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1 Abstract

This report describes an ecosystem model of the Chesapeake Bay, the Chesapeake Bay Fisheries
Ecosystem Model (CBFEM), prepared using the Ecopath with Ecosim approach and software. The
CBFEM was created in response to a management need in the Chesapeake region for a quantified
estimation of trophic pathways in the Bay. This information can be used to understand how one stock
affects another within the food web and how the many Bay fisheries impact both target and nontarget
species. Because the life histories and population dynamics of the thousands of organisms that live
within the Bay are complicated, a model is necessary to provide an accurate estimation of the system.

Model construction has been carried out in close consultation with Chesapeake Bay researchers through
a series of workshops. Currently, the model includes 45 functional groups of organisms, some of which
represent life history stanzas of individual species, representing all trophic levels. The input data
primarily includes assessment results from the Chesapeake Bay (including biomasses, mortality rates,
catches, and effort) supplemented with research vessel survey data (fisheries and biological
oceanography studies), ecological studies (as available from researchers and institutions in the region),
and parameter estimates obtained from literature where necessary to supplement local data. Activities
are under way to refine the temporal and spatial resolution of the CBFEM and to continue to incorporate
hydrographic data.

This documentation is intended to facilitate use and further development of the CBFEM, so that it can
serve as a ‘living’ model. Future revisions to the CBFEM and supporting documentation will be made
available on the NOAA Chesapeake Bay Office web site (http://chesapeakebay.noaa.gov).

2 Introduction

2.1 The Chesapeake Bay

The Chesapeake Bay is the largest estuary in the continental United States, located midway along the
Atlantic coast of the United States. The surface area of the tidal portion of the Chesapeake Bay system is
approximately 10,000 km”, while the area including tributaries is estimated to 18,580 km?. More than 20
major tributaries drain into the Bay from a watershed that stretches across six states: New York,
Pennsylvania, Maryland, Delaware, Virginia, West Virginia, and the District of Columbia. The largest
of these tributaries, the Susquehanna River, provides more than half of the freshwater flow to the Bay.
The waters of the Chesapeake Bay and tidal portions of its tributaries are governed by Maryland and
Virginia (Figure 1).

The Bay is a partially mixed estuary, with an average tidal range of approximately 1 m at its mouth to
less than 30 cm at its head (cited in 1989). Salinity within the Bay ranges from less than 0.5 ppt at its
northern extreme to 32 ppt near its mouth. The Bay can be divided into three major salinity regions:
oligohaline (0-5 ppt), mesohaline (6-18 ppt), and polyhaline (> 18 ppt). Water temperatures in the Bay
vary greatly throughout the year, reaching 28-30°C in late summer and 1-4°C in late winter (Murdy et
al., 1997).



The estuarine circulation pattern of a flow of deeper, more saline water from the Atlantic Ocean into the
Bay and its tributaries and surface fresher water out of the Bay serves to transport larval fishes and crabs
from the ocean to their nursery habitats and juvenile fishes from tributaries to the coastal waters of the
Atlantic. This transport mechanism is very important to the population dynamics of many Bay species.

The mixture of freshwater from the tributaries and seawater from the coastal ocean creates and
maintains a variety of brackish habitats within the Bay. Tidally influenced habitat types in the Bay
include: pelagic waters, nearshore littoral areas, and the benthic zone. Littoral habitats, such as marshes
on intertidal lowlands, aquatic grass beds in the shallow flooded flatlands, and oyster reefs, are highly
productive, serving as nursery areas to many fish and shellfish species, facilitating rapid growth under
relatively protected conditions. The diversity of habitats within the Chesapeake Bay system enables it to
support nearly 3,000 species of plants and animals within its waters and tidal margins.

Finfish species inhabiting the Chesapeake Bay have a wide variety of life history strategies. The
American eel, Anguilla rostrata, is a catadromous species, spending most of its life in tributaries of the
Chesapeake Bay, returning to the Atlantic Ocean to spawn. Some marine fishes, like the weakfish,
Cynoscion regalis, enter the Bay to feed and spawn seasonally and then return to the coastal ocean.
Anadromous species, like the American shad, Alosa sapidissima, and striped bass, Morone saxatilis,
spend most of their adult lives migrating in the Atlantic Ocean, but return to Bay tributaries to spawn.
Other species, like the white perch, Morone americana, spend their entire lives within the Chesapeake
Bay system, undergoing ‘semi-anadromous’ seasonal migrations within the Bay. Due to the complexity
of the Chesapeake Bay ecosystem, it is necessary to develop modeling tools like the CBFEM to simulate
interactions between these many different species, to quantitatively estimate how they fit together within
the larger food web and how human impacts are likely to affect this complex system.

The diversity of habitats within the Chesapeake Bay, combined with wide ranges of temperatures
throughout the year, result in very dynamic seasonal changes in fish assemblages. During late summer
and early autumn, fish diversity reaches its maximum due to a movement of tropical species into the
lower portion of the Bay. When the cooler temperatures of autumn arrive, most marine fish within the
Bay begin to migrate either south to Cape Hatteras, North Carolina, or offshore to the edge of the
continental shelf. During winter, the abundance and diversity of fish in the Bay is relatively low.
However, by early spring, abundance and diversity rebound significantly as anadromous species enter
the Bay, followed soon after by the warm-temperate and subtropical summer residents.

Since the early 1800s, the Chesapeake Bay has supported a variety of large-scale commercial and
recreational fisheries of both finfish and shellfish. The predominant invertebrate fisheries in the
Chesapeake Bay have included the eastern oyster (Crassostrea virginica), blue crab (Callinectes
sapidus), soft clam (Mya arenaria), and hard clam (Mercenaria mercenaria). The large-scale finfish
fisheries have included striped bass, American shad, river herring (Alosa aestivalis), white perch,
bluefish (Pomatomus saltatrix), Atlantic menhaden (Brevoortia tyrannus), summer flounder
(Paralichyths dentatus), weakfish, Atlantic croaker (Micropogonias undulates), and spot (Leiostomus
xanthurus). Several species, like white perch and Atlantic croaker, have sustained significant harvest
levels, although trends in the commercial and recreational landings have varied over the last several
decades. Striped bass landings may be the most dramatic in terms of variability from the 1960s to
present. Many species, such as the eastern oyster, American shad, and striped bass, have suffered
overexploitation in the Chesapeake Bay. Overfishing and the collapse of several Bay and coastal fish



stocks during the 1900s prompted the creation of fisheries management agencies both along the Atlantic
coast and within the Chesapeake Bay.

In coastal areas, the Atlantic States Marine Fisheries Commission (ASMFC) serves as a deliberative
body, coordinating the conservation and management of fisheries in near-shore state waters along the
eastern seaboard from Maine to Florida (to 4.8 km or 3 miles off the coast). The Mid-Atlantic States
Fishery Management Council (MASFC) is responsible for managing fisheries in federal waters, which
occur predominantly off the mid-Atlantic coast (from 4.8 to 322 km or 3 to 200 miles offshore). Within
the Bay, tidal fisheries are managed on a jurisdiction-specific basis, by the Virginia Marine Resources
Commission (VMRC), the Maryland Department of Natural Resources (MD DNR), and the Potomac
River Fisheries Commission (PRFC). The three jurisdictions have agreed upon management strategies,
as outlined in Chesapeake Bay fisheries management plans, for commercially and recreationally targeted
species within the tidal portion of the Chesapeake Bay.

2.2 Multispecies management

Traditionally, fisheries management plans have been targeted to manage a single species, (e.g., stock
assessments designed to derive estimates of population size and fishing mortality rates, synthesis of life
history characteristics to determine fishing seasons). However, single-species analyses have not
traditionally considered the ecology of the species under management, (e.g., habitat requirements,
response to environmental change), ecological interactions among species, (e.g., predation,
competition), or technical interactions, (e.g., discards, bycatch) (NMFS, 1999; Link, 2002b; a). Basing
fisheries management plans on both single-species characteristics and ecological processes is now
mandated federally by the Magnuson-Stevens Act Reauthorization (NMFS, 1999; NRC, 1999; U.S.
Commission on Ocean Policy, 2004) and regionally by the Chesapeake 2000 agreement (Chesapeake
Bay Program, 2000). Ecosystem-based fisheries management plans are currently under development for
five target species/species groups in the Chesapeake Bay: striped bass, alosines (shad, alewife, and
blueback herring), blue crab, menhaden, and the eastern oyster.

Ecosystem-based fisheries management is preferable in the Chesapeake Bay as traditional methods of
management do not explicitly allow consideration of how fish populations and habitats are variably
impacted by increasing human populations. To understand how one species is likely to respond to
changing conditions, it is necessary to look at the response of all other species that affect it within its
ecosystem. Not only do humans affect fish populations directly through fishing, but they also have
major indirect impacts such as nutrient, sediment, and toxics pollution; disease; and physical destruction
of habitat. All of these factors influence fish stock levels. Ecosystem-based fisheries management
attempts to address all of these factors to lessen their impact on fish stocks. As part of this process, it is
necessary to create tools to accurately portray how the ecosystem is currently functioning and how it is
likely to function in the future given changes in habitat and stock management. One such tool is the
CBFEM, which helps to understand how the food web is being impacted by these changes to the
ecosystem and how fisheries management can be altered to address them.

The concept that ecological processes can strongly influence stock abundance is not new to fisheries
science. During the 1970s and 1980s, several single-species population models were extended to include
multiple species and the implied ecological interactions (Andersen and Ursin, 1977; May et al., 1979;
Mercer, 1982; Kerr and Ryder, 1989; Daan and Sissenwine, 1991). These models fostered awareness of
the importance and role of ecological processes on yield performances of fish stocks, but were generally
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viewed as underdeveloped. Recently, this belief has changed due to the sophistication and increased
availability of multispecies assessment and ecosystem models (Hollowed et al., 2000; Whipple et al.,
2000; Latour et al., 2003). The analytical evolution of these modeling approaches has reached the point
where it can now provide meaningful management advice. However, a significant deterrent to the use of
multispecies modeling approaches is that more model parameters may need to be estimated compared
with traditional single-species analyses, which in turn creates the need for additional types of data.

In the Chesapeake Bay region, single-species fisheries management plans have been developed for
numerous species (Table 1). There has been a growing interest in ecosystem approaches to fisheries
management in the Chesapeake Bay region since the mid-1990s. Efforts dedicated to ecosystem-based
fisheries management in the region include: 1) creation of two ASMFC multispecies subcommittees, the
first in 1999 and the second in 2004; 2) convening of multispecies technical workshops (Miller et al.,
1996; Houde et al., 1998); 3) development of the multispecies and cross-jurisdictional sampling
platform, the Chesapeake Multispecies Monitoring and Assessment Program (ChesMMAP) in 2002; 4)
continued development of the Fisheries Ecosystem Model for the Chesapeake Bay; 5) development of a
multispecies virtual population analysis for the Chesapeake Bay; 6) release in 2006 of the Fisheries
Ecosystem Planning for the Chesapeake Bay (NOAA CBFEAP, 2006) as the first fisheries ecosystem
plan in the U.S.; and 7) ongoing development of ecosystem-based fisheries management plans for five
target species/groups in the Chesapeake Bay (alosines, blue crab, eastern oysters, striped bass, and
menhaden) in response to the regional goals for multispecies fisheries management set by the
Chesapeake 2000 agreement (Chesapeake Bay Program, 2000).

The language of the Chesapeake 2000 agreement as it pertains to multispecies fisheries management,
reads as follows:

= By 2004, assess the effects of different population levels of filter feeders such as menhaden,
oysters, and clams on Bay water quality and habitat.

= By 2005, develop ecosystem-based multispecies management plans for targeted species.

= By 2007, revise and implement existing fisheries management plans to incorporate ecological,
social, and economic considerations, multispecies fisheries management and ecosystem
approaches.

In response to the Chesapeake 2000 agreement (Chesapeake Bay Program, 2000), the NOAA
Chesapeake Bay Office, working through the Chesapeake Bay Stock Assessment Committee, initiated a
project in October 2001 to develop an Ecopath with Ecosim (EwE) model of the Chesapeake Bay. This
Technical Report summarizes the results of the first years of development. Specifically, the 1950-2002
version of the Chesapeake Bay EWE model is presented, complete with detailed descriptions of the data
used for model parameterization and calibration included in the appendices.

The current Chesapeake Bay EWE model should be considered a work in progress, and will evolve and
improve in response to the collection of new information. For many components of the model, accurate
and precise data were not available to define key input parameters. In an effort to fill these data gaps,
research activities have been initiated to quantify missing parameters. However, several years of work
will be necessary before the data will become available. Consequently, this Technical Report should be
considered descriptive of the 1950-2002 version of the Chesapeake Bay Ecosystem Model. The



Technical Report will be under continuous development in the medium term, and electronic versions of
the report will be released periodically and will be accessible on the NOAA Chesapeake Bay Office FTP
site: ftp://noaa.chesapeakebay.net/CB Fisheries Ecosystem Model.

3 Methods
3.1 EwE General Methodology

311 The EwE ecosystem modeling approach

The EwE software is a modeling tool used to evaluate quantitative trophic interactions within an
ecosystem in order to assess options for ecosystem-based management of fisheries. To run the Ecopath
model, four groups of basic input parameters must be entered into the model for each of the species
groups: diet composition, biomass accumulation, net migration, and catch. Three of the following four
additional input parameters must also be input: biomass, production/biomass (Z), consumption/biomass,
and ecotrophic efficiency. Forcing functions have been developed for the system, including one for
climate, primary production, and habitat area. The model uses the input data along with algorithms and a
routine for matrix inversion to estimate any missing basic parameters so that mass balance is achieved.
Basic input parameters for the Chesapeake Bay Fisheries Ecosystem Model are listed in Table 3.

Once all basic parameters have been input or estimated, the model balances the input and output of each
group with two linear equations of production and consumption, using varying rates of respiration for
adjustment. The model can come up with numerous balanced scenarios, given the input data and forcing
functions. The balancing process results in predictions of biomass, production, and consumption values
for each functional group and measures how closely these predictions match the input data. The modeler
chooses which model run matches time-series data most closely based on the sum of least squares test
performed by the model. The modeler then searches the selected model run for errors, makes necessary
adjustments and documents these adjustments thoroughly. The modeler decides which parameters to
include in the final estimation and then re-runs the model with the appropriate changes. This process
(Figure 2) typically repeats several times until the model closely predicts existing data for that year.

The mass-balanced linear equations of Ecopath are then re-expressed as coupled differential equations
so that they can be used by the Ecosim module to simulate what happens to the species groups over
time. Model runs are compared with time-series data and the closest fit is chosen to represent the
system. The Ecosim module can be used to simulate various management options for the system, by
varying parameters over time to estimate potential ecosystem changes.

3.1.2 Ecopath

An Ecopath model uses trophically-linked biomass pools to create a mass-balanced snapshot of the
resources and interactions in an ecosystem (Christensen and Pauly, 1992; Pauly et al., 2000; Christensen
and Walters, 2004). The biomass pools typically represent either a single species or a group of species
that comprise an ecological guild. These pools may be split into ontogenetic age categories (juvenile,
subadult, adult, etc.), commonly called ‘stanzas,’ and a detailed accounting of growth and survival for
monthly cohorts is conducted for such groups. Biomass pools are created for all major components of
the ecosystem, regardless of trophic level.



The parameterization of an Ecopath model is based on satisfying two ‘master’ equations. The first
equation describes how the production term for each group can be divided for an arbitrary time period:

production = catch + predation + net migration + biomass accumulation
+ other mortality. (1)

More formally, equation (1) can be expressed as:
B,(P/B),EE, =Y, +E, +BA + > B,(Q/B),DC, 2)
i=1

where for biomass pooli=1, ..., n:

e B;is total biomass during the period of question

e (P/B); is the production to biomass ratio

EE; is the ecotrophic efficiency, defined as the fraction of the production that is consumed within
or harvested from the system

Y; is the yield or catch in weight (note that Y; = FiB; where F is the fishing mortality rate)

E; is the net migration rate (emigration — immigration)

BA. is the biomass accumulation rate for (i)

Bj is the biomass of the consumers or predators of (i); (Q/B); is the food consumption per unit
biomass for consumer j

e DC;j; is the average fraction of i in the diet of j (note that DC;; = 0 when j does not eat i)

At a minimum, Ecopath requires input of DC;j;, Y;, and three of the following four parameters for each
species or biomass pool in the model: B;, (P/B);, (Q/B);, and EE; (mass balance principles are used to
estimate the fourth parameter). If all four parameters are known, then Ecopath can be used to estimate
either BA; or E;. Equation (2) implies that an ecosystem under study is described completely by an n-
dimensional system of linear equations, the solutions of which can be easily calculated (Mackay, 1981);
the resulting estimates of biomass, production, and consumption can be used to construct a quantitative
network diagram of energy flow for the system (Ulanowicz, 1986).

The second ‘master’ equation is based on the principle of conservation of matter within a group and is
designed to balance the energy flows of a biomass pool:

consumption = production + respiration + unassimilated food (3)

Winberg (1956) defined consumption as the sum of somatic and gonadal growth, metabolic costs, and
waste products. Equation (3) generally follows this definition, but differs in the sense that it is used to
estimate losses rather than to measure growth. Balance of the energy equation is achieved by estimating
respiration from the difference between the consumption, production, and unassimilated food terms. For
more details on Ecopath, see Christensen and Pauly (1992) and Christensen and Walters (2004).

3.1.3 Ecosim

Ecopath is used to describe the interactions among resources within an ecosystem. Additional modules
are created to simulate the dynamics of the ecosystem resources and the effects of different management
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strategies on the structure and function of an ecosystem. The time-dynamic module, called Ecosim,
provides a simulation capability that facilitates policy exploration at the ecosystem level, with initial
parameters inherited from the base Ecopath model. To construct an Ecosim model, it is necessary to re-
express the system of linear equations in (2) as a system of coupled differential equations. This
transformation takes the following form (Walters et al., 1997; Walters et al., 2000; Christensen and
Walters, 2004):

dB, : ;
d_tlzgizcji_zcij+1i_(Mi+Fi+ei)Bi @
j=1 =1

where:
e (;jis growth efficiency
Fi is the instantaneous rate of fishing mortality
gj is the rate of emigration
li is the rate of immigration
Cij (Cji) is the consumption of biomass pool i (j) by biomass pool j (i)

This system of equations is used to represent the spatially aggregated dynamics of entire ecosystems and
is combined with explicit age/size-structured delay-difference equations to represent populations that
have complex life histories and selective harvesting of older animals. An important aspect of Ecosim is
the expression of the consumption or ‘flow’ rates among linked species or biomass pools. Consumption
of prey i by predator j is modeled as:
a;v;B;B;

=, &)
(2Vij + aiij)

Qij (BiaBj)

where ajj is the rate of effective search for prey i by predator j, and vjj is the behavioral exchange rate
between vulnerable and invulnerable prey pools (Figure 3). Equation (5) is based on the notion that
consumption is limited by ‘risk management’ behaviors of predators and prey at very small time scales.
That is, predator-prey interactions are assumed to take place primarily in restricted ‘foraging arenas’
where prey only become vulnerable to predation through their own requirements for resource acquisition
(Walters et al., 1997; Walters et al., 2000).

Relative to Ecopath, Ecosim introduces a number of new parameters, of which the simulations are
especially sensitive to the vulnerability settings (Christensen and Walters, 2004). For this we use a
vulnerability factor, (which we often just call ‘vulnerability’). The vulnerability factor expresses how
much the predation mortality for a given prey can increase if the predator abundance is increased. When
the predator is close to its carrying capacity with regard to the given prey, the predation mortality cannot
be increased any further (v = 1), and an increase in predator abundance, (e.g., due to good recruitment)
will be compensated for by a decrease in predator consumption rates. This in turn will result in lower
predator production, and the predator abundance will move back toward its carrying capacity. In an
opposite response, a decline in predator population size when it is close to its carrying capacity will be
compensated for by a comparative increase in average consumption rates, which will bring the predator
back toward its carrying capacity. A population at its carrying capacity is a stable population.

11



On the other hand, if the predator is far from its carrying capacity for a given prey, the situation is very
different. An increase in predator biomass will lead to an increase in prey mortality rate. In Ecosim
terminology, the vulnerability factor for the prey will be high. The consumption rate of the predator will
remain relatively constant, and the increase in its biomass will manifest itself in population growth.
There will be only limited compensatory effects.

In general, it is not possible to estimate vulnerability factors from field or laboratory data. However, to
assist with identifying appropriate settings, Ecosim includes several methods of estimation (see
Christensen et al., 2004 for details on these methods), and it is recommended that vulnerabilities be
estimated based on time-series analyses, 1.€., by evaluating how groups in the ecosystem has reacted to
changes in the past.

Time-series data for model calibration are thus essential for developing and validating an Ecosim model.
Therefore, time-series data depicting trends in relative and absolute biomass, fishing effort by gear type,
fishing and total mortality rates, and catches for as long a period as possible should be viewed as
additional data requirements.

Using Ecosim for stock reduction analysis

Kimura’s ‘stock reduction analysis’ (SRA, Kimura et al., 1996) can be used to analyze long-term data in
stock assessment. Historical catches are treated as fixed, known quantities, and are subtracted from
simulated stock size over time to aid in estimating how large (and/or productive) the stock must have
been in order to have sustained those catches and to have been reduced by some estimated fraction from
its historical level.

A drawback of treating catches as fixed values, as is commonly done in stock reduction analysis (SRA),
is that catches arise from the interaction of fishing effort and stock abundance. Ignoring this dynamic
interaction amounts to treating the catches as purely dispensatory impacts on stock size. Consequently,
the fixed catches can cause progressively larger calculated fishing mortality rates (F) if simulated stock
size declines. This can lead to a rapid collapse in the simulated stock, unreflective of what may have
happened in the real system.

A modified version of Kimura’s SRA is used in Ecosim. This allows catch series data to be treated as a
forcing input (with simulated F calculated each year as [input catch] / [simulated stock size]) or be used
for evaluating model fit where F values are available from assessments. This SRA is used where
estimates of initial biomasses and time trends in stock size are unavailable, and where no ‘drivers’ (such
as effort or fishing mortality) is available to force the simulations.

3.14 Addressing uncertainty

The EwE model presently incorporates several approaches for explicitly addressing uncertainty, but
given the number of parameters involved in a complex model such as the CBFEM it is not possible to
consider the uncertainty of all input parameters on all output parameters and all predictions. We rather
recommend that focus is on what impact uncertainty with regard to key input parameters as well as of
the model fitting procedure (evaluating alternative fitting procedures, see e.g., Walters et al., in press)
have on key model predictions.
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= A ‘pedigree’ routine for characterizing the origin of input data and for developing an overall
index of model quality

= The Ecoranger routine for explicit consideration, in a Bayesian context, of the uncertainty
inherent in all input and its impact on estimated parameters

= A formal sensitivity analysis for documenting the effect of inputs on estimated parameters

= A Monte Carlo routine that can be used in the time-dynamic module to evaluate the effect of
parameter uncertainty on policy questions

One should keep in mind that any given model represents only one possible synopsis of the trophic and
other ecological interactions of species and functional groups of interest to fisheries and environmental
managers. Developers should only attempt to adjust parameters in a way that makes sound ecological
sense, rather than relying on the software’s automated tweaking, which potentially could develop a
model parameterization that fits the data extremely well but may produce spurious results because of
unsound assumptions fitting the noise rather than the signal (Walters and Martell, 2004).

Upon finalizing the CBFEM, Monte Carlo simulations (accounting for uncertainty in the
parameterization) were run to determine if the patterns produced by the model were robust to parameter
uncertainty. Further details on how EwE deals with parameter uncertainty are described in the software
user guide (Christensen et al., 2005).

3.2 Development of an Ecopath Model of the Chesapeake Bay

The construction of an Ecopath with Ecosim model for the Chesapeake Bay has been under way for
several years. The effort has involved a large number of scientists from the Chesapeake Bay area,
supported by modelers from the University of British Columbia. An initial workshop was held in
October 2001 to introduce the Ecopath/Ecosim modeling approach to the Chesapeake Bay research
community. A review of the Fisheries Ecosystem Model prototype was conducted to look for gaps in
parameters, missing trophic linkages, and potential data sources to address concerns. A major focus of
the workshop was to formulate research questions that can be addressed by ecosystem modeling (Table
2). This report addresses some of the questions in Table 2.

An introductory seminar/lab course on the use of the Ecopath portion of the EWE software was
conducted in February 2002, with a follow-up seminar on dynamic simulation modeling in May 2002 at
the Smithsonian Environmental Research Center, Edgewater, Maryland. A second workshop was held in
May 2002 at the Virginia Institute of Marine Science, Gloucester Point, Virginia, to further develop the
Fisheries Ecosystem Model and discuss its parameterization.

On April 28-29, 2003, a modeling workshop was held at the U.S. Fish and Wildlife Service Patuxent
Research Refuge’s National Wildlife Visitor Center in Laurel, Maryland, to assess progress on the FEM
to date. Workshop participants generally agreed:

= The FEM, as was implemented with 45 major species groups, reproduces many of the important
time-series trends well;
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» There remained a need to incorporate (or link to) water-quality parameters, abiotic processes,
and lower trophic level dynamics; and

» There will be tradeoffs among many of the stated objectives of the Chesapeake 2000 agreement.
With finite ecosystem resources, it is unrealistic to believe that all fish species can be returned to
their historic peak levels of abundance.

Other noteworthy results from the 2003 workshop include:

= Adjustments were made to the parameterization of species at lower trophic levels to secure both
better data quality and better resolution;

= More reliable data were incorporated for the biomass of zooplankton and oyster groups; and

= Abundance indices and a new life history stage were introduced for oysters. The intention was to
capture dynamics and mortality differences influenced by oyster population ontogenetics.

A draft of the CBFEM report was finalized in 2004, and has been subsequently subject to review and
ensuing updating. Since the 2003 EwWE modeling workshop, time-series data have been revised and
added to the model, data sources have been verified, and data has been reviewed by a panel of Bay
researchers, the Ecosystem Modeling Technical Advisory Panel 2. Ecopath with Ecosim 6 software
version 6.0.4.2 was used to run this current version of the CBFEM, with a resulting goodness-of-fit
criterion, the sum of squares, equaling 1098. The model currently uses more than 90 time series.

3.2.1 System boundaries

The FEM focuses on modeling fisheries stocks within the Chesapeake Bay and tidal portions of its
tributaries. Some groups being modeled, such as black drum, reside in the Chesapeake Bay but are
considered part of larger ‘stocks’ usually encompassed by the eastern or northeast United States. Further
complicating matters, many of the groups spend only part of the year or different parts of their life
histories within the Chesapeake Bay, such as weakfish or bluefish. Therefore, in order to derive time
series for EWE time simulations, it was often necessary to develop assumptions and correction factors
such that stock assessments for a larger population could be applied to the Chesapeake Bay EWE model.

3.2.2 Basic parameters and catches

The basic parameters for Ecopath models, with their units of measurement and commonly used
abbreviations in parentheses, are:

. biomass (t-km?, B)

. biomass accumulation (t - km™ - year”', BA, default value 0)
. consumption per unit biomass (year”, Q/B)

. detritus import (t - km™ -year )

« diet composition of species ‘1’ from prey ‘ji, j2, 3., o’ (fraction, DC)
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. ecotrophic efficiency (EE)

. fishery landings and discards by gear sector ‘j” imparted upon each species ‘ji, j2, j3,.--» Jn_ (t -
km™ - year™).

« fraction unassimilated food (GS, default value 0.2)

. net migration (t - km™ - year”', NM, default value 0)

« production divided by consumption (P/Q, only used if P/B or Q/B not given)
« production per unit biomass, i.e., total mortality (year'l, P/B,i.e., Z)

When developing an Ecopath model, the diet compositions (DC) for all species must be entered. Gear
sectors are designated by the modeler/user, who must enter catches and discards by gear type upon
species or species groups.

Of the four basic input parameters B, P/B, Q/B, and EE, one may be left as unknown, because “the
Ecopath model ‘links’ the production of each group with the consumption of all groups” (Christensen et
al., 2004) based on the trophic relations mapped out by the DC.

Typically, building an Ecopath model emphasizes collecting data for three of the four basic input
parameters listed above: B, P/B, and Q/B. Other basic input parameters are usually not as well
understood for most modeled species. In the case of fraction unassimilated food, 0.2 is set as a default
value based on the experiments of Ivlev (1961). While this estimate may be appropriate for carnivorous
fish, it is typically too low for many herbivorous species. This is especially true for species relying on
low-energy food, notably zooplankton, where a value of 0.4 results in more appropriate
respiration/biomass ratios (Christensen et al., 2004). Because P/B and Q/B are usually entered, the P/Q
rate will be set by the ratio of inputs set by the modeler for those values. However, if the modeler is
incapable of providing an estimate of either P/B or Q/B, then the P/Q ratio may be entered instead.
Because of the definition of P/Q, high-trophic-level predators with low production should have low P/Q
values, (e.g., = 0.05), while low-trophic-level, highly productive organisms will tend to have high P/Q
ratios, (e.g., = 0.3) (Christensen et al., 2004).

Ecopath models are ‘snapshots’ that are intended to serve as the basis for time-dynamic Ecosim
simulations. For this reason, the BA may be entered to represent the rate at which biomass is increasing
or decreasing for the species group modeled: Ecopath models do not assume steady-state. This may
especially be required in order to improve Ecosim simulations. ‘Detritus import’ is only of concern to
the detritus group, and can therefore be omitted for ‘living” groups.

Given these parameter characterizations, most Ecopath modelers prefer to leave the default values for
‘fraction unassimilated food” and BA, adjusting these values only for species that have documented
evidence suggesting different values. Because many species have not been studied in enough detail to
yield published estimations of B, P/B, or Q/B, the modeler may let Ecopath estimate one as an unknown
while estimating the others. In such cases, remember that P/B and Q/B values to some degree scale with
allometric relationships, and therefore are conservative for similar species in similar ecosystems. This
implies that even if a reliable P/B or Q/B estimate is unavailable for the species or species group
modeled, then estimates for similar (or the same) species in similar (or the same) ecosystem may have to

15



suffice as proxies. Where possible, these may be modified up or down to reflect differences in
exploitation pressure. Where biomass estimates are unavailable, they can be left for Ecopath to estimate
given that the modeler can provide a value for EE, i.e., the fraction of production used in the ecosystem
(Christensen et al., 2004).

One final aspect about general parameterization and grouping species in an Ecopath model — species
may be modeled as one of three types: 1) an aggregation of trophically similar organisms, i.€., a
‘functional’ group; 2) a single-species group; or 3) as a life history stage that is part of two or more
groups representing life history stages of a ‘multi-stanza’ group. Generally, species to be examined in
terms of policy questions are best dealt with as single-species or multi-stanza groups. Multi-stanza
groups are preferred if there may be ontogenetic issues in the species’ ecosystem role that could play a
part in the policy issues to be examined. To ensure that the biomasses for the different age-groups are
consistent, Ecopath will estimate the stanza biomass and consumption rates for all stanza when the
following parameters are supplied: the von Bertalanffy growth (curvature) parameter K (which is
available for fish species through FishBase); B for one (‘leading’) stanza; estimates of Z (= P/B) for
each stanza; Q/B for one stanza; and an estimate of the ratio of the weight-at-maturity to the asymptotic
weight, Wi,s. For a discussion of the calculations used in the Ecopath model, see Christensen and
Walters (2004).

In most models, there will be a higher degree of aggregation in species that are trophically distant from
the focal species. The desire to enrich the model with detail must be tempered by a realistic examination
of the modeler’s ability to flesh out that detail and to obtain data or estimates for the required
parameters. To examine specific policy issues for any particular species, detailed information must be
available from surveys or assessments, and similar information should be available for species with
which the focal species likely interacts in the environment. In particular, well-documented diet
composition data and time-series data of biomass, natural and fishing mortality, fishing effort, and
average weight are required to explore ecosystem relations when applying the time-dynamic Ecosim
model.

Input parameters for the models are described in Appendix A. The four basic input parameters —
biomass (t - km™); production / biomass (P/B, year™, corresponding to total mortality, Z); consumption /
biomass (Q/B, year); and catches (t - km™ year™) — are described for each functional group in the
model, along with a description of how diet compositions were obtained. A summary of basic input
parameters of the Chesapeake Bay Fisheries Ecosystem Model is presented in Table 3.

3.3 Development of an Ecosim Model of the Chesapeake Bay

3.3.1 Time periods covered

The strength of any model to be used for testing management action outcomes is measured by how well
it is validated based on observed data for that system. This is true whether the model is a traditional
single-species or a multispecies model. A 1950-Ecopath model was created to represent a snapshot of
roughly what the Chesapeake Bay system may have looked like in the middle of the 20" century. This
model was then run time-dynamically using Ecosim and tuned to observed data or to data estimated
from other models for the time period 1950-2002 to estimate changes in biomass over 50 years.
Descriptions and sources for the various time-series data used in driving, tuning, calibrating, and
verifying the model are included in Appendix B of this report.
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3.3.2 Primary production rate forcing: the Chesapeake Bay Regional Estuarine Ecology
Model (CBREEM)

At the inception of the Chesapeake Bay Fisheries Ecosystem Model project, EWE did not have the
ability to account for physical and chemical factors as a part of the ecosystem being modeled. The
Ecospace component of the EWE modeling approach has been enhanced to alleviate this shortcoming.
This is done by linking the Ecospace model to the Florida Bay Ecosystem Model (FBEM). The FBEM is
a simple 2D-hydrographic model that was developed for Florida and Tampa Bays by Carl Walters
(UBC) during a series of workshops sponsored by the South Florida Water Management District, The
Nature Conservancy, and the Florida Keys Water Quality Joint Action Group. The FBEM was developed
to provide a simple, calibrated model of salinity, nutrients and oxygen dynamics in Florida Bay (Walters
and Gunderson, unpublished results).

While there are complicated hydrographic models for the Chesapeake Bay producing similar estimates
with high spatial and temporal resolution, we have been unable to obtain information about nutrient
conditions for the entire Bay over the long time period considered here (i.e. back to 1950). The existing
models either only cover short, recent time periods or are geographically limited to a portion of the Bay.
Hagy et al., 2004 was used in the development of CBREEM. This study does cover the time period from
1950-2001, however it only describes nitrogen loading for the Susquehanna River and not the entire
Bay. It was therefore of interest to emulate the Florida models to simulate long-term variability in
nutrient conditions.

To this effect, we have developed the Chesapeake Regional Estuarine Ecology Model (CBREEM),
which includes three sub-models, operating with monthly time steps: 1) a physical, or hydrodynamic,
model computing current speed and direction for surface and deep layers; 2) a static chemistry model
estimating concentration of nitrogen, salt, phytoplankton, and suspended particulates; and 3) a dynamic
ecological model simulating growth and mortality of sea grass and epiphytic algae. CBREEM output
provides a historical pattern in primary production, which has been used to drive the primary production
rate in the CBFEM. CBREEM is a simple hydrographic model with two layers, deep and shallow. The
horizontal spatial resolution is 1-2 km with monthly time steps covering 50+ years. The model solves for
equilibrium velocity fields and calculates mass-balanced chemical concentrations. The model uses wind,
rainfall, river inflow, and relative loading as major inputs. The outputs include spatial distributions of
nutrient, salinity, and chlorophyll-a at monthly intervals.

Historical information on nutrient loading and physical mixing has been added to the CBREEM to
calculate changes in primary production in the Chesapeake Bay. Monthly chlorophyll-a output from
CBREEM was used to drive primary production rate in the Ecosim model. Both the CBREEM and
supporting data are presented in a manuscript by Ma et al. (in prep).

The hydrodynamic model requires time-series data on wind vectors, river gauge data from major
freshwater inputs, and bathymetry data, as well as some basic water chemistry information.
Hydrodynamic model outputs include a time series of total primary production, nitrogen, oxygen, and
salinity concentrations. These outputs have been compared with historical data to aid in model
parameterization. The chemistry model calculates concentration of nutrients and estimates
phytoplankton growth as a function of nitrogen concentrations. The sea grass submodel predicts total
biomass and spatial distribution of sea grasses in response to changes in water chemistry and light
penetration. Future efforts to improve the CBFEM will include a historical reconstruction of sea grass
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communities in the Chesapeake Bay. This will serve to test hypotheses about how changes in sea grass
beds have affected biota that are associated and/or dependent on sea grasses.

3.3.3 Catches

For many species, catches are extracted from the NOAA Fisheries Statistics and Economics Division
online database (www.st.nmfs.gov) for the Chesapeake region, 1950-2002. The Chesapeake region
includes Maryland and Virginia catches, including catches made on the Atlantic Ocean side of the
Delmarva Peninsula. The CBFEM aims to characterize stocks within the Chesapeake Bay and tidal
portions of its tributaries, not coastal stocks or freshwater stocks. In many cases, the catches have not
been corrected for this discrepancy due to a lack of correction factors; however, this does not contribute
any major bias to the analysis. Many of the species in the model for which this may potentially be of
concern are migratory species that spend a major part of the year in the Chesapeake Bay. Typically, they
spend only a limited part of the year in the coastal waters of Maryland and Virginia outside the Bay, and
the catches there as a rule will be similarly limited.

While the NOAA marine catch database provides estimates for commercial catches from 1950 to the
present, similar time series for recreational catches are not as readily available. The official recreational
catch database, the Marine Recreational Fishery Statistics Survey (MRFSS), only includes information
from 1982 to the most currently reported year; hence, recreational catches for the period 1950-1981 are
derived from estimates. Commercial versus recreational catches were plotted for 1982 to the present,
and the data was checked for trend. If a trend was clear, which rarely was the case, commercial versus
recreational catches were regressed, and the pre-1982 recreational catches were estimated from the
regression. Where no trend was detected, either the arithmetic mean (when there were few outliers) or
the median value of the commercial/recreational catch rate was used to estimate the recreational catches
for the earlier time period. For the time period from 1982 to the present, the commercial/recreational
catch ratio, as estimated from the catches, was always used. The estimates of commercial and
recreational catches are Atlantic coast-wide for many species and, for lack of better estimates,
considered representative for the Chesapeake Bay as well. Catch series data are presented in Tables 4
and 5.

3.34 Time-series information

For many groups in the Chesapeake Bay model, there is time-series information available from catch
monitoring, surveys, and stock assessments that can be incorporated into EWE simulations. EWE builds
on the more traditional stock assessment, using much of the information available from traditional
assessments, while integrating to the ecosystem level.

The time-series fitting uses either fishing effort or fishing mortality data as driving factors for the
Ecosim model runs. A statistical measure of goodness-of-fit to the time-series data outlined above is
generated each time Ecosim is run. This goodness-of-fit measure is a weighted sum of squared
deviations (SS) of log biomasses from log predicted biomasses, scaled in the case of relative abundance
data by the maximum likelihood estimate of the relative abundance scaling factor q in the equation y = q
- B (y = relative abundance, B = absolute abundance). Each reference data series can be assigned a
relative weight representing a prior assessment of relative data reliability.

The model allows four types of analysis with the SS measure:
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1.  Determine sensitivity of SS to the critical Ecosim vulnerability factors by changing each one
slightly (1%) then rerunning the model to see how much SS is changed (i.e., how sensitive the
time-series predictions ‘supported’ by data are to the vulnerability settings);

2. Search for vulnerability factors that give better ‘fits” of Ecosim to the time-series data (lower
SS), with vulnerabilities ‘blocked’ by the user into sets that are expected to be similar (the search
is typically conducted on the most sensitive interactions, as identified above);

3. Search for time-series values of annual relative primary productivity that may represent historical
productivity shifts affecting biomasses throughout the ecosystem; and,

4.  Estimate a probability distribution for the null hypothesis that all of the deviations between
model and predicted abundances are due to chance alone, i.e., under the hypothesis that there are
no real productivity anomalies.

In addition to these nonlinear optimization routines, the fit to data can also be improved in a feedback
process by examining some of the crucial ecological parameters in the EWE model (notably total
mortality rates and the settings for top-down/bottom-up control). Such fitting does not include any
‘fiddling factors’ internal to the model. Instead, the type of question addressed after each run is, “Which
species parameters or ecological settings are not set such that the model adequately captures the
observed trends over time?”’

The inclusion of time-series data in EWE facilitates the model’s use for exploring policy options for
ecosystem-based management of fisheries. Analyses in this report illustrate how the model can be used
to address some of the policy questions defined by workshop participants (Table 2). Further
development and policy exploration activities will be carried out by NOAA Chesapeake Bay Office staff
in cooperation with local experts and fisheries managers.

Time-series information for use with EWE can be of the following types:
= For functional groups
O Biomass information (does not need to cover all years in the time series)
= Relative biomass series: Can be from surveys, assessment, etc.

= Absolute biomass: Rarely used, as it assumes that the absolute values (per unit
area) are estimated in the same manner for the original data and for the ecosystem
model. Absolute data, as a rule, are entered as relative data instead, using only the
trend in the data for the fitting.

= Biomass for forcing: Used to force the simulation at each time step; typically used
for groups whose dynamics depend on processes that are not covered by the
ecosystem model.

0 Fishing mortality: Used to ‘drive’ the Ecosim model and needs to be entered for all years
of the time series.
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0 Total mortality: Used to compare how the simulation matches the observed data; data set
need not cover all years.

0 Catches.

= Comparison of model simulation and observed data or for estimating fishing
mortalities based on stock reduction analysis; data need not cover all years; time-
series catch information is presented in Tables 4 and 5.

= As part of a stock reduction analysis, where calculations in Ecosim are made for
each time step of growth, mortality, and recruitment, and the catches subsequently
are used to estimate a fishing mortality (catch/biomass), which is applied as well.

0 Average weight: Used to compare observed and estimated weights for multi-stanza
groups.

=  For fleets

o0 Effort data by gear type: Expressed as relative to the effort in the first year of the time
series; used to ‘drive’ the Ecosim model; effort data need to be complete for the time
series.

=  Environmental data

0 Time-forcing data: Typically relative primary production (monthly or annual) over the
time period, but can be any kind of environmental data as long as it can be related to the
productivity for a group

The actual procedure applied for fitting the model to time series can be summarized as follows:

e The primary production forcing time series from the spatial, hydrodynamic model described
elsewhere in this document was used to force the system productivity in the fitted run.

e The ‘fit to time series’ interface was used to search for the most sensitive interactions in the
model, i.e., those interactions for which the vulnerability setting has most impact on the summed
squared residuals between time series and the simulation.

e Catches and estimates from juvenile surveys were not included in the search, i.e., their weighting
factor was set to 0.

e The 25 most sensitive consumers were selected, and vulnerability factors were estimated for
these groups. Vulnerability factors exceeding 100 were truncated at this value.

e These groups were then analyzed, and if comparison of time series and trend from time series (or

the expected trend where there were no time series) warranted it, the vulnerabilities for the group
in question were manually changed to improve time series fit.
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The vulnerabilities were always changed by consumer group, i.€., only one parameter was used per
consumer (and for some groups vulnerabilities were not changed at all).

Information on time-series data is included in Appendix B of this report.

34 Stock Assessment Methods for Developing Time Series

A requirement for the EWE reconstruction approach is to provide at least one (more is preferable)
biomass input into Ecopath as well as historical information on the removals or fishing mortality rates.
Biomass data can be obtained from single-species assessment models. In cases where model groups are
partitioned into multiple life-history stanzas, an age-structured model is preferable so that fishing
mortality rates for each stanza (if applicable, e.g., certain fishing gears harvest a specific stanza) can be
calculated from the estimated age-composition. Typical statistical catch-at-age models are notorious for
having hundreds and sometimes thousands of parameters. However, this “over-parameterization” is not
necessary (Walters and Martell, 2004).

For many Chesapeake Bay species, there is insufficient data to carry out detailed biomass assessments,
and a simpler method is needed. Two stock assessment methods were used to develop time series for the
Chesapeake Bay Fisheries Ecosystem Model, both based on production modeling: an age-structured
single-species model and a multispecies production approach. These two methods are described in the
following two sections and are applied to the trophic groups in the appendices of this report.

34.1 Stock Reduction Analysis (SRA)

In this section we briefly describe the derivation of an age-structured single-species assessment model,
which requires few parameters and can be used to estimate biomass for Bay species. This model is
parameterized with two leading (unknown) parameters that are equivalent to the maximum intrinsic rate
of growth and the carrying capacity of a simple surplus production model. These two leading parameters
represent the long-term unfished biomass (B,) and the maximum juvenile survival rate or recruitment
compensation. For the estimation of the long-term unfished biomass, we rely heavily on meta-analytical
results of Myers et al. (1999) to provide prior information for recruitment compensation at low
spawning abundance. This is especially important in cases where relative abundance indices lack
sufficient contrast to make it possible to estimate both parameters. A notable example is oysters in the
current model. Without more diverse trajectories, notably decline and subsequent recovery, we cannot
tell if a given harvest was taken from a large population with low productivity or a small population with
high productivity.

For bluefish and several other species, an age-structured assessment model was used to reconstruct
historical biomass and a time series of fishing mortality rates, which were used to force Ecosim
simulations. Input data for the assessment model include: growth information (von Bertalanffy growth
parameters), length-weight relationships (i.e., Wa = aL”), parameters for a maturity cumulative frequency
curve to calculate spawning stock biomass, natural mortality rate estimates, and parameters that describe
size selectivity. Model parameters were estimated by fitting the model to abundance data and to catch
rate information. Each of the abundance indices was assumed to be proportional to stock size, and
observation errors were assumed to be lognormal. The age-structured population model includes a
Beverton-Holt type stock recruitment function. The model was parameterized using a leading parameter
setup, where the population scale (or capacity) was determined by R, (the equilibrium unfished recruits),
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and the maximum rate of population change was defined by a recruitment compensation parameter (K).
In most cases, only observation errors were assumed.

3.4.1.1 Equilibrium conditions

We start out by assuming that the age-structure is in equilibrium, i.e., that the population structure has
been stable over the years prior to the first model year. Beginning with the Beverton-Holt recruitment
model:

R, =% ©)
Ty

the two parameters (o and ) can be derived given initial estimates of Ry, M, and k. The maximum
survival rate (& ) is simply a multiple of number of recruits produced per unit of egg production, or:

a=K—2 (7)
and the asymptote of the recruitment function is defined by:

g

The equilibrium egg production (E,) is the product of the equilibrium recruits and the number of eggs
produced per recruit. The number of eggs per recruit (¢, ) is the product of survivorship to age a times

mean fecundity of age a individuals. It is not necessary to know the exact fecundity of any specific age
group, but rather the relative differences in fecundity between separate age classes. Here, it is assumed
that egg production is proportional to body weight. The equilibrium egg production (E,) for a population
at equilibrium is calculated as follows:

0

E,=Rp =R, > (e™) wm, ©)

a=0

where W, is the weight-at-age and mj, is the proportion of that age class that is sexually mature. A simple
logistic function is used to describe maturity-at-age:

1

m, = l_l_e_g(la_lh)

a

(10)

where g is a shape parameter that describes the variation in maturity-at-age, I, is the length at 50%
maturity, and |, is the mean length-at-age.
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3.4.1.2 Population dynamics

The numbers-at-age (N,) matrix is initialized assuming a stable age distribution, and the oldest age class
(A) is a plus group containing individuals ages A and older:

N, =R, (™) (11a)
N, = &R, (e_M_)MA (11b)
—e

The o parameter is constrained to the interval [0-2] and represents the ratio of initial numbers to the
unfished equilibrium numbers. Numbers-at-age are propagated over time using historical catch
information and size selectivity to calculate age-specific fishing mortality rates. Since our interest was to
develop a fishing mortality rate time series to force Ecosim, annual fishing mortality is conditioned on
observed total catch:

Ct
F=" 12
= By (12)

where C; is the observed total catch from all fisheries combined and biomass is simply the product of
numbers-at-age times mean weight-at-age. Given predictions from equation (12), numbers-at-age are
updated using:

A
Et = Z Nt,amaWa (133,)

a=0

E
Ny, = — e (13b)
T 1+ BE,

Nt+1,a+1 = Nt,ae(_M_F‘va) fora<A (13¢)
NM,A = thA_le(_M_F‘Va) + Nt,Ae(_M_F‘VA) fora=A (13d)

Equation (13a) represents the total egg production in year t, and equation (13b) is the Beverton-Holt
recruitment function; note that process errors ax may be included if o> 0. The instantaneous natural
mortality rate is represented by M, and the vulnerability-at-age (Va) is calculated using the same logistic
function in equation (10). However, separate parameters (g and I) are used and unless otherwise noted
are fixed values (i.e., not estimated).

3.4.1.3 Estimating model parameters

Model parameters were estimated by fitting the models to time-series data on relative abundance and
composition information, if available. All abundance indices were assumed to be proportional to stock
size or a specific component of the stock, such as age-0 recruitment indices. Observation errors were
assumed to be log-normally distributed. In the case of relative abundance indices, the observation model
is:

23



Y, =gX,e" (14)

where X; is the predicted biomass or age group or population numbers (depending on what the
observation Y; represents), and q is simply a scaling parameter or the slope of the regression between Y
and X. The scaling parameter, g, is a nuisance parameter (a parameter that is fundamental to the model,
but of no particular interest in itself), and the model simply integrates over this parameter as well as the
variance in the observation errors using the methods suggested by Walters and Ludwig (1994). The
model uses the maximum likelihood estimates for g and the variance in the likelihood kernel; thus, each
independent observation series is weighted by the relative standard deviation in the observation errors.
The corresponding negative log-likelihood is:

(D3 5y
Inl, =-= ;“(zI Z) (15)

where Z; = In(Y¢/X;) and
Z =1/n) Z, =In(q) (16)

In cases where catch-at-age information is available, a multinomial likelihood is added to the overall
objective function. Here, it is assumed that no aging errors exist and that the catch-at-age composition is
representative of the age-structure in the Chesapeake Bay region. The negative log-likelihood for the
multinomial distribution is:

In(l,)=->>"n, In(p,,) (17)

t=1 a=l

where Ny, 1s the observed numbers-at-age in the catch sampling programs and i, 1s the vulnerable
proportion-at-age based on the numbers-at-age and vulnerability schedule in the population dynamics
model.

For the majority of the assessments, only observation errors are assumed and the unknown parameter set
is limited to (Ro, K, and 0). In cases where catch-at-age data were available, parameters for the selectivity
function (g and lp) are also estimated. Neither process errors nor recruitment anomalies are estimated in
any of the assessment models.

3.4.2 Multispecies Production Method (MSP)

A series of Bay assessments (striped bass, weakfish, bluefish, white perch, spot, Atlantic croaker,
Atlantic menhaden, bay anchovy, gizzard shad, and oyster) were developed to provide estimates of
exploitable biomass to compare with EWE estimates. The boundary of these analyses, the mouth of the
Chesapeake Bay, was not a physical boundary to many of the species modeled. This analysis was
conducted in the context of a closed Chesapeake Bay population, which may not be realistic, but
provides useful information nonetheless.

Gulland (1988) considered definition of a unit stock an essentially operational matter, being tied to the
models used, the questions asked, and the information available. When the bounds of the unit stock
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extend beyond the limits of the fishery being analyzed, then the pattern of exploitation beyond the limit
of analysis will determine whether the analysis of portion of the stock will be misleading. If the fishery
outside the boundary is similar to that inside, correct answers may be provided (Gulland, 1988).

3.4.2.1 Calculation of indices of abundance

Relative biomass indices for many Bay finfish were developed from the Marine Recreational Fisheries
Statistics Survey (MRFSS) database. Prior to 1981, recreational harvests were not estimated, and only
species that were exclusively harvested by commercial fisheries could be assessed. MRFSS data are
available back to 1981. Time-series end points were variable (2000-2004) and depended on when the
first version of the spreadsheet model was developed as much as data availability. There are no long-
term alternative fishery-independent surveys of exploitable biomass for the Chesapeake Bay.
Commercial effort data in Maryland begins in 1980, but is discontinuous (lost tapes). Virginia can likely
generate recent effort from its trip ticket system. PRFC has a long continuous catch and effort database.

These indices were developed as a catch-effort ratio for private boat anglers in Maryland and Virginia in
the MRFSS inland fishing area (inshore saltwater and brackish water bodies such as bays, estuaries,
sounds, etc., excluding inland freshwater areas). These indices were generally calculated as EB = Hp /
Ep; where EB is relative exploitable biomass, Hp is private boat harvest, and Ep is private boat trips.
Coastal bays are included in these totals, but these fisheries are usually minor compared to those of the
Chesapeake Bay. All private boat trips were included in the denominator, but not all private boat trips
were directed toward the suite of species indexed. It was assumed that the composition of trips (bottom
fishing, trolling, casting, etc.) have not changed a great deal over time, so that biases in effort were not
great enough to influence trends for a particular species. Private boat recreational fishing occurs over the
entire Bay, and this index would be as close to a global survey as could be obtained. There is a
possibility of hyperstability (catch per effort remains high even though the stock is declining) in these
estimates; the recent dependence of the recreational striped bass fishery on chumming may have resulted
in an inverse catchability-biomass relationship. These data are fishery-dependent, and the harvest
component is contained in the landings data as well. A general recommendation for data in stock
assessment is that information only be used once (Cotter et al., 2004). In the case of an MRFSS harvest-
based index, information is contained in both the landings and the index. However, division by effort in
the index reduces the direct dependency in the data, and there is little alternative for a Bay-wide index.

Changes in length limits can affect age/size classes represented by these indices. Length limits have
been fairly stable or nonexistent for spot, Atlantic croaker, white perch, and bluefish. Moderate increases
in size limits have been imposed on weakfish and major changes have been imposed on striped bass.
The short time series for striped bass estimates (1991-2003) represents a period of somewhat stable
length limits.

3.4.2.2 Biomass dynamic models

Biomass dynamic modeling (also known as surplus production models) is the simplest analytical method
that provides a full stock assessment (Haddon, 2001). They are relatively simple to apply because they
pool the overall effects of growth, mortality, and recruitment into a single production function. Their
data needs are small; minimum data needed are an index of relative abundance and landings (both in
weight). The stock is considered as undifferentiated biomass and age, size, and sex structure are ignored
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(Haddon, 2001). Variations in exploitation and biomass are important for fitting the model; length of the
time series is not (Hilborn and Walters, 1992).

The time-series fitting method was used to estimate production model parameters (Hilborn and Walters,
1992; Haddon, 2001). A spreadsheet version of the discrete form of the biomass dynamic model based
on the logistic function was used:

U, :Ut_l+rUt_1(1-(LSJED-sCt_1+e (18)

where:
e U; was the index of abundance in year t
Ut.; = index of abundance the previous year,
I = intrinsic rate of population increase
s = scalar for the abundance index
K = maximum population biomass
Ct.1 = harvest (commercial and recreational) in the previous year
£ 1s measurement error (Hilborn and Walters, 1992)

Combined recreational and commercial directed harvest was used; discard estimates were not available.
A genetic algorithm super solver (Evolver, Palisade Corporation) was used to estimate parameters I, K,
s, and Up (an estimated abundance index in the initial year of the time series) that minimized observation
error (observed I, Uy - predicted In Uy)? (Prager, 1994). The previous year’s estimated index was then
used to predict the following year’s estimate.

The spreadsheet version of the model combined with the genetic algorithm provided a great deal of
flexibility for trying different model variations. Auxiliary data such as tagging estimates of F, M, or
disease mortality were added in some versions of the biomass dynamic model. In some cases, the scalar
s was the only parameter used from the biomass dynamic model and each observed index was divided
by S to obtain a biomass estimate.

An observation error model was used that assumed all residual errors were in the index observations and
that the logistic equation used to describe the time series was deterministic and without error (Haddon,
2001). Residuals were examined to see if they were normally distributed with a mean of zero and to see
if serial trends were present.

Biomass of the exploitable stock in year (B;) was estimated as predicted U;/ s (Hilborn and Walters,
1992). Instantaneous annual fishing mortality rate in year t was estimated, based on Ricker (1975) as:

— Ct
Ft_(Bt+Bt-l)/2 (19)
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3.4.2.3 Predator-prey modeling

Abundances of many exploited fish stocks vary widely, and these variations may not be explained with
single-species population models (Spencer, 1997). Often environmental factors are sought as underlying
causes for changes in status, but sustained periods of high and low abundance are often exhibited by fish
populations that are much more dramatic than shifts in climate or other environmental factors (Steele
and Henderson 1984). These shifts can be regarded as jumps between alternative equilibrium states of
ecological systems (Steele and Henderson, 1984). Continuous changes in intrinsic population growth
rate, carrying capacity, F, or rate of predation can lead to ‘flips’ into periods of high or low abundance
(Spencer and Collie, 1996). A classical logistic population growth formula combined with an S-shaped
predation function reproduces these fluctuations when subjected to simulated directional environmental
fluctuations or changes in fishing pressure (Steele and Henderson, 1984; Collie and Spencer, 1993).

A simple predator-prey model was applied to examine the relative effects of fishing and striped bass
predation and competition on recent (1981-2003) population dynamics of selected fish species in the
Bay. This model provided an alternative to attributing all changes in biomass to F under stable
ecological conditions. In addition, the ‘effect’ of striped bass was considered to include collateral
damage such as starvation, cannibalism, or inability to occupy habitat due to competition, as well as
direct consumption by striped bass. Results of this predator-prey model were contrasted with fishing
mortality and biomass estimates from ‘straight’ biomass dynamic models.

When applied generally, this predator-prey model has reproduced the types of rapid shifts in abundance
that have been exhibited by marine populations, and it was useful in exploring the role of dogfish
predation on Georges Bank haddock recovery and management (Spencer and Collie, 1996; 1997). In the
current weakfish assessment process, use of this model has allowed for exploration of food web
dysfunction as a hypothesis for their decline (Uphoff, 2006). This predator-prey model is essentially a
Schaefer biomass dynamic model with a sigmoidal type I1I predation function added to estimate
additional predation losses (Collie and Spencer, 1993). In this analysis, it provided a method for
quantifying the extent that striped bass predation and competition or fishing mortality could be
influencing another species biomass.

The spreadsheet version of a Schaefer biomass dynamic model formulated by Haddon (2001) was used,
and the type III predation function was added (Steele and Henderson, 1984; Collie and Spencer, 1993;
Spencer and Collie, 1996). The predator-prey model used the following discrete time-step equation:

B,=B,,+IrB, {1 - (in -H,, - [w] +é& (20)

K A +(B., )’

where:
e B was biomass in year t
Bt.1 = index of biomass the previous year,
I = intrinsic rate of population increase
K = maximum population biomass;
Hi.1 = harvest (commercial and recreational, including discard estimates) in the previous year
C is per capita consumption by striped bass biomass (Pt.1) in the previous year
A is weakfish biomass where predator satiation begins
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e ¢ is measurement error (Hilborn and Walters, 1992; Collie and Spencer, 1993; Spencer and
Collie, 1996)

In fitting the model to an index of biomass (U), an additional catchability parameter (q) had to be
estimated; U; / q or Ur.1/q would be substituted for weakfish biomass (B; or By.1, respectively) in the
predator-prey model equation. The Haddon version of the spreadsheet model was easier to adapt to this
predator-prey formulation because it estimated biomass as a first step and then estimated q as By/U;
(Haddon, 2001). Biomass was estimated directly for 1981 (Bigs1), and then the model was used to
estimate subsequent years (Haddon, 2001). Estimating biomass first allowed striped bass biomass to be
used directly and parameter A to be estimated directly rather than converting biomass to index
equivalents. Two estimates of 1982-2003 striped bass biomass were used—current estimates of coastal
biomass and a Bay estimate. The Bay estimate (1982-2003) equaled annual coastal biomass estimate
multiplied by the median percentage of coastal age 2+ biomass represented by a Bay estimate (biomass
dynamic model using 1991-2002 MRFSS catch per unit effort (CPUE) index with auxiliary information
on lesions, and F and M from tagging). This median percentage equaled 23% of the coastal biomass.
This estimate tracked the coastal estimate in trend, but would represent the exploitable fraction of bass
in the Bay.

An observation error model was used that assumed all residual errors were in the index observations and
the logistic equation used to describe the time series was deterministic and without error (Haddon,
2001). A genetic algorithm super solver (Evolver, Palisade Corporation) was used to estimate predator-
prey model parameters that minimized observation error in the indices (observed loge U - predicted loge
U;)“ and auxiliary data used (Haddon, 2001). The spreadsheet version of the model combined with the
genetic algorithm provided a great deal of flexibility for trying different model variations. Residuals
were examined to see if they were normally distributed with a mean of zero and to see if serial trends
were present.

Instantaneous annual fishing mortality rate in year t was estimated from Ricker (1975) as:

F= (21)

" (B+B.)/2

An equivalent instantaneous natural mortality rate associated with striped bass predation and
competition was estimated. The type III predator-prey term,

(cP.(BL.))

A +(B._, ) 22)

estimated loss of biomass, Dy, was equivalent to catch H;. Instantaneous annual natural mortality
associated with striped bass was estimated as

D
M — t-1 23
"B +B.)2 )
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Total instantaneous annual mortality of (Z;) due to due to fishing and striped bass predation equaled F;+
M. This estimate did not account for other sources of natural mortality not associated with food web
effects represented by striped bass.

4 Results and discussion

4.1 Ecopath models

The Ecopath model represents a possible configuration of the Chesapeake Bay in 1950; its groups are
shown arranged by trophic level in Figure 4. The model configuration is mass balanced to the degree of
ensuring internal consistency, i.e., there is enough food for the consumers in the model, and enough
production to meet any demand. This, however, is not the only possible configuration, and the Monte
Carlo routines of EWE can be used to explore other possibilities. Using the Ecoranger routine of EWE,
balanced models can be obtained through a resampling method with values drawn from the confidence
intervals dictated by the pedigree values.

We used Ecoranger to obtain 200 balanced model parameterizations based on the confidence intervals
obtained from the model pedigree. The resulting values were assigned to the original Ecopath
parameters. There is a clear tendency to estimate higher available production for lower trophic levels
and lower production for higher trophic levels. Model construction should ensure that the model is
constrained from both the bottom up and the top down (biomasses and catches of higher trophic level

groups).

One of the few remarkable results indicated by the Ecoranger runs is a lower biomass for black drum.
The tendency for lower black drum biomasses is likely caused by difficulties in balancing the hard clam
group, which in the original model has an ecotrophic efficiency very close to 1.

Trophic impact in the model can be explored through the mixed trophic analysis, via a process originally
developed by Leontif (1951) to describe the American economy and later modified for ecological use by
Hannon and Joiris (1989) and Ulanowicz and Puccia (1990). Mixed trophic impacts are shown in Figure
6 for groups of focal impact to fisheries, and the analysis serves to illustrate, for example, that alewife
and herring have strong effects on many other groups, yet very little is known quantitatively about their
history in the Chesapeake.

4.2 Ecosim simulations

Ecosim simulations were performed for the period 1950-2002 using default Ecosim settings except as
noted below. Feeding time adjustment was not included in the model runs; thus, feeding time was
assumed constant for all groups over time. The ‘fraction of other mortality sensitive to changes in
feeding time’ was set to zero for the two older stanzas of striped bass to reflect that they are unlikely to
be impacted much by predation. Time-series data was input as described in Appendix B, and covers
most of the important groups or species in the system.
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421 Vulnerabilities

Vulnerability factor settings were estimated as described in the Methods section of this document, and
aimed at changing as few parameters as possible. In total, vulnerability factors were changed for 23
groups, using only one setting for each consumer (i.e., where a group had several prey types, and hence
several vulnerability settings, the same value was used for all consumer-prey interactions). The time-
series fitting routine of EWE could have been used to estimate vulnerability settings for all 218 diet
components in the model. However, doing this would have increased the model’s ability to fit the time
series to the detriment of its predictive capabilities (Walters and Martell, 2004). Vulnerabilities for
species groups included in the CBFEM are presented in Table 6.

The key criterion for changing vulnerabilities is that there must be availability of time-series information
for the group in question. There must be time-series data for prey where members of the group are
important predators, or for predators, where members of the group are important prey. For many groups,
these criteria are not met because the data is unavailable. This limits current possibilities for using the
model’s use for predictive purposes. A lack of historic information limits our capability to project what
will happen in the future. We emphasize that this is a property of all modeling, not a specific feature of
EwE.

The vulnerabilities can be interpreted as a measure of how far a consumer is from its carrying capacity
in the 1950-start situation. Thus, the default setting of 2 indicates that the given group would at most be
able to double the predation mortality it is causing on its prey were its abundance to increase to its
carrying capacity. For groups at their carrying capacity, the vulnerability should be closer to 1,
indicating that the groups cannot increase the predation mortality they are causing on their prey.

4.2.2 Time-series fitting

We fitted the model to the available relative abundance data available for the various groups. Catch data
were used either for fitting the Ecosim simulation or to drive Ecosim conditioning on catch. We
generally found that where long time series of data on catches, fishing mortality, or relative abundance
exists, the model fits well. In the absence of long-term data to drive the simulations, the ability of the
model to explain short-term ecosystem changes is unclear. Long-term time-series information is of
utmost importance for ecosystem-based management of fisheries.

4.2.2.1 Commercial fish

4.2.2.1.1 Striped bass

For striped bass, the assessments used in the model only cover the period from 1982 through 2002. The
fit to the biomass trend for 1982-2002 is good for all stanzas along with the fit to catches for the same
period. To obtain this fit, it was necessary to assume that for both resident and non-resident striped bass,
the fishing mortality was relatively high for the period prior to 1982, which leads to a marked
overestimation of catches in recent years for both groups. We could have obtained a better fit to catches
by increasing the 1950 biomass of striped bass considerably. However, we would then have been unable
to make the striped bass return to their ‘historic level,” as conventional wisdom dictates has occurred.

A major problem for striped bass fitting is that we overestimate the catches for the last 20 years, with
high biomass even though the currently estimated rather low F-values lead to quite high catches. If we
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instead fit the time series to catches and hence ignore the uncertain, high estimates we have for fishing
mortality in the pre-1982 period, we can obtain reasonable fit to the biomass time-series trend, but in
that case we obtain quite low fishing mortality estimates for the pre-moratorium period (i.e., F values
around 0.2-0.3 year”', with a peak for migratory in the late 1970s and early 1980s where F values reached
values of 2-3 year™).

The current striped bass assessment and simulation agree that the increased fishing mortality in recent
years is likely to have caused the stock trend to level off or decrease. The striped bass assessments need
to be carried back further than 1982 in order to maximize the accuracy of model simulation.

Menhaden was assumed to contribute 52.5% to the diet of resident striped bass, and 68.5% to the diet of
migrant striped bass in the 1950s. Due to decline in menhaden abundance over time, menhaden in the
diet was reduced (dynamically by Ecosim) in recent years to around 20% to 40% for the different
stanzas of striped bass.

The main conclusion for striped bass is that the assessments should be carried back further than 1982,
even if it means digging deep to obtain estimates for recreational catch prior to the establishment of the
computerized NOAA recreational catch survey system.

4.2.2.1.2 Bluefish

The bluefish assessment indicates the following general trend: An increase in biomass in the 1950s and
1960s associated with a reduction in fishing mortality, a peak in the mid-1970s, a gradual decline in the
mid-1990s back to the 1950 level, and a small increase again in recent years. This trend is repeated
closely by the Ecosim simulation, though the simulations tend to produce higher catches since the peak.
The ease with which this general trend was reproduced can be attributed to the fact that the assessment
and Ecosim are being driven by the same factor, fishing mortality; the adult group does not have
predation mortality in the model, and it is minimal for the juveniles. Further, trophic interactions do not
provide any confounding issues, because any trend seen in prey consumption by bluefish is countered by
an inverse trend demonstrated by the feeding scheme of their main competitor, striped bass.

4.2.2.1.3 Weakfish

For adult weakfish, the assessment we conducted indicated a peak in abundance around 1970. While this
peak is not reproduced fully in Ecosim, the trend for the rest of the time period is matched more closely.
The driving force for the simulation is the fishing mortality estimated in the assessment. The simulations
tend to overestimate the catches throughout the modeling period.

4.2.2.1.4 Atlantic croaker

The only two time series for Atlantic croaker are a juvenile trawl series estimate from VIMS going back
to 1979, and an ASMFC 2003 stock assessment. The VIMS series is highly variable, with indications of
a decreased biomass in recent years (associated with increased catches), while the ASMFC series
indicates an increase since the early 1980s with a leveling off in the later years. The simulation is not
conclusive, and there is little information on which to base the simulations, notably a lack of drivers in
form of fishing mortality estimates from assessments covering the simulation time period. Indeed, we
had to use forced catches to drive the group. We ran the simulations with a low-vulnerability setting for
Atlantic croaker (based on a search using the time-series—fitting module designed for this purpose,
indicating that the croaker would have been close to its carrying capacity in 1950.
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4.2.2.1.5 Black drum

For black drum, the catches can be used for estimating fishing mortalities only if the ecotrophic
efficiency in 1950 is assumed to have been very low. This assumption increases the 1950-biomass,
which was required to allow the estimated catches to be extracted from the population. The resulting
decline is a gradual erosion of the black drum biomass over time, possibly associated with decline in soft
clam, one of its major prey items. We have no time-series information to evaluate the legitimacy of the
finding.

4.2.2.1.6 Summer flounder

The simulation for summer flounder is impacted by a burst in the late 1970s, and the juvenile trawl
series indicates a sharp decline in the 1980s (where there were no catches, according to the catch
information), followed by a marked increase in the 1990s (where the catches returned to a lower level).
An NFSC assessment gives a trend very similar to the VIMS survey, and indicates that the summer
flounder had high fishing mortality in the 1980s with a more recent declining trend. This, however, does
not match the catch information at hand, and using the assessment-F series for 1983 on, we overestimate
the catches for the period since then. Given that the mortality is fully dominated by fishing mortality, we
cannot use a lower initial biomass to reduce the more recent catches, as this would make it impossible to
balance the group. Our conclusion is that the data for this group is inconsistent.

4.2.2.1.7 Menhaden

Menhaden is the only group for which a long-term assessment was available from the regular stock
assessments conducted in the Chesapeake Bay region (ASMFC, 2003c¢). The Ecosim simulation
replicates the biomass trend well, even if there is some uncertainty about conclusions regarding the early
1950s.

While it was a welcome surprise to find an assessment going as far back as 1955, if ASMFC would take
one more step and continue their data back to 1950, the accuracy of modeling results for menhaden
would improve appreciably.

In the simulations we tend to underestimate the catches of the YOY menhaden, while the biomasses are
in line with the assessment, i.e., do not show any clear trend over time. For the older age group, the
simulation replicates the multispecies production method assessment remarkably well, and is also in
agreement with the ASMFC assessment from the mid-1960s onward. We were, however, not able to
replicate the marked decline in the late 1950s and first half of 1960s indicated by the assessment, and
ascribe this to a lack of information for the earlier part of the 1950s, or possibly to data inconsistency in
form of underestimation of the catches for the early period.

We compared the catches to two catch series, one representing coast-wide catch trends, and one trends
in Bay catches. Our catch series initially matches the coast-wide series best, but since 1970 matches the
Bay series very well.

4.2.2.1.8 Alewife and herring, eel, catfish, white perch, and spot

The simulations for alewife and herring, American eel, and catfish are all characterized by very little
available information on which to drive the simulations and evaluate the results. We chose to condition
the simulations on catch for these groups, because there were no realistic time-series trends available. As
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such, the simulations mainly demonstrate the lack of information about what has happened to these
groups in historical time.

For white perch we had two (quite similar) multispecies production method assessments covering the
period from 1981. We conditioned the simulations on catches up to 1970, and used an F series from one
of the assessments for the period since then. Based on this, we overestimated the catches with a factor of
three or so, while the biomass trends were more in line with the assessments (and perhaps the trawl-
series though this is very variable). We cannot explain the catch-dilemma: Given the F-values, we
should have lower biomasses, but with lower biomasses we would not have enough white perch for the
striped bass.

For spot we also needed drivers for the modeling, and we chose to use the trend from the VIMS survey
series to fit a stock reduction model to the catch data. The Ecosim simulation fitted the biomass trend
quite well when conditioned on the catch series.

4.2.2.2 Commercial invertebrates

4.2.2.2.1 Bluecrab

The adult biomass trend is associated with a marked increase in total mortality for adult blue crab, up
above 3 year”', which may be excessive. The simulation indicates a marked decline in the early 1980s
associated with a sharp increase in catches at the time. This biomass decline is not reflected in the
assessments (where biomass and catches increase in parallel), leading us to think that an external
productivity factor may have positively impacted crab abundance at the same time as catches were
increasing.

Juvenile blue crab biomass does not show any time trend in the Ecosim simulations; similar results are
obtained from the juvenile trawl survey indices since the 1960s and 1970s. Total mortality for juvenile
blue crab seems to be declining over time, due to lower predation pressure from adult crabs.

The fit to the catch series is reasonably good, indicating that the F and biomass estimates are internally
consistent.

4.2.2.2.2 Oyster

For oysters, we had some recent trend data, and estimated the population trend back to 1950 from a
stock reduction analysis. The model does not have predation on adult oysters, so it is not surprising that
we were able to replicate the biomass and catch trends throughout the time periods quite closely — even
without invoking any oyster mortality due to diseases. It is generally recognized that diseases are a
contributing factor to the current poor stock status for oysters in the Chesapeake Bay, but we currently
lack quantitative information that will allow us to incorporate diseases in the model. We consider
evaluation of historical biomass, catch, and other mortality trends important for understanding the role
of oyster in the Chesapeake Bay, and encourage such studies.

The CBFEM allows for exploration of management scenarios. As an example of such a scenario, we
present the potential outcome of a fishing moratorium on the native oyster since 1950 in the Chesapeake
Bay in Table 8.
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4.2.2.2.3 Soft and hard clam

Our simulations for soft and hard clam for both show a marked decrease over the simulation period,
much in line with observations. However, time-series information about abundance is lacking, as is
information about mortality rates caused by diseases (which are considered important). The decline of
clams in the model is caused by the combined impact of catches and sedimentation caused by
hurricanes. The simulations for clams should be considered very tentative.

4.2.2.3 Other groups

For the remaining fish species, birds, and most invertebrates, we had no time-series information that
could be used to constrain and validate the simulations. Hence, our model is not very illustrative for
these groups; they serve mostly as ‘place-keepers.” They are in the ecosystem and require resources for
their sustenance, but their dynamic over time is difficult to evaluate. In no case do they markedly
influence the groups for which we have more information.

4.2.3 Uncertainty/sensitivity

We used the Monte Carlo option in Ecosim to search for a better fit to the time-series data, drawing
parameters from defined ranges based on the model pedigree. For this we included only time series for
the key groups, thus excluding juvenile trawl survey estimates and catches in estimating the summed
squared residuals (SS). We let the search routine conduct 500 Ecosim simulations (each involving up to
several thousand iterations to find a balanced model), but were unable to find any constellation with
lower sum squared residuals than we obtained through the fitting procedure.

4.3 Evaluating policy questions

Emphasis in this report has been on model validation—on examining model fit to qualify performance
and to ascertain whether the model could provide plausible hypotheses for the ecosystem changes that
occurred from 1950 to the present. If the model can successfully mimic system function and recreate
historical trends, then it lends some credence to its prospective as a predictive tool. We will use the
model to explore some policy questions. We emphasize that the examples we present in this report are
for demonstration purposes—the range of questions that the model can be used to address is much
greater.

4.3.1 Predatory and forage fish ecosystem dynamics

In a recent study, Walters et al. (2005) concluded that analysis of single-species versus ecosystem
harvest strategies underlined the need to provide explicit protection for species whose value derives in
part from support of other species as well as from harvesting. Harvesting all species at their single-
species maximum sustainable yield (MSY) may lead to ecosystem erosion. With this in mind, we
examined the role forage fishes play in the Chesapeake Bay ecosystem based on model simulations.

4.3.1.1 Menhaden and striped bass

There has been a menhaden fishery in the Bay for many decades, and there is still considerable interest
in harvesting both menhaden and one of its major predators, striped bass, which relies heavily on
menhaden for sustenance. Striped bass are said to be at their ‘historic level’ (Hartman and Margraf,
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2003). Here we evaluate if their population growth may be impacted by the availability of menhaden as
suggested in recent reports (Uphoff, 2003). Whether the menhaden fishery has any adverse impact is
unclear, as “[no] studies have shown that the menhaden purse seine fishery has had any significant
biological effect on any other species or fishery” (ASMFC, 2004).

4.3.1.1.1 Are the striped bass back at their historic level?

Our simulations indicate that the resident striped bass have increased above their ‘historic’ (i.e., 1950)
level, while the migratory are back at it. These findings seem ‘semi-robust’ and it is indeed difficult to
radically change the finding that striped bass will recover from the low fishing pressure it has
experienced in recent decades.

These results are, however, inconclusive. We particularly question what may have happened in the pre-
1982 period, where we had to estimate recreational catches based on post-1982 behavior. Again, this
calls for a closer evaluation of historical exploitation and trends of striped bass biomass in the
Chesapeake Bay.

4.3.1.1.2 Impact of menhaden fishery on striped bass

Using the model as fitted to the time series, we let the model run for an additional 25 years, and
evaluated three alternative menhaden-harvest scenarios: status quo, half the fishing on menhaden, and
no fishing on menhaden. We found at the end of the simulation that the striped bass biomass will
decrease under status quo; that they would be stable under the reduced fishing scenario; and that they
would increase with no fishing for menhaden. The striped bass are thus moderately sensitive to changes
in menhaden fishing pressure in this model.

The predictions for impact of menhaden fishery on striped bass are sensitive to the assumptions about
carrying capacity for both menhaden and striped bass. If we use the default assumption for vulnerability
(v=2) for menhaden, we obtain a very good fit to menhaden (and others groups’) time series, and we see
that the reduction in menhaden fishery is having a fair impact on the menhaden population (the
menhaden population roughly doubles if fishing is stopped altogether). On the other hand, if we assume
that menhaden were much closer to their carrying capacity in 1950, we are not able to get as clear a
decline for menhaden in the early part of the time series as indicated by the assessments, and a stop to
the menhaden fishery at present is indicated to have very little impact on the striped bass.

Likewise, the calculations are sensitive to the assumptions about carrying capacity for striped bass. We
ended up using low vulnerabilities for the species, indicating that it would have been close to carrying
capacity in 1950. We doubt that this is the case, but higher vulnerabilities (i.e., assuming it to be further
from carrying capacity) would let the fishing mortality crash the stock much earlier than what likely
happened.

The problem we face with regard to evaluating the impact of the menhaden fishery is clearly linked to
our lack of knowledge (i.e., lack of assessments) about what happened to striped bass prior to 1982, as
well as to the exploitation and population history of menhaden pre-1958.
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4.3.1.2 Bay anchovy

Bay anchovy is considered an important forage species in the Chesapeake Bay, and a large number of
predators feed on the group in the present ecosystem model. The fitted model was used to evaluate the
impact of bay anchovy on other ecosystem groupings. The simulation period was increased to 100 years,
and two simulations were run with all biomasses recorded at the end of the simulation: one status quo
simulation maintaining the 2002 fishing pressure for an additional 50 years and another simulation in
which a very high fishing pressure was entered for bay anchovy.

Comparing the ratios of the end-states in Table 7, a few groups are predicted to benefit from the decline
in bay anchovy. These are mainly competitors (juvenile menhaden, and through them the adult
menhaden) of the bay anchovy, not its prey. A noteworthy result is that striped bass are predicted to
benefit, which is assumed to be linked to improved feeding conditions for menhaden. The groups that
decline with the bay anchovy are mainly the predators for which bay anchovy are an important prey. The
predictions in Table 7 are in general agreement with the mixed trophic impact analysis of EWE,
confirming the finding of Libralato et al. (2006), who found a strong correlation between Ecosim
simulation results and those of mixed-trophic-impact analysis. However, there are differences. For
instance, mixed-trophic-impact analysis did predict the impact on striped bass, juvenile menhaden, and
spot, but also showed that other flounders would be impacted by bay anchovy, and we did not see that in
the Ecosim simulation.

The perhaps most important finding from this simulation is that one cannot simply assume a direct
relation between what happens to a group and what happens to its prey or predators; the food web is
more intricate than that.

432 Invertebrates

The model may lack sufficient detail and be limited by its design regarding certain lower-level
processes. Policy questions that concern alterations in planktonic community structure and resulting
ramifications on trophically dependent higher trophic level species, or vice versa, cannot be addressed
confidently due to a lack of detail and partitioning at lower levels. This lack of detail at planktonic levels
prohibits shifts in community composition due to nutrient enrichment and/or differential responses to
predation that may be essential to the reproduction of historical changes in the Chesapeake Bay
ecosystem. The model can easily be modified to provide more detail to accommodate such questions;
the main issue is whether there is sufficient empirical background to do so.

4.3.2.1 Bluecrab

When participants in a Chesapeake Bay Ecosystem Modeling Workshop were asked to formulate policy
questions (Table 2), several focused on blue crab. One question dealt with ecosystem manipulation: Can
the crab stock be increased by control of its predators? The current model will not be good at answering
this question, as no evidence could be found of blue crab being important prey for other groups in the
system. The model says that predation pressure on adult blue crab is negligible, and the only important
predator on young-of-year blue crab is older blue crab. Hence, no predator control mechanism can be
identified for enhancing blue crab abundance short of providing refuge for small crabs to hide from
bigger ones. This may well be a shortcoming in examining diet composition, and any additional
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information about predator-prey interactions involving blue crab that could be added to the model inputs
would be helpful.

The model was used to evaluate whether the crab stock can be restored through fishery reductions. The
fitted scenario was run for an additional 47 years, using productivity and exploitation patterns from 2002
for all groups but blue crab, while bringing the blue crab fishing pressure back to the 1950 level. The
simulation predicts that this would result in a blue crab biomass of 77% over the 1950 level, while
catches would settle at 75% over the 1950 level. Thus, indications are that it is possible to restore blue
crab abundance, and that it can be done through effort restriction with limited impact on overall catches.
We assume the major reason for the blue crab settling at a level higher than that of 1950 is the increased
productivity in the Bay as based on the nutrient loading patterns.

It is worth noting at we see two- to three-year cycles in blue crab abundance within the model runs,
somewhat like what is observed in the Bay.

4.3.2.2 Oyster

The Ecosim simulation shows good agreement with the biomass time-series trend available for oysters.
The model indicates that the oyster biomass over the time period has decreased to 4% of its 1950 value.

Noting that the Chesapeake 2000 agreement (Chesapeake Bay Program, 2000) targets a ten-fold
increase in oyster biomass by 2010, a ‘what-if’ scenario was run. We ran a simulation for 40 years into
the future and forced the biomass of oyster to ten times the 2002 level (i.e., from .75 to 7.5 t - km™,
illustrating that modeling is much easier than doing it empirically), and compared to a similar simulation
also continuing for 40 years with current fishing patterns, but without forcing the biomass of oysters.

The increased oyster biomass (to around half of the 1950 level) is not predicted to have any noticeable
impact on phytoplankton in the Bay. We attribute this to spatial factors; it will have impact around
oyster beds, but based on the numbers, it will not have any Bay-wide influence, much in line with what
other models have shown (R. Fulford, The University of Southern Mississippi, pers. comm.)

For the other groups, the increased oyster biomass is predicted to have only negligible effect (<4%), and
the impact is negative for nearly all groups, due largely to there being ‘one more competitor on the
block’; predation pressure on adult oysters is nonexistent in the model, hence, they do not contribute to
funneling energy up the food web. Also, we do not include in the model any mediation effects related to
the protection oyster reefs may offer as refuge for juvenile fishes and invertebrates. This could be done
straightforwardly, given information to that effect.

4.3.3 Ecosystem drivers: climate variation and fishing pressure

The primary production rate for the Chesapeake Bay was estimated based on the hydrographic/climatic
model. The resulting monthly time series is shown in Figure 9. The summed squared residuals between
simulated values and ‘observed’ time-series estimates decreased substantially when primary production
rate was forced.

Estimating “the relative importance of climate variation on fish populations versus that of harvesting
pressure” (see Table 2) is a more complicated matter — or rather, it is something that cannot be
estimated. There are systems where it is possible to evaluate population trends based on fishing pressure
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alone (Christensen, 1998), but it is almost always necessary to consider fisheries as well as
environmental factors to explain what has happened in an ecosystem over time (Christensen and
Walters, 2005; Walters et al., 2005). This is clearly indicated to be the case for the Chesapeake Bay,
based on the impact of nutrient loading on the residuals as described above.

The simulations here raise a question about the effect of decreasing nutrient loading to the Bay. This
model will likely predict that higher-trophic level production will decrease even more than the amount
to which phytoplankton is reduced, based on experience from other models, and to some degree
supported by empirical studies (Nielsen and Richardson, 1996). It is important to keep in mind that
primary production in estuaries may not be linearly related to the concentration of one nutrient, but that
the combined effect of several factors (e.g., nutrients, light, salinity, and temperature) appears to be
paramount.

5 Conclusions

51 Data availability

This model attempts to reconstruct the recent history of exploitation and trophic interactions in the
Chesapeake Bay. The simulations rely very heavily on data availability to reproduce the past. It is a
major hindrance to the Fisheries Ecosystem Model that little systematic effort has been allocated in the
Bay region to collecting and making available fisheries data from before 1982.

From a data perspective, the biggest problem is the lack of pre-1982 recreational catch data. There is no
doubt that older data is more difficult to obtain; the NOAA Recreational Catch database only starts in
1982. Nevertheless, finding this data is a priority. It may call for more assumptions than were necessary
for the post-1982 data, but its inclusion is of utter importance in order to develop an understanding of
how life in the Bay has developed and reacted to exploitation.

The ecosystem model is strongly influenced by nutrient loading trends. Excellent hydrographic/climatic
modeling is available for more recent years, but do not cover the full time period required to understand
what has happened in the Bay and why. A simple two-layer hydrographic model has been applied to the
model, forced by river gauge data, nutrient loading, wind, and rainfall, and based on detailed
bathymetry. The model runs are validated based on observed data. The hydrographic model is simple,
but it provides the time series of estimates required for the Ecosim simulations. It would be best if in the
future, more detailed habitat models were applied to the full time period, so that the trophic model can
be linked to those as well.

The striped bass/menhaden simulation discussed above illustrates how assumptions about trophic
interactions can be important for evaluating impact of fisheries. This warrants a closer look when setting
target and limit reference points as part of the stock assessment process. It also calls for digging into the
archives to extract historical diet information (as done by Griffin and Margraf, 2003), for continu