

Journal of Geophysical Research Oceans

Supporting Information for

Classification of Sea Ice Summer Melt Features in High-resolution IceBridge Imagery

Ellen M. Buckley¹, Sinéad L. Farrell², Kyle Duncan³, Laurence N. Connor⁴, John M. Kuhn⁴, Roseanne T. Dominguez⁵

¹Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD. ²Department of Geographical Sciences, University of Maryland, College Park, MD. ³Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD. ⁴NOAA Laboratory for Satellite Altimetry, College Park, MD. ⁵Universities Space Research Association; NASA Ames Research Center, Moffett Field, CA.

Contents of this file

Tables S1 Figures S1 to S41

Introduction

This supporting information describes the test images used for developing the classification algorithm. Table S1 lists the test images and provides information on time, date, location, ice features, and classification results. Image descriptions follow WMO Nomenclature (WMO, 1970). Figures S1 to S40 show (a) the original DMS image acquired from NSIDC (<u>http://dx.doi.org/10.5067/OZ6VNOPMPRI0</u>) and (b) the classified image, where pixel classification is as follows: border (gray), undeformed ice (red), deformed ice (pink), open water (blue), dark melt pond (green), medium melt pond (yellow), light melt pond (cyan). Figure S41 is the same as Figure 7 in the paper but for a different image to illustrate the alternative method for calculating the threshold between open water and melt ponds in C_b.

Image	Description	Date	GPS Time (hh:mm:ss)	Lat (°N)	Lon (°W)	MPF (%)	SIC (%)	PCF _D (%)	РСF _M (%)	PCFL (%)
S1	Flooded level first year ice.	13 July 2016	21:08:43	76.8	-150.0	66	100	0	0	100
S2	Ponded ice floe with drainage channels and thaw holes. Pond color varies.	13 July 2016	21:24:43	75.6	-150.0	30	99	27	30	44
S 3	Predominantly open water with sun glint.	13 July 2016	21:26:11	75.5	-150.0	NA	3	94	0	6
<u>\$4</u>	Heavily ponded level first year ice floe and deformed, ponded ice floe, separated by a lead. Evidence of ice algae.	13 July 2016	21:40:32	74.6	-149.5	27	81	67	0	33
S 5	Deformed ice with melt ponds and drainage channels.	13 July 2016	21:42:11	74.5	-149.5	21	100	6	0	94
S 6	Level, fractured floe with varying melt pond fraction. Evidence of snow melt.	14 July 2016	20:42:50	75.0	-164.9	25	100	29	46	24
S7	Heavily ponded, level first year ice with interconnected pond structure. Evidence of cracks and snow melt.	14 July 2016	20:52:44	75.4	-167.2	23	98	92	0	8
S8	Mixture of ice types. Heavily ponded level first year ice floes and thicker ponded ice with drainage channels. Evidence of snow melt.	14 July 2016	20:57:11	75.6	-168.3	22	97	85	0	15
S9	Multiyear ice floe with large melt ponds and drainage channels.	14 July 2016	20:58:25	75.6	-168.6	38	100	3	0	97
S10	Predominantly open water and unconsolidated, small floes with evidence of thaw holes.	14 July 2016	21:09:29	75.9	-169.0	9	29	75	0	25
S11	Multiple sea ice floes with elongated dark melt ponds and discrete light melt ponds.	14 July 2016	21:17:09	76.3	-167.7	23	91	86	0	14
S12	Mixture of large and small ice floes with elongated dark melt ponds and discrete light melt ponds	16 July 2016	0:51:51	73.6	-173.9	29	81	86	0	14
S13	Ice floes separated by lead. Mixture of light and dark ponds with drainage channels connecting ponds.	16 July 2016	1:00:06	73.8	-172.1	31	91	36	33	31
<u>814</u>	Deformed ice floe with small light ponds in conjunction with pressure ridging. Dark, interconnected ponds elsewhere. Evidence of cracks.	19 July 2016	22:28:12	74.9	-173.0	23	87	86	0	14
S15	Unconsolidated ice floes with light and dark melt ponds with thaw holes.	16 July 2016	22:29:31	75.0	-173.1	24	61	77	0	23

S16	Heavily ponded floe with interconnected pond structure.	16 July 2016	22:35:57	75.4	-173.4	32	100	92	0	8
S17	Ponded ice flow with mixture of interconnected dark ponds and discrete light ponds. Evidence of snow melt.	19 July 2016	22:47:34	76.3	-173.9	17	99	84	0	16
S18	Multiple floes with mixture of elongated and interconnected dark and light ponds.	19 July 2016	22:50:04	76.4	-174.0	18	72	76	0	24
S19	Heavily ponded ice floe with drainage channels connecting ponds.	19 July 2016	23:04:49	76.5	-172.6	27	100	22	42	36
S20	Heavily ponded level ice with thaw holes and cracks.	19 July 2016	23:12:05	76.1	-170.9	20	84	92	0	8
821	Deformed ice floes with interconnected light and dark ponds connected by narrow drainage channels. Evidence of cracks.	19 July 2016	23:15:17	76.0	-170.2	25	95	21	0	79
S22	Multiple, predominantly level ice floes undergoing melt but with low melt pond fraction.	21 July 2016	21:03:49	75.7	-140.0	5	73	93	0	7
S23	Consolidated, predominantly level ice floe undergoing melt but with low melt pond fraction.	21 July 2016	21:04:12	75.7	-140.0	3	100	13	74	13
<u>824</u>	Predominantly level ice floe undergoing melt but with low melt pond fraction. Evidence of submerged ice. Light melt ponds in conjunction with pressure ridges.	21 July 2016	21:05:12	75.8	-140.0	12	87	80	0	20
S25	Consolidated, predominantly level ice floe undergoing melt with extensive drainage channels and thaw holes.	21 July 2016	21:08:14	76.0	-140.0	9	98	80	0	20
S26	Fragmented ice floes with undulating topography, rubble fields, and light melt ponds.	17 July 2017	14:52:56	83.3	-75.0	12	69	8	0	92
S27	Consolidated, deformed multiyear ice with light melt ponds and drainage channels.	17 July 2017	15:02:27	83.3	-80.7	6	99	2	0	98
S28	Fragmented, heavily deformed multiyear ice floes with light melt ponds.	17 July 2017	15:41:23	83.6	-79.3	9	74	4	0	96
S29	Consolidated multiyear ice with small and large light ponds. Evidence of cracks and very small fractures.	17 July 2017	15:41:26	83.6	-79.3	15	96	2	0	98
S30	Fractured multiyear ice floes with light melt ponds.	17 July 2017	15:42:37	83.7	-78.9	5	97	1	0	99
S31	Fractured, heavily deformed multiyear ice floes with light melt ponds.	17 July 2017	15:43:35	83.8	-78.7	7	95	38	0	62

S32	Consolidated deformed ice with light melt ponds. Evidence of pressure ridging.	18 July 2017	15:26:57	83.0	-88.0	6	99	4	0	96
833	Heavily deformed multiyear ice with pressure ridges and light ponds varying in size and connected by drainage channels.	18 July 2017	16:18:12	84.0	-73.8	17	97	3	0	97
S34	Cracked and deformed ice with light, medium, and dark melt ponds connected by drainage channels.	24 July 2017	14:59:19	84.4	-43.2	18	97	14	38	47
S35	Fractured ice floes. Heavily deformed multiyear ice floe. Ponding in conjunction with pressure ridges.	24 July 2017	15:10:25	84.4	-49.3	16	88	21	0	79
S36	Fragmented ice floes with dark, medium, and light melt ponds and deformation along floe edges. Evidence of snow melt	24 July 2017	15:17:51	84.3	-54.5	15	97	21	36	43
S37	Large melt pond on deformed multiyear ice with undulating topography.	24 July 2017	15:38:55	83.1	-59.7	16	93	4	7	89
S38	Fragmented ice floes with large and small melt ponds. Diffuse lighting conditions.	25 July 2017	12:33:36	82.3	-94.6	10	95	39	27	34
S39	Heavily ponded consolidated ice floe with drainage channels connecting ponds. Diffuse lighting conditions.	25 July 2017	12:45:54	82.5	-100.9	28	100	0	0	100
S40	Fragmented, deformed ice floes with light and medium melt ponds connected by long drainage channels.	25 July 2017	17:05:50	83.3	-74.9	12	85	16	29	54

Table S1. List of test images used in algorithm development with derived parameters.

Figure S1a

Figure S1b

Figure S2a

Figure S2b

Figure S3a

Figure S3b

Figure S4a

Figure S4b

Figure S5a

Figure S5b

Figure S6a

Figure S6a

Figure S7a

Figure S7b

Figure S8a

Figure S8b

Figure S9a

Figure S9b

Figure S10a

Figure S10b

Figure S11a

Figure S11b

Figure S12a

Figure S12b

Figure S13a

Figure S13b

Figure S14a

Figure S14b

Figure S15a

Figure S15b

Figure S16a

Figure S16b

Figure S17a

Figure S17b

Figure S18a

Figure S18b

Figure S19a

Figure S19b

Figure S20a

Figure S20b

Figure S21a

Figure S21b

Figure S22a

Figure S22b

Figure S23a

Figure S23b

Figure S24a

Figure S24b

Figure S25a

Figure S25b

Figure S26a

Figure S26b

Figure S27a

Figure S27b

Figure S28a

Figure S28b

Figure S29a

Figure S29b

Figure S30a

Figure S30b

Figure S31a

Figure S31b

Figure S32a

Figure S32b

Figure S33a

Figure S33b

Figure S34a

Figure S34b

Figure S35a

Figure S35b

Figure S36a

Figure S36b

Figure S37a

Figure S37b

Figure S38a

Figure S38b

Figure S39a

Figure S39b

Figure S40a

Figure S40b

Figure S41. Methodology to identify open water pixels. (a) distribution of C_b pixels remaining after ice pixels have been classified. Threshold E separates open water pixels (blue) from MP pixels (yellow). (b) classified image showing open water pixels (blue), MP pixels (yellow), and ice pixels (natural color). Same as Figure 7 in the paper but an example where Threshold E was determined by Equation 10.