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Abstract 

To understand the community risk from severe weather threats, two components including weather 

information and community assets are crucial. Recently, Probabilistic Hazard Information (PHI) 

from the NOAA Forecasting a Continuum of Environmental Threats (FACETs) program has been 

developed to provide dynamic weather-related information between the watch and warning 

systems to weather forecasters, emergency management agencies and the public. To predict 

community physical risks on critical infrastructure and building properties using PHI, building 

type information is required. This study applied a machine-learning technique to predict building 

types using building footprint and city zoning data. We collected Oklahoma county building 

property data to train and test a random forest model. The result of this study showed that building 

footprint and city zoning data can be applied to classify multiple building types with an accuracy 

of 96%. The machine-learning based building classification contributed to the acquisition of 

building type data in the Oklahoma City metropolitan area. This geodatabase will be utilized to 

predict real-time critical infrastructure and building damage assessment using PHI. In addition to 

their importance to physical building damage assessment, the results can be utilized to develop 

post-disaster responses and planning.   
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Introduction  

Nearly 90% of all presidentially declared disasters are weather-related, such as tornadoes, 

hurricanes, storms, and floods. According to the National Oceanic and Atmospheric 

Administration (NOAA), a tornado is defined as “a violently rotating column of air that extends 

from a thunderstorm and comes into contact with the ground”. While hurricanes, storms and floods 

have longer lead-times to prepare for community impacts from severe weather, tornadoes have a 

very short lead-time (average 13 mins) with high uncertainty (NOAA 2011). Around 1,000 

tornadoes are reported annually, and the tornado intensity is measured on a scale of 0 through 5. It 

incorporates 28 different damage indicators, based on damage to a wide variety of structures 

ranging from trees to institutional buildings (McDonald and Mehta 2006a). In 2020, there were 

1,218 tornadoes compared with 1,520 in 2019. In 2020, about 78 people perished compared with 

41 in 2019. For example, in April 2020, 32 people perished in tornadoes in Georgia, Mississippi, 

South Carolina and Tennessee (Brackett and Childs 2020). The storms caused at least $3 billion 

in insured losses in the areas of Midwest and Mid-Atlantic states  (Insurance Information Institute 

2019). In March 2020, 24 people were killed in tornadoes in central Tennessee, including the city 

of Nashville. Tornado deaths in 2020 are the highest since 2011 (Gee et al. 2020).  

While U.S. tornado-related fatalities are less than 100 per year on average (NWS, 2020), the 

average annual tornado-caused economic losses are between $4.7B and $7.2B (Simmons et al. 

2013); less than 1–3% of the annual GDPs of the most-affected states. These remarkably low 

fatality numbers are due to advanced meteorological and engineering research, and the 

geolocational characteristics of tornadoes that did not directly affect larger cities or residential 

communities. Economic losses from tornadoes are still high. There has been $130 billion (CPI-

adjusted estimate) in losses due to 54 major events involving tornadoes spawned by severe storms 

over the past 40 years. This figure may be lower than, but of a comparable order of magnitude to 

hurricane-related losses of nearly $1 trillion dollars over the period 1980–2019 from 45 hurricanes. 

These very costly tornado and hurricane events caused just 1,270 and 6,507 fatalities, respectively 

(NOAA/NCEI 2018).   

Community risk from severe weather threats can be measured by two components: (1) severe 

weather-related data/information and (2) databases for community assets (e.g., critical 
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infrastructure (assets, systems, and networks) and building property data (structure type, exterior 

materials, the number of stories)  (see Fig. 1).  

Recently, Probabilistic Hazard Information (PHI) under the NOAA Forecasting a Continuum of 

Environmental Threats (FACETs) program has been developed to provide dynamic weather-

related information with weather forecasters, emergency management agencies, and the public 

(James et al. 2020; Karstens et al. 2015b; Rothfusz et al. 2018). FACETs is a concept being 

explored by NOAA to potentially shift the National Weather Service (NWS) from deterministic 

watch/warning products to high-resolution PHI products spanning from days (and longer) to within 

minutes of high-impact weather and water events.  

To improve community resiliency using PHI from severe weather threats, it is critical to develop 

a geodatabase that includes a variety of community assets in terms of critical infrastructure, 

residential, commercial and industrial buildings. The goal of this study is to develop a machine 

learning model to create a geodatabase that can be utilized for community risk assessment using 

PHI. To this end, this study consists of three parts: (1) building property data collection and 

preparation for the training and testing datasets, (2) the development of a machine learning model 

to classify building type data and (3) predicting building types using the trained machine learning 

model. The findings support the development of a geodatabase for a better community risk 

assessment using PHI. Community risk assessment will support weather forecasters, emergency 

management agencies and facility managers to understand the impact of severe weather on 

communities and to develop a better emergency response and recovery.  

The remainder of this study is organized as follows. Section 2 provides a systematic review of 

literature including community risk assessment, PHI and building classifications. Section 3 

addresses a machine learning model and data collection/preparation to train and test a random 

forest model. In section 4, we review the results including model performance, factor importance 

and hyper-parameter tuning. Lastly, Section 5 provides our conclusions with a discussion of the 

limitations of this research and future research topics.  
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Literature review 

In this section, we review the literature related to community damage assessment, the comparison 

of deterministic and probabilistic weather-related information systems, and building classification. 

While building classification is the primary focus of this paper it is important to understand how 

community damage assessment has been done in the past and how it may be implemented with 

developing weather information technologies to better understand the reasons for our methodology. 
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Community damage assessment  

Damage assessment after storms is traditionally completed through on-site damage surveys 

(Vetrivel et al. 2016) which involves a team of surveyors going from building to building 

determining the individual damages (Burgess et al. 2014; Kuligowski et al. 2014). This technique 

yields a lot of detail on the amount of damage and the reasons for structure failure, however it is a 

labor-intensive process that can take days to weeks to complete for large damage areas (e.g., 

hurricanes) and so can slow down the clean-up and rebuilding processes after a disaster (Vetrivel 

et al. 2016; Zhou and Gong 2018). 

The use of aircraft or satellite-based remote sensors to assess damages has become a 

common alternative in recent decades with optical, synthetic aperture radar (SAR), and light 

detection and ranging (LiDAR) among the most common sensors, each having their own strengths 

and weaknesses with respect to building damage assessment. Optically sensed images are easy to 

interpret and typically available from most satellites (Vetrivel et al. 2016); however, they are 

typically unavailable at night or under cloudy or inclement conditions (Cao and Choe 2020) and 

with most sensors nadir-facing it is difficult to assess damages when the roof remains intact (e.g., 

pancake collapse) (Plank 2014). SAR is available under nearly all weather conditions and can 

provide a side-view to identify damages to a building’s structure or façade (Yun et al. 2015). When 

paired SAR scenes (with different radar phases) are used it is easy to identify damages to a 

building’s structure; however, it is not available on all satellites (potentially increasing the length 

between consecutive images) (Yun et al. 2015), it can be more difficult to interpret by a layperson, 

and the resolution can be a little coarser (Cao and Choe 2020). LiDAR can easily capture fine-
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scale three-dimensional images and thus is effective at identifying cracks and damages to different 

structures within a building (Dai et al. 2018; Zhou and Gong 2018); however it is expensive and 

does not work under bad weather conditions (Pirasteh et al. 2019). One additional disadvantage 

common to all sensors is the requirement of having both pre-event and post-event imagery of the 

same quality and resolution for purposes of change detection (Dong and Shan 2013; Wu et al. 

2016). Polarimetric SAR is capable of assessing damages from post-event imagery only, but not 

all SAR sensors are polarimetric and this method has proven slightly less accurate when compared 

to using pre-event images as well (Bai et al. 2017; Zhai and Huang 2016). 

Many recent studies have used remotely sensed imagery along with artificial intelligence 

methods such as random forest and convolutional neural networks to produce damage maps after 

a disaster. Cao and Choe (2020) used optical satellite imagery and a convolutional neural network 

to identify damaged buildings in the Houston area after Hurricane Harvey with 97% accuracy. Yun 

et al. (2015) generated damage proxy maps from pairs (pre- and post-event) of interferometric 

SAR coherence maps for the 7.8 magnitude Gorkha earthquake in Nepal. These maps showed 

good correlation with an independent damage assessment and were shared with local stakeholders. 

Vetrivel et al. (2016) used oblique imagery to test the use of the Visual-Bag-of-Words (BoW) 

image classification technique in identifying structural damage to buildings after earthquakes. 

They found that BoW outperformed conventional global feature representation with an average 

accuracy of around 90%. 

While post hoc damage assessment provides a useful set of information regarding a 

building’s resistance to damage, it is also helpful to model potential damages to buildings in future 

disasters. Such models make assumptions about the amount of force (from a given hazard) required 

to cause certain degrees of damage to buildings and often include estimates of the economic cost 

of such damages (Khajwal and Noshadravan 2020). Building damage models have recently been 

used to study total hurricane (wind and storm surge) damage (Baradaranshoraka et al. 2017), wind 

damage (Ham et al. 2018; Khajwal and Noshadravan 2020), and flooding (Jamali et al. 2018; 

Nafari et al. 2016). The major strength of the modeling approach is that it allows for the projection 

of future damages. This would allow for projecting how climate change might influence building 

damages (Gettelman et al. 2018) or where in a region might see the greatest damages from a 
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hurricane (Masoomi et al. 2019). The greatest disadvantage is that, as models, they are subject to 

many assumptions and simplifications and thus can suffer from greater uncertainty in their results 

(Mishra et al. 2017). 

Forecasting a Continuum of Environmental Threats and probabilistic hazard information  

In the mid-2000s, the National Weather Service (NWS) of NOAA commissioned the National 

Research Council (NRC) to recommend ways in which the NWS could more effectively estimate 

and communicate uncertainty in weather and climate forecasts so as to improve public safety, 

property protection, and economic viability (NRC 2006). Currently, the U.S. weather enterprise, 

its customers, and other NWS stakeholders and end-users have been accustomed to receiving and 

using deterministic products, i.e., the warning polygon, which indicates that a hazard is occurring 

or will occur within the polygon and it will not occur outside the polygon. While a deterministic 

weather forecast can be easily deployed to a variety of communication channels, it is limited in its 

ability to deliver the dynamics and uncertainty of severe weather threats (see Fig. 3).  

Forecasting a Continuum of Environmental Threats (FACETs) is a framework for a next-

generation severe weather watch and warning system that is modern, flexible and designed to 

communicate clear and simple hazardous weather information to serve the public (Rothfusz et al. 

2018). The key advantage of FACETs is “the ability of sophisticated recipients and value-adding 

enterprises to “mine” user-specific, actionable information from this high-resolution continuum 

of data so as to feed a wide variety of probabilistic and deterministic displays, formats, and 

applications for an equally wide variety of end-users” (Rothfusz et al. 2018). Recent research also 

highlighted opportunities for including probabilistic information to enhance the deterministic 

watch-warning system. As a part of FACETs, Probabilistic Hazard Information (PHI) provides 

custom user-specific products that can be tailored to adapt to a variety of needs – for example, 

providing longer lead times, at lower confidence, for more vulnerable populations with a lower 

tolerance for risks under a grid-based probability map (see Fig. 3).  Also, it can be updated in real-

time to reflect the dynamics of severe weather threats and support weather forecasters, emergency 

management agencies, and the public for better decision-making.  
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An overarching goal of FACETs is to deliver a continuous, rapidly updated stream of PHI at high 

spatial resolutions from months to minutes prior to an event, filling gaps in the existing, 

deterministic system. PHI may not completely replace the existing deterministic watch and 

warning systems. Also, it is still at an early development stage and multiple research efforts have 

been conducted to prove the effectiveness of PHI in terms of the details and type of information, 

visualization, and user interface needed to effectively communicate the dynamics of weather 

conditions to weather forecasters, broadcasters, emergency management agencies and the public. 

Thus, a cautious evolution to communicating more specific (and probabilistic) information within 

watches and warnings is the preferred approach. To improve PHI products and understand the 

effectiveness of PHI-driven output in the FACETs paradigm, multiple research projects have been 

conducted in the domains of physical science (Karstens et al. 2015a, 2018; Stumpf and Gerard 

2021), and social behavioral and economic science (Klockow-McClain et al. 2019; Miran et al. 

2018; Shivers-Williams and Klockow-McClain 2021).   

 

Building classifications  

Building classifications have been studied in multiple research domains and applications such as 

spatial science, geography, urban planning, architecture, energy, and disaster/emergency 

management. Two key elements for better building classification are (1) ground truth datasets and 

(2) classification methods.  

Ground truth datasets are a key to enhancing the accuracy of building classifications. General 

datasets used for classification are building footprints, city zoning ordinance maps, building 

property information, topology, and satellite images. Rule-based or data-driven approaches have 

achieved high accuracy rates in classification, but have been tested with small datasets such as 

parts of cities or counties (Beck et al. 2020; Hecht et al. 2018; Tardioli et al. 2018; Wurm et al. 

2016). Also, data-driven approaches can be difficult to apply if there are any strong regional 

dependencies and they would be applicable only for cities with similar building structures or types 

(Hecht et al. 2015). Recent studies have proposed crowd-sourced data collection for predictive 

modeling (Hecht et al. 2015, 2018).  
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Rule-based and data-driven approaches have been used very frequently in building classification. 

Rule-based approaches are based on sets of rules in terms of building typology information, 

construction year, and building final use. While they are intuitive and easy to apply, they require 

complete datasets to classify. Hussain and Shan (2016) showed that a well-structured rule set can 

provide a high accuracy classification rate (over 91%) with a small representative dataset. 

However, a rule-based classification may not perform well when a set of rules are too complicated 

or a building dataset does not contain detailed building property data. These can be partially 

overcome by using data-driven approaches. Tardioli et al. (2018) applied a random forest model 

in building clustering with a high accuracy ranging from 89.6% to 97%. Park and Guldmann (2019) 

also applied a random forest model to classify buildings (commercial, residential, skyscraper, and 

small constructions) by using building footprints and LiDAR point clouds.  

We reviewed the literature to 1) identify the gap of knowledge in community damage assessment, 

and 2) analyze advanced severe weather watch and warning systems (PHI) and building 

classification methods. Existing community damage assessment models are mainly focused on 

post-disaster damage assessment using emerging technologies. Thus, they have been limited in 

their ability to support emergency management agencies and the public by sharing possible 

damages to a community from severe weather threats. To predict community risks using PHI and 

wind building damage models in the enhanced EF scale, a geodatabase with community assets 

(e.g., critical infrastructure and building property) is a key component. Thus, this study proposed 

a machine-learning based building classification model to create a geodatabase with multiple types 

of buildings categorized in the enhanced EF scale. The scope of this research is limited to 

residential building type classification.  
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Methodology 

This study applied the Random Forest machine learning approach to develop a building type 

classification model using building footprint, property and city zoning data. It consisted of three 

steps: (1) data preparation, (2) random forest model development including training, testing and 

validation, and (3) hyper-parameter tuning (see Fig. 4).  
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Data preparation 

 We collected building footprints for Oklahoma City from the Microsoft Building Footprint 

dataset (Microsoft 2020) and parcel zoning information from the City of Oklahoma City 

(Oklahoma City Planning Commission 2020). We also collected public records for residential 

properties and buildings in Oklahoma City, OK from the Oklahoma County Assessor’s office 

(Oklahoma County Assessor 2019) (see Table 3). These records included information about the 

location (address) of the property, the building type (e.g., mobile home, duplex), the type of 

construction (e.g., single-family home, high-rise apartment), the number of stories, and the exterior 

type (e.g., concrete block, frame siding) (see Table 4). We chose these variables as the National 

Weather Service’s damage assessment relies on size, shape and construction materials used to 

classify buildings into damage indicator types (McDonald and Mehta 2006b). Since one dataset 

only provided a subset of the relevant information in identifying building type we combined the 

zoning, footprint and assessor records into one large dataset. We removed any properties that were 

either missing data or were not located within Oklahoma City, leaving a total of 159,752 records. 

We then geolocated the addresses for each building using the Google Geocoding API and 

performed a spatial join to connect the geolocated building information with the building footprints 

and zoning information. During this process, we removed any records we could not geolocate and 

were left with a final total of 139,296 geocoded buildings (see Fig. 5 for an example of how closely 

the geolocated addresses match the building footprint locations). We then designed an algorithm 

(Fig. 6) to assign a damage indicator (DI; based on the DI definitions from the National Weather 

Service’s (NWS) Enhanced Fujita scale documentation (McDonald and Mehta 2006a)) to each 

building based on the building type, type of construction, exterior type and number of stories. We 

tested the success of the building classification algorithm by manually inspecting a small, random 

subset of images from Google Earth (see Fig. 7 for an example verification) and found that the 

algorithm performed well under this subset of images. We are confident that the simplicity of our 

damage indicator algorithm and the availability of information about building type and 

construction materials from the county assessor data negates the need for a more rigorous 

verification. We conducted the small-scale verification to show that the algorithm works as 

expected.  
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 263 

Random Forest Model development and hyper-parameter selection 

A random forest (RF) is a classification algorithm adapting an ensemble of unpruned decision trees, 

each of which is built on a bootstrap sample of the training data using a random-selected subset of 

variables (Breiman 2001). Random forest classification employs an ensemble method to attain the 

outcome (see Fig. 8). Ensemble methods basically create multiple models (decision trees) and 

combine them to generated improved results. In a random forest classifier, the selection of the final 

output follows the majority voting system (also known as hard voting) - every individual classifier 

votes for a class, and the majority wins.   

In this study, the random forest classifier in the scikit-learn python library was applied to develop 

a random forest model (Pedregosa et al. 2012). In raw data, the class imbalance problem or 

imbalanced distribution of value, is very common. Thus, it is critical to examine a raw dataset and 

the distribution of class values. Machine learning techniques attempt to deal with imbalanced data 

by focusing on minimizing the error rate for the majority class while ignoring the minority class 

(Tanha et al. 2020; Thabtah et al. 2020). Multiple methods have been used to handle the 

imbalanced data classification problem such as SMOTE, RUSBoost, MEBoost, AdaCost, AdaC1, 

AdaC2 and AdaC3. We applied the SMOTE technique to resolve the imbalanced data problem. 

Synthetic Minority Over-sampling Technique (SMOTE) is an oversampling technique that 

generates synthetic samples, not oversampling by replacements, for the minority class (Chawla et 

al. 2002).  It helps to overcome the overfitting problem from random oversampling that is designed 

to randomly duplicate examples in the minority class. SMOTE is designed to generate new 

instances (data points) on the feature space with the help of interpolation between positive 

instances that lie together. It still has a few drawbacks: (1) It can increase the overlapping of classes 

and make additional data noise; (2) it may not be effective in the high dimensional data setting 

(Blagus and Lusa 2013).  

The overall process of random forest model development is described in Fig. 8. In the data 

preparation and dataset stages, we performed a data balancing process and split data into training 

and test datasets. We designed a random forest model to predict building types based on input 
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parameters including area, perimeter, the number of vertices and city zone. We then measured 

model performance by accuracy, and conducted hyper-parameter tuning to improve the model 

performance. Finally, the model was evaluated by accuracy, confusion matrix and classification 

metrics. Default hyper-parameters were {max_depth: 2, max_features: ‘log2’, n_estimators: 100, 

min_samples_leaf: 1} for training and testing. Maximum depth represents the depth of each tree 

in the forest. If the setting is None, there is theoretically no limitation of the maximum depth of 

the tree, and each tree will take more information from the input data. Maximum  features is the 

maximum number of the used features at each node. There is a high chance of overfitting if  the 

number of maximum features is too large (Lee and Kim 2020). To avoid overfitting, there are a 

couple of methods including (1) stop growing when splitting data is not statistically significant, (2) 

acquire additional training data, and (3) remove irrelevant attributes. The number of estimators is 

the number of total trees involved in ensemble learning for building an RF model. Mean samples 

leaf is the minimum number of samples required to be a leaf note. Basically, a higher number of 

hyper-parameters requires more computational cost. However, performance improvements can be 

negligible after a certain number of hyper-parameters.  

To measure model performance, we analyzed the accuracy score, confusion matrix and 

classification metrics (precision, recall and F1 score). While accuracy is one of the most intuitive 

performance measures, it is simply a ratio of correctly predicted observations to the total 

observations. However, accuracy score itself is not a great measure of classifier performance when 

the classes or datasets are imbalanced. So, multiple studies have performed confusion matrix and 

classification metrics to understand how well the model performed (Hecht et al. 2015; Kang and 

Ryu 2019; Lee et al. 2017; Pérez-González et al. 2019). Classification metrics, including precision, 

recall and F1 score, are measured with a combination of true positive, true negative, false positive 

and false negative (Lever et al. 2016). Precision is estimated by the ratio of correctly predicted 

positive observations to the total predicted positive observations. For example, in our work the 

question that this metric answers is: of all the buildings that are labeled as townhouses, how many 

of them are truly townhouses? Thus, a higher precision rate is related to a low false positive rate. 

Recall is based on the ratio of correctly predicted positive observations to all observations in the 

actual class. F1 Score is calculated by the weighted average of Precision and Recall. Therefore, 

this score takes both false positives and false negatives into account. F1 score is considered as 
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more useful than accuracy, especially when a dataset has an uneven class distribution. Accuracy 

may be considered highly useful when dataset is symmetric, or false positives and false negatives 

have similar costs. By using these three classification performance metrics, we can identify (1) 

whether or not a trained model performs equally well for each class and (2) any pairs of classes it 

found hard to distinguish.  

For machine learning models, all input and output variables should be numeric (Cerda et al. 2018; 

Chuang and Keiser 2018; Marasco and Kontokosta 2016). For example, Oklahoma City zones are 

classified as 28 different categories. Thus, it is required to encode the categorical data to numbers 

before plugging them into a random forest model. The two popular techniques are ordinal encoding 

and one-hot encoding. Ordinal encoding coverts string labels to integer values 1 though n. One-

hot encoding creates one column for each value for comparison against all other values (see Table 

5). For categorical variables where no ordinal relationship exists (e.g. city zoning type or color of 

vehicles), integer encoding may mislead the model. Also, (1) forcing an ordinal relationship via 

an ordinal encoding and (2) allowing the model to assume a natural ordering between categories 

may result in poor performance or unexpected results (Zheng and Casari 2016). In this study, we 

applied a one-hot encoding that removed integer encoded variables and created a column with a 

new binary variable (0 or 1) for each unique integer value in the variable. As the one-hot encoding 

approach can expand input feature space exponentially, feature reduction (or dimension reduction) 

may be required.  

Feature importance was also measured by the machine-learning model for a better understanding 

of the model’s logic and to improve the model performance by focusing on the important variables 

(Ahmad et al. 2017). It can be utilized to select or reduce input variables so that the model can 

have similar or improved performance using less computational effort.  
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Results 

Model performance was evaluated by (1) accuracy score, (2) confusion matrix and (3) precision, 

recall and F-1 score. Accuracy score computes the fraction of the count of correct predictions. In 

multiclass classification, the function returns the subset accuracy.  
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1

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 (𝑎𝑎𝑖𝑖,𝑎𝑎�𝚤𝚤) =  � 1(𝑎𝑎�
𝑛𝑛 𝚤𝚤 = 𝑎𝑎𝑖𝑖) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖=0

𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 𝑡𝑡𝑎𝑎𝑎𝑎𝑠𝑠 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑠𝑠, 𝑎𝑎�𝚤𝚤 = 𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑡𝑡𝑠𝑠𝑐𝑐 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑠𝑠 𝑠𝑠𝑜𝑜 𝑡𝑡ℎ𝑠𝑠 𝑐𝑐𝑡𝑡ℎ 𝑠𝑠𝑎𝑎𝑠𝑠𝑐𝑐𝑣𝑣𝑠𝑠 

Initial accuracy score under the default hyper-parameters (max_depth = 2, n_estimators= 100, 

max_features='log2', min_samples_leaf =2) was 0.631. Then we searched for optimal 

hyperparameter values for the number of estimators, max features, and min samples leaf.  The 

number of estimators is known to be an important factor in determining model performance in a 

random forest. In a comparison of results for which we varied the number of estimators, the model 

performance fluctuated when the number of estimators was lower than 1,000 and was stable for 

values of 1,000 or more (see Fig. 10). Testing different values of max features and min sample 

leaf, the model performance score then achieved over 0.9. Using our selected hyperparameters 

(n_estimators= 1,000, max_features=0.2, mix_samples_leaf =1), the accuracy score reached up to 

0.965. 

While accuracy score is a popular method to evaluate the overall model, it does not provide 

classifier performance for each class. Thus, confusion matrix is broadly applied to evaluate model 

performance for each class. It can be used for both binary and multiclass classification problems. 

In confusion matrix, diagonal values are true positive counts, while off diagonal values are false 

positive and false negative counts for each class against the other (see   
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Table 6).  

The confusion matrix in Fig. 11 shows the performance of the output of our RF model. The rows 

represent true labels and columns represent predicted labels. Values on the diagonal (black-colored 

cells) represent the percentage of times where the predicted label matches the true label. Values in 

the other cells represent the percentage where the classifier mislabeled an observation; the column 

indicates what the classifier predicted, and the row indicates what the right label was.  

Type 2 (one or two family residence) was correctly classified as type 2 98% of the time, with 

incorrect classification rates of: type 3 (0.16%), type 4 (0.13%) and type 5 (0.38%). Similarly, type 

3 (single wide mobile home) was classified as type 2 (0.52%), type 3 (96%), type 4 (1.8%) and 

type 5 (2.2%).  Type 4 (double wide mobile home), was classified as type 2 (0.41%), type 3 (3.5%), 

type 4 (97%) and type 5 (0.24%). Type 5 (Apt, condo, and townhouse), was classified as type 2 

(0.78%), type 3 (0.62%) type 4 (1.1%) and type 5 (95%).  
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Table 7 summarizes the classification reports of the model. The model has an average precision of 

97%, recall of 97%, and F1-score of 97%.  

The result of feature importance is in Fig. 12. The values of feature importance derived from our 

RF are: Zone (56%), Area (22.1%), Perimeter (16.3%), and the number of vertices (4.7%).  

The result of the building classification by the proposed random forest model is described below. 

Brown-colored buildings are one or two-family residence, green-colored buildings are single-wide 

mobile home, bright blue-colored buildings are double-wide mobile homes, and dark blue-colored 

buildings are Apt, condos and townhouses. 
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Conclusions 

Paradigm shifts in weather forecast and severe weather warning systems, from deterministic 

watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning 

periods from days to within minutes of high-impact weather and water events, will improve a 

community’s preparedness for and response to severe weather threats. To leverage the benefits of 

PHI in community risk assessment, it is critical to build a geodatabase that includes multiple types 

of community assets including critical infrastructure and building property. The current state of 

research shows that only a few studies have explored building type classification for community 

risk prediction. Also, the need for multiple types of data has made the proposed methods for city- 

and state-level building type prediction difficult to apply. Thus, this study developed a Random 

Forest model using building footprint data and city zoning maps to classify buildings and 

conducted a case study using the dataset from the Oklahoma City metropolitan area. The results 

show that the random forest model predicted building types with an accuracy of about 96%.  

This study showcased the ability of a Random Forest model to predict building types based on 

building footprints and city zoning data for the residential areas of Oklahoma City. Using the 

training model and additional datasets, including city zoning data and building footprints, we 

achieved building type data in Edmond, Yukon, Midwest City, Moore and Norman (see Fig. 14). 
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To expand to other areas in Oklahoma City and beyond there is a need for significantly more 

training and testing data. While both county assessor records and city zoning data are available for 

most municipalities and counties, this data is not available digitally for all locations. Additionally, 

when available, this data is not housed in a central location so each county or city must be contacted 

individually to request the data and there may be charges for access. Another limitation, as we 

increase the size of our training and testing datasets, is the need to geocode each address in the 

county assessor data to match each building footprint with a property record. Each geocoding API 

has limitations in terms of accuracy and processing speed. This project tested two APIs: Google 

versus Nominatum (OpenStreetMap) and found that only Google was accurate enough to match 

addresses to building footprint locations. Unfortunately, large batch requests (on the order of 

millions of records) to the Google Geocoding API can take significant time to process and be 

costly. In addition to needing more testing and training data the machine learning algorithm may 

require modification to include additional variables to account for regional differences in 

construction materials and building techniques (e.g., adobe structures in the southwest). 

Another limitation was in identifying the building type (as per the EF scale damage indicators) 

from the provided property records. While the EF scale documentation provides typical 

construction information for each building type (McDonald and Mehta 2006a) some of the 

characteristics are not unique to one building type (e.g., both ‘Apartments, Townhouses, and 

Condos’ and ‘Masonry Apartments and Motels’ can have brick exteriors). Additionally, 

Apartments, Townhouses, and Condos are supposed to be limited to three stories or less, but some 

buildings with a building type of apartment, condo or townhouse had four stories and an exterior 

type that was not solid masonry. In this case we assumed that the number of stories requirement 

was not absolute and that only buildings with a solid masonry exterior would be classified as 

Masonry Apartments and Motels. Another example of a questionable building type classification 

was for buildings with a construction type of Modular. Typically, Modular Homes are lumped 

together with Mobile Homes, but since no width data was available for these buildings, we 

assumed them to be equivalent to Double-Wide Mobile Homes since manufactured homes tend to 

be on the wider side. Issues such as these are likely to continue to arise as the dataset increases in 

size and we add commercial and industrial buildings, so future work will likely include a 

consultation with a trained damage surveyor to refine our methodology. 
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Another limitation is that building type data is imbalanced (e.g., the number of high-rise 

apartments is relatively small compared to one- or two-story houses, apartments, condos and 

townhouses in our dataset), which can introduce errors when training a machine learning model. 

To overcome imbalances in their datasets, Lemaitre et al. (2015) implemented state-of-the-art 

methods that can be categorized into four groups: (1) under-sampling, (2) over-sampling, (3) 

combination of over- and under-sampling, and (4) ensemble learning methods. These approaches 

have been applied in multiple domains to handle imbalanced datasets (Buda et al. 2018; Douzas et 

al. 2018; Korkmaz 2020; Lee and Kim 2020).    

Future work may involve testing the use of other property record datasets that are more centralized, 

such as Zillow's Assessor and Real Estate Database (ZTRAX) in place of the county assessor data 

to reduce the time required to collect all necessary data. The Zillow Assessor and Real Estate 

Database has been used in previous hazards research but mostly for economic studies regarding 

hazards such as floods (Murfin and Spiegel 2020; Pinter and Rees 2021) and fires (Garnache and 

Guilfoos 2019; Mietkiewicz et al. 2020). In addition to data on property value, the ZTRAX dataset 

also includes detailed descriptions of buildings, including size, construction type and exterior type, 

which can be used to identify the NWS damage indicator and thus would complement the dataset 

derived in this study.  

Additionally, we may attempt to use remotely sensed optical images from various satellite, aerial 

and ground-based platforms (e.g., Google Street View) to aid in identifying building types as 

proposed by Kang et al. (2018). 
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Data Availability Statement 

The following datasets are available from the author (jooho.kim@noaa.gov) upon reasonable 

request. 

• Building Footprint  

• City zoning data 

• Building property data 
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Table 1 Tropical Cyclone Billion-Dollar Disasters to affect the U.S. from 2015-2020 (Smith 

2020) 

683 

684 

Name Date *Total CPI-Adjusted Cost Deaths 

(Millions of Dollars) 

Hurricane Matthew 2016-10-08 11,000 49 

Hurricane Harvey 2017-08-25 131,250 89 

Hurricane Irma 2017-09-06 52,500 97 

Hurricane Maria 2017-09-19 94,500 2,981 

Hurricane Florence 2018-09-13 24,720 53 

Hurricane Michael 2018-10-10 25,724 49 

Hurricane Dorian 2019-08-28 1,626 10 

Tropical Storm Imelda 2019-09-17 5,050 5 

Hurricane Hanna 2020-07-25 1,075 0 

Hurricane Isaias 2020-08-03 4,757 16 

Hurricane Laura 2020-08-27 18,990 42 

Hurricane Sally 2020-09-15 7,274 5 

Hurricane Delta 2020-10-09 2,867 5 

Hurricane Zeta 2020-10-28 3,482 6 

Tropical Storm Eta 2020-11-08 1,460 12 

* Consumer Price Index (CPI):  measure of the average change over time in the prices paid by 
urban consumers for a market basket of consumer goods and services. 
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Table 2 Summary of literature related to building classification and data creation    

Topic Method Data type Limitations References 

Classification for 
energy modeling of 
residential building 

Building geometry analysis 
(building footprint)  

Ordnance Survey Master Map 
as a source of 2D polygons 
representing building feature 
Address database 

2D based building classification can affect the 
accuracy of energy modeling for residential 
building   

(Beck et al. 2020) 

Identification of 
representative 
buildings and 
building groups 

Rule-based classification 
Random forest for 
predictive classification 

Geo-referenced data of the 
building stock and urban infra- 
structure and territorial 
information 

Limited datasets for rule-based clustering.  (Tardioli et al. 
2018) 

Creation of ground 
truth dataset  

Crowd-sourced data 
collection 

Residential buildings in the city 
of Dresden and Hamburg 

Quality of ground truth data depends on the 
quality of annotation. 
Data acquisition time from crowd-sourcing   

(Hecht et al. 2018) 
 

Building type 
classification 

Machine-learning 
classification algorithms 
including naive Bayes, 
decision tree, k-nearest 
neighbor, and support 
vector machine 

Digital maps obtained from the 
National Geographic 
Information Institute 

Limited input parameters in machine learning 
Limited map generalization process  

(Lee et al. 2017) 

Building type 
classification  

Linear discriminant 
analysis (LDA) 

67,734 buildings in Berlin and 
92,447 buildings in Munich 

Limited transferability of the classifiers due to 
strong regional dependencies. However, it 
could vary by the level of classification 

(Wurm et al. 
2016) 

Quantification of the 
structure and dynamic 
of national building 
stocks 

Workflow for data 
integration  
Rule-based classification 

Building footprint 
Address data from the real 
estate cadaster 
Land use 

Knowledge-based approach: A hierarchical 
rule set to classify the buildings into a set of 
predefined classes.  
Data driven approaches such as pattern 
recognition and machine learning technique 
could enhance existing classification models  

(Hartmann et al. 
2016) 

Building type 
classification 

Random forest classifier Topographic raster maps, 
cadastral databases or digital 
landscape models) 

Data acquisition for training and testing (Hecht et al. 2015) 
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Table 3 Data sources 

Data Source Description # of Records 

Oklahoma County Assessor Public Records for Buildings in Oklahoma 328,271 
County 

City of Oklahoma City Parcel Zoning Map for Oklahoma City 21,025 

Microsoft Building Footprints for Oklahoma 2,091,131 
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Table 4. Description of all fields in the combined building dataset. Field represents the name of the field with units in parentheses 

Field Definition Type Examples 

Feature ID Unique identifier for each building polygon Identifier 4619; 6209 

Area (sq. m) Area of building polygon in square meters Numeric Mean=272.8; Max=27740.3 

Perimeter (m) Perimeter of building polygon in meters Numeric Mean=68.5; Max=1262.7 

Zoning Ordinance City zoning code for parcel where building polygon is located Categorical [28] R-2; R-3 

Account Number Account number for Oklahoma County Assessor record Identifier R211831080; R141245800 

Account Type Type of account for Oklahoma County Assessor record Categorical [2] Residential; Commercial 

Physical Address Physical address for parcel of land Identifier 101XX Mantle Ct, Oklahoma City, OK 

Building Number Numeric identifier for the building (in case parcel has multiple buildings) Numeric Mean=1; Max=8 

Parcel Number Real Estate parcel ID number Identifier 2709044044290; 1898143581260 

Parcel Type Type of parcel Categorical [8] Residential; Townhouse 

Square Footage Area of parcel in square feet Numeric Mean=1640; Max=347,168 

Exterior Type Type of exterior material for building Categorical [36] Frame Masonry Veneer; Hardboard Sheet 

Number of Stories Number of stories for building Numeric Mean=1; Max=24 

Roof Type Type of roof construction for building Categorical [11] Hip/Gable; Gable 

Roof Covering Type of roof covering material for building Categorical [12] Composition Shingle; Formed Seam Metal 

Foundation Type Type of foundation for building Categorical [7] Slab; Conventional 

Construction Type Type of building construction Categorical [31] Ranch 1 Story; 1½ Story Fin 

Year Built Four-digit year when building was constructed Numeric Mean=1966; Max=2019 

Damage Indicator Damage indicator number from EF scale documentation Categorical [7] 2; 3 

Damage Indicator Name Name of damage indicator from EF scale documentation Categorical [7] One- and Two-Family Residences; Single-
Wide Mobile Home 

Damage Indicator Code Code for damage indicator from EF scale documentation Categorical [7] FR12; MHSW 

Number of Vertices Number of vertices in building polygon Numeric Mean=5.7; Max=32 



33 

 

Note: Type is the data type with categorical variables containing the number of categories in brackets, Examples gives example values for each field with 
numeric fields containing the mean and maximum values. Example zoning ordinances include Medium-Low Density Residential (R-2) and Medium Density 
Residential (R-3).
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Table 5 Data table of input building records after One-Hot encoding 291 

 AREA PERIM NVERT ZONE_AA ZONE_R-1 ZONE_R-2 ... ZONE_C-1 ZONE_C-2 

0 284.849593 86.602737 8 0 1 0 ... 0 0 

1 130.500664 45.696733 4 0 1 0 ... 0 0 

2 227.678254 61.497334 4 0 1 0 ... 0 0 

3 568.924061 98.021346 4 0 0 1 ... 0 0 

4 193.884134 59.667975 6 0 0 1 ... 0 0 

... ... ... ... ... ... ... ... ... ... 
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Table 6 Confusion matrix 294 

                                                               Predicted 

 Negative Positive 
 True Negative False Positive Negative (TN) (FP) 

Actual 
False Negative True Positive Positive (FN) (TP) 

 

 295 

 296 
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Table 7 Precision, recall and F1-score  297 

              
Type 2 

Precision Recall F1-score Support 
0.99 0.98 0.99 40,237 

Type 3 0.95 0.96 0.96 40,414 

Type 4 0.94 0.97 0.95 40,379 

Type 5 0.97 0.95 0.96 40,171 

Weighted avg 0.97 0.97 0.97 161,171 
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Table of Figures 
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Fig. 1 Community risk from severe weather threats 327 
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 332 

Note: PHI provides the risk probability on a grid map in real-time. The red-colored areas have higher 

probability of tornado risk (path) than the green-colored area 

333 

334 

Fig. 2 Probabilistic Hazard Information (PHI) 335 
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 337 
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(a) Deterministic method (b) Probabilistic method 

 

Tornado 

 warning/watch 

Fig. 3 Deterministic vs. probabilistic weather information (NSSL 2015) 339 
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 341 

Fig. 4 Framework of random forest model development 342 
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(a) Residential Zones in Oklahoma City  (b) Sample Building Footprints with 

Geocoded Address Points 

344 

345 

346 

Note: Panel a shows all of the parcels that are zoned Residential in Oklahoma City in yellow while panel 

b shows a zoomed in view of the location marked by the box in a showing the local roads (black lines) 

and building footprints (yellow polygons) as well as the geolocated positions of the residential addresses, 

in the Oklahoma County Assessor’s public records, (red dots). Note how each address (red dot) is closely 

associated with a single building footprint, showing the accuracy of the geolocated positions. 

347 

348 

349 

350 

351 

 352 

Fig. 5. Example of Geocoded Addresses in the Residential Areas of Oklahoma City 353 
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 356 

 357 

Note: The algorithm requires the following information about a building to determine its Damage Indicator: building type (yellow), 

type of construction (blue), exterior type (pink), and number of stories (orange) 

358 

359 

Fig. 6 Building type classification algorithm.  360 

 361 
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(a) Example of One- and Two-Family Homes Category 

 

(b)Example of Apartments, Condominiums, and Townhouses Category 

 

Map data© 2022 Google 

Note: Panel a is of a Single Family Home (classified as a One- to Two- Family Home (DI=2)) located at 

4017 NW 70th Street, Oklahoma City, OK, panel b is of a Multi-Family Home (classified as an Apartment, 

Condominium or Townhouse (DI=5)) located at 4815 NW 72nd Street, Oklahoma City, OK 

362 

363 

364 

Fig. 7. Example images from Google Earth for verification of classification algorithm.  365 
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 367 

Fig. 8 Random Forest classifier 368 
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 371 

Fig. 9 Process of random model development 372 
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(a) Num of estimator (b) Max features (c) Min samples leaf 

379 

Fig. 10 Hyper-parameters and model performance 380 
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  Predicted label 

Type 2 Type 3 Type 4 Type 5 

T
ru

e 
la

be
l 

Type 2 0.98 

(39,553) 

0.0052 

(208) 

0.0041 

(163) 

0.0078 

(313) 

Type 3 0.0016 

(63) 

0.96 

(38,707) 

0.035 

(1,395) 

0.0062 

(249) 

Type 4 0.0013 

(52) 

0.018 

(737) 

0.97 

(39,131) 

0.011 

(429) 

Type 5 0.0038 

(154) 

0.022 

(895) 

0.024 

(973) 

0.95 

(38,149) 

The actual number of data points for each cell is shown in parentheses 382 

Note: type 2 (one- or two-family residence), type 3(single wide mobile home), type 4 (double wide mobile 

home) and type 5 (Apt, condo, townhouse). Actual amount of data is in parentheses 

383 

384 

Fig. 11 Confusion matrix  385 

  386 
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 387 

Fig. 12 Feature importance  388 
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Fig. 13 Classified building footprints for a small section of Oklahoma county  
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 393 

Fig. 14 Building type geodatabase creation using the trained ML model in the Oklahoma metropolitan 

city area 
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