1675 

Laguna Atascosa National Wildlife Refuge), which contains less productive succulent plant-1676 

dominated marshes, comparatively short (< 2 m height) mangrove plants, and hypersaline salt 1677 

flats that lack vascular plants. Photo credits: Michael Osland 1678 
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Figure 4. Across the southeastern United States, there is considerable variation in perceptions of 1681 

the ecological and societal impacts of mangrove expansion into salt marsh. For very specific 1682 

local reasons, some individuals may see mangrove expansion as a positive change to be 1683 

embraced, while others may see mangrove expansion as a negative change to be constrained. 1684 

These two photos provide an example of a negative and positive impact of mangrove expansion 1685 

and salt marsh displacement. Left photo (negative impact): Along Texas’ central coast, 1686 

mangrove expansion reduces viable fishing areas. While fly fishing is possible within the 1687 

region’s grass and succulent plant-dominated salt marshes, fly fishing for redfish (Sciaenops 1688 

ocellatus) is not possible within dense meter-tall mangrove stands. Right photo (positive impact): 1689 

On Louisiana’s barrier islands, expanding mangroves provide valuable habitat for brown 1690 

pelicans (Pelecanus occidentalis). Photo credits: Chuck Naiser (left photo) and Louisiana 1691 

Coastal Protection and Restoration Authority (right photo). 1692 
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