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Io Introduction

The objectives of this data report are to provide a
commentary on the logistics and methodology of, and also to
serve as a documentation of, the experimental/observational
data sets obtained during the Summer and Fall/Winter of
1975» Beyond the inclusion of the reduced, i.e., computer
processed and filtered, data no interpretation is provided»
It is anticipated that this report will serve as an effective
guidebook for future field programs»

This report includes data from four cruises (two deploy
ment, two retrieval) of the R/V Advance II during the Summer
through Fall/Winter, 1975.

These cruises constituted part of the North Carolina
State University (NCSU) - Skidaway Institute of Oceanography
(SKIO) combined efforts to contemporaneously measure: the
temperature and salinity, i.e., hydrography; the current
speeds and direction at several locations; and sea level and
meteorology local and regional to Onslow Bay, North Carolina.
Personnel from SKIO also measured various biological para
meters along the hydrographlc grid (cf. Figure 3). This work
constitutes the initial effort of a multi-discipline,
multi-institutional program partially sponsored by the
Department of Energy and in part by the National
Oceanographic and Atmospheric Administration and the
University of North Carolina - Sea Grant College Program,
to study the continental shelf processes affecting the oceano
graphy of the South Atlantic Bight. The immediate problems
being addressed were those of understanding the processes by
which nutrients are transported onto the North Carolina Shelf
from offshore and to establish possible transport pathways
for effluents discharged into North Carolina coastal waters.

The purpose of these cruises was to deploy (retrieve)
fixed position current meter moorings (Figure 2) and to make
detailed hydrographlc and biological parametric measurements
in Onslow Bay0 The results of the latter surveys are presented
in a series of SKIO data reports. (Atkinson, Singer and
Pietrafesa, 1976 a, b)

Endeco 105 current meters were used to measure speed and
direction at specified temporal intervals and spatial locations,

A reporting of the raw, i.e., unprocessed and unfiltered,
data was made in a separate and preliminary data report
(Pietrafesa, Brooks, Atkinson, D'Amato and Bane, 1976).
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II. Purpose/Description of 1975 Experiment

The essential part of the 1975 Summer-Fall Experiment was
a fixed-level array of 4 Endeco 105 - film recording current
meters and 4 General Oceanics film - recording thermographs.
Specifications of both types of instruments are given in
pages 13 - 15 of this report. Two moorings were set at the "focal
points" of the cuspate shaped Onslow Bay (cf. Figure 2). The
current meters were set two to a mooring at depths of 10 and
25 meters from the surface in 28 meters of water, at each of
the mooring sites, A and B (Figure 4). The array was designed
to observe the propagation of phenomena across and along the
inner to mid-shelf and to establish insights into the physics
of the vertical and horizontal modal structure of the hori
zontal currents.

The data from the upper part of the water column were
collected to address the "possibility of siting ocean-out
falls" problem (Pietrafesa, 1974) while the lower elements were
specific to the "intrusion" (Pietrafesa and Atkinson, 1975)
problem. More generally, Onslow Bay was chosen as an initial
study site in the context of a study of the whole of the con
tinental margin of the South Atlantic Bight because it is the
more densely populated region of the North Carolina coast and,
consequently, the waste disposal problem is more critical there
than elsewhere. The reason for siting the study of the in
trusion of nutrients onto the continental shelf of the South
Atlantic Bight in Onslow Bay was primarily based on the fact
that there is/has been more historical data, i.e., background
information needed to plan such a study, collected in Onslow
Bay than anywhere else in the South Atlantic Bight. Given the
Cuspate nature of the embayment, the fact of potential outfall
sites at either end of the bay and the obvious horizontal and
vertical plane (three dimensional) character of the property
distributions in Onslow Bay (Stefannson, Atkinson and Bumpus,
1971), the initial moorings were located at sites A and B.

The initial periods of study; August - September, 1975
and October - December, 1975 were intended to offer quasi-
seasonal time series of current observations. These time
series were intended to be used, not only for understanding
the physical/dynamical character of the observational period
but also as a guide for future larger field studies, such as
the planned (and completed) Summer-Fall-Winter, 1976-1977 and
Summer, 1977 field programs planned in the same area under ERDA
and NOAA-U.N.C. Sea Grant sponsorship (cf. Figures 5-7).

III. Equipment and Mooring Description

The moorings, established at sites A and B during both of
the 1975 experiments, i.e., Summer and Fall/Winter, had a taut
line (wire) configuration. A subsurface float was used to keep
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Figure 4 Vertical Section of instrument depths at
sites A and B
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a bottom anchored cable taut. Fixed level recording equip
ment was attached to and suspended (away) from the cable.
Additionally, a bottom anchored, auxiliary surface marker
was located 190 meters from the main mooring line. The bottom
"auxiliary" anchor was connected to the "main" anchor by a
200 meter polypropylene ground line, which floats approxi
mately a meter from the ocean floor. The mooring configura
tion is depicted in Figure 8.

The operational logistics of installing moorings A and
B were initiated in such a way as to maximize repeatability
of location in subsequent experiments. The R/V Advance II
was used during all deployment and retrieval phases of these
1975 experiments and mooring position locations (Table 1)
were taken by the ship's Loran A system at the time of instal
lation. The absolute error (accuracy) of the position is
estimated to be less than + l minute of latitude and longi
tude. The relative error Tprecision) is estimated to be less
than +0.5 minute in either co-ordinate. Depths were taken
by fathometer and are accurate to within +0.5 meters.

The recording instruments used on these moorings were
Endeco-105 film recording current meters and General
Oceanics 3070 film recording thermographs. The specifica
tions of the instruments are given in Table 2. This current
meter is of the axial flow, ducted impeller, film recording
type and is tethered to the taut line mooring. It is speci
fically designed for continental shelf and estuarine environ
mental monitoring. The E-105 (Figure 8) records analog sig
nals from direction and speed transducers on 16 millimeter
photographic film. The ducted impeller acts as the speed
sensor with an internal conversion of its rotation converted
to a light trace on the film. The light trace, which is gen
erated by sensor output, is lengthened or shortened at a rate
proportional to the speed of the current. A light bar, whose
length is representative of the current speed integrated over
the timing interval, is produced by the advancing light trace.
The length of the displacement of the light trace divided by
the time interval yields the speed, averaged over the timing
interval. Consecutive thirty-minute time exposures are taken
of the continuous light traces and a timing pulse is provided
by a crystal timer (accuracy of 1 part in 420) every 24 hours.
Instantaneous instrument direction is given by the displace
ment of a light trace from a datum line. The directional
light trace is generated by a magnetic compass coupled with an
analog encoder. The time integrated signal appears as a bar of
light which varies in intensity along its length as a function
of the length of time that the instrument is aligned in a
particular direction. The displacement of the point of max
imum intensity from the datum line then yields the average
direction for the thirty minute period of actual recording.

10
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Table1*

Experiment

Latitude-
LongitudeLoranAWaterMeterMeterMeter

MooringLocationLocationDepthDepthNo.Notation

(1)6August-
26September,1975A

A

34°17.6'N
7605i«w

4856
2056

B33°56.7'N
77°25.0'W

4889
2495

28m

28m

B

M(2)14October-
9December,197534°17.6'N4854

76°50.8'W2060

28m

Note:Onlyinstrumentsthatfunctionedarerecordedhere.
Eachmooring(A&B)had,foreachexperiment,2Endecos
and2Thermographs.

10m

(E-105)
318

A1top

25m

(E-105)
317

A1bot

11m(G.O.3070)
3B1top

25m

(E-105)
247

B1bot

10m

(E-105)
316A2_

top

(E-105)
23m247A2

bot



Table 2

SPECIFICATIONS: ENDECO Type 105 in-situ Tethered Current
Meter

1. CURRENT VELOCITY

Sensor Type:
Sensitivity:
Speed Range:

Impeller Threshold;

Resolution:

Speed Accuracy:

2. CURRENT DIRECTION

Magnetic Direction:
Sensitivity;

Resolution:

Accuracy:

Ducted Impeller
53.7 RPM/knot
0 - 1.75 knots (0-90.1
cm/sec) at one Reading/
60 minutes

0 - 3.5 knots (0.180.2
cm/sec) at one Reading/
30 minutes

0 - 7.0 knots (0-360.4
cm/sec) at one Reading/
15 minutes
Less than .05 knot (2.57
cm/sec)
.05 knot
+3 percent of Full Scale

0 - 360°
+5° at 0.05 knot (2.57
cm/sec)

±1
2 percent above 0.05 knot,
when referenced to com

puter calibration

3. TILT

The instrument orients to the flow thus eliminating the
need for tilt indication or correction.

4. RECORDING TIME AND RATE
Number of Readings:
Recording Rate:

Time Reference Mark:

Maximum Recording Period:

Time Stability:

Timer Type:

13

3600
1 Reading/15 minutes
1 Reading/30 minutes
1 Reading/60 minutes
24-hour Light Emitting
Diode indication provided
by timer
75 days at 1 Reading/30
minutes

+1.5 second/day at 20°C
+4 second/day from -5 to
+30°C

ENDECO Type 124 Crystal
Timer



Table 2 (ContM)

5. RECORDER
Method:

Light Source:

Format;

Film Type;

Power:

6. OPERATING ENVIRONMENT
Operating Medium:

Operating Temperature Range:
Storage Temperature Range:
Maximum Depth:

7.

8.

INSTRUMENT HOUSING

Material:

Finish:

Hardware;

PHYSICAL

Weight:
Buoyancy:

SIZE

Dimensions:

Shipping Weight:
Shipping Crate Dimensions

Direct photographic time
exposure of sensor out
puts
Light Emitting Diodes
continuously energized
Analog/Bar Graph
50 feet - 16 mm Tri-Z
Cine Kodak Magazine,
Modified

Four, 1-1/2 volt standard
"D" size cells (Use only
carbon-zinc batteries in

non-ferrous cases)

Salt, fresh, or polluted
water

-2° to 45 C (28° to 113 F^
-24° to 65°C (-29° to 149°F)
500 feet (pressure cases
to 10,000 psi available)

P.V.C. Plastic

All surfaces painted for
resistance to marine growth
300 Series Stainless Steel
and Plastic

27 pounds (in air)
Approximately neutral;
adjustable for salt, fresh,
or polluted water
30" long X 16" diameter
45 pounds
38" long X 22" diameter

Specifications: General Oceanics Model 3070 Film Recording
Thermograph

WEIGHT:

EXPOSED MATERIALS:

14

3 kgs. (6h lbs.) in air;
approximately 1 kg. (2.2 lbs.)
positively buoyant in water
Rigid polyvinyl chloride
(PVC) housing, end caps, and
thermometer bulb guard; stain
less steel hardware and
thermometer bulb



Table 2 (Cont'd)

DIMENSIONS:

DEPTH RATING:

TEMPERATURE RANGE:

ACCURACY:

TIME REFERENCE:

WATCH ACCURACY:

DATE INTERVAL:

MAIN BATTERY SUPPLY:

OPERATING LIFE:

15

11.4 cm. (43s") O.D.x 38
cm. (15") overall length
less thermometer bulb

guard piece.
50 meters (72 psi)
0° to 55°
+1% of full scale (.55 C)
Battery powered calendar
watch with second, minute
and hour hands plus date
window

+0.0035$ (30 seconds per
24 hours)
Selectable at 5, 15> 30,
or 60 minutes. Timing
intervals chosen by chang
ing timing plugs in data
logger circuit. A 15
minute range was used in
this study.
16 manganese-alkaline pen-
light cells. (Mallory MN
1500, size AA, or equal).
5 months or, if sooner,
11,000 camera operations.
(Watch battery, one year).



The General Oceanics Model 3070 Film Recording Thermo
graph is a self-contained instrument for measurement and
recording of air and water temperatures over extended periods
of time. The Model 3070 sensor is a large dial thermometer
mounted on one end cap of the cylindrical instrument housing.
The bimetallic sensing element of the thermometer protrudes
through the end cap out into the environment for quick res
ponse to temperature changes. This thermometer bulb is pro
tected by a small guard piece with a number of through-holes
for easy circulation of air or water. The thermometer dial
is photographed at periodic intervals (15 min. interval used)
by a film data logger at the opposite end of the housing. A
battery powered calendar watch is mounted in the center of
the thermometer dial to provide an accurate time and date
reference for each film frame.

IV. Data Processing

Data from three different sources are included in this
report. Each data set presented unique processing problems
and each is discussed separately. Most of the computer pro
grams used to process and analyze the data are members of a
time series analysis library known as FESTSA (Brooks, 1976).

Current Meters. Endeco type 105 film-recording current meters
were used in the 1975 Onslow Bay observational program. The
sampling interval was 0.5 hours. The film magazines were
transcribed by Endeco to 9-track magnetic tapes containing
files of speed and direction. The speed and direction values
were converted to u and v components in several ways. The
Carolina Cape region is defined by an irregular, cuspate,
scallop like coastline which extends into shoals and con
sequently it is difficult to specify a spatial co-ordinate
system. Coherency and phase relationships between components
of a vector time series are functions of the co-ordinate
system in which the components are specified. The natural
tendencies are to choose either a north-south, east-west
horizontal axis or to assume a straight coastline of uniform
cross-section so that the horizontal co-ordinate system axes
lie parallel to and perpendicular to the straight isobaths.
Unfortunately, however, the isobaths in the Carolina Capes
region are not uniform or straight and the choice of a co
ordinate system is less than obvious. Two tacts were taken
herein. The first co-ordinate system chosen is one based on
the direction of the local bathemetric contours at approximately
mid shelf to the shelf break, which tend to run southwest to
northeast at an angle 55.6 clockwise from North (cf. Figure 9).
The second co-ordinate system used is one oriented on a basis
determined by the characteristics of the data itself. A co
ordinate system which maximizes the variance in any given
direction gives the so-called "Principal Axis" of variance.
This system, in which the estimated phase difference between u

16
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and v is identically +90 is also called the "Normal" system
(Fofonoff, 1969) and the "Hodograph" system (Mooers, 1970).
As a function of the physical, dynamical processes causing the
measured hydrodynamics, the principal axis of variance may vary
with frequency and geographic location. The "Principal Axis"
for a given vector time series is obtained by rotating the
covariance matrix until the cross-covariance between orthogonal
velocity components is zero. The rotation of the co-ordinate
system into the principal axis does not fix the sign of the 90
phase shift between u and v. This is determined by the data.
Since the principal axis for a given vector time series will
vary with frequency, we can construct, hodographs which will allow
for the vector time series to be decomposed into cyclonic and
anticyclonic rotating motions of different amplitude and phase.
The sum of these two polarized motions yields an ellipse whose
semi-major axis is oriented along the principal axis of variance
at that particular frequency. The principal axis herein is given
as a function of frequency rather than as an average over a
large frequency band.

Within this report, the vector time series have been vari
ously represented in the different possible ways described above.
The figure captions indicate the nature of the representation.
The raw current data were low pass filtered with a three hour
low pass (3HRLP) Lanczos filter to reduce surface wave noise,
and then subsampled hourly. The current data were then low pass
filtered by convolution with a Lanczos data window to separate
the inertial, semi-diurnal, and diurnal fluctuations from longer
period motions. The energy response envelope of the 40-hour low
pass (40HRLP) filter is shown in Figure 10. The filter atten
uation is everywhere at least as great as that shown by the
envelope. The 40HRLP time series were decimated to provide a
sampling interval of 6 hours.

Start times, stop times, and record lengths of the original
and filtered time series for both the summer and fall experiments
are shown in Table 3.

Meteorological Data. Three-hourly values of surface wind speed,
wind direction, atmospheric pressure, and temperature were
obtained from NOAA, Environmental Data Service, Asheville, North
Carolina. Wind vector and wind stress vector components were
computed for the rotated coordinate system, with the positive
vector sense in the direction toward which the wind blows. The
wind stress vector components were computed from the wind vector
componentsmusing a quadratic drag law with the drag coefficient
Cn=1.5xl0~ . Two low pass filters were used for the meteorological
data. A 48 hour low pass (2DLP) Lanczos filter was used, with
subsequent decimation to a 9 hour interval and linear interpolation
to an 8 hour interval, for initial examination of the meteoro
logical data. Figure 11 shows the filter energy response envelope.
Later, a 40HRLP filter equivalent to the one used for the current
data was used to facilate comparisons between the data sets.

18
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Instrument §

(318 & 317) Altop& AlbQt
Start Time (EST)

Stop Time (EST)

# of Points
Interval

<22*7) B1bot
Start Time (EST)

Stop Time (EST)

# of Points

Interval

(316 & 247) A2tQp& A2bQt

Start Time (EST)

Stop Time (EST)

# of Points
Interval

TABLE 3

Original
Data

6 Aug. '75
1000 hrs.

26 Sept. '75
0630 hrs.
2442
0.5 hrs.

7 Aug. '75
1100 hrs.

25 Sept. '75
1700 hrs.

2365
0.5 hrs.

14 Oct. '75
0930 hrs.
9 Dec. '75
1230 hrs.
2696
0.5 hrs.

20

40HRLP

10 Aug. '75
1800 hrs.

21 Sept. '75
1800 hrs.

169
6 hrs.

11 Aug. '75
1900 hrs.

21 Sept. '75
0700 hrs.

163
6 hrs.

18 Oct. '75
1730 hrs.
4 Dec. T75
2330 hrs.
190
6 hrs.

3HRLP

6 Aug. '75
1800 hrs.
25 Sept. '75
2300 hrs.

1205
1 hr.

7 Aug. '75
1900 hrs.
25 Sept. '75
1000 hrs.

1167
1 hr.

14 Oct. '75
1730 hrs.
9 Dec. '75
0500 hrs.
1332

1 hr.



Sea Level. Hourly sea level heights from coastal tide gauges
were obtained in punched card form from NOAA, National Ocean
Survey, Rockville, Maryland. The long period sea level fluctua
tions were separated from the semidiurnal and diurnal tidal
fluctuations with a 2DLP filter; the time series were then
decimated to provide a sampling interval of 8 hours. The filter
energy response envelope is shown in Figure 11.

Frequency Domain Presentations. Spectral representations of
data in this report are given in two formats:

a) Graphs of variance (spectrum density times frequency)
versus the logarithm of frequency. These are "quick
look" calculations based on the fast Fourier trans
form (FFT). The FFT's of original data were smoothed
by block averaging over five adjacent estimates,
yielding about ten degrees of freedom for each averaged
estimate. The FFT's of low passed data were not
smoothed, yielding two degrees of freedom for each
estimate.

b) Auto and cross spectra, phase and coherence squared
computed for paired input time series. The spectral
calculations were performed by Fourier transforming
correlation functions. The maximum correlation lag,
spectral bandwidth, degrees of freedom, and input
time series names are shown on each figure. The
first named time series corresponds to "spectrum x".
Additionally, positive phase values indicate series
y leading series x.

Figure Formats. The current meter information in figures 12-51
is shown in six different basic formats. For the low passed
records, the following quantities are displayed: time series
of current components u and v, vector stick diagrams, FFT's,
and spectra. For the raw (unfiltered) records, the following
quantities are displayed: time series of current components u
and v, progressive vector diagrams (PVD's) of original (un
filtered) data and FFT's. 3HRLP records were used for spectra
(u vs. v for same meter) and hodograph parameters. The current
meter naming convention used in this report is

A(B) 1(2), ,. _ N3
'top (bottom)*

where A(B) and 1(2) respectively identify the mooring location
and date, as shown in Table 1, and the top (bottom) subscript
identifies the location of the instrument on the mooring string.
For example, the notation Al. refers to the uppermost instru
ment on mooring A during the Summer experiment. First-order
statistics for the unfiltered current data are given in Table 4.

Intermooring and intramooring spectra for the low passed
currents are shown in Figures 52-83. Figures 52-67 are in the

21



te

090-
C
4

°UJ
pc/>

z-2-
2O
PCL
?CO
4Ld
CDQ£-4- •—>

CD

oq^
^CD

2^
.2LU-6-
o^

gLjJ
CD

§o-8-
3O
M-J
o

0

i-b
-10- O1

4

6
O

EnergyResponseEnvelope,
2DLPfilterformeteorological
andsealeveldata.Half-amplitude
pointcircled.

—I•1—
i2

FREQUENCY(CPD)



Meter

A1top(3l8>

AW31"

BW22,7)

A2top(3l6)

A2bot(2i|7)

Table 4

First Order Statistics

Meter

Depth(m)
Min. Max. Avg. S.D. Parameter

(cm/sec)

10 -34.0
-27.0

42.0
43.0

2.78
5.29

13.40
10.85

u

V

25 -20.0

-21.0

21.0

26.0
0.18

lo95
7.47
7.29

u

V

25 -26.0
-23.0

21.0

19.0
-1.53
-0.32

8.45
5.68

u

V

10 -41.0
-33.0

35.0
48.0

-2.72

2.43
13.55
11.34

u

V

23 -28.0
-32.0

24.0
26.0

1.89
2.44

9.15
7.59

u

V

23



topographic coordinate system (R-56 ) while Figures 68-83 are in
the principal axis coordinate system computed for each meter.
Time series and FFT's of low passed and unfiltered meteorological
data from Cape Hatteras and Wilmington are shown in Figures 84-115.
Time series comparisons between current and wind stress vectors
are shown in Figures 116-117, and cross spectra between currents
and meteorological variables are shown in Figures 118-177. Figures
138-177 is a special case series. Here the wind stress is main
tained in the topographic coordinate system and the currents are
seen in the principal axis coordinate system which is computed
for each meter. Figures 138-157 have no detrending while Figures
158-177 are detrended. Time series of low passed sea level at
Wilmington, N. C. and Charleston, S. C. are shown in Figures
178-179.

Additionally, a time series of temperature data, collected
at 15 minute intervals at mooring B (top) during the August-
September experiment , is presented, unfiltered, in Figure 180
and, 40 HRLP filtered, in Figure 181. A case study of bottom
intrusion is presented in Figure 182. Figure 183 is a graphic
presentation comparing wind and current averaged vectors.

V. Preliminary Conclusions

These data are the first reasonably "long term", i.e.,
2-4 month period of observations, and allow for some inter
esting initial finds as concerns Gulf Stream intrusions, ef
fluent transport and shelf flushing. Before speculating on
any relationships between atmospheric forcing, Gulf Stream in
fluences/and continental shelf responses, it is of use to con
sider what we know to date, given these data sets. Reports
to follow will elucidate further on the state-of-the-art know
ledge as it develops from the Department of Energy and the
National Oceanographic and Atmospheric Administration and Uni
versity of North Carolina Sea Grant College Program funded
studies.

Additionally, the Very-High-Resolution Radiometer on the
NOAA-2 (National Oceanic and Atmospheric Administration) satel
lite has recently obtained imagery in the visible channel over
a major portion of the coastal waters off the eastern seaboard
of the United States. Strong and DeRycke (1973) indicated an
abrupt change in surface roughness at the shoreward edge of the
Gulf Stream Current from Florida to Cape Hatteras that could
result from the opposition of waves propagating against the
flow of the Gulf Stream. Herein, DeRycke and Rao (1973)
pointed out an apparent relationship between the occur
rence of eddies along the western side of the Gulf Stream and
strong westerly winds.

Satellite images (Legeckis, 1975; Stumpf and Rao, 1975)
suggest that the eddies evolve from growing instabilities
(Florida Current meander), which may initially be wind induced.
They manifest themselves as warm, southward-oriented, tongue-
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like extrusions of Florida Current water onto the shelf, sim
ilar to the shingle structure observed by Von Arx, Bumpus and
Richardson (1955). In the Florida Straits they are confined
by the narrow shelf coastal boundary and observed diameters
range from 10 to 30 km. Eddy vertical extent is approximately
200m. Lee (1975) concludes that spin-off eddies are a dominant
mechanism for shelf water mass exchange off southeast Florida
and estimates the shelf residence time as 1 week due to eddy
water renewal. Atkinson, et. al. (1977) and Blanton and
Pietrafesa (1978) have essentially concluded that the similar
flushing mechanism is at work throughout the whole of the South
Atlantic Bight. Satellite imagery show that eddy-like excursions
are a consistent feature along the shelf break of the SAB and
appear to grow to much larger proportions.

Near the shelf break (50 to 75 m isobaths) Gulf Stream
frontal instability processes, such as wave-like meanders and
spin-off eddies become a significant contributor to current
variability and water mass exchange. The Gulf Stream surface
front may meander about 10 to 25 km in the east-west direction
with a wave length of 100 to 200 km. These meanders are known
to grow at times into the tongue-like disturbances (shingles,
sausages or eddies). The cyclonic circulation in the eddies
transports shelf water offshore in the southern region of the
vorticity, which provides a mechanism for rapid water exchange.
It is thus appreciated that eddy like events displace large
volumes of shelf water with onshore flows of Gulf Stream waters
at the surface and bottom and offshore shelf water displace
ment and subsequent entrainment into the slope waters.

Flushing frequency is thought to tie directly to the fre
quency with which meanders and eddy events occur. Conventional
wisdom is that meanders and eddy events occur at frequencies
between 0.1 and 0.2 cycles per day; figures which embrace the
pioneering study by Webster (1961), as well as studies of sea
level by Mysak and Hamon (1969), and present current studies.
We should point out that studies have yet to unambigously link
onshore/offshore flow cycles on the North Carolina Shelf with
meanders or accelerations of the Gulf Stream. From the
Pietrafesa data sets, it is obvious that large amplitude current
fluctuations with periods ranging from several days to several
weeks are common features on the continental shelfs off North
Carolina. These current meter data indicate that cycles in
onshore/offshore flow often precede local wind events occurring
more or less simultaneously at Cape Hatteras and Wilmington,
North Carolina (separating-distance about 120 km). Perturba
tions in the Gulf Stream represent a mechanism which could be
causing those flow cycles in mid-shelf that seem poorly cor
related with local winds.

Considering the data covering 42 days collected during
August-September, 1975 by Pietrafesa and shown in this report:
over this period, eight cycles of onshore/offshore flow ocurred,
about one cycle each 5 days. The most dramatic onshore/offshore
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event occurred at the SW mooring from 10-22 August 1975 (Fig.l82).
The other seven cycles in the SW had durations from 4 to 5 days
long. The onshore flow in all but one cycle lasted 2 to 4 times
longer than the following offshore flow, indicating that that
flow was predominantly onshore in the SW corner near bottom.
Onshore/offshore flow cycles near bottom in the NE were weak
and poorly coherent with near, bottom flow in the SW. The average
flow from the smoothed record is shown in Figure 183 where averages
were computed for the entire *J2-day record. The near bottom
flow in the SW is clearly stronger than that observed in the
NE. The strong average northeastward flow near surface in the
northeast is closely aligned with the prevailing northeastward
wind stress during the summer season in a conventional Ekman
barotropic geostrophic sense. Onslow Bay responds to discrete
wind events from the SW (prevailing) and the NE (after frontal
passages). A selected five days of the 42-day record to demon
strate this response is shown in Figure 183 . Three illustra
tions cover northeastward wind stress whose daily average varied
from less than 1 dyne/cm2 to almost 3 dynes/cm2. Under these
conditions, only the surface flow in the northeast increases
with increasing wind stress. The onshore flow in the SW aver
aged 10-15 cm/sec during the day under the three different stress
magnitudes. Two other illustrations cover episodes of south-
westward wind stress. The first daily average stress was about

1 dyne/cm ; the second was almost 3 dynes/cm . Bottom flow
tended to follow the trend of the isobaths. It was not clearly
proportional to the windfs strength. Neither was the surface
flow.

Hydrographic data obtained at the time the two moorings
were set showed Onslow Bay to be highly stratified in the ver
tical with a well mixed surface layer of about 27-5°C and sa-
linites less than 35.5°/oo over a well mixed bottom layer
whose temperature ranged from 25.5°C less than 20 km offshore
to less than 22.5°C near the shelf break. Salinities were
everywhere greater than 36°/oo in the lower layer. The bottom
meters were within this bottom layer. Temperature and salinity
(Atkinson, et.al., 1976) confirm that the onshore/offshore flow
cycles in this bottom layer transported water of Gulf Stream
origin.

Onslow Bay seems to respond in a discrete manner to dif
ferent directions of the alongshelf wind stress. Northeast-c
ward stress induces offshore flow near the surface almost 45
to the right of the wind. This is really no support of Ekman
drift since the Cape Lookout Shoals in the NE corner undoubtedly
deflect, i.e. steer the flow to some degree. The occasional
insensitivity of the bottom flow to wind stress magnitude im
plies another driving source which we will discuss below. South-
westward wind stress reverses the sense of the near surface
flow and bottom flow is more clearly aligned with the isobaths.
There was strong onshore bottom flow observed in the SW between
10-18 August. The along shelf component was very small. Bottom
topography in this region is quite complex, and it is entirely
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possible that this strong onshore component is following the
local topography. Nevertheless, water is clearly being carried
toward the inner portion of the embayment. Three points can be
stressed here. First, strong bottom flow began at least two
days before strong northeastward winds. Secondly, the maximum
current speeds occurred 2 to 3 days before the strongest winds.
Thirdly, the currents diminished and reversed while the winds
still blew hard toward the northeast. In fact, the strongest
observed winds occurred on 18 August. The effect of this strong
onshore flow in the SW•can be seen in the temperature at this
point was approximately 26°C for the entire 42 day record ex
cept between 14 and 16 August. At this time, the temperature
dropped on 14 August to 22°C. The low temperature occurred
simultaneously with the strongest bottom flow in the SW which
had been acting for the previous 3 days at only slightly lesser
speed. These facts suggest that the dramatic onshore/offshore
event was triggered by a large-scale disturbance, probably
originating in the Gulf Stream and enhanced by the upwelling
favorable, subsequent winds. The onshore flow carried relatively
cold temperature water of Gulf Stream origin (Atkinson, et.al.,
1976) to the inner portions of the embayment where vertical
mixing in the shallow water cooled the entire water column to
around 22°C. This water was returned offshore in the upper
portions of the water column where it passed by the NE mooring
on 14 August.

The other seven cycles in the 42-day record had much
less effect on the inner portions of Onslow Bay because they
were not as strong nor did they persist as long. Nevertheless,
these cycles represent processes that remove or flush water
from the embayment. Our data seem to indicate that such
cycles occur about once every 5 days.

The Cape Fear i.e. Frying Pan, and Cape Lookout shoals
bounding the southern and northern parts respectively of
Onslow Bay appear to exert a degree of topographic control
on the circulation. The response of Onslow Bay to onshore
flow events indicate that water tends to cross the embayment
predominantly in the southern portion. We assumed therefore,
that the onshore flow occurs over one-half the along shelf
length or L - 50 km. The average thickness of this flow was
estimated from extensive hydrographic data taken over several
years. The sharp thermocline that separates the surface shelf
water from the more saline and colder bottom water (Blanton,
1971) averages roughly 10 meters off of the bottom. This on
shore flow is typically about 10 meters thick. Average on
shore speeds are about 7 to 10 cm/sec at the SW mooring which
last on the average of about 3 days. Using the above values,
we calculate the volume flux of onshore flow across a half

length of the embayment to be about 1.3 x 101" cm? over a
3-day duration. The embayment's total volume (100 km x 50 km
x 30 m) is about 1.5 x 10^-7 criP. Thus 12 onshore events are
required to remove the total volume of Onslow Bay. If these
events occur each 5 days, a replacement rate = 12 events x 5
day/events = 60 days. Thus about 2 months are required to
flush Onslow Bay by these onshore flow cycles.
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This flushing rate of 2 months can be compared with other
calculations for the shelf south of Cape Hatteras. Atkinson,
Blanton and Haines (1977) calculated an overall flushing rate
of 2.7 months based on the freshwater distribution and input
to the Georgia Bight area. In that paper, it was shown that
this rate was remarkedly constant from season to season, and
a Gulf Stream entrainment model was proposed to account for
the rate at which freshwater could be removed from the Conti

nental Shelf. Using typical freshwater filament dimensions
and salinities observed by satellite and hydrographic cruises
and assuming that the stream entrains one of these filaments
each five days, it is speculated that about 2 to 3 months are
required to remove the freshwater observed on the Continental
Shelf in the South Atlantic Bight.
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VI. Current Meter Data
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Figure 64 Spectra of low pass current velocity com
ponents from meter A2.. (u component) and

meter A2. (u component)
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Figure 69 Apectra of low pass current velocity com
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Principal Axis = 65.26°) and meter Al
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Figure 72 Spectra of low pass current velocity com
ponents from meter Bl. . (u component,
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Figure 73 Spectra of low pass current velocity com
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VII. Meteorological Data
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Figure 84 Low pass wind velocity components at Cape
Hatteras, Aug-Sept 1975
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Figure 85 Low pass temperature and pressure at Cape
Hatteras, Aug-Sept 1975
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Figure 101 Low pass temperature and pressure at Wil
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Figure 108 Low pass wind velocity components at Wil
mington, Oct-Dec 1975
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Figure 109 Low pass temperature and pressure at Wil
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VIII. Intravariable Comparisons Between Current
and Meteorological Data
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119 Spectra of the low pass wind stress v com
ponent at Wilmington and the low pass current
velocity v component from meter Al^ Auc-
Sept 1975 t0P
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Figure 120 Spectra of the low pass wind stress u com
ponent at Wilmington and the low pass current
velocity v component from meter Alt Aug-
Sept 1975

Figure 121 Spectra of the low pass wind stress v com
ponent at Wilmington and the low pass current
velocity u component from meter Al^ Aug-
Sept 1975
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Figure 122 Spectra of the low pass wind stress u com
ponent at Wilmington and the low pass current
velocity u component from meter A1K <_ Aug-
Sept 1975 (detrended)

Figure 123
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Spectra of the low pass wind stress v com
ponent at Wilmington and the low pass current
velocity v component from meter AL . Aug-
Sept 1975 (detrended) •bot
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Figure 124 Spectra of the low pass wind stress u com
ponent at Wilmington and the low pass current
velocity v component from meter Al. . Aug-
Sept 1975 (detrended)

Figure 125 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
Al. <_ Aug-Sept 1975 (detrended)
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Figure 126 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
BlbQt Aug-Sept 1975
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Figure 127 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
BlbQt Aug-Sept 1975
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Figure 128 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
Bl, , Aug-Sept 1975 (detrended)
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Figure 129 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
Bl . Aug-Sept 1975 (detrended)
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Figure 130 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter

A2top 0ct-Dec 1975
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Figure 131 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2top 0ct-Dec 1975
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Figure 134 Spectra of the low pass wind stress u com
ponent at Wilmington and the low pass
current velocity u component from meter
A2bQt Oct-Dec 1975

311

0
SPECTRUM T

0.10 0.30 0.30

FREQ.

.to

c/our

O.SO 1

o

o

ir

1 1 —i 1

0.60 £

0 0.10
CROSS SPECTRUM

0.30 O.SO o.to

FREQ. C/ORY

O.M 0

o

i

<->o

1
0.10 0.30 l.tO O.SO

0.10 0.20 O.tO

FREQ. C/ORT

Nil VSC/E2t7 V 1S0CT-OSOEC 7S RSt tEMRlP NO DETREK)
D0F-II.S IROS-tS.O CM- 0.0SJJ CPO

SPKTRfl REV 7CKCSU)

O.SO O.M

Figure 135 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2bQt Oct-Dec 1975
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Figure 138 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter

A1top (PrlnciPal Axis = 06°), Aug-Sept 1975
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Figure 139 Spectra of the low pass wind stress v com
ponent at Wilmington and the low pass
current velocity v component from meter
Alfjop (PrlnciPal Axis = 06°), Aug-Sept 1975
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Figure 140 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
Al. (Principal Axis = 06°), Aug-Sept 1975
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Figure l4l Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
Al. (Principal Axis = 06°), Aug-Sept 1975
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Figure 142 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
Al (Principal Axis = 65°), Aug-Sept 1975
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Figure 143 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A1bot (PrlnclPal Axis = 65°), Aug-Sept 1975
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current velocity u component from meter
A1bot CPrinclPal Axis = 65°), Aug-Sept 1975
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Figure 146 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
Bl (Principal Axis = 02°), Aug-Sept 1975
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Figure 147 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
B1bot (PrlnclPal Axis = 02°), Aug-Sept 1975

141



si
UJ

0.10 0.30 O.SO O.tO O.SO

FREQ. C/DRY

O.M O.M O.tO O.SO O.M

0.10 0.20 0.30 O.tO
COHERENCE SQURRED fKOi c/0Kf

m. usuan v uaumisep 75 roj mhjlp no oetrem)
00F-4.M LABS-tS.O IN- O.OSSS CPD

SPKTRA REV 7(NCSU>

Figure 148 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
BL . (Principal Axis = 02°), Aug-Sept 1975
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Figure 149 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter

B1bot (PrlnclPal Axls = 02 >» Aug-Sept 1975

142



§1

0 0.10
SPECTRUM Y

0.30 O.SO o.to

FREO. C/DRY

0.50 0

«f
u

v>

1 -1 1
0 0.10 O.M O.M o.to O.SO (
CROSS SPECTRUM FREQ. C/DRY

«M

o

ft

«*

*
<o

SL-
°<n

1 T

SPKTRR REV 7(NCSU>

o.to

FREQ. C/ORY

Figure 150 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
A2 (Principal Axis = 11°), Oct-Dec 1975
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Figure 151 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2 (Principal Axis « 11°), Oct-Dec 1975
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Figure 152 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
A2^ (Principal Axis = 11°), Oct-Dec 1975
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Figure 153 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
A2,. (Principal Axis = 11°), Oct-Dec 1975
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Figure 154 Spectra of the low pass wind stress u component
at Wilmington and the low pass current
velocity u component from meter A2^ .
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Figure 155 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2 (Principal Axis = 89°), Oct-Dec 1975
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Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
A2W . (Principal Axis = 89°), Oct-Dec 1975
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Figure 157 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
A2 . (Principal Axis = 89 ), Oct-Dec 1975
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Figure 158 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
Al. (Principal Axis = 06°), Aug-Sept 1975
(detrended)
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Figure 159 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
AltQp (Principal Axis = 06°), Aug-Sept 1975
(detrended)
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Figure 162 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
AlbQt (Principal Axis = 65°), Aug-Sept 1975
(detrended)
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Figure 163 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
AlbQt (Principal Axis = 65°), Aug-Sept 1975
(detrended)
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Figure 164 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
AL . (Principal Axis = 65 ), Aug-Sept 1975
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Figure 165 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
Al. 4. (Principal Axis = 65 ), Aug-Sept 1975

(detrended)
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Figure 166 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
BlbQt (Principal Axis = 02°), Aug-Sept 1975
(detrended)

Figure 167

SPKTRR REV 7INCSU)

Spectra of the low pass wind stress v com
ponent at Wilmington and the low pass
current velocity v component from meter
B1bot (PrlnclPal Axis = 02°), Aug-Sept 1975
(detrended)
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Figure 168 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
Bl, . (Principal Axis = 02°), Aug-Sept 1975
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Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
BL . (Principal Axis = 02°), Aug-Sept 1975
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Figure 170 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter
A2. (Principal Axis = 11°), Oct-Dec 1975
(detrended)
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Figure 171 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2 (Principal Axis = 11°), Oct-Dec 1975
(detrended)
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Figure 172 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity v component from meter
A2^ (Principal Axis = 11 ), Oct-Dec 1975
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Figure 173 Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
A2^ (Principal Axis = 11 ), Oct-Dec 1975
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Figure 174 Spectra of the low pass wind stress u
component at Wilmington and the low pass
current velocity u component from meter

A2bot (PrlnclPal Axis = 89°), Oct-Dec 1975
(detrended)
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Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity v component from meter
A2bQt (Principal Axis = 89°), Oct-Dec 1975
(detrended)
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Figure 176

Figure 177

1.20 o.ao 0.10
COHfBIKCt S&KWO

.50 0.(0

5PKTSH K[V 7(»C1U)

Spectra of the low pass wind stress u com
ponent at Wilmington and the low pass
current velocity v component from meter
A2. . (Principal Axis = 89°), Oct-Dec 1975
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Spectra of the low pass wind stress v
component at Wilmington and the low pass
current velocity u component from meter
A2. , (Principal Axis = 89°) , Oct-Dec 1975
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IX. Coastal Sea Level Data
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Figure 178 Low pass sea level at Wilmington, N.C
Charleston, S.C. Aug-Sept 1975
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Figure 179 Low pass sea level at Wilmington, N.C
Charleston, S.C. Oct-Dec 1975
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X. Temperature Data
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Figure 180 Unfiltered temperature from Bl
thermograph top

163



cr

f
Q_
LJ

CO
CD
O

P
CD

O
o

UJ

Z)

fee
cr

CL

LU

r-

,o

CD

i i i i i I i i i i | i i i i | i i i i i i i i i i ' i ' ' i i i i • i i i • ' i i * i ' i i * * *
27.0 26.0 25.0 2*.0 23.0

TECPERRTURE °C

F igure l8l Low pass temperature from Bl,
thermograph

164

22.0



XI. Case Study
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Figure 182 Case study of bottom intrusion during
period Aug 9-24, 1975
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Daily averaged vectors of wind stress squared
(Cape Hatteras) and currents during specific
events of wind. (a) 42-day average currents
(only); (b) NE wind stress, 12 Aug.; (c) NE wind
stress, 14 Aug.; (d) SW wind stress, 19 Aug.;
(e) NE wind stress, 12 Sept.; (f) SW wind stress,
14 Sept. Wind stress vectors are depicted north
west of the shoreline in each illustration except
the first. In (a), multiply vector lengths by
0.05 for true speeds. Dotted arrows represent
currents at 10 meters depth; solid arrows repre
sent currents at 25 meters depth.

Figure 183 Daily averaged vectors of wind stress
squared (Cape Hatteras) and currents
during specific events of wind
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