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1. Statistical analysis19

The statistical analysis presented in this section closely follows Santer et al. (2011), with only20

minor modifications to the notation and text.21

a. Notation22

This section introduces the statistical notation used for comparing atmospheric temperature23

changes in models, reanalysis, and satellite data in Fig. 8. These comparisons involve least-24

squares linear trends and regression coefficients, referred to collectively as “metrics”. Metrics are25

calculated for overlapping !-month analysis periods. We consider four specific values of ! here:26

120, 240, 360, and 480 months. We do not explicitly include the timescale ! in our notation.27

Abbreviations
MMA Multi-model average
MMSD Multi-model sampling distribution of metric
SMSD Single-model sampling distribution of metric

Subscripts
> Subscript denoting observationally based data (satellite data or reanalysis)
2 Subscript denoting output from model control runs
5 Subscript denoting output from model forced experiments

Indices
8 Index over number of maximally overlapping analysis periods in observations
9 Index over number of models
: Index over number of HIST+RCP8.5 or HIST+SSP5 realizations

Sample sizes
! Length of period for trend/regression calculations (in months)
#> Total number of overlapping !-month analysis periods in observed data set (calculated

over 1979 to 2019)
#2 Total number of overlapping !-month analysis periods in control run MMSD
# 5 Total number of overlapping !-month analysis periods inHIST+RCP8.5 or HIST+SSP5

MMSD (calculated over 1979 to 2019)
#2 ( 9) Total number of overlapping !-month analysis periods in 9 Cℎ model control run (varies

with control run length)
#<>3 Total number of models (36 and 30 for CMIP5 and CMIP6 control runs; 28 for CMIP5

forced runs; 22 or 21 for CMIP6 forced runs)
#A ( 9) Total number of HIST+RCP8.5 or HIST+SSP5 realizations for 9 Cℎ model
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Metrics (trends or regression coefficients)
1> (8) Metric for 8Cℎ overlapping !-month analysis period in observations
12 (8, 9) Metric for 8Cℎ overlapping !-month analysis period in 9 Cℎ model control run
1 5 (8, 9 , :) Metric for 8Cℎ overlapping !-month analysis period from 9 Cℎ model and : Cℎ realization

of HIST+RCP8.5 or HIST+SSP5 run
1> Average of 1> (8) over all overlapping !-month analysis periods between 1979 and 2019

b. Maximally overlapping analysis periods in Figure 828

As used here and in the main text, ‘maximally overlapping’ signifies overlap by all but one month.29

For ! = 120 months, for example, the first analysis period is over January 1979 to December 1988,30

the second period is over February 1979 to January 1989, etc. All metrics were computed from31

time series of monthly-mean anomalies of spatially-averaged TLS, corrected TMT, and TLT data.32

In the satellite and reanalysis data and the HIST+RCP8.5 and HIST+SSP5 simulations, anomalies33

were defined relative to climatological monthly means over the full 492-month period from January34

1979 to December 2019. Control run anomalies were defined relative to climatological monthly35

means calculated over the full length of each model’s control integration.36

Here, #>, #2, and # 5 are the total number of maximally overlapping !-month analysis periods37

in observations, the control run multi-model sampling distribution (MMSD), and the MMSD of38

extended HIST simulations (respectively). In each observational record, #> = 373 for ! = 12039

months. For the case of ! = 120 andCMIP5 control run data, #2 = 224904. For ! = 120months and40

CMIP5 HIST+RCP8.5 runs, # 5 = 45879 (373 maximally overlapping trends × 123 realizations).41

The time series of spatially-averaged temperature anomalies from individual models are not42

concatenated prior to calculating !-month trends and regression coefficients. Concatenating could43

spuriously inflate trends and regression coefficients spanning the ‘splice point’ between two model44

control runs or two model extended HIST runs with large differences in the amplitude of their45

variability. Instead, metrics for maximally overlapping analysis periods are calculated separately46

from each individual model’s control run or extended HIST simulation. Metrics for each model are47

then accumulated inmulti-model distributions of unforced and unforced results. Thesemulti-model48

distributions are shown in Fig. 8.49

c. Use of overlapping analysis periods50

Our use of maximally overlapping !-month analysis periods has the advantage of reducing the51

impact of seasonal and interannual noise on the temperature trends and the tropical amplification52

metric that are of interest here. However, it has the disadvantage of decreasing the statistical53

independence of the metrics calculated for the individual !-month “sliding windows”.54

While non-independence of samples is an important issue in formal statistical significance testing,55

it is not a serious concern here. This is because our metrics are not used as a basis for formal56

statistical tests. Instead, they simply provide useful information on whether the observed metrics57
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in Fig. 8 are unusually large relative to model-based estimates of unforced metric values, or58

are unusually small relative to model estimates of metrics obtained from forced runs. Note also59

that we process observations and model output in identical ways, with the same overlap between60

successive !-month analysis periods – i.e., we are not generating fundamentally different temporal61

autocorrelation structure in the model and observational metrics.62

Whether we employ overlapping or non-overlapping analysis periods has very small impact on the63

MMSDs in Fig. 8. This suggests that in both the control runs and the forced runs, the sample sizes64

of metrics computed from non-overlapping !-month analysis periods are adequate for obtaining65

reliable estimates of empirical ?-values (which are not shown here).66

In the case of the observations, however, satellite temperature records are relatively short, and the67

choice of whether to use overlapping or non-overlapping observed analysis periods can have a large68

impact on comparisons between modeled and observed metrics. For example, each observational69

data set contains only four non-overlapping 10-year time series segments. These four segments do70

not adequately sample the impact of monthly and interannual variability on observed linear trends71

or regression coefficients. We reduce this sampling variability by using maximally overlapping72

!-month analysis periods and displaying timescale-average observed results in Fig. 8.73

Even with our use of maximally overlapping trends, a 41-year record is clearly sub-optimal for74

reliable assessment of observed multi-decadal variability. In related work with a wide range of75

different statistical models of short- and/or long-term memory, however, we find no evidence that76

either CMIP5 or CMIP6 models systematically underestimate the amplitude of observed decadal-77

timescale TMT variability (Pallotta and Santer 2020).78

d. Model independence79

An implicit assumption in Fig. 8 is that results from individual models are independent. This80

assumption is almost certainly unjustified (Masson and Knutti 2011). While it would be interesting81

to explore the sensitivity of our results to the selection of different subsets of independent CMIP582

and CMIP6 models, we do not perform such an analysis here. The identification of independent83

model subsets is likely to be sensitive to the variables, statistical procedures, and metrics used to84

assess model dependencies (Caldwell et al. 2014).85

e. Multi-model average time series, metrics, and spread of metrics86

The weighted MMA shown in Fig. 1 is calculated by first computing the average over the #A ( 9)87

HIST+RCP8.5 or HIST+SSP5 realizations of the 9 Cℎ model, and then by averaging results over88

all #<>3 models. For the weighted versions of statistical metrics (the RMS differences in Fig. 3,89

zonal-mean trends in Fig. 5, and MMA trends Figs. 4, 6, and 7), these two separate averaging90

steps are performed with the individual metrics rather than with the individual time series.91

f. Weighting of histograms92

All histograms are weighted to account for model differences in either the number of extended93

HIST realizations or the length of control runs. Without weighting, models with more extended94
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HIST realizations or with longer control runs would have a disproportionately large effect on the95

multi-model sampling distributions of trends and regression coefficients.96

The histograms in Figs. 6, 8, and 10 were plotted with the Matplotlib pyplot.hist function with97

arrays of weights and with the “density=True” option.i The “density=True” option ensures that98

“each bin will display the bin’s raw count divided by the total number of counts and the bin width...99

so that the area under the histogram integrates to 1”. Two types of weighting were performed,100

depending on whether the processing involves maximally overlapping analysis periods (as in Fig.101

8) or non-overlapping analysis periods (as in Figs. 6 and 10).102

In the case of non-overlapping analysis periods and sampling distributions of metrics frommodel103

extended HIST runs, the weights passed to pyplot.hist are 1/#A ( 9), where #A ( 9) is the number104

of realizations for the 9 Cℎ model. In the case of the maximally overlapping analysis periods, the105

weights for each analysis period of the 9 Cℎ model are 1/#2 ( 9) for control runs and 1/#A ( 9) for106

extended HIST runs, where #2 ( 9) is the total number of maximally overlapping !-month analysis107

periods for the 9 Cℎ model control run.108

The fits to the histograms in Figs. 6, 8, and 10 use kernel density estimation (KDE).ii As in the109

case of the histograms plotted with pyplot.hist, the same weighting and “density=True” option was110

employed in the KDE (see above). The KDE fits relied on the default Scott bandwidth estimator.111

g. Weighted t-test112

We performed C-tests to determine whether there are significant differences between the CMIP5113

and CMIP6 volcanic TLS signals. Tests were conducted separately for the lower stratospheric114

temperature signals after the eruptions of El Chichón and Pinatubo. The samples in each test115

are the CMIP5 and CMIP6 root-mean-square (RMS) errors relative to the observed volcanic TLS116

signals (see caption of Fig. 3).117

As in the case of the weighting of histograms (see Section f), we need to account for model118

differences in the number of extended HIST realizations. This was done with the Python module119

statsmodels.stats.weightstats.ttest_ind.iii The 1/#A ( 9) weights are the same as those used in120

histogram weighting. The C-test was conducted with usevar=‘unequal’, thus allowing for unequal121

variances in CMIP5 and CMIP6 RMS errors. Our null hypothesis is that there are no significant122

difference between CMIP5 and CMIP6 volcanic TLS signals. Estimated ?-values for this null123

hypothesis are sensitive to whether or not weights are included (which has substantial influence on124

the degrees of freedom), but are insensitive to the whether the variances of the CMIP5 and CMIP6125

RMS errors are assumed to be equal or unequal.126

h. Orthogonal Distance Regression127

We used Orthogonal Distance Regression (ODR) to calculate the slopes of the regression fits128

to the CMIP5 and CMIP6 trend data shown in Fig. 9. ODR has certain advantages relative to129

the more commonly used Ordinary Least-Squares (OLS) regression.iv In general, the regression130

slopes reported in Fig. 9 were consistently larger when estimated with ODR. For the regression131

ihttps://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.hist.html
iihttps://scikit-learn.org/stable/modules/density.html
iiihttps://www.statsmodels.org/stable/generated/statsmodels.stats.weightstats.ttest_ind.html
ivSee https://docs.scipy.org/doc/scipy/reference/odr.html. We employed the scipy.odr package for ODR performing ODR.

5



between WV trends and corrected TMT trends in Fig. 9C, for example, OLS yields slopes of132

5.1%/decade for both the CMIP5 and CMIP6 ensembles, while the corresponding ODR slopes are133

5.3 and 5.5%/decade. Both the OLS and ODR regressions weighted individual trend samples to134

account for model differences in the number of extended HIST realizations (see Section f).135
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Table 1: Basic information relating to the start dates, end dates, and lengths (#<, in months) of the
123 CMIP5 historical and RCP8.5 simulations used in this study. EM is the “ensemble member”
identifier (see http://cmip-pcmdi.llnl.gov/cmip5/documents.html for further details).

Model EM Hist. Hist. Hist. RCP8.5 RCP8.5 RCP8.5
Start End #< Start End #<

1 ACCESS1.0 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

2 ACCESS1.3 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

3 BCC-CSM1.1 r1i1p1 1850-01 2012-12 1956 2006-01 2300-12 3540

4 BCC-CSM1.1(m) r1i1p1 1850-01 2012-12 1956 2006-01 2099-12 1128

5-14 CanESM2 historical r-1 r1i1p1–r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
15-24 CanESM2 historical r-2 r1i1p1–r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
25-34 CanESM2 historical r-3 r1i1p1–r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
35-44 CanESM2 historical r-4 r1i1p1–r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
45-54 CanESM2 historical r-5 r1i1p1–r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

55-57 CCSM4 r1i1p1–r3i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

58 CESM1-BGC r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

59-98 CESM1-CAM5 r1i1p1–r40i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

99 CSIRO-Mk3.6.0 r10i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

100 EC-EARTH r8i1p1 1850-01 2012-12 1956 2006-01 2100-12 1140

101 GFDL-CM3 r1i1p1 1860-01 2005-12 1752 2006-01 2100-12 1140

102 GFDL-ESM2G r1i1p1 1861-01 2005-12 1740 2006-01 2100-12 1140

103 GFDL-ESM2M r1i1p1 1861-01 2005-12 1740 2006-01 2100-12 1140

104 GISS-E2-H (p1) r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540

105 GISS-E2-H (p3) r1i1p3 1850-01 2005-12 1872 2006-01 2300-12 3540

106 GISS-E2-R (p1) r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540

107 GISS-E2-R (p2) r1i1p2 1850-01 2005-12 1872 2006-01 2300-12 3540

108 GISS-E2-R (p3) r1i1p3 1850-01 2005-12 1872 2006-01 2300-12 3540

109 HadGEM2-CC r1i1p1 1859-12 2005-11 1752 2005-12 2099-12 1129
110-111 HadGEM2-CC r2i1p1–r3i1p1 1959-12 2005-12 553 2005-12 2099-12 1129

112 HadGEM2-ES r1i1p1 1859-12 2005-11 1752 2005-12 2299-12 3529
113 HadGEM2-ES r2i1p1 1859-12 2005-12 1753 2005-12 2100-11 1140

114 MIROC5 r1i1p1 1850-01 2012-12 1956 2006-01 2100-12 1140

115 MIROC-ESM-CHEM r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

116 MIROC-ESM r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

117 MPI-ESM-LR r1i1p1 1850-01 2005-12 1872 2006-01 2300-12 3540
118-119 MPI-ESM-LR r2i1p1–r3i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

120 MPI-ESM-MR r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

121 MRI-CGCM3 r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

122 NorESM1-M r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140

123 NorESM1-ME r1i1p1 1850-01 2005-12 1872 2006-01 2100-12 1140
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Table 2: Start dates, end dates, and lengths (#<, in months) of the 36 CMIP5 pre-industrial
control runs used in this study. EM is the “ensemble member” identifier (see http://cmip-
pcmdi.llnl.gov/cmip5/documents.html for further details).

Model EM Start End #<

1 ACCESS1.0 r1i1p1 300-01 799-12 6000
2 ACCESS1.3 r1i1p1 250-01 749-12 6000
3 BCC-CSM1.1 r1i1p1 1-01 500-12 6000
4 BCC-CSM1.1(m) r1i1p1 1-01 400-12 4800
5 CanESM2 r1i1p1 2015-01 3010-12 11952
6 CCSM4 r1i1p1 800-01 1300-12 6012
7 CESM-BGC r1i1p1 101-01 600-12 6000
8 CESM-CAM5 r1i1p1 1-01 319-12 3828
9 CMCC-CESM r1i1p1 4324-01 4600-12 3324
10 CMCC-CM r1i1p1 1550-01 1879-12 3960
11 CMCC-CMS r1i1p1 3684-01 4183-12 6000
12 CSIRO-Mk3.6.0 r1i1p1 1651-01 2150-12 6000
13 FGOALS-g2 r1i1p1 201-01 900-12 8400
14 FIO-ESM r1i1p1 401-01 1200-12 9600
15 GFDL-CM3 r1i1p1 1-01 500-12 6000
16 GFDL-ESM2G r1i1p1 1-01 500-12 6000
17 GFDL-ESM2M r1i1p1 1-01 500-12 6000
18 GISS-E2-H (p1) r1i1p1 2410-01 2949-12 6480
19 GISS-E2-H (p2) r1i1p2 2490-01 3020-12 6372
20 GISS-E2-H (p3) r1i1p3 2490-01 3020-12 6372
21 GISS-E2-R (p1) r1i1p1 3981-01 4530-12 6600
22 GISS-E2-R (p2) r1i1p2 3590-01 4120-12 6372
23 HadGEM2-CC r1i1p1 1859-12 2099-12 2881
24 HadGEM2-ES r1i1p1 1859-12 2435-11 6912
25 INM-CM4 r1i1p1 1850-01 2349-12 6000
26 IPSL-CM5A-LR r1i1p1 1800-01 2799-12 12000
27 IPSL-CM5A-MR§ r1i1p1 1800-01 2068-12 3228
28 IPSL-CM5B-LR r1i1p1 1830-01 2129-12 3600
29 MIROC5 r1i1p1 2000-01 2669-12 8040
30 MIROC-ESM-CHEM r1i1p1 1846-01 2100-12 3060
31 MIROC-ESM r1i1p1 1800-01 2330-12 6372
32 MPI-ESM-LR r1i1p1 1850-01 2849-12 12000
33 MPI-ESM-MR r1i1p1 1850-01 2849-12 12000
34 MRI-CGCM3 r1i1p1 1851-01 2350-12 6000
35 NorESM1-M r1i1p1 700-01 1200-12 6012
36 NorESM1-ME r1i1p1 901-01 1152-12 3024

§The IPSL-CM5A-MR control run has a large discontinuity in year 2069. We therefore truncated its control run after December 2068.
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Table 3: Basic information relating to the start dates, end dates, and lengths (#<, in months) of
the 166 CMIP6 historical and SSP5 simulations used in this study§. EM is the “ensemble member"
identifier∗.

Model EM Hist. Hist. Hist. SSP5 SSP5 SSP5
Start End #< Start End #<

1-3 ACCESS-CM2 r1i1p1f1–r3i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

4-6 ACCESS-ESM1.5 r1i1p1f1–r3i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

7-31 CanESM5 r1i1p1f1-r25i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
32-56 CanESM5 r1i1p1f2-r25i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

57-61 CESM2 r1i1p1f1, r2i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
CESM2 r4i1p1f1, r10i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
CESM2 r11i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

63 CIESM r1i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

64-69 CNRM-CM6.1 r1i1p1f2–r6i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

70-75 EC-Earth3 r1i1p1f1, r4i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
EC-Earth3 r6i1p1f1, r11i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
EC-Earth3 r13i1p1f1, r15i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

76-79 EC-Earth3-Veg r1i1p1f1–r4i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032
80 EC-Earth3-Veg r6i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

81 GFDL-CM4 r1i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

82 GFDL-ESM4 r1i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

83-85 HadGEM3-GC31-LL r1i1p1f3–r3i1p1f3 1850-01 2014-12 1980 2015-01 2100-12 1032

86-88 HadGEM3-GC31-MM r1i1p1f3–r3i1p1f3 1850-01 2014-12 1980 2015-01 2100-12 1032

89 IPSL-CM6A-LR r1i1p1f1 1950-01 2014-12 780 2015-01 2300-12 3432
90 IPSL-CM6A-LR r2i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

91-92 IPSL-CM6A-LR r3i1p1f1, r4i1p1f1 1950-01 2014-12 780 2015-01 2054-12 480
93-94 IPSL-CM6A-LR r6i1p1f1, r14i1p1f1 1950-01 2014-12 780 2015-01 2100-12 1032

95-144 MIROC6 r1i1p1f1–r50i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

145 MIROC-ES2L r1i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

146-147 MPI-ESM-1.2-HR r1i1p1f1, r2i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

148-157 MPI-ESM-1.2-LR r1i1p1f1–r10i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

158 MRI-ESM2.0 r1i1p1f1 1850-01 2014-12 1980 2015-01 2300-12 3432

159-160 NESM3 r1i1p1f1, r2i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

161 NorESM2-MM r1i1p1f1 1850-01 2014-12 1980 2015-01 2100-12 1032

162-165 UKESM1.0-LL r1i1p1f2–r4i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032
166 UKESM1.0-LL r8i1p1f2 1850-01 2014-12 1980 2015-01 2100-12 1032

§CMIP6 model acronyms are from: https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/
∗See: https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk/edit
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Table 4: Start dates, end dates, and lengths (#<, in months) of the 30 CMIP6 pre-industrial
control runs used in this study.§ EM is the “ensemble member” identifier.∗

Model EM Start End #<

1 ACCESS-CM2 r1i1p1f1 950-01 1449-12 6000

2 ACCESS-ESM1.5 r1i1p1f1 101-01 1000-12 10800

3 CESM2 r1i1p1f1 1-01 1200-12 14400

4 CESM2-FV2 r1i1p1f1 1-01 500-12 6000

5 CESM2-WACCM r1i1p1f1 1-01 499-12 5988

6 CESM2-WACCM-FV r1i1p1f1 1-01 500-12 6000

7 CNRM-CM6.1-HR r1i1p1f2 1850-01 2149-12 3600

8 CNRM-ESM2.1 r1i1p1f2 1850-01 2105-12 3072

9 E3SM-1.0 r1i1p1f1 1-01 500-12 6000

10 E3SM-1.1 r1i1p1f1 1850-01 2014-12 1980

11 E3SM-1.1-ECA r1i1p1f1 1850-01 2014-12 1980

12 EC-Earth3 r1i1p1f1 2259-01 2759-12 6012

13 EC-Earth3-Veg r1i1p1f1 1850-01 2349-12 6000

14 GFDL-CM4 r1i1p1f1 151-01 650-12 6000

15 GFDL-ESM4 r1i1p1f1 1-01 500-12 6000

16 HadGEM3-GC31-LL r1i1p1f1 1850-01 2349-12 6000

17 INM-CM4.8 r1i1p1f1 1850-01 2380-12 6372

18 INM-CM5.0 r1i1p1f1 1996-01 3196-12 14412

19 IPSL-CM6A-LR r1i1p1f1 1850-01 3049-12 14400

20 MIROC6 r1i1p1f1 3200-01 3999-12 9600

21 MIROC-ES2L r1i1p1f2 1850-01 2349-12 6000

22 MPI-ESM-1.2-HAM r1i1p1f1 1850-01 2629-12 9360

23 MPI-ESM-1.2-HR r1i1p1f1 1850-01 2349-12 6000

24 MPI-ESM-1.2-LR r1i1p1f1 1850-01 2849-12 12000

25 MRI-ESM2.0 r1i1p1f1 1850-01 2550-12 8412

26 NorCPM1 r1i1p1f1 1-01 500-12 6000

27 NorESM2-LM r1i1p1f1 1600-01 2100-12 6012

28 NorESM2-MM r1i1p1f1 1200-01 1699-12 6000

29 SAM0-UNICON r1i1p1f1 1-01 700-12 8400

30 UKESM1.0-LL r1i1p1f2 1960-01 2709-12 9000

§CMIP6 model acronyms are from: https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/
∗See: https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk/edit
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