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Abstract Most countries around the world, including the United States, took actions to control
COVID-19 spread that led to an abrupt shift in human activity. On-road NOy emissions from light and
heavy-duty vehicles decreased by 9%-19% between February and March at the onset of the lockdown
period in the middle of March in most of the US; between March and April, the on-road NO, emissions
dropped further by 8%-31% when lockdown measures were most stringent. These precipitous drops in
NO, emissions correlated well (r = 0.75) with tropospheric NO, column amount observed by the Sentinel
5 Precursor TROPOspheric Monitoring Instrument (S5P TROPOMI). Furthermore, the changes in
TROPOMI tropospheric NO, column amount across continental US between 2020 and 2019 correlated
well with the changes in on-road NO, emissions (¥ = 0.68) but correlated weakly with changes in
emissions from the power plants (r = 0.35). At the height of lockdown-related unemployment in the
second quarter of 2020, the tropospheric NO, column values decreased at the rate of 0.8 umoles/m? per
unit percentage increase in the unemployment rate. Despite the lifting of lockdown measures, parts of the
US continued to have ~20% below normal on-road NO, emissions. To achieve this new normal urban air
quality in the US, continuing remote work policies that do not impede economic growth may become one
of the many options.

Plain Language Summary This study documents the different phases of COVID-19
lockdown in 2020 and how traffic emissions changed accordingly across the US, particularly in five
different cities, namely Los Angeles, San Francisco, San Joaquin Valley, New York City, and Atlanta.
Analysis of data for these cities from measurements on the ground and satellites indicate that a downturn
in the economy and telework policies reduced the number of cars and trucks on the road in March and
April due to which air quality got better. The recovery of traffic emissions after the lockdowns was lifted
was slow and below normal emissions were observed even at the end of 2020. While the cities in the east
reached near normal levels, the west coast showed below normal traffic emissions. The air quality in 2020
provided a window into the future as to how improvements can be achieved.

1. Introduction

As the 2019 novel Corona virus (COVID-19) spread from China to other parts of the world, various countries
imposed lockdown measures one by one. Reports of improved air quality from ground and satellite observa-
tions of aerosol optical depth (AOD) and nitrogen dioxide (NO,) soon followed in the media as documented
by Kondragunta et al. (2020). The precipitous drops seen in the tropospheric vertical column NO,, (trop-
NO, here onward) measured by the Sentinel 5P TROPOspheric Monitoring Instrument (TROPOMI) were
substantial, especially during the strict lockdown period for each country (Gkatzelis et al., 2021). Goldberg
et al. (2020) reported that in the United States (US), tropNO, decreased by 9.2%-45% in 26 cities from March
15 to April 30, 2020 compared to the same period in 2019; these reported reductions account for the influ-
ence of the weather. Other researchers reported similar findings, mainly reductions of tropNO, attributed
to reductions in traffic emissions both in the US and across the globe in major urban areas of Europe, India,
and China (Bauwens et al., 2020; Keller et al., 2020; Naeger & Murphy, 2020; Straka et al., 2021; Vadrevu
et al., 2020; Zhang et al., 2021; Zheng et al., 2020). For example, in Washington D.C., the average distance
traveled by people dropped by 60% between February and April when restrictions were fully in place (Stra-
ka et al., 2021). This sudden drop in tropNO, in major metropolitan areas where the transportation source

KONDRAGUNTA ET AL.

10f 18


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-8593-8046
https://doi.org/10.1029/2021JD034797
https://doi.org/10.1029/2021JD034797
https://doi.org/10.1029/2021JD034797
https://doi.org/10.1029/2021JD034797
https://doi.org/10.1029/2021JD034797
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2576-604X.COVID19
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2576-604X.COVID19
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2576-604X.COVID19

Y Yed N | o
NI Journal of Geophysical Research: Atmospheres 10.1029/2021JD034797

ADVANCING EARTH
AND SPACE SCIENCE

Formal analysis: S. Kondragunta, Z.
Wei, B. C. McDonald

Visualization: Z. Wei

Writing - review & editing: S.
Kondragunta, D. L. Goldberg, D. Q.
Tong

sector for NOy (NO + NO,) is strong is due to reduced traffic on top of an already observed general decreas-
ing trend in NOy emissions. According to Lamsal et al. (2015), tropNO, observed by the Ozone Monitoring
Instrument (OMI) showed a decreasing trend with an overall decrease of 28% between 2005 and 2013. These
reductions are consistent with NOy emission reductions from major power plants in the US due to the Clean
Air Interstate Rule and Cross State Air Pollution Rule. The NO, emissions continued to drop as more and
more power plants switched to natural gas or began to rely on clean coal (de Gouw et al., 2014).

Nitrogen dioxide is released during the combustion of fossil fuels and is a precursor for both ozone and
particulate matter, primary components of photochemical smog. Whether it enhances or decreases ozone
production is dependent on a given region being NOy saturated or volatile organic compound (VOC) satu-
rated, due to the inherent nonlinearity of ozone photochemistry (Kroll et al., 2020; Mazuuca et al., 2016).
The two main sources of NO, in the US are the energy sector and the transportation sector according to the
2014 Community Emissions Data System (Hoesly et al., 2018). A study by Zheng et al. (2020) analyzed the
reductions in trace gas and aerosol concentrations in China during the lockdown and found that the most
significant drop in aerosols was for nitrate aerosol. For the period corresponding to the lockdown in China,
from January 23 to February 22, 2020, mean nitrate aerosol concentration was 14.1 ug/m?; for the same
period in 2019, the concentration was 23.8 ug/m®. This 41% reduction is corroborated by reductions in NO,
observed by TROPOMI (Bauwens et al., 2020).

Though NO; is considered important due to its ozone and aerosol-producing potential, it has harmful hu-
man health impacts when inhaled. Achakulwisut et al. (2019) showed that 64% of 4 million pediatric asth-
ma cases each year are due to exposure to NO,. It should be noted though that NO, was used as a proxy for
traffic-related pollution. The World Health Organization standard for NO, is an annual average of 21 parts
per billion and for the US, it is 53 parts per billion. The authors do note that daily exposure to NO, can vary
from annual averages, and traffic pollution is usually a mixture of precursor gases, primary particulates,
and photochemically formed ozone and aerosols. Nevertheless, when countries went into lockdown, the
most noticeable indication of a reduction in traffic-related pollution is tropNO, in urban areas observed by
TROPOM]I, lending support to the assumption that NO, is a good proxy for traffic-related pollution. The
COVID-19 lockdown measures disproportionately impacted traffic more than industrial operations.

We analyzed TROPOMI tropNO, and Suomi National Polar-orbiting Partnership Visible Infrared Imag-
ing Radiometer Suite (Suomi NPP VIIRS) AOD data in conjunction with on-road NO, emission data, NOy
emissions from power plants, and unemployment rates where available. The goal of this study is to exam-
ine the trends in on-road and power plant emissions for five different locations (four urban areas and one
rural area) to answer the questions: (a) are changes in NO, emissions during the lockdown detectable in
TROPOMI tropNO, data, (b) are the economic indicators consistent with emissions changes, and (c) did
the trends reverse with the lifting of lockdown measures in the major metro areas. These questions are
answered with spatial and temporal analysis of ground-based observations and satellite data, relating indi-
cators of human activity during and prior to COVID-19 lockdown with air quality, and examining if a new
normal urban air quality can be achieved with novel policies.

2. Methods
2.1. Sentinel 5P TROPOMI NO,

The TROPOMI NO, algorithm is based on the Differential Optical Absorption Spectroscopy technique that
involves fitting the spectra in the NO, absorption region between 405 and 465 nm using known labora-
tory-measured reference absorption spectra. The Sentinel 5P flies in formation with Suomi NPP. Though
some Sentinel 5P trace gas algorithm retrievals depend on the VIIRS cloud mask, the NO, algorithm relies
on cloud retrievals using its oxygen A-band absorption (van Geffen et al., 2019). The cloud fraction and
effective pressure are used in air mass factor calculation for partially cloudy pixels. There is an indication
that the cloud algorithm is likely conservatively masking out good NO, retrievals according to a validation
study conducted by Judd et al. (2020). Though Judd et al. (2020) used data with quality flag equals to unity,
we used the quality flag value (0.75) recommended by the NO, algorithm theoretical basis document (van
Geffen et al., 2019). Only data with quality flag >0.75 were used as this quality flag setting ensures that
cloudy retrievals or retrievals with snow/ice covered pixels are screened out. The TROPOMI Level 2 product
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file consists of pixel level (3.5 X 5.6 km) NO, tropospheric column amount, which we used in this study. The
NO, algorithm retrieves total column NO, and separates the stratosphere from troposphere using chemical
transport model predicted stratospheric NO, analysis fields (van Geffen et al., 2019). The expected accuracy
of the tropospheric NO, column for polluted regions with high NO, values is ~25%, and independent vali-
dation efforts using ground-based spectrometers such as Pandora have confirmed that tropNO, is generally
underestimated, especially in polluted regions and that significant sources of errors come from coarser
resolution a priori profiles used in the retrieval algorithm (Chan et al., 2020). Comparisons of TROPOMI
tropNO, column with Pandora ground station retrievals of tropospheric NO, column in Helsinki showed
that mean relative difference is —28.2% =+ 4.8% (Ialongo et al., 2020). Similar comparisons between Pandora
ground station retrievals and TROPOMI tropNO, in Canada for urban (Toronto) and rural (Egbert) stations
show that TROPOMI tropNO, has a —23% to —25% bias for polluted regions and a 7%-11% high bias in
the rural region (Zhao et al., 2020). Sources of error in TROPOMI tropNO, include altitude-dependent air
mass factors, stratosphere-troposphere separation of NO,, a priori NO, profile and shape, surface albedo
climatology, and calibration errors as a function of view angle (Chan et al., 2020; Talongo et al., 2020; Judd
et al., 2020; van Geffen et al., 2019; Zhao et al., 2020). Judd et al. (2020) showed that the TROPOMI tropNO,
validation carried out during the Long Island Sound Tropospheric Ozone Study experiment showed that the
retrievals have a bias of —33% and —19% versus Pandora and airborne spectrometer retrievals, respectively.
The biases improve to —19% and —7% when the TROPOMI NO, algorithm is run with a priori profiles from
aregional air quality model indicating that retrievals are very sensitive to a priori profiles. One aspect that is
not fully explored by Judd et al. (2020) is the influence of aerosols on air mass factor calculations. Research
on aerosol impact on air mass factors indicates that the effect of aerosols on NO, retrieval can vary depend-
ing on aerosol type (absorbing or scattering), amount, and vertical location (is aerosol mixed in with NO,
in the boundary layer or is the aerosol layer detached from NO, layer) in the atmospheric column (Judd
et al., 2020; Lin et al., 2014; Liu et al., 2020; Tack et al., 2019).

The Level 2 TROPOMI NO, data were downloaded from the European Space Agency datahub (https://
s5phub.copernicus.eu/dhus/#/home). The data for January-February 2020 are considered Business as Usu-
al (BAU), the data for 15 March to 30 April 2020 are considered the lockdown period, and the data for 1
May-November 2020 are considered as representing the post-lockdown period.

The TROPOMI NO, data are available only from mid-2018 to the present. We removed the seasonality in
tropNO, data in two simple ways: by simply taking the difference between 2019 and 2020 for the same
month so the sun-satellite geometries and weather conditions are similar barring any unusual interannual
variabilities and by doing double differencing as described in Section 3.1.

2.2. On-Road NO, Emissions

The on-road emissions are obtained using the Fuel-based Inventory of Vehicle Emissions (FIVE) where
vehicular activity is estimated using taxable fuel sales for gasoline and diesel fuel reported at a state-lev-
el and downscaled to the urban scale using light- and heavy-duty vehicle traffic count data (McDonald
et al., 2014). Once the fuel use is mapped, NO, emissions are estimated using fuel-based emission factors (in
g/kg fuel) based on roadside measurements or tunnel studies (Hassler et al., 2016; McDonald et al., 2012,
McDonald, McKeen, et al., 2018). The emission factors are calculated separately for light-duty gasoline
vehicles and heavy-duty diesel trucks. The FIVE methodology was developed to derive traffic emissions to
study their impact on air quality (Kim et al., 2016; McDonald, McKeen, et al., 2018), but in the case of 2020,
the fuel-based methods provide evidence for quantifying the impact of reduced human activity during the
lockdown period on air pollutant emissions (e.g., NOy).

Here, we downscale on-road gasoline and diesel fuel sales following McDonald et al. (2014) for our 2019
base year, which is treated as the BAU case. We have chosen to focus on four US urban areas where real-time
traffic counting data are publicly available, including the South Coast air basin (Los Angeles county, Orange
county, and portions of Riverside and San Bernardino counties), San Francisco Bay Area (Marin, Sonoma,
Napa, Solano, Contra Costa, Alameda, Santa Clara, San Mateo, and San Francisco counties), New York City
(Richmond, New York, Kings, Queens, and Bronx counties), and the Atlanta metropolitan region (Chero-
kee, Clayton, Cobb, Coweta, Dekalb, Douglas, Forsyth, Fulton, Gwinnett, Henry, Rockdale, and Spalding
counties). We also include one rural region for contrast, the San Joaquin Valley in California (Fresno, Kern,
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Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare counties. For the BAU case, we account for
typical seasonal and day-of-week activity patterns of light- and heavy-duty vehicles separately. For the COV-
ID-19 case, we scale the January BAU emissions case with real-time light- and heavy-duty vehicle traffic
counting data for the year 2020, which are described in Harkins et al. (2021). Light-duty vehicle counts are
used to project on-road gasoline emissions and heavy-duty truck counts for on-road diesel emissions during
the pandemic.

To estimate NOx emissions, the FIVE NO, emission factors have been updated to 2019 based on the regression
analyses of roadway studies (Hassler et al., 2016; McDonald et al., 2012, McDonald, McKeen, et al., 2018),
and we use a value of running exhaust emission factors of 1.7 + 2 g NO,/kg fuel and 12.4 + 1.9 g NO,/kg fuel
for on-road gasoline and diesel engines, respectively. Cold-start emissions are scaled relative to running ex-
haust emissions based on the US Environmental Protection Agency (EPA) MOVES2014 model (EPA, 2015).
We use the 2019 NO, emission factor for both the BAU- and COVID-19-adjusted cases. Thus, the differences
in the BAU and COVID-19 cases are only due to changes in traffic activity. We use the same emission factor
for 2019 and 2020 because past studies have shown during the 2008 Great Recession the turnover of the
vehicle fleet and corresponding reductions in emission factors are slower (Bishop & Stedman, 2014). Total
on-road NO, emissions are the sum of emission estimates for light-duty vehicles and heavy-duty trucks. The
off-road mobile source emissions are not included in the data set. In cities, on-road transportation accounts
for as much as 75% of the NO, emissions (Kim et al., 2016) and is a critical emissions sector to quantify.

Uncertainties in FIVE on-road emission estimates arise from non-taxable fuel sales associated with off-road
machinery, and from mismatches where fuel is sold and where driving occurs, though diesel fuel sales re-
ports are adjusted based on where long-haul trucking occurs (McDonald et al., 2014). However, the main
source of uncertainty is the accuracy of fuel-based emission factors used to calculate co-emitted air pollut-
ant species (McDonald, McKeen, et al., 2018). The underlying traffic counting data are available at hourly
time resolution; however, here we have averaged the data to daily averages. Jiang et al. (2018) report the
uncertainty in fuel sales (3%-5%) and NOx emission factors (15%-17%) for on-road transportation.

2.3. Power Plant NO, Emissions

The daily power plant NOy emissions were obtained from the US EPA Continuous Emissions Monitoring
System (https://www.epa.gov/airmarkets), and the energy generation/consumption statistics were obtained
from the Energy Information Administration (eia.gov). Unlike the traffic emissions, power plant emissions
did not change much during the lockdown. Power generation from fossil fuels dropped from 38,332 Gwh in
March to 29,872 Gwh in April and rebounded to pre-pandemic levels by June. The total NO4 emissions in
the US from power plants dropped from 54,531 tons in March to 44,016 tons in April, a 19% decrease. This
may seem like a big drop in production but the absolute values are quite small. For example, NO, emissions
from power plants within the 75 km of Los Angeles emitted only 20 tons in March 2020. For January to July,
nationally, total NOx emissions from power plants were 0.8 and 0.67 million metric tons in 2019 and 2020,
respectively. This is a 16% reduction compared to 50% reduction in on-road emissions, for the same months
between 2019 and 2020.

In contrast, on-road emissions from vehicles in the Los Angeles area alone emitted nearly 5,367 tons of NO.
Power plant NOy emissions in the US have decreased substantially over the last two decades; they dropped
by 86% between 1990 and 2019. This is due to the shift from fossil fuels to other alternate energy sources for
power generation. For example, the use of coal as a source of electricity generation went down from 51%
in 2001 to 23% in 2019, while the natural gas as a source increased from 17% in 2001 to 38% in 2019. In our
analysis of NOy emissions from on-road traffic and power plants for the six locations of interest, we consid-
ered only the power plants within 75 km radius of the center of the city location being analyzed.

2.4. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite
(SNPP VIIRS)

NOAA currently has two VIIRS instruments in orbit - one on Suomi NPP launched on October 28, 2011
and one on NOAA-20 launched on November 18, 2017. The two VIIRS instruments continuously observe
the Earth with a 50-min time difference and provide AOD retrievals for cloud/snow-free scenes during the
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sunlit portion of the day. The VIIRS instruments have 22 bands with 16 of the bands in the visible to long-
wave infrared at moderate resolution (750 m), five bands at imager resolution (375 m) covering 0.64, 0.865,
1.6, 3.74, and 11.45 um, and one broad Day-Night Band centered at 0.7 um. The NOAA AOD algorithm over
the ocean is based on the Moderate Imaging Spectroradiometer (MODIS) heritage and over the land, the
algorithm derives AOD for both dark targets as well as bright surfaces (Laszlo & Liu, 2016; Levy et al., 2007;
Huang et al., 2016; Zhang et al., 2016). For this study, we used the Suomi NPP VIIRS AOD because Suomi
NPP flies in formation with SSP TROPOMI with a local equator crossing time of 1:30 p.m. and less than
three minutes difference in overpass time. The Suomi NPP VIIRS AOD product has been extensively val-
idated by comparing it to Aerosol Robotic Network (AERONET) AODs and the VIIRS 550 nm AOD is
shown to have a global bias of —0.046 + 0.097 for AODs over land less than 0.1 and for AODs between
0.1 and 0.8, the bias is —0.194 + 0.322. In the US, for VIIRS AODs ranging between 0.1 and 0.8, the bias is
—0.008 + 0.089 and for AODs greater than 0.8, the bias is about 0.068 + 0.552 (Zhang & Kondragunta, 2021).
For the analysis of AOD data in this study, we remapped the high quality (Quality Flag equals 0) 750 m res-
olution AOD retrievals to 0.05° x 0.05° resolution with a criterion that for a grid to have a mean AOD value,
there should be a minimum of 20% 750 m pixels with high-quality AODs.

2.5. Unemployment Rate

The civilian labor force and unemployment estimates for metropolitan areas were obtained through the
Local Area Unemployment Statistics (LAUS) provided by the Bureau of Labor Statistics (bls.gov). The LAUS
program is a federal-state cooperative effort in which monthly estimates of total employment and unem-
ployment are prepared for over 7,500 areas including metropolitan areas. The seasonal adjustments are
carried out by the Current Employment Statistics State and Area program (CES) using the statistical tech-
nique Signal Extraction in Auto Regressive Integrated Moving Average Time Series (SEATS). These data
sets are smoothed using a Reproducing Kernel Hilbert Space filter after seasonal adjustment. The details of
the data collection, processing and release can be found at https://www.bls.gov/lau/laumthd.htm. The data
used in this study are for January—November 2020. To compare the NO, variation in metropolitan areas, the
TROPOMI tropNO, column amounts were averaged inside each metropolitan area. The 1:500,000 polygon
shape files were used to test if a TROPOMI pixel is inside or outside a metropolitan area. The shape files are
from US Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/cartograph-
ic-boundary.html).

2.6. Matchup Criteria

The NO, data were matched to the on-road mobile emissions data for statistical and trend analysis with
certain criteria. Prior to generating the matchups, rotated wind analysis was carried out on the original
pixel level data. It is important to do this when sampling the satellite data because NO, concentrations
accumulate in the cities when wind speed is low and disperse away from the city when wind speed is high.
The satellite data are observed once a day in the midafternoon, whereas on-road mobile emissions repre-
sent daily values. To have representative sampling, it is common to rotate the satellite pixel-level data in
the direction of the wind (Fioletov et al., 2015; Goldberg et al., 2019; Lorente et al., 2019; Zhao et al., 2020).
We used the European Center for Medium range Weather Forecast (ECMWF) Re-Analysis (ERAS5) 30-km
resolution global wind fields (Hersbach et al., 2020). To do the wind rotation, each TROPOMI pixel was
collocated to ERAS5 with tri-linear interpolation method in both temporal and horizontal directions. The
wind profiles were merged to the location of the TROPOMI pixel center. The east-west (U) and north-south
(V) wind speed components were averaged through the vertical distribution within the bottom 100 hPa,
approximated to be within the boundary layer. Then, each TROPOMI pixel was rotated and aligned with
the average wind direction from the city center. The rotated pixels are gridded with 5 x 5 km resolution to
generate monthly mean values for correlation analysis with on-road NOy emissions.

Once the pixels are rotated, they are sampled for 100 km in the downwind direction, 50 km in the upwind
direction, and the crosswind direction. This way, the elevated concentrations of NO, moving away from the
city in the downwind direction are captured. Figure 1a shows an example of the TROPOMI tropNO, with
Los Angeles as the focus. The tropNO, data shown are monthly mean values for January 2020 remapped to
a fixed grid. The black rectangle shows the area of interest over Los Angeles that we want to compare with
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map to show wind direction. To do the wind rotation, daily tropNO, pixel
level data are first remapped to a 5 X 5 km fixed grid resolution. The grids
are then rotated to align with the wind direction with downwind direc-
tion pointing North (Figure 1b). The daily rotated grid values of tropNO,
in 5 x 5 km are averaged over a month to generate a monthly mean. The
monthly mean values can vary quite a bit depending on missing data due
to screening for the high-quality data as well as cloud cover. In a given
month, the number of pixels with valid retrievals for a city can vary from
2% to 100% depending on cloud and snow cover; the mean values vary
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depending on the location of the missing values, if they are in the center
of the city where tropNO, is usually high or on the edges of the city where
tropNO, values can be low depending on wind speed and direction. In
120 160 200 our analysis for this study, prior to computing the monthly mean, the
criterion we employed is that on a given day, there should be a minimum

Figure 1. Sentinel 5P TROPOMI monthly mean tropNO, column amount  of 25% of pixels in a region selected for matchups of satellite data should
(or density) for January 2020 for Los Angeles. (a) Original pixel level have valid retrievals. The 25% threshold is a reasonable compromise be-

data remapped to 5 X 5 km resolution and averaged for the month. The
monthly mean ERA5 wind vectors are overlaid on the tropNO, map to
indicate the wind direction. (b) Remapped tropNO, data grids rotated in

cause any value higher than that will reduce the sample size (number of
days included in the monthly mean).

the direction of the wind using ERA5 wind fields. The downwind direction

is toward North (zero on the axis). For the monthly mean to be computed,

3. Results

we used a criterion that at least 25% of the days in a month should have
retrievals. The black rectangle defines the area for which tropNO, data are 3.1. Deseasonalizing TropNO, Data

averaged.

As already shown by many research studies, the global tropNO, column

amounts dropped in coincidence with partial or complete lockdowns dur-
ing the height of the COVID-19 pandemic in different parts of the world and in the US. To remove the sea-
sonality from the signal, researchers in these studies have adopted different approaches including the use of
numerical models to simulate the seasonality (e.g., Goldberg et al., 2020; Liu et al., 2020; Silver et al., 2020).
Seasonality should be accounted for because in the northern hemisphere winter months, tropNO, amounts
are higher than in summer months; as a result, during the transition from winter to summer, tropNO,
amounts are higher in February than in March. In our study, we used a double-differencing technique to
account for seasonality. Consistent with Goldberg et al. (2020), we used 1 January to 29 February 2020 as
the pre-lockdown period and 15 March to 30 April as the lockdown period. The difference in mean tropNO,
between lockdown and pre-lockdown is referred to as 2020ANO,. For the same two corresponding periods
in 2019, the difference in mean tropNO, is referred to as 2019ANO,. Then, the difference of 2019ANO, and
2020ANO, was computed to tease out the changes in tropNO, due to reductions in emissions during the
lockdown (AtropNO,). It should be noted though that the double differencing only removes the seasonality
and does not fully account for differences in meteorological events such as precipitation or anomalously
cold or hot conditions in one year versus the other but on a monthly time scale they are minimized.

Figures 2a and 2b show 2019ANO, and 2020ANO,, which include changes due to seasonality and any
changes due to emissions either from natural sources such as fires or from anthropogenic urban/industrial
sources. Figure 2c shows AtropNO, for the CONUS due to just changes in emissions between the pre-lock-
down and lockdown periods in 2020 with the seasonality removed. Comparing Figures 2a and 2b, one can
deduce that reductions in tropNO, between pre-lockdown and lockdown are much stronger in 2020 com-
pared to 2019. However, the double difference plot in Figure 2c shows how much of that reduction seen in
2020ANO, (Figure 2b) is due to changes in emissions. The tropNO, changes are smaller in Figure 2c than in
Figure 2b, both in magnitude as well as spatial extent of the reductions. Given that TROPOMI tropNO, pre-
cision is 1 x 10"* molecules/cm” or 16.6 umoles/m? and the mean background tropNO, for 2019 and 2020 is
about 16 wumoles/m” according to our estimates using Silvern et al. (2019) method, we subtracted 16 umoles/
m? from tropNO, data in 2019 and 2020 before applying the double difference method. We also colored the
values between —5 and +5 umoles/m? white.

The lockdown measures in most states in the US began in the middle of March 2020. The first state to in-
stitute stay-at-home measures was California on 19 March and the last state was Missouri on 6 April. The
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Figure 2. tropNO, changes between pre-lockdown period (January to

February) and lockdown period (15 March to 30 April) for (a) 2019ANO,,

(b) 2020ANO,, and (c) the difference between 2020ANO, and 2019ANO,,
The double differencing is expected to minimize the seasonal differences
and provide a realistic estimate of change in tropNO, due to emissions

changes.

cities/regions with worse traffic-related ozone pollution levels based on
the monitoring data from 2016 to 2018 compiled by the American Lung
Association and the duration for which they were in a lockdown are
shown in Table 1. For regions that fall into different states (e.g., Washing-
ton-Baltimore-Arlington), the dates for the state that had the longest du-
ration of lockdown are listed in the table. Most states were in a lockdown
mode only for one to two months and given the varying nature of the
lockdown in different parts of the country, we treated 15 March and 30
April as lockdown months. As shown in Figure 2a, 2019ANO; is positive
in some areas and negative in some areas, whereas in 2020 (Figure 2b),
large negative values (reductions) are observed in most of the CONUS ex-
cept in the Great Plains region and the Pacific Northwest. These reduced
tropNO, amounts are attributed to reduced emissions due to lockdowns.
Changes in the rural areas (either positive or negative) of the US could
be due to the changes to natural sources such as soil and lightning NOy
emissions or due to meteorological differences that the double differenc-
ing technique did not account for (Qu et al., 2021).

Liu et al. (2021) used NASA global photochemical model simulations to
study how long the tropNO, data need to be averaged to minimize the
influence of meteorological variability. They simulated January 2019 to
December 2020 by keeping the NO, emissions the same between the two
years and found that averaging the data over 31 days for the US leads to
differences in tropNO, between 2019 and 2020 less than 10%. Our dou-
ble differencing was done with tropNO, data averaged over 1.5 months,
which should substantially minimize the differences in meteorology.

We tested the robustness of the double differencing technique in other
ways. We repeated the analysis for a longer period and found that our
conclusions did not change. Setting the pre-lockdown period as 1 January
to 15 March and the lockdown period as 16 March to 30 May, we found
that tropNO, decreases are consistent with those shown in Figures 2a-2c
(Figures Sla-S1c). We also applied scaling factors to account for season-
ality and meteorological variability developed by Goldberg et al. (2020).
These scaling factors normalize tropNO, data to conditions of a typical
week day based on TROPOMI tropNO, data from 2018 to 2019, based on
sun angle, wind speed, wind-direction, and day-of-week. Figure S2 shows
this analysis using the normalized tropNO, to investigate NOy trends; it
shows reductions in tropNO, for different cities during the lockdown pe-
riod that are consistent with the double differencing analysis.

We investigated the likely increase in background tropNO, in 2020 com-
pared to 2019 and found that it increased by 14.5% in the Pacific North-
west complicating the impact of emission reductions on tropNO,. This is
consistent with the analysis reported by Qu et al. (2021). Using surface

observations of NO,, long-term observations of tropNO, from OMI, TROPOMI tropNO,, and the Goddard
Earth Observing System Chemistry model, Qu et al. (2021) showed how the use of satellite tropNO, data in
interpreting changes in NOx emissions can be complicated by background tropNO,.

3.2. On-Road NO, Emissions and TropNO,

Focusing on the regions of interest with on-road NOx emissions available for this study, we calculated re-
ductions in tropNO, for Los Angeles, Atlanta, San Francisco, San Joaquin Valley, and New York City. We
focus on the four cities from different regions of the country where daily traffic counting data are publicly
available in real time. We also include the San Joaquin Valley as a rural region with available traffic counting
data to compare with the urban areas. Based on real-time traffic counting data sets in each region, Table 2
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Table 1

Ranking of Cities for Ozone Pollution and Their Lockdown Periods

City/Region Ozone pollution ranking Lockdown start date Lockdown end date
Los Angeles-Long Beach, CA 1 19-March 4-May
Visalia, CA 2 19-March 4-May
Bakersfield, CA 3 19-March 4-May
Fresno-Madera-Hanford, CA 4 19-March 4-May
Sacramento-Roseville, CA 5 19-March 4-May
San Diego-Chula Vista-Carlsbad, CA 6 19-March 4-May
Phoenix-Mesa, AZ 7 30-March 30-April
San Jose-San Francisco-Oakland, CA 8 19-March 4-May
Las Vegas-Henderson, NV 9 1-April 30-April
Denver-Aurora, CO 10 26-March 26-April
Salt Lake City-Provo-Orem, UT 11 30-March 13-April
New York-Newark, NY-NY-CT-PA* 12 22-March 15-May
Redding-Red Bluff, CA 13 19-March 4-May
Houston-The Woodlands, TX 14 2-April 20-April
El Centro, CA 15 19-March 4-May
Chicago-Naperville, IL-IN-WI* 16 23-March 1-May
El Paso-Las Cruces, TX-NM 17 2-April 15-May
Chico, CA 18 19-March 4-May
Fort Collins, CO 19 26-March 26-April
Washington-Baltimore-Arlington, DC-MD-VA-WV-PA* 20 30-March 15-May
Dallas-Fort Worth, TX-OK 21 2-April 20-April
Sheboygan, WI 22 24-April 26-May
Philadelphia-Reading-Camden, PA-NJ-DE-MD* 23 30-March 15-May
Milwaukee-Racine-Waukesha, WI 24 24-April 26-May
Hartford-East Hartford, CT 25 23-March 20-May

“Dates reflect the period that is the longest for any given state in the region.

shows that the COVID-19 lockdown led to —28% to —48% reductions in on-road NOx emissions in the
fuel-based inventory. The regions with the two smallest changes in the on-road NO, inventory are Atlanta
(—28%) and San Joaquin Valley (—33%). Atlanta and the San Joaquin Valley exhibited the smallest drops in

Table 2
Reductions in On-Road NO, Emissions and TropNO, Between 15 March to 30 April and 1 January to 29 February
Derived Using Double Differencing Technique

Seasonality removed Seasonality
on-road NOx removed TropNO,
emissions changes reductions (%)

2019ANOx 2020ANOx (%) (2020ANOx 2019ANO, 2020ANO, (2020AtropNO,
City (%) (%) —2019ANOx) (%) (%) -2019AtropNO,)
Atlanta 10.41 —-17.70 —28.11 —22.67 —44.14 —21.47
San Francisco 10.54 —33.95 —44.49 —23.79 —48.18 —24.39
San Joaquin Valley 14.27 —18.39 —32.66 —27.30 —44.62 —-17.32
New York City 11.04 —36.87 —47.91 —6.07 —34.05 —27.98
Los Angeles 10.57 —25.10 —35.67 —37.90 —59.68 —21.78
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of lo - Figure 3 shows the time series of on-road mobile (cars and trucks com-
300 E (e) San Joaquin Valley — Power Plants _| g0 bined) and power plant NOy emissions for the five different cities/regions
200 3 Oritoad 1 in the US from January to November 2020; the exception is New York City
] 40 for which the time series ends on 31 August due to the nonavailability of
100 1920 traffic data. There are a couple of key points illustrated by Figure 3. First,
ok lo note the differential scaling of the left and right axes indicating that on-
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Figure 3. Time series of daily on-road

road NOy emissions dominate over power plants across these five regions,
except for New York City where power plant emissions are about half of
and power plant NO, emissions for ~ the on-road NOy in summer months. It is noteworthy that there was a

7/01 09/01 11/01

different cities from January to November 2020. Note that the on-road NOx  jump in power plant emissions toward the end of June, which coincided
emissions time series ends on 31 August for New York City because the with the opening of retail establishments on 22 June; the power plant

traffic count data are not available for September to November.

emissions in New York City are higher in summer than in winter, associ-
ated with increased demand for air conditioning. Second, the power plant
NO, emission trends are distinct from the on-road emission trends and do
not show a noticeable drop-off in emissions during the most stringent months of the COVID-19 lockdown
(i.e., March 15 to April 30) like for on-road transportation. Next, we explore more quantitatively the extent
to which on-road NO, emissions are correlated with tropNO, satellite columns.

3.3. Correlation between On-Road NO, Emissions and TropNO,

Given the knowledge of changes in on-road emissions in the five cities due to lockdown, we wanted to
examine if tropNO, shows similar behavior by exhibiting a linear relationship, and if so demonstrate that
the period for which the lowest NO, emissions were observed in traffic data also corresponds to the lowest
observed tropNO, data. Additionally, we wanted to check if the post-lockdown recovery in traffic emissions
is reflected in tropNO, data. We first examined the direct relationship between daily tropNO, and daily
on-road NOy emissions for the five locations; but only the analysis for Los Angeles is shown in Figure 4 for
illustration purpose; data from other cities showed similar behavior. The tropNO, and NO, emissions (tons/
day) for January and February 2020, representing the BAU, and for March through November 2020 are
shown in Figures 4a and 4b, respectively. The coincident observations of tropNO, amount sampled in the
predominant wind direction are linearly correlated with on-road NOy emissions but the correlation is weak
(r = 0.39). The traffic emissions fall into three clusters corresponding to emissions on Sundays (~150 tons/
day), Saturdays (~180 tons/day), and weekdays (~199 tons/day) with minimal variability in each cluster,
whereas tropNO, amount varies between 50 and 225 pmoles/m’.
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Figure 4. Correlation between daily tropNO, and daily on-road NOy emissions for Los Angeles, CA. (a), (c), and (e) For
pre-lockdown (January and February) and (b), (d), and (f) for lockdown and post lockdown period (March through end
of November). (a) and (b) are daily tropNO,, (c) and (d) are daily tropNO, normalized to account for meteorology, (e)
and (f) are 28-day rolling mean normalized daily tropNO,. Red color is for data gathered on Sundays, green color is for
data gathered on Saturdays, and blue color is for data gathered on weekdays.

The variability in tropNO, can be attributed to different reasons. First, the day-to-day variability in cloud
cover can lead to gaps in data. We used the recommended quality flag threshold of 0.75 to screen out the
data that have potential contamination from clouds but this strict screening reduces the number of re-
trievals for a given location. Second, there is also a variability in the background NO, contribution to the
tropospheric NO, column due to which tropNO, does not correlate well with NOy emissions from sources
on the ground. We analyzed the background NO, signal in the tropospheric column amount for TROPOMI
for 2019 and 2020 using Silvern et al. (2019) method and found it to be higher due to the longer winter-time
lifetime (lower temperature, weak photolysis, stronger wind dispersion, and less wet scavenging) and lower
in the summer with monthly mean values ranging between 15 and 20 umoles/m? (Figure S3). Sources of
background NO, are soil emissions of NO,, which are amplified after precipitation events, lightning pro-
duced NOy, and chemical decomposition of peroxyacetyl and alkyl nitrates. Transport of NO, from rural
areas can also enhance tropNO, values that may not correlate well with NO, emissions from sources on
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the column NO, amount, but this has no relation to the NO, emissions
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from on-road sources on the ground. We did account for the effects of
wind in our matchups by sampling the data in the downwind direction
but higher wind speeds dilute the NO, concentrations observed by TRO-
POMI (Figure S4).
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N=11, R°=0.47 be noisy and have errors associated with air mass factors and a priori
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profiles. Parker et al. (2020) report that the Los Angeles basin was unu-
sually wet in 2020, especially during the late March and early April 2020.
Other researchers who correlated daily surface observations of NO, and
TROPOMI tropNO, for 35 different stations in Europe reported similar
findings and they found that correlation improved after averaging the
data to monthly time scales (Cersosimo et al., 2020; Goldberg et al., 2021;
Talongo et al., 2020). The comparison for the lockdown and post-lock-

-80 -60

AOn-road NOX (tons/day)

-40

‘ : down period of March through November is shown in Figure 4b; the cor-
-20 0 relation remains the same (r = 0.39) but the one interesting feature is that
the tropNO, and on-road emissions are very small during the lockdown

compared to the pre-lockdown. Daily NOy emissions on many days are

Figure 5. Trends in on-road monthly mean NO, emissions (tons/day) and  between 100 and 150 tons after 14 March; prior to that, the region was not

tropNO, (umoles/m?) between 2019 and 2020 averaged for the five analysis
cities. (a) Average monthly mean differences for the five cities from
January to November. (b) Correlation between five-city average changes

under stay-at-home orders. The tropNO, never goes above 200 umoles/m’
for this period. Compared to the pre-lockdown period, the on-road NOy

in on-road monthly mean NOx emissions and changes in five-city average ~ €missions and tropNO, values shifted to lower values within each cluster

monthly mean tropNO,.

(shown in blue for weekdays, green for Saturdays, and red for Sundays).
During the lockdown, one would anticipate that there would not be any
difference between weekday and weekend emissions but the difference is
stark and is reflected in tropNO, data as well.

We normalized daily tropNO, data to account for meteorological and observational differences from day-to-
day using Goldberg et al. (2020) technique as shown in Figures 4c and 4d. Despite normalization, the cor-
relation between daily NOy emissions and tropNO, data did not improve. However, when the normalized
data are smoothed with 28-day rolling mean values, the correlation improved with a correlation coefficient
of 0.75 for both the pre-lockdown and the lockdown/post-lockdown periods (Figures 4e and 4f). This is con-
sistent with other studies involving satellite tropNO, data where 28-day rolling means or weekly averaging
was carried out to minimize noise and data gaps (Goldberg et al., 2021; Misra et al., 2021).

To correlate the changes in on-road NOy emissions with changes in tropNO, between 2019 and 2020 for
each of the five regions in this study, we averaged daily NO, emission values and tropNO, values for each
month (January to November) and created an average value of all the five regions combined for each month.
Figure 5a shows the monthly mean trend plot of ANO, and AtropNO, for January to November; on-road
NOy emissions and tropNO, dropped steadily and hit the lowest values in March and April, consistent with
the lockdown measures. The recovery began in May and continued to November for on-road NO, emissions
but did not completely recover to the pre-lockdown levels. However, the AtropNO, trend plot shows recov-
ery up to August and then begins to show a decline from September to November. This decline in tropNO,
is attributed to San Joaquin and San Francisco. Figure 5b shows the correlation of on-road NO emissions
changes (ANOy) between 2020 and 2019 with the difference in tropNO, amounts between 2020 and 2019
(AtropNO,). The NOy emissions were lower in 2020 compared to 2019 for all the months and all the cities.
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Figure 6. tropNO2 map for second quarter of 2020. The red columns
show total on-road NO, emissions and the blue columns show NO,
emissions from power plants nearby these five cities (New York, Atlanta,

NO, Tropospheric Column (umollmz)
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The positive linear correlation (r = 0.68) suggests that TROPOMI trop-
NO, observations captured the changes in on-road NOy emissions and
can be used to study the changes in NO, emissions due to traffic else-
where in the US where there are no observations from the ground.

Even though traffic emissions are the dominant source for NOy, there
200 are power plants near the cities emitting NOy continuously and unlike
traffic emissions they do not exhibit a weekday/weekend cycle. Figure 6
shows a map of tropNO, for the second quarter in 2020 (April/May/June)
with on-road NOy emissions and power plant NO, emissions for each of

Los Angeles, San Francisco, and San Joaquin Valley). Power plants with the five analysis cities as stacks. The locations of power plants in other

monthly mean NOy emissions greater than 1500 tons are also shown in the  parts of the country are circled in pink, indicating that these power plants
map as pink dots.

AtropNO, (umol/m?)

Figure 7. Correlation of monthly mean tropNO, changes between 2020
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emit greater than 1,500 tons in a given quarter; power plants with lower

monthly NO, emissions (<1,500 tons) are not shown on the map. It is dif-

ficult to isolate the NO, plumes from power plants in urban areas in the
TROPOMI tropNO, map as the NOy emitted from the power plants mixes and becomes indistinguishable
from on-road emissions. Consistent with this analysis, changes in NOy emissions between 2020 and 2019
for power plants within 75 km of each of the five analysis cities correlated weakly with changes in tropNO,
(r = 0.35); power plant NO, emissions can explain only 12% of the variability seen in tropNO, (Figure 7).
Also, as can be seen in Figure 7, the daily average changes in power plant emissions between 2020 and 2019
were positive for some plants and negative for some but mostly varied between +20 tons/day.

3.4. Correlation Between TropNO, and AOD

The premise for the impact of NOy emissions reductions on improved air quality due to reduced human
activity during the lockdown period depends on how the photochemical processes changed compared to
the BAU scenario. The photochemical production of ozone and surface PM, 5 (particulate mass of particles
smaller than 2.5 um in median diameter) depends not only on NOy emissions but also on VOCs and their
ratio (Baidar et al., 2015; Parker et al., 2020: McDonald, Gouw, et al., 2018; Qin et al., 2021). Most analyses
of the impact of COVID-19 lockdowns on air quality using satellite data have focused on TROPOMI NO,
and attributed the reductions of NO, emissions to improved air quality; the reductions in VOC emissions
are largely unknown, especially from nonvehicular sources. Atmospheric formation of nitrate and organic
aerosols is driven by NOy, VOCs, and ammonia emissions and if the photochemical processes are in a NOy

limited or VOC limited regime. To analyze the AOD data for indications

of reduced aerosol formation due to reduced NO, emissions, one com-

T P\ T T

—Y=0.52X-2.03
N=840, R*=0.12

p=0.35, p=0.00

plicated factor is the transport of smoke aerosols from upwind regions
and how the transported signal can be removed from the AOD data. To
address this issue, we tested the hypothesis that the AOD/tropNO, ratio
is small when pollution sources are local and high when nonlocal sourc-
es bring transported aerosols into the domain. We calculated the weekly
correlation between AOD and tropNO, and obtained the slope for each
week over one year in 2019 and 2020, to document the changes in slope as
a function of time during the year (Figures 8a—8c); In Figures 8a and 8b,
we show an example of how slopes are derived using the scatter plot be-
tween VIIRS AOD and TROPOMI tropNO, for one week in September
2019 and in 2020. For 2019, when the fire season was not a major con-

1 1

-40

APower Plants NO, (tons/day)

-20

tributing factor to aerosol concentrations, the slopes are small in the win-
ter months and slowly increase toward the summer (Figure 8c). This is
consistent with the knowledge that ammonium nitrate formation peaks
in the summer due to the availability of ammonia from increased agricul-

®
0 20 40

and 2019 with changes in power plant monthly mean NO, emissions. The tural activity and higher volatility associated with higher temperatures
size of the circle indicates the magnitude of total monthly emissions (high, ~ (Schiferl et al., 2014).

medium, and low) of individual power plant. To obtain monthly means,
daily total NO, emissions were added and divided by the number of days The weekly scatter plots of AOD and tropNO, for September 2019 and

in a month to get average values in units of tons/day.

2020 in Figures 8a and 8b show that the tropNO, values in both years
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Figure 8. (a) Example correlation of VIIRS AOD and TROPOMI tropNO,
during one week, September 15-21, 2019, (b) Same for September 13-19,
2020, (c) Time series of weekly slope (AOD/tropNO,) with data for 2019 in
gray color and data for 2020 in red color for Los Angeles, California. The
black solid line is the fit to 2019 data indicating seasonal photochemistry.
Any data points that depart from the shaded gray region are treated as the
period when transported aerosols (e.g., smoke) influenced the air mass
over Los Angeles.

ranged between 30 and 120 p.moles/mz, whereas AOD values in 2020
were much higher (between 0.2 and 0.9) compared to values in 2019 (be-
tween 0.1 and 0.2). The AOD values in the US typically range between 0
and 1, with higher AODs typically observed in the presence of biomass
burning smoke or dust storms. Given this knowledge that slopes are high-
er when transported aerosol is involved, we were able to filter the AOD
data. The filtered data will be used in a future study to analyze trends in
AOD due to NO, emissions reductions.

3.5. Correlation of TropNO, and Unemployment Rate

Because of the lockdown measures and work from home policies for ma-
jority of the workplaces in the US, the service industry has suffered and
the unemployment rate has risen. The US unemployment rate increased
from about 4.4% in March to 14.7% in April during the first phase of lock-
downs. The unemployment rate nationwide improved as lockdowns were
lifted but certain parts of the country continued to experience a very high
unemployment rate throughout 2020 (Figure 9). Among the employed,
28% of employees continued to work from home as of November indi-
cating that below normal NO, emissions data are to be expected. The
correlation between unemployment rate and tropNO, for metropolitan
areas with a pre-pandemic civilian labor force greater than 2 million is
negative for the second and third quarters (the regression line shown in
Figure 9 is for second quarter data). The unemployment rate combined
with telework policies have contributed to reduced NO, emissions and
thus lower tropNO, values across the US. This is similar to the positive
correlation between Gross Domestic Product and tropNO, reported by
Keller et al. (2020). For reasons unknown, cities such as Phoenix, AZ,
Minneapolis, MN, Dallas and Houston, TX, and Chicago, IL showed no
change or a slight increase in tropNO, in 2020 compared to 2019 though
unemployment rate in 2020 was much higher compared to 2019. Keller
et al. (2020) do not report these outliers because their analysis is for all
developing countries around the world and is not granular at the city lev-
el like our analysis.

4. Discussion

The TROPOMI tropNO, data captures the day-to-day variability in trop-
ospheric NO, concentrations but due to cloud cover, varying background
tropNO,, and uncertainties associated with assumptions such as a priori
profile and lower sensitivity to near surface NO,, on certain days the tro-
pNO, retrievals do not adequately represent the changes in near surface
NO, (Cersosimo et al., 2020; Goldberg et al., 2021; Ialongo et al., 2020).
The tropospheric NO, variability is very well captured; however, on

monthly scales and even on weekly scales, to the extent that weekday/weekend cycles are noticeable. When
using the TROPOMI tropNO, data, we wanted to establish that it not only shows the reductions/drop in
tropNO, due to reductions in on-road NO, emissions but that the trend during the post-lockdown recovery

phase can be detected as well.

The spatial and temporal analysis, relating indicators of human activity during and prior to the COVID-19
lockdown to air quality conditions, shows that while power plant emission changes were not drastic com-
pared to on-road emissions, the on-road emissions in the five analysis cities dropped coinciding with the
start date and the duration of the lockdown. The changes in on-road NOy emissions correlated with tropNO,
changes for these five locations, giving confidence to use tropNO, data in other parts of the CONUS, and
to draw conclusions about relating changes in tropNO, to economic activity changes. We found that the
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weekday-weekend differences were pronounced in on-road emissions and tropNO, data, and the lowest val-
ues of on-road NOy occurred on weekends even during the lockdown periods. The unemployment rate and
its increase during the lockdown and post lockdown period appears to also be a good proxy for economic
activity and is correlated well with the decrease in tropNO,. At the height of the lockdown in the second
quarter of 2020, the unemployment rate increase was as high as 17% in populated metropolitan areas; even
at the end of the third quarter of 2020, the unemployment rate increase was ~10%. The first quarter un-
employment rate was constant at ~5% and did not vary; it showed no relationship to tropNO, as expected
because the impacts due to the lockdown did not affect the unemployment rate until the second quarter.

The satellite data must be analyzed by considering various quality flags and understanding the limitations
of the algorithm. It is likely that using the quality flag >0.75 for TROPOMI tropNO, was conservative, but
the extremely low daily tropNO, values on certain days even when on-road NOy emissions were high is
indicative that the TROPOMI data are more interpretable when averaged to weekly or monthly time scales.
For tropNO, retrievals that have quality flags between 0.5 and 0.75 suggesting cloud contamination, in
future work, we will look at the coincident high-resolution (750 m) VIIRS cloud mask product to analyze
TROPOMI flags for cloud contamination. This will help improve our analysis using the daily tropNO, re-
trievals by either including more retrievals or removing some retrievals from the matching with on-road
NO, emissions data.

5. Conclusions

It has already been established by numerous research studies that reduced traffic (on-road) and industrial
emissions led to improved air quality during the COVID-19 lockdown measures implemented by various
countries across the globe. However, most studies used mobility data as a proxy for reduced human activity
to interpret satellite observations of tropNO, but did not directly relate the reduced on-road emissions with
reduced air quality observations. Here, for the first time, we directly correlate on-road NOy emissions data to
TROPOMI tropNO, in four urban and one rural area in the US. For this, we used TROPOMI tropNO,, VIIRS
AOD, on-road NOy emissions, and unemployment rates to develop a comprehensive analysis for 2019 and
2020. Where needed, we conducted rotated wind analyses and normalization to account for meteorological
influences to sample correctly and match the on-road NO, emissions with tropNO, data. We also developed
a novel way of deseasonalizing tropNO, data, and used changes in unemployment rate data as an indicator
for economic activity.

Our analysis of reductions in on-road NOy emissions from light- and heavy-duty vehicles derived from fuel
sales data showed a reduction from 9% to 19% between February and March 2020. When lockdown meas-
ures were the most stringent, at the onset of the lockdown period in the middle of March 2020 in most of the
US and between March and April 2020, the on-road NOy emissions dropped further by 8%-31%. These pre-
cipitous drops in NO, emissions correlated well with tropNO,. Furthermore, the changes in tropNO, across
the continental US between 2020 and 2019 correlated well with changes in the on-road NO, emissions
(r = 0.68) but correlated weakly with changes in emissions from power plants (r = 0.35). These findings
confirm the known fact that power plants are no longer a major source of NO, in urban areas of the US. As
the US entered a post-pandemic phase between May and November 2020, the increased mobility resulted in
increased NOy emissions nearly returning to the pre-lockdown phase but not entirely back to 100%. Though
the lockdown in most of the US ended by May, the on-road NO, emissions did not bounce back to near
normal values until August for Atlanta; for San Joaquin Valley, Los Angeles, and San Francisco, the on-road
NOy emissions continued to be 20% below normal even in November. These changes are reflected in the
tropNO, data, except for San Francisco and San Joaquin Valley, where the tropNO, diverged from on-road
NOy emissions trends, which needs further inquiry. The positive linear correlation between on-road NOx
emissions and TROPOMI tropNO, (r = 0.75) suggests that satellite tropospheric column observations of

Figure 9. The impact of COVID-19 lockdown on the unemployment rate in metropolitan areas and tropNO,. (a) Unemployment rate in April 2019, (b)
Unemployment rate in April 2020, and (c) Correlation between increase in unemployment between 2019 and 2020 and tropNO, changes. Only data for
metropolitan areas where the civilian labor force in 2019 was greater than 2 million are shown in the correlation plot. In the first quarter (Q01), unemployment
changes are close to zero as pandemic impact did not begin until late March. Strong negative correlation is observed for the second (Q02) and third (Q03)
quarters. The solid black line is the fit to the second quarter data.
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NO, captured the changes in on-road emissions and can be used to study changes in NOx emissions due to
traffic where ground observations are not available.

The negative correlation between changes in tropNO, and increased unemployment rate indicates that with
the increased unemployment rate combined with telework policies across the US for nonessential workers,
the tropNO, values decreased at the rate of 0.8 pmoles/m” per unit percentage increase in the unemploy-
ment rate.

Across the US, we found positive spatial correlation between SSP TROPOMI tropNO, and Suomi NPP VIIRS
AOD measurements in urban regions indicating common source sectors for NO, and aerosols/aerosol pre-
cursors. We developed a new mechanism using the changes in AOD-tropNO, slope to screen for fire events
influencing aerosol concentrations in urban/industrial regions that can be used to analyze changes in aer-
osols due to emissions reductions. The COVID-19 pandemic experience has provided the scientific com-
munity an opportunity to identify scenarios that can lead to a new normal urban air quality and assess if
the new normal can be sustained with novel policies such as increased telework and a shift toward driving
electric cars.

Disclaimer

The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the
author(s) and do not necessarily reflect those of NOAA or the Department of Commerce.

Data Availability Statement

The publicly available pixel-level SNPP VIIRS AOD data can be obtained from NOAA CLASS (https://www.
avl.class.noaa.gov). The pixel-level Sentinel 5P TROPOMI NO, data can be obtained at https://scihub.coper-
nicus.eu/dhus/#/home. The Level 3 gridded products of TROPOMI NO, and VIIRS AOD can be generated
by regridding pixel-level data into desired grid resolution by users. The on-road NOx emissions data are
available at https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/.
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