
1.  Introduction
As the 2019 novel Corona virus (COVID-19) spread from China to other parts of the world, various countries 
imposed lockdown measures one by one. Reports of improved air quality from ground and satellite observa-
tions of aerosol optical depth (AOD) and nitrogen dioxide (NO2) soon followed in the media as documented 
by Kondragunta et al. (2020). The precipitous drops seen in the tropospheric vertical column NO2, (trop-
NO2 here onward) measured by the Sentinel 5P TROPOspheric Monitoring Instrument (TROPOMI) were 
substantial, especially during the strict lockdown period for each country (Gkatzelis et al., 2021). Goldberg 
et al. (2020) reported that in the United States (US), tropNO2 decreased by 9.2%–45% in 26 cities from March 
15 to April 30, 2020 compared to the same period in 2019; these reported reductions account for the influ-
ence of the weather. Other researchers reported similar findings, mainly reductions of tropNO2 attributed 
to reductions in traffic emissions both in the US and across the globe in major urban areas of Europe, India, 
and China (Bauwens et al., 2020; Keller et al., 2020; Naeger & Murphy, 2020; Straka et al., 2021; Vadrevu 
et al., 2020; Zhang et al., 2021; Zheng et al., 2020). For example, in Washington D.C., the average distance 
traveled by people dropped by 60% between February and April when restrictions were fully in place (Stra-
ka et al., 2021). This sudden drop in tropNO2 in major metropolitan areas where the transportation source 
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Plain Language Summary  This study documents the different phases of COVID-19 
lockdown in 2020 and how traffic emissions changed accordingly across the US, particularly in five 
different cities, namely Los Angeles, San Francisco, San Joaquin Valley, New York City, and Atlanta. 
Analysis of data for these cities from measurements on the ground and satellites indicate that a downturn 
in the economy and telework policies reduced the number of cars and trucks on the road in March and 
April due to which air quality got better. The recovery of traffic emissions after the lockdowns was lifted 
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provided a window into the future as to how improvements can be achieved.
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sector for NOx (NO + NO2) is strong is due to reduced traffic on top of an already observed general decreas-
ing trend in NOx emissions. According to Lamsal et al. (2015), tropNO2 observed by the Ozone Monitoring 
Instrument (OMI) showed a decreasing trend with an overall decrease of 28% between 2005 and 2013. These 
reductions are consistent with NOx emission reductions from major power plants in the US due to the Clean 
Air Interstate Rule and Cross State Air Pollution Rule. The NOx emissions continued to drop as more and 
more power plants switched to natural gas or began to rely on clean coal (de Gouw et al., 2014).

Nitrogen dioxide is released during the combustion of fossil fuels and is a precursor for both ozone and 
particulate matter, primary components of photochemical smog. Whether it enhances or decreases ozone 
production is dependent on a given region being NOx saturated or volatile organic compound (VOC) satu-
rated, due to the inherent nonlinearity of ozone photochemistry (Kroll et al., 2020; Mazuuca et al., 2016). 
The two main sources of NO2 in the US are the energy sector and the transportation sector according to the 
2014 Community Emissions Data System (Hoesly et al., 2018). A study by Zheng et al. (2020) analyzed the 
reductions in trace gas and aerosol concentrations in China during the lockdown and found that the most 
significant drop in aerosols was for nitrate aerosol. For the period corresponding to the lockdown in China, 
from January 23 to February 22, 2020, mean nitrate aerosol concentration was 14.1 µg/m3; for the same 
period in 2019, the concentration was 23.8 µg/m3. This 41% reduction is corroborated by reductions in NO2 
observed by TROPOMI (Bauwens et al., 2020).

Though NO2 is considered important due to its ozone and aerosol-producing potential, it has harmful hu-
man health impacts when inhaled. Achakulwisut et al. (2019) showed that 64% of 4 million pediatric asth-
ma cases each year are due to exposure to NO2. It should be noted though that NO2 was used as a proxy for 
traffic-related pollution. The World Health Organization standard for NO2 is an annual average of 21 parts 
per billion and for the US, it is 53 parts per billion. The authors do note that daily exposure to NO2 can vary 
from annual averages, and traffic pollution is usually a mixture of precursor gases, primary particulates, 
and photochemically formed ozone and aerosols. Nevertheless, when countries went into lockdown, the 
most noticeable indication of a reduction in traffic-related pollution is tropNO2 in urban areas observed by 
TROPOMI, lending support to the assumption that NO2 is a good proxy for traffic-related pollution. The 
COVID-19 lockdown measures disproportionately impacted traffic more than industrial operations.

We analyzed TROPOMI tropNO2 and Suomi National Polar-orbiting Partnership Visible Infrared Imag-
ing Radiometer Suite (Suomi NPP VIIRS) AOD data in conjunction with on-road NOx emission data, NOx 
emissions from power plants, and unemployment rates where available. The goal of this study is to exam-
ine the trends in on-road and power plant emissions for five different locations (four urban areas and one 
rural area) to answer the questions: (a) are changes in NOx emissions during the lockdown detectable in 
TROPOMI tropNO2 data, (b) are the economic indicators consistent with emissions changes, and (c) did 
the trends reverse with the lifting of lockdown measures in the major metro areas. These questions are 
answered with spatial and temporal analysis of ground-based observations and satellite data, relating indi-
cators of human activity during and prior to COVID-19 lockdown with air quality, and examining if a new 
normal urban air quality can be achieved with novel policies.

2.  Methods
2.1.  Sentinel 5P TROPOMI NO2

The TROPOMI NO2 algorithm is based on the Differential Optical Absorption Spectroscopy technique that 
involves fitting the spectra in the NO2 absorption region between 405 and 465 nm using known labora-
tory-measured reference absorption spectra. The Sentinel 5P flies in formation with Suomi NPP. Though 
some Sentinel 5P trace gas algorithm retrievals depend on the VIIRS cloud mask, the NO2 algorithm relies 
on cloud retrievals using its oxygen A-band absorption (van Geffen et al., 2019). The cloud fraction and 
effective pressure are used in air mass factor calculation for partially cloudy pixels. There is an indication 
that the cloud algorithm is likely conservatively masking out good NO2 retrievals according to a validation 
study conducted by Judd et al. (2020). Though Judd et al. (2020) used data with quality flag equals to unity, 
we used the quality flag value (0.75) recommended by the NO2 algorithm theoretical basis document (van 
Geffen et al., 2019). Only data with quality flag >0.75 were used as this quality flag setting ensures that 
cloudy retrievals or retrievals with snow/ice covered pixels are screened out. The TROPOMI Level 2 product 
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file consists of pixel level (3.5 × 5.6 km) NO2 tropospheric column amount, which we used in this study. The 
NO2 algorithm retrieves total column NO2 and separates the stratosphere from troposphere using chemical 
transport model predicted stratospheric NO2 analysis fields (van Geffen et al., 2019). The expected accuracy 
of the tropospheric NO2 column for polluted regions with high NO2 values is ∼25%, and independent vali-
dation efforts using ground-based spectrometers such as Pandora have confirmed that tropNO2 is generally 
underestimated, especially in polluted regions and that significant sources of errors come from coarser 
resolution a priori profiles used in the retrieval algorithm (Chan et al., 2020). Comparisons of TROPOMI 
tropNO2 column with Pandora ground station retrievals of tropospheric NO2 column in Helsinki showed 
that mean relative difference is −28.2% ± 4.8% (Ialongo et al., 2020). Similar comparisons between Pandora 
ground station retrievals and TROPOMI tropNO2 in Canada for urban (Toronto) and rural (Egbert) stations 
show that TROPOMI tropNO2 has a −23% to −25% bias for polluted regions and a 7%–11% high bias in 
the rural region (Zhao et al., 2020). Sources of error in TROPOMI tropNO2 include altitude-dependent air 
mass factors, stratosphere-troposphere separation of NO2, a priori NO2 profile and shape, surface albedo 
climatology, and calibration errors as a function of view angle (Chan et al., 2020; Ialongo et al., 2020; Judd 
et al., 2020; van Geffen et al., 2019; Zhao et al., 2020). Judd et al. (2020) showed that the TROPOMI tropNO2 
validation carried out during the Long Island Sound Tropospheric Ozone Study experiment showed that the 
retrievals have a bias of −33% and −19% versus Pandora and airborne spectrometer retrievals, respectively. 
The biases improve to −19% and −7% when the TROPOMI NO2 algorithm is run with a priori profiles from 
a regional air quality model indicating that retrievals are very sensitive to a priori profiles. One aspect that is 
not fully explored by Judd et al. (2020) is the influence of aerosols on air mass factor calculations. Research 
on aerosol impact on air mass factors indicates that the effect of aerosols on NO2 retrieval can vary depend-
ing on aerosol type (absorbing or scattering), amount, and vertical location (is aerosol mixed in with NO2 
in the boundary layer or is the aerosol layer detached from NO2 layer) in the atmospheric column (Judd 
et al., 2020; Lin et al., 2014; Liu et al., 2020; Tack et al., 2019).

The Level 2 TROPOMI NO2 data were downloaded from the European Space Agency datahub (https://
s5phub.copernicus.eu/dhus/#/home). The data for January–February 2020 are considered Business as Usu-
al (BAU), the data for 15 March to 30 April 2020 are considered the lockdown period, and the data for 1 
May–November 2020 are considered as representing the post-lockdown period.

The TROPOMI NO2 data are available only from mid-2018 to the present. We removed the seasonality in 
tropNO2 data in two simple ways: by simply taking the difference between 2019 and 2020 for the same 
month so the sun-satellite geometries and weather conditions are similar barring any unusual interannual 
variabilities and by doing double differencing as described in Section 3.1.

2.2.  On-Road NOx Emissions

The on-road emissions are obtained using the Fuel-based Inventory of Vehicle Emissions (FIVE) where 
vehicular activity is estimated using taxable fuel sales for gasoline and diesel fuel reported at a state-lev-
el and downscaled to the urban scale using light- and heavy-duty vehicle traffic count data (McDonald 
et al., 2014). Once the fuel use is mapped, NOx emissions are estimated using fuel-based emission factors (in 
g/kg fuel) based on roadside measurements or tunnel studies (Hassler et al., 2016; McDonald et al., 2012, 
McDonald, McKeen, et  al.,  2018). The emission factors are calculated separately for light-duty gasoline 
vehicles and heavy-duty diesel trucks. The FIVE methodology was developed to derive traffic emissions to 
study their impact on air quality (Kim et al., 2016; McDonald, McKeen, et al., 2018), but in the case of 2020, 
the fuel-based methods provide evidence for quantifying the impact of reduced human activity during the 
lockdown period on air pollutant emissions (e.g., NOx).

Here, we downscale on-road gasoline and diesel fuel sales following McDonald et al. (2014) for our 2019 
base year, which is treated as the BAU case. We have chosen to focus on four US urban areas where real-time 
traffic counting data are publicly available, including the South Coast air basin (Los Angeles county, Orange 
county, and portions of Riverside and San Bernardino counties), San Francisco Bay Area (Marin, Sonoma, 
Napa, Solano, Contra Costa, Alameda, Santa Clara, San Mateo, and San Francisco counties), New York City 
(Richmond, New York, Kings, Queens, and Bronx counties), and the Atlanta metropolitan region (Chero-
kee, Clayton, Cobb, Coweta, Dekalb, Douglas, Forsyth, Fulton, Gwinnett, Henry, Rockdale, and Spalding 
counties). We also include one rural region for contrast, the San Joaquin Valley in California (Fresno, Kern, 
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Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare counties. For the BAU case, we account for 
typical seasonal and day-of-week activity patterns of light- and heavy-duty vehicles separately. For the COV-
ID-19 case, we scale the January BAU emissions case with real-time light- and heavy-duty vehicle traffic 
counting data for the year 2020, which are described in Harkins et al. (2021). Light-duty vehicle counts are 
used to project on-road gasoline emissions and heavy-duty truck counts for on-road diesel emissions during 
the pandemic.

To estimate NOx emissions, the FIVE NOx emission factors have been updated to 2019 based on the regression 
analyses of roadway studies (Hassler et al., 2016; McDonald et al., 2012, McDonald, McKeen, et al., 2018), 
and we use a value of running exhaust emission factors of 1.7 ± 2 g NOx/kg fuel and 12.4 ± 1.9 g NOx/kg fuel 
for on-road gasoline and diesel engines, respectively. Cold-start emissions are scaled relative to running ex-
haust emissions based on the US Environmental Protection Agency (EPA) MOVES2014 model (EPA, 2015). 
We use the 2019 NOx emission factor for both the BAU- and COVID-19-adjusted cases. Thus, the differences 
in the BAU and COVID-19 cases are only due to changes in traffic activity. We use the same emission factor 
for 2019 and 2020 because past studies have shown during the 2008 Great Recession the turnover of the 
vehicle fleet and corresponding reductions in emission factors are slower (Bishop & Stedman, 2014). Total 
on-road NOx emissions are the sum of emission estimates for light-duty vehicles and heavy-duty trucks. The 
off-road mobile source emissions are not included in the data set. In cities, on-road transportation accounts 
for as much as 75% of the NOx emissions (Kim et al., 2016) and is a critical emissions sector to quantify.

Uncertainties in FIVE on-road emission estimates arise from non-taxable fuel sales associated with off-road 
machinery, and from mismatches where fuel is sold and where driving occurs, though diesel fuel sales re-
ports are adjusted based on where long-haul trucking occurs (McDonald et al., 2014). However, the main 
source of uncertainty is the accuracy of fuel-based emission factors used to calculate co-emitted air pollut-
ant species (McDonald, McKeen, et al., 2018). The underlying traffic counting data are available at hourly 
time resolution; however, here we have averaged the data to daily averages. Jiang et al. (2018) report the 
uncertainty in fuel sales (3%–5%) and NOx emission factors (15%–17%) for on-road transportation.

2.3.  Power Plant NOx Emissions

The daily power plant NOx emissions were obtained from the US EPA Continuous Emissions Monitoring 
System (https://www.epa.gov/airmarkets), and the energy generation/consumption statistics were obtained 
from the Energy Information Administration (eia.gov). Unlike the traffic emissions, power plant emissions 
did not change much during the lockdown. Power generation from fossil fuels dropped from 38,332 Gwh in 
March to 29,872 Gwh in April and rebounded to pre-pandemic levels by June. The total NOx emissions in 
the US from power plants dropped from 54,531 tons in March to 44,016 tons in April, a 19% decrease. This 
may seem like a big drop in production but the absolute values are quite small. For example, NOx emissions 
from power plants within the 75 km of Los Angeles emitted only 20 tons in March 2020. For January to July, 
nationally, total NOx emissions from power plants were 0.8 and 0.67 million metric tons in 2019 and 2020, 
respectively. This is a 16% reduction compared to 50% reduction in on-road emissions, for the same months 
between 2019 and 2020.

In contrast, on-road emissions from vehicles in the Los Angeles area alone emitted nearly 5,367 tons of NOx. 
Power plant NOx emissions in the US have decreased substantially over the last two decades; they dropped 
by 86% between 1990 and 2019. This is due to the shift from fossil fuels to other alternate energy sources for 
power generation. For example, the use of coal as a source of electricity generation went down from 51% 
in 2001 to 23% in 2019, while the natural gas as a source increased from 17% in 2001 to 38% in 2019. In our 
analysis of NOx emissions from on-road traffic and power plants for the six locations of interest, we consid-
ered only the power plants within 75 km radius of the center of the city location being analyzed.

2.4.  Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite 
(SNPP VIIRS)

NOAA currently has two VIIRS instruments in orbit - one on Suomi NPP launched on October 28, 2011 
and one on NOAA-20 launched on November 18, 2017. The two VIIRS instruments continuously observe 
the Earth with a 50-min time difference and provide AOD retrievals for cloud/snow-free scenes during the 
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sunlit portion of the day. The VIIRS instruments have 22 bands with 16 of the bands in the visible to long-
wave infrared at moderate resolution (750 m), five bands at imager resolution (375 m) covering 0.64, 0.865, 
1.6, 3.74, and 11.45 μm, and one broad Day-Night Band centered at 0.7 μm. The NOAA AOD algorithm over 
the ocean is based on the Moderate Imaging Spectroradiometer (MODIS) heritage and over the land, the 
algorithm derives AOD for both dark targets as well as bright surfaces (Laszlo & Liu, 2016; Levy et al., 2007; 
Huang et al., 2016; Zhang et al., 2016). For this study, we used the Suomi NPP VIIRS AOD because Suomi 
NPP flies in formation with S5P TROPOMI with a local equator crossing time of 1:30 p.m. and less than 
three minutes difference in overpass time. The Suomi NPP VIIRS AOD product has been extensively val-
idated by comparing it to Aerosol Robotic Network (AERONET) AODs and the VIIRS 550  nm AOD is 
shown to have a global bias of −0.046 ± 0.097 for AODs over land less than 0.1 and for AODs between 
0.1 and 0.8, the bias is −0.194 ± 0.322. In the US, for VIIRS AODs ranging between 0.1 and 0.8, the bias is 
−0.008 ± 0.089 and for AODs greater than 0.8, the bias is about 0.068 ± 0.552 (Zhang & Kondragunta, 2021). 
For the analysis of AOD data in this study, we remapped the high quality (Quality Flag equals 0) 750 m res-
olution AOD retrievals to 0.05° x 0.05° resolution with a criterion that for a grid to have a mean AOD value, 
there should be a minimum of 20% 750 m pixels with high-quality AODs.

2.5.  Unemployment Rate

The civilian labor force and unemployment estimates for metropolitan areas were obtained through the 
Local Area Unemployment Statistics (LAUS) provided by the Bureau of Labor Statistics (bls.gov). The LAUS 
program is a federal-state cooperative effort in which monthly estimates of total employment and unem-
ployment are prepared for over 7,500 areas including metropolitan areas. The seasonal adjustments are 
carried out by the Current Employment Statistics State and Area program (CES) using the statistical tech-
nique Signal Extraction in Auto Regressive Integrated Moving Average Time Series (SEATS). These data 
sets are smoothed using a Reproducing Kernel Hilbert Space filter after seasonal adjustment. The details of 
the data collection, processing and release can be found at https://www.bls.gov/lau/laumthd.htm. The data 
used in this study are for January–November 2020. To compare the NO2 variation in metropolitan areas, the 
TROPOMI tropNO2 column amounts were averaged inside each metropolitan area. The 1:500,000 polygon 
shape files were used to test if a TROPOMI pixel is inside or outside a metropolitan area. The shape files are 
from US Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/cartograph-
ic-boundary.html).

2.6.  Matchup Criteria

The NO2 data were matched to the on-road mobile emissions data for statistical and trend analysis with 
certain criteria. Prior to generating the matchups, rotated wind analysis was carried out on the original 
pixel level data. It is important to do this when sampling the satellite data because NO2 concentrations 
accumulate in the cities when wind speed is low and disperse away from the city when wind speed is high. 
The satellite data are observed once a day in the midafternoon, whereas on-road mobile emissions repre-
sent daily values. To have representative sampling, it is common to rotate the satellite pixel-level data in 
the direction of the wind (Fioletov et al., 2015; Goldberg et al., 2019; Lorente et al., 2019; Zhao et al., 2020). 
We used the European Center for Medium range Weather Forecast (ECMWF) Re-Analysis (ERA5) 30-km 
resolution global wind fields (Hersbach et al., 2020). To do the wind rotation, each TROPOMI pixel was 
collocated to ERA5 with tri-linear interpolation method in both temporal and horizontal directions. The 
wind profiles were merged to the location of the TROPOMI pixel center. The east-west (U) and north-south 
(V) wind speed components were averaged through the vertical distribution within the bottom 100 hPa, 
approximated to be within the boundary layer. Then, each TROPOMI pixel was rotated and aligned with 
the average wind direction from the city center. The rotated pixels are gridded with 5 × 5 km resolution to 
generate monthly mean values for correlation analysis with on-road NOx emissions.

Once the pixels are rotated, they are sampled for 100 km in the downwind direction, 50 km in the upwind 
direction, and the crosswind direction. This way, the elevated concentrations of NO2 moving away from the 
city in the downwind direction are captured. Figure 1a shows an example of the TROPOMI tropNO2 with 
Los Angeles as the focus. The tropNO2 data shown are monthly mean values for January 2020 remapped to 
a fixed grid. The black rectangle shows the area of interest over Los Angeles that we want to compare with 
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on-road emissions. The ERA5 wind vectors are plotted on the tropNO2 
map to show wind direction. To do the wind rotation, daily tropNO2 pixel 
level data are first remapped to a 5 × 5 km fixed grid resolution. The grids 
are then rotated to align with the wind direction with downwind direc-
tion pointing North (Figure 1b). The daily rotated grid values of tropNO2 
in 5 × 5 km are averaged over a month to generate a monthly mean. The 
monthly mean values can vary quite a bit depending on missing data due 
to screening for the high-quality data as well as cloud cover. In a given 
month, the number of pixels with valid retrievals for a city can vary from 
2% to 100% depending on cloud and snow cover; the mean values vary 
depending on the location of the missing values, if they are in the center 
of the city where tropNO2 is usually high or on the edges of the city where 
tropNO2 values can be low depending on wind speed and direction. In 
our analysis for this study, prior to computing the monthly mean, the 
criterion we employed is that on a given day, there should be a minimum 
of 25% of pixels in a region selected for matchups of satellite data should 
have valid retrievals. The 25% threshold is a reasonable compromise be-
cause any value higher than that will reduce the sample size (number of 
days included in the monthly mean).

3.  Results
3.1.  Deseasonalizing TropNO2 Data

As already shown by many research studies, the global tropNO2 column 
amounts dropped in coincidence with partial or complete lockdowns dur-

ing the height of the COVID-19 pandemic in different parts of the world and in the US. To remove the sea-
sonality from the signal, researchers in these studies have adopted different approaches including the use of 
numerical models to simulate the seasonality (e.g., Goldberg et al., 2020; Liu et al., 2020; Silver et al., 2020). 
Seasonality should be accounted for because in the northern hemisphere winter months, tropNO2 amounts 
are higher than in summer months; as a result, during the transition from winter to summer, tropNO2 
amounts are higher in February than in March. In our study, we used a double-differencing technique to 
account for seasonality. Consistent with Goldberg et al. (2020), we used 1 January to 29 February 2020 as 
the pre-lockdown period and 15 March to 30 April as the lockdown period. The difference in mean tropNO2 
between lockdown and pre-lockdown is referred to as 2020∆NO2. For the same two corresponding periods 
in 2019, the difference in mean tropNO2 is referred to as 2019∆NO2. Then, the difference of 2019∆NO2 and 
2020∆NO2 was computed to tease out the changes in tropNO2 due to reductions in emissions during the 
lockdown (∆tropNO2). It should be noted though that the double differencing only removes the seasonality 
and does not fully account for differences in meteorological events such as precipitation or anomalously 
cold or hot conditions in one year versus the other but on a monthly time scale they are minimized.

Figures  2a and  2b show 2019∆NO2 and 2020∆NO2, which include changes due to seasonality and any 
changes due to emissions either from natural sources such as fires or from anthropogenic urban/industrial 
sources. Figure 2c shows ∆tropNO2 for the CONUS due to just changes in emissions between the pre-lock-
down and lockdown periods in 2020 with the seasonality removed. Comparing Figures 2a and 2b, one can 
deduce that reductions in tropNO2 between pre-lockdown and lockdown are much stronger in 2020 com-
pared to 2019. However, the double difference plot in Figure 2c shows how much of that reduction seen in 
2020∆NO2 (Figure 2b) is due to changes in emissions. The tropNO2 changes are smaller in Figure 2c than in 
Figure 2b, both in magnitude as well as spatial extent of the reductions. Given that TROPOMI tropNO2 pre-
cision is 1 × 1015 molecules/cm2 or 16.6 µmoles/m2 and the mean background tropNO2 for 2019 and 2020 is 
about 16 µmoles/m2 according to our estimates using Silvern et al. (2019) method, we subtracted 16 µmoles/
m2 from tropNO2 data in 2019 and 2020 before applying the double difference method. We also colored the 
values between −5 and +5 µmoles/m2 white.

The lockdown measures in most states in the US began in the middle of March 2020. The first state to in-
stitute stay-at-home measures was California on 19 March and the last state was Missouri on 6 April. The 
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Figure 1.  Sentinel 5P TROPOMI monthly mean tropNO2 column amount 
(or density) for January 2020 for Los Angeles. (a) Original pixel level 
data remapped to 5 × 5 km resolution and averaged for the month. The 
monthly mean ERA5 wind vectors are overlaid on the tropNO2 map to 
indicate the wind direction. (b) Remapped tropNO2 data grids rotated in 
the direction of the wind using ERA5 wind fields. The downwind direction 
is toward North (zero on the axis). For the monthly mean to be computed, 
we used a criterion that at least 25% of the days in a month should have 
retrievals. The black rectangle defines the area for which tropNO2 data are 
averaged.
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cities/regions with worse traffic-related ozone pollution levels based on 
the monitoring data from 2016 to 2018 compiled by the American Lung 
Association and the duration for which they were in a lockdown are 
shown in Table 1. For regions that fall into different states (e.g., Washing-
ton-Baltimore-Arlington), the dates for the state that had the longest du-
ration of lockdown are listed in the table. Most states were in a lockdown 
mode only for one to two months and given the varying nature of the 
lockdown in different parts of the country, we treated 15 March and 30 
April as lockdown months. As shown in Figure 2a, 2019∆NO2 is positive 
in some areas and negative in some areas, whereas in 2020 (Figure 2b), 
large negative values (reductions) are observed in most of the CONUS ex-
cept in the Great Plains region and the Pacific Northwest. These reduced 
tropNO2 amounts are attributed to reduced emissions due to lockdowns. 
Changes in the rural areas (either positive or negative) of the US could 
be due to the changes to natural sources such as soil and lightning NOx 
emissions or due to meteorological differences that the double differenc-
ing technique did not account for (Qu et al., 2021).

Liu et al. (2021) used NASA global photochemical model simulations to 
study how long the tropNO2 data need to be averaged to minimize the 
influence of meteorological variability. They simulated January 2019 to 
December 2020 by keeping the NOx emissions the same between the two 
years and found that averaging the data over 31 days for the US leads to 
differences in tropNO2 between 2019 and 2020 less than 10%. Our dou-
ble differencing was done with tropNO2 data averaged over 1.5 months, 
which should substantially minimize the differences in meteorology.

We tested the robustness of the double differencing technique in other 
ways. We repeated the analysis for a longer period and found that our 
conclusions did not change. Setting the pre-lockdown period as 1 January 
to 15 March and the lockdown period as 16 March to 30 May, we found 
that tropNO2 decreases are consistent with those shown in Figures 2a–2c 
(Figures S1a–S1c). We also applied scaling factors to account for season-
ality and meteorological variability developed by Goldberg et al. (2020). 
These scaling factors normalize tropNO2 data to conditions of a typical 
week day based on TROPOMI tropNO2 data from 2018 to 2019, based on 
sun angle, wind speed, wind-direction, and day-of-week. Figure S2 shows 
this analysis using the normalized tropNO2 to investigate NOx trends; it 
shows reductions in tropNO2 for different cities during the lockdown pe-
riod that are consistent with the double differencing analysis.

We investigated the likely increase in background tropNO2 in 2020 com-
pared to 2019 and found that it increased by 14.5% in the Pacific North-
west complicating the impact of emission reductions on tropNO2. This is 
consistent with the analysis reported by Qu et al. (2021). Using surface 

observations of NO2, long-term observations of tropNO2 from OMI, TROPOMI tropNO2, and the Goddard 
Earth Observing System Chemistry model, Qu et al. (2021) showed how the use of satellite tropNO2 data in 
interpreting changes in NOx emissions can be complicated by background tropNO2.

3.2.  On-Road NOx Emissions and TropNO2

Focusing on the regions of interest with on-road NOx emissions available for this study, we calculated re-
ductions in tropNO2 for Los Angeles, Atlanta, San Francisco, San Joaquin Valley, and New York City. We 
focus on the four cities from different regions of the country where daily traffic counting data are publicly 
available in real time. We also include the San Joaquin Valley as a rural region with available traffic counting 
data to compare with the urban areas. Based on real-time traffic counting data sets in each region, Table 2 
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Figure 2.  tropNO2 changes between pre-lockdown period (January to 
February) and lockdown period (15 March to 30 April) for (a) 2019∆NO2, 
(b) 2020∆NO2, and (c) the difference between 2020∆NO2 and 2019∆NO2. 
The double differencing is expected to minimize the seasonal differences 
and provide a realistic estimate of change in tropNO2 due to emissions 
changes.
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shows that the COVID-19 lockdown led to −28% to −48% reductions in on-road NOx emissions in the 
fuel-based inventory. The regions with the two smallest changes in the on-road NOx inventory are Atlanta 
(−28%) and San Joaquin Valley (−33%). Atlanta and the San Joaquin Valley exhibited the smallest drops in 
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City/Region Ozone pollution ranking Lockdown start date Lockdown end date

Los Angeles-Long Beach, CA 1 19-March 4-May

Visalia, CA 2 19-March 4-May

Bakersfield, CA 3 19-March 4-May

Fresno-Madera-Hanford, CA 4 19-March 4-May

Sacramento-Roseville, CA 5 19-March 4-May

San Diego-Chula Vista-Carlsbad, CA 6 19-March 4-May

Phoenix-Mesa, AZ 7 30-March 30-April

San Jose-San Francisco-Oakland, CA 8 19-March 4-May

Las Vegas-Henderson, NV 9 1-April 30-April

Denver-Aurora, CO 10 26-March 26-April

Salt Lake City-Provo-Orem, UT 11 30-March 13-April

New York-Newark, NY-NY-CT-PAa 12 22-March 15-May

Redding-Red Bluff, CA 13 19-March 4-May

Houston-The Woodlands, TX 14 2-April 20-April

El Centro, CA 15 19-March 4-May

Chicago-Naperville, IL-IN-WIa 16 23-March 1-May

El Paso-Las Cruces, TX-NM 17 2-April 15-May

Chico, CA 18 19-March 4-May

Fort Collins, CO 19 26-March 26-April

Washington-Baltimore-Arlington, DC-MD-VA-WV-PAa 20 30-March 15-May

Dallas-Fort Worth, TX-OK 21 2-April 20-April

Sheboygan, WI 22 24-April 26-May

Philadelphia-Reading-Camden, PA-NJ-DE-MDa 23 30-March 15-May

Milwaukee-Racine-Waukesha, WI 24 24-April 26-May

Hartford-East Hartford, CT 25 23-March 20-May
aDates reflect the period that is the longest for any given state in the region.

Table 1 
Ranking of Cities for Ozone Pollution and Their Lockdown Periods

City
2019∆NOx 

(%)
2020∆NOx 

(%)

Seasonality removed 
on-road NOx 

emissions changes 
(%) (2020∆NOx 
−2019∆NOx)

2019∆NO2 
(%)

2020∆NO2 
(%)

Seasonality 
removed TropNO2 

reductions (%) 
(2020∆tropNO2 

–2019∆tropNO2)

Atlanta 10.41 −17.70 −28.11 −22.67 −44.14 −21.47

San Francisco 10.54 −33.95 −44.49 −23.79 −48.18 −24.39

San Joaquin Valley 14.27 −18.39 −32.66 −27.30 −44.62 −17.32

New York City 11.04 −36.87 −47.91 −6.07 −34.05 −27.98

Los Angeles 10.57 −25.10 −35.67 −37.90 −59.68 −21.78

Table 2 
Reductions in On-Road NOx Emissions and TropNO2 Between 15 March to 30 April and 1 January to 29 February 
Derived Using Double Differencing Technique
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heavy-duty truck traffic during the lockdown period (defined as March 
15 to April 30). Passenger traffic fell the least in the San Joaquin Valley 
versus the other four cities. New York City exhibited the largest on-road 
NOx decreases (−48%), which was due to the largest drop in heavy-duty 
truck traffic across the five regions. As shown in Table 2, the largest re-
ductions in tropNO2 were observed for New York City (−28%) and the 
smallest reductions were observed for San Joaquin Valley (−17%) and At-
lanta (−21%). This is generally consistent with the expected changes in 
the on-road emissions inventory.

Goldberg et al.  (2020) reported tropNO2 reductions of 20.2%, 18%, and 
39% for Atlanta, New York, and Los Angeles, respectively, and their anal-
ysis is also for a lockdown period spanning 15 March to 30 April, 2020. 
Our analysis shows that tropNO2 reductions for these three cities are 21%, 
17%, and 22%. Though the methodology used to remove the seasonali-
ty is different, the reductions in tropNO2 from our analysis and that of 
Goldberg et al. (2020) are similar, with Los Angeles showing the biggest 
drop in tropNO2 due to lockdown measures. This elucidates the need to 
account for differences in seasonality and meteorology when analyzing 
the data for COVID-19 trends (Gkatzelis et al., 2021).

Figure 3 shows the time series of on-road mobile (cars and trucks com-
bined) and power plant NOx emissions for the five different cities/regions 
in the US from January to November 2020; the exception is New York City 
for which the time series ends on 31 August due to the nonavailability of 
traffic data. There are a couple of key points illustrated by Figure 3. First, 
note the differential scaling of the left and right axes indicating that on-
road NOx emissions dominate over power plants across these five regions, 
except for New York City where power plant emissions are about half of 
the on-road NOx in summer months. It is noteworthy that there was a 
jump in power plant emissions toward the end of June, which coincided 
with the opening of retail establishments on 22 June; the power plant 
emissions in New York City are higher in summer than in winter, associ-
ated with increased demand for air conditioning. Second, the power plant 
NOx emission trends are distinct from the on-road emission trends and do 

not show a noticeable drop-off in emissions during the most stringent months of the COVID-19 lockdown 
(i.e., March 15 to April 30) like for on-road transportation. Next, we explore more quantitatively the extent 
to which on-road NOx emissions are correlated with tropNO2 satellite columns.

3.3.  Correlation between On-Road NOx Emissions and TropNO2

Given the knowledge of changes in on-road emissions in the five cities due to lockdown, we wanted to 
examine if tropNO2 shows similar behavior by exhibiting a linear relationship, and if so demonstrate that 
the period for which the lowest NOx emissions were observed in traffic data also corresponds to the lowest 
observed tropNO2 data. Additionally, we wanted to check if the post-lockdown recovery in traffic emissions 
is reflected in tropNO2 data. We first examined the direct relationship between daily tropNO2 and daily 
on-road NOx emissions for the five locations; but only the analysis for Los Angeles is shown in Figure 4 for 
illustration purpose; data from other cities showed similar behavior. The tropNO2 and NOx emissions (tons/
day) for January and February 2020, representing the BAU, and for March through November 2020 are 
shown in Figures 4a and 4b, respectively. The coincident observations of tropNO2 amount sampled in the 
predominant wind direction are linearly correlated with on-road NOx emissions but the correlation is weak 
(r = 0.39). The traffic emissions fall into three clusters corresponding to emissions on Sundays (∼150 tons/
day), Saturdays (∼180 tons/day), and weekdays (∼199 tons/day) with minimal variability in each cluster, 
whereas tropNO2 amount varies between 50 and 225 µmoles/m2.
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Figure 3.  Time series of daily on-road and power plant NOx emissions for 
different cities from January to November 2020. Note that the on-road NOx 
emissions time series ends on 31 August for New York City because the 
traffic count data are not available for September to November.
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The variability in tropNO2 can be attributed to different reasons. First, the day-to-day variability in cloud 
cover can lead to gaps in data. We used the recommended quality flag threshold of 0.75 to screen out the 
data that have potential contamination from clouds but this strict screening reduces the number of re-
trievals for a given location. Second, there is also a variability in the background NO2 contribution to the 
tropospheric NO2 column due to which tropNO2 does not correlate well with NOx emissions from sources 
on the ground. We analyzed the background NO2 signal in the tropospheric column amount for TROPOMI 
for 2019 and 2020 using Silvern et al. (2019) method and found it to be higher due to the longer winter-time 
lifetime (lower temperature, weak photolysis, stronger wind dispersion, and less wet scavenging) and lower 
in the summer with monthly mean values ranging between 15 and 20 µmoles/m2 (Figure S3). Sources of 
background NO2 are soil emissions of NOx, which are amplified after precipitation events, lightning pro-
duced NOx, and chemical decomposition of peroxyacetyl and alkyl nitrates. Transport of NO2 from rural 
areas can also enhance tropNO2 values that may not correlate well with NOx emissions from sources on 

KONDRAGUNTA ET AL.

10.1029/2021JD034797

10 of 18

Figure 4.  Correlation between daily tropNO2 and daily on-road NOx emissions for Los Angeles, CA. (a), (c), and (e) For 
pre-lockdown (January and February) and (b), (d), and (f) for lockdown and post lockdown period (March through end 
of November). (a) and (b) are daily tropNO2, (c) and (d) are daily tropNO2 normalized to account for meteorology, (e) 
and (f) are 28-day rolling mean normalized daily tropNO2. Red color is for data gathered on Sundays, green color is for 
data gathered on Saturdays, and blue color is for data gathered on weekdays.
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the ground. Third, wind speed and direction influence the mean trop-
ospheric NO2 computed for the Los Angeles basin because if the wind 
speed is high, NO2 is dispersed and transported away from the city and if 
wind speed is low, NO2 accumulates in the city. Any variability associat-
ed with background NO2 is detected by TROPOMI and accounted for in 
the column NO2 amount, but this has no relation to the NOx emissions 
from on-road sources on the ground. We did account for the effects of 
wind in our matchups by sampling the data in the downwind direction 
but higher wind speeds dilute the NO2 concentrations observed by TRO-
POMI (Figure S4).

Outlier values of tropNO2 are between 20 and 30 µmoles/m2 even when 
on-road emissions are high indicating TROPOMI retrievals that are ei-
ther sampled after pollutants are washed out of the atmosphere due to 
rain or on days when wind speeds are unusually high. Retrievals can also 
be noisy and have errors associated with air mass factors and a priori 
profiles. Parker et al. (2020) report that the Los Angeles basin was unu-
sually wet in 2020, especially during the late March and early April 2020. 
Other researchers who correlated daily surface observations of NO2 and 
TROPOMI tropNO2 for 35 different stations in Europe reported similar 
findings and they found that correlation improved after averaging the 
data to monthly time scales (Cersosimo et al., 2020; Goldberg et al., 2021; 
Ialongo et  al.,  2020). The comparison for the lockdown and post-lock-
down period of March through November is shown in Figure 4b; the cor-
relation remains the same (r = 0.39) but the one interesting feature is that 
the tropNO2 and on-road emissions are very small during the lockdown 
compared to the pre-lockdown. Daily NOx emissions on many days are 
between 100 and 150 tons after 14 March; prior to that, the region was not 
under stay-at-home orders. The tropNO2 never goes above 200 µmoles/m2 
for this period. Compared to the pre-lockdown period, the on-road NOx 
emissions and tropNO2 values shifted to lower values within each cluster 
(shown in blue for weekdays, green for Saturdays, and red for Sundays). 
During the lockdown, one would anticipate that there would not be any 
difference between weekday and weekend emissions but the difference is 
stark and is reflected in tropNO2 data as well.

We normalized daily tropNO2 data to account for meteorological and observational differences from day-to-
day using Goldberg et al. (2020) technique as shown in Figures 4c and 4d. Despite normalization, the cor-
relation between daily NOx emissions and tropNO2 data did not improve. However, when the normalized 
data are smoothed with 28-day rolling mean values, the correlation improved with a correlation coefficient 
of 0.75 for both the pre-lockdown and the lockdown/post-lockdown periods (Figures 4e and 4f). This is con-
sistent with other studies involving satellite tropNO2 data where 28-day rolling means or weekly averaging 
was carried out to minimize noise and data gaps (Goldberg et al., 2021; Misra et al., 2021).

To correlate the changes in on-road NOx emissions with changes in tropNO2 between 2019 and 2020 for 
each of the five regions in this study, we averaged daily NOx emission values and tropNO2 values for each 
month (January to November) and created an average value of all the five regions combined for each month. 
Figure 5a shows the monthly mean trend plot of ∆NOx and ∆tropNO2 for January to November; on-road 
NOx emissions and tropNO2 dropped steadily and hit the lowest values in March and April, consistent with 
the lockdown measures. The recovery began in May and continued to November for on-road NOx emissions 
but did not completely recover to the pre-lockdown levels. However, the ∆tropNO2 trend plot shows recov-
ery up to August and then begins to show a decline from September to November. This decline in tropNO2 
is attributed to San Joaquin and San Francisco. Figure 5b shows the correlation of on-road NOx emissions 
changes (∆NOx) between 2020 and 2019 with the difference in tropNO2 amounts between 2020 and 2019 
(∆tropNO2). The NOx emissions were lower in 2020 compared to 2019 for all the months and all the cities. 
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Figure 5.  Trends in on-road monthly mean NOx emissions (tons/day) and 
tropNO2 (µmoles/m2) between 2019 and 2020 averaged for the five analysis 
cities. (a) Average monthly mean differences for the five cities from 
January to November. (b) Correlation between five-city average changes 
in on-road monthly mean NOx emissions and changes in five-city average 
monthly mean tropNO2.
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The positive linear correlation (r = 0.68) suggests that TROPOMI trop-
NO2 observations captured the changes in on-road NOx emissions and 
can be used to study the changes in NOx emissions due to traffic else-
where in the US where there are no observations from the ground.

Even though traffic emissions are the dominant source for NOx, there 
are power plants near the cities emitting NOx continuously and unlike 
traffic emissions they do not exhibit a weekday/weekend cycle. Figure 6 
shows a map of tropNO2 for the second quarter in 2020 (April/May/June) 
with on-road NOx emissions and power plant NOx emissions for each of 
the five analysis cities as stacks. The locations of power plants in other 
parts of the country are circled in pink, indicating that these power plants 
emit greater than 1,500 tons in a given quarter; power plants with lower 
monthly NOx emissions (<1,500 tons) are not shown on the map. It is dif-
ficult to isolate the NO2 plumes from power plants in urban areas in the 

TROPOMI tropNO2 map as the NOx emitted from the power plants mixes and becomes indistinguishable 
from on-road emissions. Consistent with this analysis, changes in NOx emissions between 2020 and 2019 
for power plants within 75 km of each of the five analysis cities correlated weakly with changes in tropNO2 
(r = 0.35); power plant NOx emissions can explain only 12% of the variability seen in tropNO2 (Figure 7). 
Also, as can be seen in Figure 7, the daily average changes in power plant emissions between 2020 and 2019 
were positive for some plants and negative for some but mostly varied between ±20 tons/day.

3.4.  Correlation Between TropNO2 and AOD

The premise for the impact of NOx emissions reductions on improved air quality due to reduced human 
activity during the lockdown period depends on how the photochemical processes changed compared to 
the BAU scenario. The photochemical production of ozone and surface PM2.5 (particulate mass of particles 
smaller than 2.5 µm in median diameter) depends not only on NOx emissions but also on VOCs and their 
ratio (Baidar et al., 2015; Parker et al., 2020: McDonald, Gouw, et al., 2018; Qin et al., 2021). Most analyses 
of the impact of COVID-19 lockdowns on air quality using satellite data have focused on TROPOMI NO2 
and attributed the reductions of NOx emissions to improved air quality; the reductions in VOC emissions 
are largely unknown, especially from nonvehicular sources. Atmospheric formation of nitrate and organic 
aerosols is driven by NOx, VOCs, and ammonia emissions and if the photochemical processes are in a NOx 

limited or VOC limited regime. To analyze the AOD data for indications 
of reduced aerosol formation due to reduced NOx emissions, one com-
plicated factor is the transport of smoke aerosols from upwind regions 
and how the transported signal can be removed from the AOD data. To 
address this issue, we tested the hypothesis that the AOD/tropNO2 ratio 
is small when pollution sources are local and high when nonlocal sourc-
es bring transported aerosols into the domain. We calculated the weekly 
correlation between AOD and tropNO2 and obtained the slope for each 
week over one year in 2019 and 2020, to document the changes in slope as 
a function of time during the year (Figures 8a–8c); In Figures 8a and 8b, 
we show an example of how slopes are derived using the scatter plot be-
tween VIIRS AOD and TROPOMI tropNO2 for one week in September 
2019 and in 2020. For 2019, when the fire season was not a major con-
tributing factor to aerosol concentrations, the slopes are small in the win-
ter months and slowly increase toward the summer (Figure 8c). This is 
consistent with the knowledge that ammonium nitrate formation peaks 
in the summer due to the availability of ammonia from increased agricul-
tural activity and higher volatility associated with higher temperatures 
(Schiferl et al., 2014).

The weekly scatter plots of AOD and tropNO2 for September 2019 and 
2020 in Figures 8a and 8b show that the tropNO2 values in both years 
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Figure 6.  tropNO2 map for second quarter of 2020. The red columns 
show total on-road NOx emissions and the blue columns show NOx 
emissions from power plants nearby these five cities (New York, Atlanta, 
Los Angeles, San Francisco, and San Joaquin Valley). Power plants with 
monthly mean NOx emissions greater than 1500 tons are also shown in the 
map as pink dots.

Figure 7.  Correlation of monthly mean tropNO2 changes between 2020 
and 2019 with changes in power plant monthly mean NOx emissions. The 
size of the circle indicates the magnitude of total monthly emissions (high, 
medium, and low) of individual power plant. To obtain monthly means, 
daily total NOx emissions were added and divided by the number of days 
in a month to get average values in units of tons/day.
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ranged between 30 and 120 µmoles/m2, whereas AOD values in 2020 
were much higher (between 0.2 and 0.9) compared to values in 2019 (be-
tween 0.1 and 0.2). The AOD values in the US typically range between 0 
and 1, with higher AODs typically observed in the presence of biomass 
burning smoke or dust storms. Given this knowledge that slopes are high-
er when transported aerosol is involved, we were able to filter the AOD 
data. The filtered data will be used in a future study to analyze trends in 
AOD due to NOx emissions reductions.

3.5.  Correlation of TropNO2 and Unemployment Rate

Because of the lockdown measures and work from home policies for ma-
jority of the workplaces in the US, the service industry has suffered and 
the unemployment rate has risen. The US unemployment rate increased 
from about 4.4% in March to 14.7% in April during the first phase of lock-
downs. The unemployment rate nationwide improved as lockdowns were 
lifted but certain parts of the country continued to experience a very high 
unemployment rate throughout 2020 (Figure 9). Among the employed, 
28% of employees continued to work from home as of November indi-
cating that below normal NOx emissions data are to be expected. The 
correlation between unemployment rate and tropNO2 for metropolitan 
areas with a pre-pandemic civilian labor force greater than 2 million is 
negative for the second and third quarters (the regression line shown in 
Figure 9 is for second quarter data). The unemployment rate combined 
with telework policies have contributed to reduced NOx emissions and 
thus lower tropNO2 values across the US. This is similar to the positive 
correlation between Gross Domestic Product and tropNO2 reported by 
Keller et  al.  (2020). For reasons unknown, cities such as Phoenix, AZ, 
Minneapolis, MN, Dallas and Houston, TX, and Chicago, IL showed no 
change or a slight increase in tropNO2 in 2020 compared to 2019 though 
unemployment rate in 2020 was much higher compared to 2019. Keller 
et al. (2020) do not report these outliers because their analysis is for all 
developing countries around the world and is not granular at the city lev-
el like our analysis.

4.  Discussion
The TROPOMI tropNO2 data captures the day-to-day variability in trop-
ospheric NO2 concentrations but due to cloud cover, varying background 
tropNO2, and uncertainties associated with assumptions such as a priori 
profile and lower sensitivity to near surface NO2, on certain days the tro-
pNO2 retrievals do not adequately represent the changes in near surface 
NO2 (Cersosimo et al., 2020; Goldberg et al., 2021; Ialongo et al., 2020). 
The tropospheric NO2 variability is very well captured; however, on 

monthly scales and even on weekly scales, to the extent that weekday/weekend cycles are noticeable. When 
using the TROPOMI tropNO2 data, we wanted to establish that it not only shows the reductions/drop in 
tropNO2 due to reductions in on-road NOx emissions but that the trend during the post-lockdown recovery 
phase can be detected as well.

The spatial and temporal analysis, relating indicators of human activity during and prior to the COVID-19 
lockdown to air quality conditions, shows that while power plant emission changes were not drastic com-
pared to on-road emissions, the on-road emissions in the five analysis cities dropped coinciding with the 
start date and the duration of the lockdown. The changes in on-road NOx emissions correlated with tropNO2 
changes for these five locations, giving confidence to use tropNO2 data in other parts of the CONUS, and 
to draw conclusions about relating changes in tropNO2 to economic activity changes. We found that the 
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Figure 8.  (a) Example correlation of VIIRS AOD and TROPOMI tropNO2 
during one week, September 15–21, 2019, (b) Same for September 13–19, 
2020, (c) Time series of weekly slope (AOD/tropNO2) with data for 2019 in 
gray color and data for 2020 in red color for Los Angeles, California. The 
black solid line is the fit to 2019 data indicating seasonal photochemistry. 
Any data points that depart from the shaded gray region are treated as the 
period when transported aerosols (e.g., smoke) influenced the air mass 
over Los Angeles.
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weekday-weekend differences were pronounced in on-road emissions and tropNO2 data, and the lowest val-
ues of on-road NOx occurred on weekends even during the lockdown periods. The unemployment rate and 
its increase during the lockdown and post lockdown period appears to also be a good proxy for economic 
activity and is correlated well with the decrease in tropNO2. At the height of the lockdown in the second 
quarter of 2020, the unemployment rate increase was as high as 17% in populated metropolitan areas; even 
at the end of the third quarter of 2020, the unemployment rate increase was ∼10%. The first quarter un-
employment rate was constant at ∼5% and did not vary; it showed no relationship to tropNO2 as expected 
because the impacts due to the lockdown did not affect the unemployment rate until the second quarter.

The satellite data must be analyzed by considering various quality flags and understanding the limitations 
of the algorithm. It is likely that using the quality flag >0.75 for TROPOMI tropNO2 was conservative, but 
the extremely low daily tropNO2 values on certain days even when on-road NOx emissions were high is 
indicative that the TROPOMI data are more interpretable when averaged to weekly or monthly time scales. 
For tropNO2 retrievals that have quality flags between 0.5 and 0.75 suggesting cloud contamination, in 
future work, we will look at the coincident high-resolution (750 m) VIIRS cloud mask product to analyze 
TROPOMI flags for cloud contamination. This will help improve our analysis using the daily tropNO2 re-
trievals by either including more retrievals or removing some retrievals from the matching with on-road 
NOx emissions data.

5.  Conclusions
It has already been established by numerous research studies that reduced traffic (on-road) and industrial 
emissions led to improved air quality during the COVID-19 lockdown measures implemented by various 
countries across the globe. However, most studies used mobility data as a proxy for reduced human activity 
to interpret satellite observations of tropNO2 but did not directly relate the reduced on-road emissions with 
reduced air quality observations. Here, for the first time, we directly correlate on-road NOx emissions data to 
TROPOMI tropNO2 in four urban and one rural area in the US. For this, we used TROPOMI tropNO2, VIIRS 
AOD, on-road NOx emissions, and unemployment rates to develop a comprehensive analysis for 2019 and 
2020. Where needed, we conducted rotated wind analyses and normalization to account for meteorological 
influences to sample correctly and match the on-road NOx emissions with tropNO2 data. We also developed 
a novel way of deseasonalizing tropNO2 data, and used changes in unemployment rate data as an indicator 
for economic activity.

Our analysis of reductions in on-road NOx emissions from light- and heavy-duty vehicles derived from fuel 
sales data showed a reduction from 9% to 19% between February and March 2020. When lockdown meas-
ures were the most stringent, at the onset of the lockdown period in the middle of March 2020 in most of the 
US and between March and April 2020, the on-road NOx emissions dropped further by 8%–31%. These pre-
cipitous drops in NOx emissions correlated well with tropNO2. Furthermore, the changes in tropNO2 across 
the continental US between 2020 and 2019 correlated well with changes in the on-road NOx emissions 
(r = 0.68) but correlated weakly with changes in emissions from power plants (r = 0.35). These findings 
confirm the known fact that power plants are no longer a major source of NO2 in urban areas of the US. As 
the US entered a post-pandemic phase between May and November 2020, the increased mobility resulted in 
increased NOx emissions nearly returning to the pre-lockdown phase but not entirely back to 100%. Though 
the lockdown in most of the US ended by May, the on-road NOx emissions did not bounce back to near 
normal values until August for Atlanta; for San Joaquin Valley, Los Angeles, and San Francisco, the on-road 
NOx emissions continued to be 20% below normal even in November. These changes are reflected in the 
tropNO2 data, except for San Francisco and San Joaquin Valley, where the tropNO2 diverged from on-road 
NOx emissions trends, which needs further inquiry. The positive linear correlation between on-road NOx 
emissions and TROPOMI tropNO2 (r = 0.75) suggests that satellite tropospheric column observations of 
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Figure 9.  The impact of COVID-19 lockdown on the unemployment rate in metropolitan areas and tropNO2. (a) Unemployment rate in April 2019, (b) 
Unemployment rate in April 2020, and (c) Correlation between increase in unemployment between 2019 and 2020 and tropNO2 changes. Only data for 
metropolitan areas where the civilian labor force in 2019 was greater than 2 million are shown in the correlation plot. In the first quarter (Q01), unemployment 
changes are close to zero as pandemic impact did not begin until late March. Strong negative correlation is observed for the second (Q02) and third (Q03) 
quarters. The solid black line is the fit to the second quarter data.
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NO2 captured the changes in on-road emissions and can be used to study changes in NOx emissions due to 
traffic where ground observations are not available.

The negative correlation between changes in tropNO2 and increased unemployment rate indicates that with 
the increased unemployment rate combined with telework policies across the US for nonessential workers, 
the tropNO2 values decreased at the rate of 0.8 µmoles/m2 per unit percentage increase in the unemploy-
ment rate.

Across the US, we found positive spatial correlation between S5P TROPOMI tropNO2 and Suomi NPP VIIRS 
AOD measurements in urban regions indicating common source sectors for NO2 and aerosols/aerosol pre-
cursors. We developed a new mechanism using the changes in AOD-tropNO2 slope to screen for fire events 
influencing aerosol concentrations in urban/industrial regions that can be used to analyze changes in aer-
osols due to emissions reductions. The COVID-19 pandemic experience has provided the scientific com-
munity an opportunity to identify scenarios that can lead to a new normal urban air quality and assess if 
the new normal can be sustained with novel policies such as increased telework and a shift toward driving 
electric cars.

Disclaimer
The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the 
author(s) and do not necessarily reflect those of NOAA or the Department of Commerce.

Data Availability Statement
The publicly available pixel-level SNPP VIIRS AOD data can be obtained from NOAA CLASS (https://www.
avl.class.noaa.gov). The pixel-level Sentinel 5P TROPOMI NO2 data can be obtained at https://scihub.coper-
nicus.eu/dhus/#/home. The Level 3 gridded products of TROPOMI NO2 and VIIRS AOD can be generated 
by regridding pixel-level data into desired grid resolution by users. The on-road NOx emissions data are 
available at https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/.
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