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Figure S1: Gridded positions of temperature-depth selection data used in the habitat space estimation.
Colored dots indicate fish observations in a given size-class. The color refers to the data source and size to
the number of binned fish observed in the grid cell. See Figure S2 for the Bering Sea data.
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Figure S2: Gridded positions of data used for the size based SHM validation. Colored dots indicate fish
observations in a given size-class. The color refers to the data source and size to the number of binned fish

observed in the grid cell.
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Figure S3: Gridded positions of data used for the general SHM validation. Colored dots indicate occurrences.

The color refers to the data source and size to the number of binned observations (not necessarily individual
fish) in the grid cell.



SI text 1. Suitable habitat modeling
Interpreting habitat spaces

In this paper, we use the niche-based environmental envelope concept, which has been used in various forms
in ecological research in the past [e.g. see Hutchinson (1957); Soberén and Nakamura (2009); Aratjo and
Peterson (2012); and the references therein]. This concept has, however, to our knowledge not been used
to study the influence of bottom depth, temperature and salinity on the observed distribution of a marine
species similarly to how we use it here. While the mathematics behind our method are relatively simple
and the concept can be derived using logic, some further explanation and considerations are required. Since
there was not enough space to explain the concept thoroughly in the body text of the article, we explain the
concept of indirectly constraining multiple variables and how to apply them using observational data and
the associated R package in this supplementary text.

Physiological tolerance curves for a single variable, such as temperature, and a given (ectotherm) species
have been established through decades of ecological and physiological research (see e.g. Fry and Hart, 1948;
Portner, 2002). These curves operate on the assumption that there are physiological processes that constrain
the success of an individual given a level of an environmental variable, and that tolerance to this variable can
be measured through a physiological response. Such tolerances have excessively been tested using physical
or chemical variables, such as temperature (e.g. Portner, 2002), pressure (e.g. Harper et al., 1987), salinity
(e.g. Kultz, 2015), pO2 (e.g. Domenici et al., 2017), pCO2 (e.g. Enzor et al., 2013) or contaminant levels
(e.g. Patra et al., 2015) to mention a few. Recent research has focused on the simultaneous effects of
multiple constraining variables on a single measurable response, often by looking at the interaction effects
using linear regressions or their generalized variants (Youcef et al., 2013). Similar curves can, however,
be formulated in multivariate space using multiple constraining variables as axes and measurable response,
probability of occurrence (for binary data), or density of points (for presence-only data) as a response
dimension (Figure S4). If the constraining variables are related to the environment and the sample of
observations representative for the domain of the study, the constraining factors do not need to stem from
physiological tolerances. It is enough that the constraining variables lead to a differential habitat selection
through indirect (=unknown) ecological and physiological effects. This realization forms the basis of the
environmental niche-based approach as reviewed in Soberén and Nakamura (2009).

In the associated R package (Vihtakari, 2021), we call these environmental niches “habitat spaces” as a
contrast to geographical spaces, and because these multivariate spaces define the habitat in the geographical
space given the model assumptions. The habitat space concept is a synonym to environmental niche, space or
envelope and other terms used in the literature. We further call the resulting geographical spaces “suitable
habitat models” instead of “species distribution models” to highlight the fact that these models do not
estimate real-world species distributions unless all constraining variables are defined correctly in the habitat
space and the oceanographic model projects these variables reliably. Such a scenario is hardly possible given
the complexity of the real-world. In this paper, we use bottom temperature and depth as constraining
environmental variables to examine whether other unknown factors influence the distribution of Greenland
halibut.

We call these specific habitat spaces “TD-spaces”. The constraining variables and how they are plotted
influence the interpretation as explained in Figure 7. While temperature (the x-axis) influences the individ-
uals through physiology, the bottom depth range where Greenland halibut occurs (50-2000 m) is unlikely
to set physiological limits for a deep-sea adapted fish without a swim-bladder (Sebert, 2002). Nevertheless,
centuries of fishing experience demonstrate that different fishes are caught above different bottom depths.
The underlying reason for the depth preference is not the depth itself, but other adaptational, ecological and
physiological factors that are interwoven into the depth selection. To model the habitat suitability, it is not
necessary to know why depth limits the distribution of a species as long as one has strong evidence that it
does. Such an assumption could lead to erroneous conclusions. However, so could trying to incorporate all
the factors that may influence the depth preferences when data for these parameters are limited.


https://github.com/MikkoVihtakari/SuitableHabitat
https://github.com/MikkoVihtakari/SuitableHabitat
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Figure S4: Two examples of how multiple constraining variables (or stressors) can be seen in multivariate
space. Environmental variables 1 and 2 are sampled along a gradient or in a controlled experiment and
their synergistic effect on a response variable is measured (shown in left panels). The same results can
be shown in three dimensions (right panels) where the environmental variables are on x- and y-axes and
the response variable is on the z-axis (indicated as color). The dashed lines indicate the sampled values.
The polygon indicates the habitat space assuming that z values < 20 percent of the maximum are outliers.
A) Both environmental variables have a linear effect on z. Linear relationships lead to a plane in the 3D
space. The direction of these relationships depends on which way the multivariate plane is tilted. B) Both
environmental variables are normally related to z. Nonlinear relationships lead to various surfaces. There are
no mathematical limits expanding this concept to as many dimensions as there are data for the constraining
variables.



The TD-spaces used in this paper tell their story through multiple considerations. First, if a TD-space
was rectangular, one would reach the same solution by limiting the variables separately. Consequently,
round corners indicate that environmental variables in that region of the habitat space limit the habitat of
a species together (Figure S4). Second, available TD-space can be obtained from the oceanographic model
by calculating a TD-space from all values for the entire domain of the study. If an observational TD-space
for a species lies outside of the available TD-space, either the oceanographic model values or observational
values are wrong. Third, any line, plane, spine shapes, concave edges or other similar multivariate variants
in the habitat space represent gradients, which might indicate sampling bias rather than the tolerance of
a species (either the entire distribution of a species was not sampled or the concave variable-space areas
do not exist in the real world) given that the variables are constraining the habitat of a species. A convex
hull can be taken from the TD-spaces to remove such effects. Further, if the observational dataset is not
representative of the domain of the study (likely in our study since the survey data did not cover the entire
Arctic), sampling biases might unnecessarily constrain the habitat space. Teasing out such sampling biases
can be difficult as demonstrated in Figures 3 and 4. Fourth, since the temperature is on the x-axis, the left
and right sides of the TD-space are likely constrained by biological processes, either physiology or ecology.

Finally, the cut corners that make the TD-spaces circular are likely due to different reasons: the bottom
left corner has low temperature and depth (Figure 7). The survey data were mostly collected using trawlers
during summers, and the Bering Sea data demonstrated that Greenland halibut can inhabit this region of the
TD-space. It is uncertain whether other variables (competition, predation, salinity) cause Greenland halibut
to avoid cold and shallow habitats on the Atlantic side or whether the lack of this corner is due to sampling
bias. The bottom right corner is most likely not suitable habitat due to high temperatures (physiology) and
competition/predation (Atlantic cod tends to inhabit this zone on the Atlantic side of the Arctic). The top
right corner exists West of Iceland and might be a mismatch between the NEMO model and observational
data. The top left corner does not exist according to the NEMO model. The interpretation above indicates
that bottom depth does not set hard physiological limits for the occurrence of Greenland halibut, but serves
as an indirect proxy affecting other factors that limit the distribution.

Practical implementation

To begin the demonstration, we load the required R packages and example data for the general model
presented in the paper. Note that the results here look different from the results in the body text due to
data-sharing restrictions.

# Packages
packages <- c("tidyverse", "cowplot", "sp", "data.table", "devtools", "ggOceanMaps")

## Install packages not yet installed
installed_packages <- packages %in), rownames(installed.packages())

if (any(installed_packages == FALSE)) {
install.packages(packages[!installed_packages],
repos = c("https://mikkovihtakari.github.io/drat", "https://cloud.r-project.org")
)
}

if (!"SuitableHabitat" %in) rownames(installed.packages())) {
devtools::install_github("MikkoVihtakari/SuitableHabitat", upgrade = "never"
b

## Load the packages
invisible(lapply(c(packages, "SuitableHabitat"), library, character.only = TRUE))

# Load data



load("../../Data/SI_size_based_TD_data.rda")
load("../../Data/SI_ghl_distribution_data.rda")

We form a cloud of points in equally many dimensions as the number of limiting variables in the TD-space.
We, then, calculate a multivariate kernel-density (mKDE) of these points as an extra dimension (Chacén and
Duong, 2018). This mKDE is a multivariate analog to the original tolerance curves with variables influencing
the density of points synergistically (response variable) given that all variables are constraining the habitat
of the species (Figure S4).

z <- split(x, list(x$side))

tdsp <- lapply(z, function(k) {
out <- habitat.space(data = k,
cvars = list("temp" = NA, "bdepth" = NA, "sal" = c(29, 37)),
log.transform = c(FALSE, TRUE, FALSE),
non.suitable.level = 0.001,
chull.correction = TRUE
)
1))
# /

par (mfrow = c(1, 2))

for(i in names(tdsp)) {
plot(tdspl[[il], ylim = ¢(1.5,3.3), xlim = c(-2, 10))

title(di)
}
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The kernel-density smoothing parameter, bandwidth, binning and variable range all influence the outcome
of the mKDE and have to be optimized for each dataset (Chacén and Duong, 2018; Duong, 2019). In the
SuitableHabitat package we have optimized these parameters for the data in this paper but also provided the
users a possibility to change some of the parameters. The results influence the optimal KDE probability level



threshold for the habitat suitability in the TD-space. Had the dataset used for the mKDE been error-free,
one could have assumed that none of the points in TD-space were outside the suitable habitat of Greenland
halibut. However, since the dataset was collected from multiple sources over several decades (from 1969 to
2019), it was bound to contain reporting errors. The probability level for outliers was obtained iteratively
by making the TD-space to cover most points that were close to each other. The level was set to 0.999
assuming 0.1% of KDE probabilities in the size-based TD-dataset as outliers. In practice, this led to 0.2 to
1.5 % of individual fish observations being defined as outliers depending on the size group.

The suitable habitats are estimated from the habitat spaces. The package uses NEMO data for 2000-2009
as default (write NEMOdata to see the dataset).

## Fit the suitable habitat models

modl <- suitable.habitat(tdsp[[1]])
mod2 <- suitable.habitat(tdsp[[2]])

cowplot: :plot_grid(plot(modl) + ggplot2::ggtitle(names(tdspl[1])),

plot(mod2) + ggplot2::ggtitle(names(tdsp[2]))
)
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Since the TD-spaces were different for the Atlantic and Pacific sides, they were applied to their respective
sides in a combined model. Note that the geographic binning resolution (res parameter) influences the
connectivity of habitat patches and has to be optimized for each dataset together with the drop.crumbs
parameter (minimum area of disconnected patches).

## Combine the models
mod <- combine.models(modl = modl, mod2 = mod2,

y.breaks = c("<2.5e6", ">=2.5e6"),
res = 350, drop.crumbs = 3e4

plot (mod)
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The model fit can be then evaluated using a dataset of spatial point observations. The underlying functions
use similar binning than the suitable habitat model fed into the function.

## Model fit

modfit <- model.fit(mod = mod,
pts = sp::SpatialPoints(pres_dt[,c("lon.proj", "lat.proj")],
proj4string = sp::CRS("+init=epsg:3995")

)
)

plot(modfit)
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Limiting factors can be plotted using the suitable habitat model object.
## Limiting factors

plot(mod, type = "lim.fact")
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ST text 2. The NEMO model

We used the Nemo-NAA10km configuration newly developed by the Institute of Marine Research, Norway.
Nemo-NAA10km is a regional model for the Arctic and the North Atlantic Oceans based on the NEMO
3.6 ocean engine (Madec and NEMO system team, 2015) with the LIM3 sea-ice model (Vancoppenolle et
al., 2009). It presents many similarities with the Nemo-Nordic regional ocean model (Hordoir et al., 2019).
Nemo-NAA10km covers the North Atlantic Ocean above a latitude of approximately 39° N, the Arctic
Ocean, and part of the North Pacific Ocean to ensure a proper representation of the flow-through Bering
Strait (Figures S5 and S6).

The purpose of Nemo-NAA10km is to get a deeper understanding of the effects of climate change on the
Arctic Ocean hydrography. To achieve this, it is important that the model can reproduce recent observed
changes, such as the Atlantification (Lind et al., 2018), without forcing the model output to observational
data. Therefore, in contrast to many regional Arctic Ocean models, Nemo-NAA10km does not use any form
of restoring. Instead, it has been designed so that the Arctic freshwater content and temperature follow
natural seasonal and inter-annual variabilities, by tuning vertical and horizontal mixing rates in a specific
way for freshwater to leave the Arctic basin. Specifically, two types of freshwater circulation are represented:
the Arctic estuarine circulation, and the coastally trapped circulation around the coasts of Greenland and
Canada. The Arctic estuarine circulation can be properly represented if the halocline depth is realistic,
which is achieved through a simple tuning of the background vertical diffusivity following Nguyen et al.
(2009). Setting the Arctic halocline at the right depth ensures that the amount of available potential energy
that drives the Arctic estuarine circulation is high enough. For a given amount of pure freshwater one can
demonstrate that this available potential energy is proportional to the depth at which it is mixed.

Freshwater eventually leaves the Arctic Ocean through the East Greenland Current or the Canadian
Archipelago. In each of these cases, the freshwater dynamics are similar to that of typical coastally trapped
freshwater plumes, which have a limited mixing with the surrounding saltier water masses. These freshwater
masses eventually mix with warmer/saltier waters carried by the Gulf Stream or can be advected southward
in the Sub-Tropical gyre. A substantial amount is also advected southward by the Atlantic meridional
overturning circulation (AMOC). Evidence shows that the horizontal diffusivity is much larger in the
Sub-Tropical gyre than in the Northern Atlantic (Zhurbas and Oh, 2004), and so is the lateral diffusivity in
Nemo-NAA10km: it is set at high value of 2000 m? s~! up to a latitude of 50° N, and at a value of only a
few m? s~! above this latitude. Several tests are being made on this latest diffusivity value as this article is
being written, but experiments show that these settings allow for the Arctic and North Atlantic freshwater
content to stay stable during a long term simulation.

A long term simulation was conducted from 1958 to 2015 and uses the NFS 5.2 forcing dataset (Brodeau et
al., 2010). Open boundary conditions are based on the GLORYS re-analysis (http://marine.copernicus.eu)
which exists from 1993, and on which we computed a climatology for the years of the simulation before
1993. Tidal forcing is based on the model described by Egbert and Erofeeva (2002) at the open boundary
conditions, and tidal potential built-in the NEMO ocean engine is also used. A full assessment of the
model results and their accuracy is to be published soon, but a recent analysis shows Nemo-NAA10km can
reproduce the observations made by (Lind et al., 2018).

13


http://marine.copernicus.eu

180°

Average
bottom
temperature
15.0

12.5

0.0

5

0

5
Y

270°

ONO~N=

Y

o
>

Figure S5: Mean bottom temperature from the oceanographic NEMO model used for geographic projections
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