

1 **Rainbow smelt population responses to species invasions and change in environmental condition**

3 Rosalie Bruel^{1*}, J. Ellen Marsden¹, Bernie Pientka², Nick Staats³, Timothy Mihuc⁴, Jason D. Stockwell¹

5 ¹Rubenstein Ecosystem Science Laboratory, University of Vermont, Burlington, VT, USA

6 ²Vermont Fish and Wildlife Department, Essex Junction, VT, USA

7 ³US Fish and Wildlife Service, Essex Junction, VT, USA

8 ⁴SUNY Plattsburgh, Plattsburgh, NY, USA

9 * rosaliebruel@gmail.com

11

12 Citation:

13 Bruel, R., Marsden, J.E., Pientka, B., Staats, N., Mihuc, T., Stockwell, J.D., 2021. Rainbow
14 smelt population responses to species invasions and change in environmental condition.

15 *Journal of Great Lakes Research* **47**, 1171–1181. <https://doi.org/10.1016/j.jglr.2021.04.008>

16 **Abstract**

17 Invasive species can cause major disruptions on native food webs, yet the impact of species introductions
18 and whether they will become invasive appears to be context-dependent. Rainbow smelt and alewife co-
19 exist as invasive species in the Laurentian Great Lakes and as native species on the Atlantic coast of
20 North America, but in Lake Champlain rainbow smelt is the dominant native forage fish and alewife are
21 invasive. Alewife became abundant by 2007, providing an opportunity to explore the dynamics of these
22 two species in a system where only one is invasive. We used data from a 31-year forage fish survey to
23 compare demographics of rainbow smelt populations in three basins of Lake Champlain with different
24 volumes, nutrient levels, and predator abundances. Rainbow smelt catch-per-unit-effort (CPUE) remained
25 constant in the large, deep Main Lake before and after alewife invaded, but decreased in the two smaller
26 basins. Declines were primarily a result of increased age-0 and age-1 mortality. Predation by top
27 piscivores, system productivity, and competition for resources alone could not explain the patterns in
28 CPUE across the basins. The mechanisms that allow alewife and rainbow smelt to co-exist could be
29 related to system volume and oxythermal habitat availability, and may explain why the two species do not
30 negatively affect each other in the Great Lakes. Summer hypoxia in the smaller basins could force
31 individuals into smaller habitat volumes with higher densities of competitors and cannibalistic adult
32 rainbow smelt. Habitat availability may mediate the impact of invasive alewife on native rainbow smelt.

33

34 **Keywords:** alewife, demographics, resource competition, oxythermal habitat availability, predation

35

36 **Introduction**

37

38 Effects of invasive species on ecosystems are difficult to predict based on the ecology of the invading
39 species in their native range, or by their behavior as an invasive species in other systems (Mackie and
40 Schloesser, 1996). Invasive species may have antagonistic or synergistic effects with other invasive
41 species, although facilitation between invasive species (i.e., the invasion meltdown hypothesis) is most
42 common (Braga et al., 2018; Glon et al., 2017; Simberloff and Von Holle 1999). Native species'
43 responses to invasive species can range from improved fitness and survival to local extirpation (Jacobs et
44 al., 2017; Madenjian et al., 2008). In aquatic systems, these responses can be related to system size,
45 complexity of the native community, and disturbance history, including prior invasions and loss of native
46 species, and habitat degradation (Brook et al., 2008; Ricciardi and Macisaac, 2010). Comparison of
47 systems in which two species are both native, are both invasive, or one of each, can inform our
48 understanding of the dynamics between native and invasive species.

49

50 Rainbow smelt (*Osmerus mordax*) and alewife (*Alosa pseudoharengus*) are native to and coexist along
51 the Atlantic coast of North America (Bigelow and Schroeder, 2002). They also coexist in the Laurentian
52 Great Lakes, where both species invaded in the early 1900s (Mills et al., 1993) and are now important
53 prey for top predators, including lake trout (*Salvelinus namaycush*) and introduced Pacific salmonines
54 (*Oncorhynchus* spp.; Happel et al., 2018; Ray et al., 2007; Stewart et al., 1981). Both species are pelagic
55 planktivores and affect many native species in the Great Lakes because they feed on native larval fishes,
56 compete with other planktivores, and are linked to thiamine deficiency in salmonine predators (Harder et
57 al., 2018; Krueger et al., 1995; Madenjian et al., 2008; Myers et al., 2009). The two species typically
58 coexist at unequal biomasses in the Great Lakes (e.g., Kao et al., 2016), but they do not appear to
59 negatively affect each other, despite spatial overlap of larvae and age-0 life-stages (Madenjian et al.,
60 2008). In some systems, however, alewife are invasive and rainbow smelt are native (e.g., Kircheis et al.,
61 2004), and this context provides the opportunity to further examine their interactions . Here, we focus on
62 the effects of a recent invasion of alewife on a native rainbow smelt population in Lake Champlain, USA.

63

64 Lake Champlain has a relatively intact biotic community, with only two species extinctions (lake trout
65 and Atlantic salmon, but reintroduced by stocking), and a relatively small number of introduced species
66 (51) relative to the Great Lakes (at least 188; Lake Champlain Basin Program, 2018; Marsden and
67 Hauser, 2010; Marsden and Langdon, 2012; Ricciardi, 2006). The native coldwater prey fish community
68 in Lake Champlain has low diversity, consisting primarily of rainbow smelt, trout-perch (*Percopsis*
69 *omiscomaycus*), slimy sculpin (*Cottus cognatus*), and cisco (*Coregonus artedi*). Low diversity

70 communities can be more vulnerable to species invasion under the biotic resistance hypothesis (Freestone
71 et al., 2013; Elton, 1958), so the invasion of a prey fish in Lake Champlain may have important effects.
72 The addition of alewife as an alternative prey could release rainbow smelt from predation and indirectly
73 lead to increased rainbow smelt abundance. However, predatory release might eventually lead to higher
74 rainbow smelt cannibalism, as 38-93% of age-0 rainbow smelt mortality in the lake prior to alewife
75 invasion has been attributed to cannibalism (Parker Stetter et al., 2007).

76

77 Rainbow smelt in Lake Champlain supported native populations of landlocked Atlantic salmon (*Salmo*
78 *salar*), lake trout and walleye (*Sander vitreus*) (Marsden and Langdon, 2012). Since the extirpation of the
79 two salmonine species in the 1800s and the decline of walleye in the 1900s, rainbow smelt populations
80 appeared to be regulated by cannibalism and intra-specific competition rather than predation by stocked
81 salmonines (He and Labar, 1994; Kirn and Labar, 1996; Labar, 1993; Parker-Stetter et al., 2007; Stritzel-
82 Thomson et al., 2011), in spite of sustained stocking of lake trout and Atlantic salmon that began in 1973.
83 Lake trout stocking has been maintained at an average of 83,400 yearling equivalents since 1996
84 (Fisheries Technical Committee, 2016, 2008). Larger numbers of Atlantic salmon are stocked annually
85 (an average of 278,000 yearling equivalents since 1987). Steelhead trout (*Oncorhynchus mykiss*) and
86 brown trout (*Salmo trutta*) are also stocked at numbers similar to lake trout (B. Pientka, unpublished
87 data). Walleye stocking in three tributaries started in the late 1980s.

88

89 Alewife were first discovered in Lake Champlain in 2003 and became abundant by 2007 (Marsden and
90 Hauser, 2009), and have been incorporated into diets of walleye, Atlantic salmon, and to a lesser extent,
91 lake trout (Simonin et al., 2018). Since the alewife invasion, body size of two zooplankton groups
92 decreased to or below the size of alewife feeding preference (Mihuc et al., 2012), suggesting alewife
93 could indirectly suppress rainbow smelt through competition for zooplankton (Kircheis et al., 2004,
94 Urban and Brant 1993). Adult alewife could also directly suppress rainbow smelt through predation on
95 larvae as the two life stages spatially overlap during summer (Simonin et al., 2012).

96

97 The general understanding of alewife invasions in large lakes is based on the Great Lakes, where both
98 alewife and rainbow smelt replaced overfished coregonine planktivores and do not appear to impact each
99 other (Madenjian et al., 2008). In Lake Champlain, we hypothesized that the presence of a relatively
100 intact fish community would preclude invasive alewife from having a significant negative impact on the
101 robust population of rainbow smelt. Alternatively, relatively low prey fish diversity in Lake Champlain
102 could make rainbow smelt susceptible to an alewife invasion. We tested these hypotheses using long-term
103 survey data from three separate and semi-isolated basins of Lake Champlain (the Main Lake, Malletts

104 Bay, and Northeast Arm). The three basins differed in predator composition and abundance, productivity,
105 size, and oxythermal conditions (Table 1). Rainbow smelt populations in the three basins have different
106 demographic structures that indicate the populations are largely isolated from each other, although they
107 are not genetically different (Euclide et al., 2020). Specifically, we speculated that after alewife invaded
108 (1) higher abundance of predators in the Main Lake could suppress alewife populations and keep them at
109 low levels, and favor rainbow smelt population stability (defined as an absence of trends in catches pre-
110 and post-alewife invasion), compared to the two smaller basins where predators are less abundant.
111 Alternatively, (2) based on basin size, rainbow smelt abundance could decrease the most in Malletts Bay,
112 because small volume increases spatial overlap (Evans and Loftus 1987; Latta 1995), oxythermal habitat
113 may be limited (Hrycik et al., 2017), and alewife:rainbow smelt interactions may include competition or
114 predation. Furthermore, higher food availability would reduce competition, so (3) based on primary
115 productivity, rainbow smelt abundance should remain stable in the Northeast Arm, where phosphorus
116 levels are the highest; or (4) higher zooplankton densities in the Northeast Arm and Malletts Bay would
117 be able to sustain rainbow smelt abundance after alewife invasion; and (5) the presence of *Mysis*
118 *diluviana* in the Main Lake could serve as a resource subsidy and sustain rainbow smelt after invasion.
119 Additionally, we speculated that (6) if alewife affect only age-0 rainbow smelt, then rainbow smelt
120 mortality rate past age-1 would not change, because interspecific predation largely occurs during the
121 larval stage (Simonin et al., 2019). Finally, (7) we also expected rainbow smelt condition and length to
122 decline if competition between rainbow smelt and alewife is high. Overall, our objective was to determine
123 whether and how invasive alewife affected native rainbow smelt across heterogeneous regions of a large
124 lake with a fish community that is relatively intact and of low diversity.

125

126 **Material and methods**

127 *Study system*

128 Lake Champlain is a large lake (26 km³ and 1,130 km²) located among Vermont, New York (US), and
129 Québec (CAN; Fig. 1). The Main Lake extends from Crown Point (NY) at the south to Rouses Point
130 (NY) at the north, and contains the largest volume and the deepest areas of the lake (Table 1). Malletts
131 Bay and the Northeast Arm are isolated from each other and the Main Lake by large islands and several
132 causeways up to 5.2 km long between islands and the mainland. Water exchange and fish passage are
133 possible but limited through shallow, narrow connections in each causeway (see Fig. 3 in Marsden and
134 Langdon, 2012). The three basins differ in their nutrient levels and total volume (Table 1). The Northeast
135 Arm is the most productive basin and has an extensive hypoxic zone that limits available summer habitat
136 for lake trout. The Main Lake is the largest basin and has moderate to low productivity, and Malletts Bay
137 is the smallest and least productive basin. Major fish predators in all three basins include Atlantic salmon,

138 burbot (*Lota lota*), and walleye. Lake trout are present in all basins in winter but not in Malletts Bay and
139 the Northeast Arm during summer (B. Pientka, unpublished data), as temperatures in the causeway
140 passages exceed their thermal optima and required oxythermal habitat in the smaller basins is limited in
141 summer.

142

143 *Long-term survey data*

144 The Vermont Fish and Wildlife Department conducted standardized assessment sampling of rainbow
145 smelt from 1990 to 2015. The five standard stations included one in each of Malletts Bay and the
146 Northeast Arm, and three in the Main Lake: north (Valcour Island), central (Juniper Island), and south
147 (Barber Point; Figure 1). The most consistent sampling was conducted using stepped-oblique midwater
148 trawling at night from late July through mid-August, when young-of-year (YOY) and yearling-and-older
149 (YAO) fishes were vertically separated by thermal stratification (Table 1; Labar, 1998). The 5-m x 5-m
150 midwater trawl had tapered mesh from 20.3 to 2.9 cm, stretch measure, with a 1.3-cm cod end mesh
151 (Labar, 1998). Trawls began at 35-m depth or just above lake bottom (26 m in Malletts Bay and 29 m in
152 the Northeast Arm) and were fished for 10 minutes, raised approximately 3 m and fished again for 5 min
153 at that depth, continuing in a steplike fashion until the net reached 10 m below the surface (Labar, 1998).
154 Four trawls were conducted at each of the five standard stations. Catch per unit effort (CPUE) was
155 calculated as catch per 55 min of trawling. Fifty rainbow smelt were randomly sampled from each trawl
156 and frozen on board, so up to 200 individuals were used each year per station to collect population
157 demographics. In the laboratory, rainbow smelt were measured for total length (TL) and weight. Otoliths
158 were extracted and stored in an ethanol/glycerol mixture (70:30) and age was estimated by counting
159 annuli using whole otoliths under 10-45x magnification. Floating gillnets (6 m deep x 21 m long with 7
160 panels of 6.25, 8, 10, 12, 15, 18 and 25 mm mesh) were added in 2008 to focus on YOY and YAO
161 alewife, which are undersampled in the midwater trawl. However, alewife < 50 mm are not well captured
162 by the gillnets either (Warner et al., 2002). Nets were set at standard stations before dark and fished for 4
163 hours, and CPUE was calculated as catch per 4 hours.

164

165 We used vertical profile data from the Lake Champlain Long-Term Water Quality and Biological
166 Monitoring Project to describe the oxythermal habitat in each basin
167 (<https://dec.vermont.gov/watershed/lakes-ponds/monitor/lake-champlain>). We selected three stations, one
168 in each basin, sampled fortnightly from late April to early November, to represent conditions in the Main
169 Lake, Malletts Bay, and the Northeast Arm (Fig. 1). We also analyzed changes in mean summer (July-
170 August) crustaceans zooplankton density collected by the Lake Champlain long-term monitoring program
171 since 1992 at the same stations. Zooplankton samples were collected with whole water vertical tows taken

172 monthly or bi-weekly using a 30-cm diameter, 153-um mesh net during the day (Mihuc et al., 2012).
173 Zooplankton were identified to the lowest possible taxon. For the most abundant taxa (abundance > 5%)
174 at the Main Lake and Northeast Arm stations, 7-10 individuals were measured per sample to estimate
175 average length each year since 2001.

176

177 *Data analysis*

178 Annual data for rainbow smelt were pooled by basin and the resulting means were used for all the
179 analyses. We tested for differences in CPUE among periods: 1987-2002 (before alewife invasion), 2003-
180 2006 (invasion), and 2007-2015 (after invasion). We also tested for differences in average length (age-2+,
181 because ages 0 and 1 were not well recruited into the gear) and Fulton's condition factor among periods
182 for each basin using a Kruskal-Wallis pairwise comparison test. Fulton's condition, calculated for each
183 individual, is the weight of a given individual divided by the cube of its length (Ricker, 1975). A scaling
184 factor of 10^{-6} was applied to bring the condition close to 1. We pooled age-2 and age-3 fish for this
185 analysis because condition cannot be compared across too many age classes due to allometric growth
186 (Guy and Brown, 2007). We did not include weight comparisons because average length and weight were
187 highly correlated (Pearson's product-moment correlation = 0.94).

188

189 We used longitudinal data (ages 2-5) of each cohort to calculate annual mortality rate (A). We estimated
190 year-class CPUE in each year using the proportion of each year class in the annual subsamples of 200
191 individuals at each station, multiplied by the CPUE of that station that year. We calculated the
192 instantaneous mortality rate Z as the slope of the linear relationship between age and the natural log of
193 CPUE (Ogle, 2016):

$$194 \log(\text{CPUE}) = Z * \text{age} + \text{intercept.}$$

195 We excluded age-0 and -1 because these ages were not fully recruited to the gear, and age-6 and older
196 because none were collected after the alewife invasion. A is calculated as:

$$197 A = 1 - e^{-Z}$$

198 (Ogle, 2016). We compared annual mortality between the periods 1987-2002, before the arrival of
199 alewife, and 2007-2015, after alewife became abundant. We used a Kruskal-Wallis pairwise comparison
200 test for each of the three basins separately, and applied a Bonferroni correction of $\alpha/3$ for significance.

201

202 We calculated the maximum vertical habitat available for rainbow smelt using a sub-lethal threshold of
203 4.5 mg/l of dissolved oxygen (DO; Hrycik et al., 2017), and a temperature threshold of 16°C (Lantry and
204 Stewart, 1993). Here, we used the extent of suitable oxythermal habitat in the vertical dimension as a
205 proxy for habitat volume. For each sampling date, we extracted the shallowest depth for which

206 temperature was below 16°C, and the deepest depth with DO concentration above 4.5 mg/l. The
207 difference between these depths was used as an estimate of habitat availability for rainbow smelt.

208

209 Average densities of abundant zooplankton taxa each year were averaged before (1992-2002), during
210 (2003-2006) and after (2007-2015) alewife invasion. Similarly, average length was estimated for 2001-
211 2002, 2003-2006, and 2007-2015. For both zooplankton densities and lengths, we tested for differences
212 among the three time periods using a Kruskal-Wallis pairwise comparison test.

213

214 All computational work and visualization was done using the packages *FSA* (Ogle, 2016), *ggplot2*
215 (Wickham, 2016), and *PerformanceAnalytics* (Peterson and Carl, 2020), with R version 3.6.3 (R Core
216 Team, 2020).

217

218 **Results**

219 Rainbow smelt CPUE was, on average, highest in the Northeast Arm (mean \pm SD = $967 \pm 1,095$ fish per
220 55-min trawl), lowest in the Main Lake (265 ± 320), and intermediate in Malletts Bay ($772 \pm 1,103$)
221 between 1987 and 2015 (Fig. 2A, Appendix A). CPUE in Malletts Bay and the Northeast Arm, however,
222 were both lower in 2007-2015 than prior to and during alewife invasion ($p < 0.01$ for Malletts Bay and p
223 < 0.05 for the Northeast Arm, Fig. 2A, Appendix B). CPUE increased significantly in Malletts Bay until
224 2002 (slope = 0.1, $p = 0.004$) and remained stable in the Northeast Arm (slope = 0.04, $p = 0.59$) until
225 2002, and decreased after 2003 ($p < 0.001$ in both basins, Figure 2B). CPUE remained unchanged in the
226 Main Lake over the same time period (Figure 2). Overall, rainbow smelt CPUE declined 100-fold in the
227 Northeast Arm and 30-fold in Malletts Bay after alewife became established in 2007. Alewife catches in
228 floating gillnets were heterogeneous and the data should be treated with caution. However, the data
229 support the field observation that alewife were consistently present in all basins (Fig. 3).

230

231 Average length of age-2+ rainbow smelt was not different between periods except in the Northeast Arm,
232 where length increased between 1987-2002 and 2007-2015 ($p < 0.0001$, Fig. 4A, Appendix 1). Average
233 length in 1987-2002 was highest in the Main Lake (147 ± 11.1 mm), lowest in Malletts Bay (127 ± 7.5
234 mm) and intermediate in the Northeast Arm (134 ± 9.1). In 2007-2012, after alewife became abundant,
235 average length remained overall lowest in Malletts Bay (134 ± 14.2 mm), intermediate in the Main Lake
236 (138 ± 13.8 mm) and highest in the Northeast Arm (153 ± 15.1 mm). Variability in length increased in all
237 basins after alewife became established (Fig. 4). Condition was not significantly different between
238 periods within each basin (Fig. 4B). Annual mortality differed in only one comparison, where it increased
239 between 1987-2002 and 2003-2006 in Malletts Bay ($p = 0.007$, Fig. 4C, Appendix B).

240
241 The three basins stratify during the summer, with available oxythermal habitat more restricted in Malletts
242 Bay and the Northeast Arm than in the Main Lake (Fig. 5, Appendix C). DO concentration remained
243 above 5 mg/l between April and November at all depths in the Main Lake, but was below 4.5 mg/l every
244 summer in Malletts Bay and the Northeast Arm (Fig. 5, Appendix C). The depth of the epilimnion
245 increased during the summer in every basin, limiting the available near-surface habitat. Overall, habitat
246 was most limited for rainbow smelt in the 1992-2002 period, during which the vertical habitat was
247 restricted to 4 m or less for 73% of the days that were sampled between August 1st and October 31st in
248 the Northeast Arm, and 52% of the time in Malletts Bay. The period of unfavorable conditions dropped to
249 36 and 41% in the Northeast Arm and Malletts Bay, respectively, during the 2007-2015 period (Fig. 6).

250

251 Zooplankton densities remained stable across the study periods at all three stations with the exception of
252 declines in calanoid copepods and *Daphnia* sp. during the alewife colonization period (2003-2006)
253 (Figure 7). Zooplankton body size did not change before and after the alewife invasion in the Main Lake
254 and Northeast Arm, with the exception of *Daphnia retrocurva* which exhibited a decrease in body size
255 after 2006 in the Main Lake (average length per period: 2001-2002 = 0.96 ± 0.04 mm, 2003-2006 = 1.03 ± 0.15 mm, 2007-2015 = 0.77 ± 0.11 mm; difference in means was between 2003-2006 and 2007-2015, p = 0.05; Figure 8).

258

259 **Discussion**

260 Our basic hypothesis that the rainbow smelt population of Lake Champlain would be resilient to the
261 invasion of alewife was supported in one of our three study basins, in contrast with expectations drawn
262 from the Great Lakes (Madenjian et al., 2008). Rainbow smelt CPUE remained stable in the Main Lake
263 basin but declined sharply in Malletts Bay and the Northeast Arm. Based on the contrasting
264 characteristics of the three basins in terms of habitat availability, productivity, food resources and
265 predator abundance, we proposed several mechanisms to explain potential differences in how rainbow
266 smelt might respond to alewife invasion. Our prediction that higher food availability would maintain
267 rainbow smelt abundance in the face of competition with alewife was not supported. The decline in
268 rainbow smelt CPUE was as severe in the relatively highly productive Northeast Arm as in the less
269 productive Malletts Bay. Higher zooplankton densities in both of these basins did not prevent rainbow
270 smelt population decline. Adult rainbow smelt mortality remained constant before and after alewife
271 invasion, suggesting that the changes in CPUE were due to mortality at age-0 and age-1, which could be a
272 consequence of predation, cannibalism, or competition. Average length and condition of rainbow smelt
273 did not change before and after the invasion, suggesting that competition remained constant as rainbow

274 smelt CPUE declined. The CPUE decline in the two smaller basins, compared to stable rainbow smelt
275 CPUE in the larger Main Lake, suggests that presence of predators, habitat availability, and/or presence of
276 *Mysis* as resource subsidies may mediate the impacts of alewife.

277
278 Top-down control by piscivores does not explain the patterns we observed. Predator abundance would
279 need to have remained stable in the Main Lake and increased in the Northeast Arm and Malletts Bay to
280 explain the patterns in rainbow smelt CPUE. In fact, predator abundance in the Main Lake likely
281 decreased prior to the alewife invasion as lake trout annual stocking was reduced from an average of
282 185,900 to 83,400 yearling equivalents in 1996 while Atlantic salmon stocking remained constant.
283 Although estimated survival and catches in annual assessments of both salmonines increased as a
284 consequence of sea lamprey suppression in the mid-1990s, this increase likely did not fully compensate
285 for the reduction in lake trout stocking (Marsden et al., 2003). Yet during 1987-2002, rainbow smelt
286 CPUE remained relatively constant or increased in our three study basins, and only began to decline in the
287 Northeast Arm and Malletts Bay in 2007, where lake trout are absent during the stratified period.
288 Predation by adult alewife on young rainbow smelt is another possible mechanism to explain the apparent
289 decline in age-0 and age-1 rainbow smelt in the Northeast Arm and Malletts Bay. A predation model
290 based on seasonal vertical distributions of alewife and rainbow smelt, YOY growth rates, and gape-
291 limitation of adult alewife predicted higher mortality of YOY rainbow smelt in the presence of invasive
292 alewife in Lake Champlain (Simonin et al., 2019). However, predation by adult alewife as a driving force
293 of rainbow smelt dynamics remains to be tested, as we found no evidence in the published literature that
294 alewife consume YOY rainbow smelt (e.g., Brandt, 1980; Stewart and Binkowski, 1986 and references
295 therein; Stewart et al., 2009).

296
297 The stability of rainbow smelt densities in the Main Lake before and after alewife invasion suggest that
298 predators could facilitate coexistence between alewife and rainbow smelt. Predators may control the
299 densities of both alewife and rainbow smelt, but the negative impact of predation on rainbow smelt is
300 probably less than the positive impact of predation on alewife, i.e., reduced competition, predation and/or
301 displacement pressure of alewife on rainbow smelt. Furthermore, the Main Lake is the only basin where
302 alewife catches declined. Although the gillnet data must be viewed with caution, the apparent decline in
303 alewife could be a sign of the functional response of predators to the invasion of alewife, and their switch
304 to include more alewife in their diet (Simonin et al., 2018)

305
306 If bottom-up effects of system productivity could mitigate any possible impacts of competition from
307 alewife (Power, 1992), we should have observed the most impact on rainbow smelt in the least productive

308 basin, Malletts Bay, and the least impact in the most productive basin, the Northeast Arm. However, the
309 patterns were not consistent with these expectations; rainbow smelt CPUE declined and average length
310 and condition did not change before and after alewife invasion in these two basins. In fact, CPUE was
311 lowest in the highly productive Northeast Arm after the invasion. In theory, the lower abundance of
312 rainbow smelt and higher productivity in the Northeast Arm should have reduced intra-and inter-specific
313 competition and increased growth and condition of rainbow smelt, compared to Malletts Bay, but we did
314 not observe such patterns.

315
316 Alewife and rainbow smelt can be intense competitors for zooplankton (Evans and Loftus, 1987). System
317 size, however, may mitigate or exacerbate competition. In small lake systems where habitat availability
318 and heterogeneity may be limited, alewife appear to outcompete native rainbow smelt (Eaton and Kardos
319 1972; Kircheis et al., 2004; Kircheis and Stanley 1981). In the Great Lakes, rainbow smelt declines in the
320 mid-1900s were associated with alewife increases (Smith, 1968), also suggesting competition. However,
321 more recent evaluations of alewife effects on rainbow smelt in the Great Lakes led to the conclusion that
322 alewife are likely to have negligible impacts on rainbow smelt (Madenjian et al., 2008). Larger, deeper
323 systems may reduce spatial overlap of alewife and rainbow smelt due to thermal structure while providing
324 greater or more diverse zooplankton resources (Amsinck et al., 2006; Dodson, 1992; Simonin et al.,
325 2012). Additionally, *Mysis diluviana*, which is a major diet item of rainbow smelt in Lake Champlain and
326 the Great Lakes (Labar, 1993; Gamble et al., 2011a,b) and also consumed by alewife (Madenjian et al.,
327 2003), is abundant in the Main Lake but virtually absent in the two smaller basins (Ball et al., 2015;
328 Hrycik et al., 2015; O'Malley and Stockwell, 2019; J.D. Stockwell, unpublished observations).
329 Consequently, *Mysis* may serve as a buffer to reduce competition between rainbow smelt and alewife in
330 the Main Lake but not in the two smaller basins.

331
332 *Mysis* densities in the Main Lake decreased slightly but not significantly after alewife invasion (Ball et al.,
333 2015). In the absence of increased primary production (corroborated by stable TP levels), zooplankton
334 production would likely have also remained stable. The absence of a decline in zooplankton densities
335 suggests that rainbow smelt may have switched to a diet including less zooplankton after the alewife
336 invasion, otherwise alewife or zooplankton abundance data would have shown a different pattern. The
337 most likely resource subsidy is *Mysis*, which were already part of rainbow smelt diets (Labar 1993). The
338 slight decline in *Mysis* densities would also reduce the predation pressure on zooplankton, making the
339 surplus available to alewife.

340

341 System size and habitat availability may also interact with predation to negatively influence rainbow
342 smelt following alewife invasion and contribute to the patterns we observed. Larger systems may provide
343 greater temporal and spatial mis-match between spawning adult alewife moving inshore and post-hatch
344 larval rainbow smelt dispersal into large volumes of water offshore (dilution effect) and also provide
345 stronger thermal gradients that promote vertical segregation (Madenjian et al., 2008; Recksiek and
346 McCleave, 1973; Simonin et al., 2019). In Lake Champlain, available oxythermal habitat volume was
347 much smaller in the two smaller basins than in the Main Lake, where DO and temperature were suitable
348 at all depths and years. Warm epilimnetic waters and the expansion of the hypoxic bottom layer during
349 the warmest months (July to October) resulted in constriction of suitable rainbow smelt habitat in both
350 Malletts Bay and the Northeast Arm. Prior to the alewife invasion, rainbow smelt could reside in
351 suboptimal warm water during summer habitat constriction without competition from alewife. Post-
352 invasion occupancy of shallower waters during habitat constriction likely increased their overlap with
353 alewife (Simonin et al., 2019). However, in the absence of evidence that alewife prey on larval and YOY
354 rainbow smelt, the effect of scale may only be relevant to cannibalism and predation by large piscivores.
355 Cannibalism could contribute to the apparent increased mortality of age-0 and -1 rainbow smelt we
356 observed in the Northeast Arm and Malletts Bay. Cannibalism was in fact higher in Malletts Bay and the
357 Northeast Arm than the Main Lake prior to the alewife invasion (Stetter Parker et al., 2007), but this did
358 not appear to negatively affect abundance compared with the Main Lake. Cannibalism could only explain
359 the decrease in rainbow smelt abundance after alewife invasion if increased competition with alewife
360 forced rainbow smelt to increase cannibalism. Therefore, habitat scale and physicochemical constraints
361 may have indirectly contributed to driving population declines in the two smaller basins if individuals
362 were forced into habitats with more predators or competitors in the two smaller basins (Costantini et al.,
363 2008; Horppila et al., 2003, 2004).

364
365 Other changes in the Lake Champlain ecosystem may have influenced rainbow smelt or influenced the
366 effects of alewife. Portions of the lake have become more eutrophic over the past few decades, but only in
367 shallow bays not suitable for rainbow smelt (Smeltzer et al. 2012). Of the 51 species that have invaded the
368 lake, most do not overlap ecologically or geographically with rainbow smelt; e.g., invasive macrophytes
369 are confined to the southern lake and littoral waters. Two possible exceptions are white perch (*Morone*
370 *americana*) and zebra mussels (*Dreissena polymorpha*) that invaded the southern lake in 1984 and 1993,
371 respectively, and spread rapidly throughout the Main Lake (Marsden and Hauser 2009). White perch are
372 omnivorous and consume fish (Couture and Watzin, 2008; Schaeffer and Margraf, 1986) and therefore
373 represent a predation threat. However, we should have observed demographic changes prior to the alewife
374 invasion if white perch had a negative impact on rainbow smelt. Zebra mussel filtration lowers

375 phytoplankton density and increases water transparency, leading to zooplankton declines (MacIsaac,
376 1996); however, Secchi disk readings in Lake Champlain increased only slightly and only in the south
377 lake region (Smeltzer et al., 2012) and adult densities remain too low in Malletts Bay and the Northeast
378 Arm to expect an impact (Marsden et al., 2013; VTDEC, 2020). No other changes to the lake have
379 occurred with a timeline and magnitude that are likely to explain the changes we observed in rainbow
380 smelt populations.

381
382 The successful invasion and rapid expansion of alewife in Lake Champlain is surprising, given the
383 relatively intact fish community and high predator abundance. In the Great Lakes, alewife expanded soon
384 after large piscivore and plantivore populations collapsed (Applegate and Van Meter, 1970; Baldwin et
385 al., 2009; Miller, 1957; Smith, 1970). Alewife populations subsequently declined following sustained
386 stocking of salmonines in the 1960s (Stewart and Ibarra, 1991). However, salmonines have been stocked
387 continuously in Lake Champlain since the 1970s and at higher densities than in the Great Lakes. Even
388 after reductions in lake trout stocking in 1995, lake trout plus Atlantic salmon stocking densities were 3.6
389 - 6 times higher per unit volume in Lake Champlain than in lakes Michigan or Huron (Great Lakes Fish
390 Stocking database, www.glfcc.org/fishstocking/; Stewart and Ibarra, 1991; Wehse et al., 2017). Both
391 species began to consume alewife at least by 2008, when anglers and state biologists noted alewife in
392 salmonine stomachs (B. Pientka, unpublished observations). By 2011, stable isotope analysis confirmed
393 that alewife were a major element in Atlantic salmon and walleye diets and to a lesser extent in lake trout
394 diets (Simonin et al., 2018). The presence of a robust rainbow smelt population in Lake Champlain would
395 also be expected to potentially suppress the invasion, as rainbow smelt are predators of age-0 and yearling
396 alewife (Foltz and Norden 1977; O’Gorman, 1974). Alternatively, the relatively simple planktivore
397 community may have had low invasion resistance and provided a resource opportunity for alewife (Shea
398 et al., 2002).

399
400 To summarize, we investigated the specific situation where rainbow smelt is native and alewife invasive
401 in a large and heterogeneous lake system. The native/introduced status of the two species was not a
402 predictor of the impact of alewife on rainbow smelt. Instead, our results emphasize that the impact of
403 alewife is context-dependent. Of the potential mechanisms to explain why rainbow smelt responded
404 differently to an alewife invasion in the Main Lake than in the smaller basins, factors tied to habitat
405 availability are best supported; low oxythermal habitat in the smaller basins may increase alewife and
406 rainbow smelt overlap, while large habitat volume in the Main Lake supports the presence of predators
407 and *Mysis*. Habitat availability is an important factor in the success or failure of species invasions
408 (Tamayo and Olden, 2014; Vander Zanden et al., 2004). Our findings indicate that habitat availability

409 may also play in an important role in the relative impact of invasive species. Consequently, managers
410 must not only think about which systems are more vulnerable to invasion, but also which systems, once
411 invaded, are the most likely to be impacted by the addition of invasive species.

412

413 **Acknowledgements**

414 We thank George W. Labar who initiated the forage fish survey in the 1980s, and the captains and crews
415 of the research vessels *Melosira* and *Doré* who conducted the surveys from 1984 to 1998 and from 1998
416 to 2015, respectively. We thank Angela Shambaugh and Pete Stangel at the VTDEC for providing us with
417 the multiprobe data from the Lake Champlain long-term water quality and biological monitoring project.
418 The project itself is supported by VTDEC, the NYDEC, and the Lake Champlain Basin Program. We
419 thank the Marsden and Stockwell labs, as well as two anonymous reviewers and the Associate Editor
420 David “Bo” Bunnell, for their comments on an earlier draft of this manuscript. This project was made
421 possible by (1) fishing license sales and matching Dingell-Johnson/Wallop-Breaux funds, available
422 through the Federal Aid in Sport Fish Restoration Act, (2) funds from Lake Champlain Sea Grant, Award
423 NA18OAR4170099 from the National Oceanic and Atmospheric Administration National Sea Grant
424 College Program, U.S. Department of Commerce, and (3) funds made available to Lake Champlain by
425 Senator Patrick Leahy through the Great Lakes Fishery Commission.

426 **References**

427 Amsinck, S.L., Strzelczak, A., Bjerring, R., Landkildehus, F., Lauridsen, T.L., Christoffersen, K.,
428 Jeppesen, E., 2006. Lake depth rather than fish planktivory determines cladoceran community
429 structure in Faroese lakes – evidence from contemporary data and sediments. Freshw. Biol. 51,
430 2124–2142.

431 Applegate, V.C., Van Meter, H.D., 1970. A brief history of commercial fishing in Lake Erie (Federal
432 Government Series No. 630), Fishery Leaflet. U.S. Fish and Wildlife Service, Washington, DC.

433 Baldwin, N.S., Saalfeld, R.W., Dochoda, M.R., Buettner, H.J., Eshenroder, R.L., 2009. Commercial fish
434 production in the Great Lakes 1867-2006. [online]. Available from
435 <http://www.glfcc.org/databases/commercial/commerc.php>.

436 Ball, S.C., Mihuc, T.B., Myers, L.W., Stockwell, J.D., 2015. Ten-fold decline in *Mysis diluviana* in Lake
437 Champlain between 1975 and 2012. J. Great Lakes Res. 41, 502–509.

438 Bigelow, H.B., Schroeder, W.C., 2002. Fishes of the Gulf of Maine: Fishery Bulletin 74. Blackburn
439 Press.

440 Brandt, S.B., 1980. Spatial segregation of adult and young-of-the-year alewives across a thermocline in
441 Lake Michigan. Trans. Am. Fish. Soc. 109, 469–478.

442 Brook, B., Sodhi, N., Bradshaw, C., 2008. Synergies among extinction drivers under global change.
443 Trends Ecol. Evol. 23, 453–460.

444 Costantini, M., Ludsin, S.A., Mason, D.M., Zhang, X., Boicourt, W.C., Brandt, S.B., 2008. Effect of
445 hypoxia on habitat quality of striped bass (*Morone saxatilis*) in Chesapeake Bay. Can. J. Fish. Aquat.
446 Sci. 65, 989–1002.

447 Couture, S.C., Watzin, M.C., 2008. Diet of invasive adult white perch (*Morone americana*) and their
448 effects on the zooplankton community in Missisquoi Bay, Lake Champlain. J. Great Lakes Res. 34,
449 485–494.

450 Dodson, S., 1992. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37, 848–856.

451 Eaton, S.W., Kardos, L.P., 1971. The fishes of Canandaigua Lake. Sci. Stud. 28, 23–29.

452 Elton, C.S., 1958. The ecology of invasions by animals and plants, University of Chicago Press ed.,
453 Chicago.

454 Euclide, P.T., Pientka, B., Marsden, J. E., 2020. Genetic versus demographic stock structure of rainbow
455 smelt in a large fragmented lake. J. Great Lakes Res. 46, 622–632.

456 Evans, D.O., Loftus, D.H., 1987. Colonization of inland lakes in the Great Lakes region by rainbow
457 smelt, *Osmerus mordax*: their freshwater niche and effects on indigenous fishes. Can. J. Fish. Aquat.
458 Sci. 44, s249–s266.

459 Fisheries Technical Committee, 2016. 2015 Annual Report. Lake Champlain Fish and Wildlife
460 Management Cooperative. Lake Champlain Fish and Wildlife Management Cooperative, USFWS,
461 Essex Junction, VT.

462 Fisheries Technical Committee, 2009. 2008 Annual Report. Lake Champlain Fish and Wildlife
463 Management Cooperative. Lake Champlain Fish and Wildlife Management Cooperative, USFWS,
464 Essex Junction, VT.

465 Foltz, J.W., Norden, C.R., 1977. Food habits and feeding chronology of rainbow smelt (*Osmerus mordax*)
466 in Lake Michigan. Fish. Bull. 75, 637–640.

467 Freestone, A.L., Ruiz, G.M., Torchin, M.E., 2013. Stronger biotic resistance in tropics relative to
468 temperate zone: effects of predation on marine invasion dynamics. Ecology 94, 1370–1377.

469 Glon, M.G., Larson, E.R., Reisinger, L.S., Pangle, K.L., 2017. Invasive dreissenid mussels benefit
470 invasive crayfish but not native crayfish in the Laurentian Great Lakes. J. Great Lakes Res. 43, 289–
471 297.

472 Guy, C.S., Brown, M.L. (Eds.), 2007. Analysis and Interpretation of Freshwater Fisheries Data. American
473 Fisheries Society. American Fisheries Society, Bethesda, Md.

474 Happel, A., Jonas, J.L., McKenna, P.R., Rinchard, J., He, J.X., Czesny, S.J., 2018. Spatial variability of
475 lake trout diets in Lakes Huron and Michigan revealed by stomach content and fatty acid profiles.
476 *Can. J. Fish. Aquat. Sci.* 75, 95–106.

477 Harder, A.M., Ardren, W.R., Evans, A.N., Futia, M.H., Kraft, C.E., Marsden, J.E., Richter, C.A.,
478 Rinchard, J., Tillitt, D.E., Christie, M.R., 2018. Thiamine deficiency in fishes: causes, consequences,
479 and potential solutions. *Rev. Fish Biol. Fisheries* 28, 865–886.

480 He, X., Labar, G.W., 1994. Interactive effects of cannibalism, recruitment, and predation on rainbow
481 smelt in Lake Champlain: a modeling synthesis. *J. Great Lakes Res.* 20, 289–298.

482 Horppila, J., Liljendahl-Nurminen, A., Malinen, T., 2004. Effects of clay turbidity and light on the
483 predatorprey interaction between smelts and chaoborids. *Can. J. Fish. Aquat. Sci.* 61, 1862–1870.

484 Horppila, J., Liljendahl-Nurminen, A., Malinen, T., Salonen, M., Tuomaala, A., Uusitalo, L., Vinni, M.,
485 2003. *Mysis relicta* in a eutrophic lake: Consequences of obligatory habitat shifts. *Limnol.*
486 *Oceanogr.* 48, 1214–1222.

487 Hrycik, A.R., Almeida, L.Z., Höök, T.O., 2017. Sub-lethal effects on fish provide insight into a
488 biologically-relevant threshold of hypoxia. *Oikos* 126, 307–317.

489 Hrycik, A.R., Simonin, P.W., Rudstam, L.G., Parrish, D.L., Pientka, B., Mihuc, T.B., 2015. *Mysis*
490 zooplanktivory in Lake Champlain: A bioenergetics analysis. *J. Great Lakes Res.* 41, 492–501.

491 Jacobs, G.R., Bruestle, E.L., Hussey, A., Gorsky, D., Fisk, A.T., 2017. Invasive species alter ontogenetic
492 shifts in the trophic ecology of Lake Sturgeon (*Acipenser fulvescens*) in the Niagara River and Lake
493 Ontario. *Biol. Invasions* 19, 1533–1546.

494 Kao, Y.-C., Adlerstein, S.A., Rutherford, E.S., 2016. Assessment of top-down and bottom-up controls on
495 the collapse of alewives (*Alosa pseudoharengus*) in Lake Huron. *Ecosystems* 19, 803–831.

496 Kircheis, F.W., Stanley, J.G., 1981. Theory and practice of forage-fish management in New England.
497 *Trans. Am. Fish. Soc.* 110, 729–737.

498 Kircheis, F.W., Trial, J.G., Boucher, D.P., Mower, B., Squiers, T., Gray, N., O'Donnell, M., Stahlnecker,
499 J., 2004. Analysis of impacts related to the introduction of anadromous alewives into a small
500 freshwater lake in central Maine, USA. Maine Department of Inland Fisheries and Wildlife, Bangor,
501 Maine.

502 Kirn, R.A., Labar, G.W., 1996. Growth and survival of rainbow smelt, and their role as prey for stocked
503 salmonids in Lake Champlain. *Trans. Am. Fish. Soc.* 125, 87–96.

504 Krueger, C.C., Perkins, D.L., Mills, E.L., Marsden, J. E., 1995. Predation by alewives on lake trout fry in
505 Lake Ontario: Role of an exotic species in preventing restoration of a native species. *J. Great Lakes*
506 *Res.*, 21 (suppl. 1), 458–469.

507 Labar, G.W., 1998. Assessment of rainbow smelt stocks during an eight-year experimental sea lamprey
508 control program on Lake Champlain. Vermont Department of Fish and Wildlife, Essex Junction,
509 VT.

510 Labar, G.W., 1993. Use of bioenergetics models to predict the effect of increased lake trout predation on
511 rainbow smelt following sea lamprey control. *Trans. Am. Fish. Soc.* 122, 942–950.

512 Lake Champlain Basin Program, 2018. State of the lake and ecosystem indicators report. Lake Champlain
513 Basin Program, Grand Isle, VT

514 Latta, W.C., 1995. Distribution and abundance of lake herring (*Coregonus artedi*) in Michigan. (Fisheries
515 research report No. 2014). Michigan Department of Natural Resources, Fisheries Division, Ann
516 Arbor, MI.

517 Lantry, B.F., Stewart, D.J., 1993. Ecological energetics of rainbow smelt in the Laurentian Great Lakes:
518 an interlake comparison. *Transactions of the American Fisheries Society* 122, 951–976.

519 MacIsaac, H.J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North
520 America. *Am. Zool.* 36, 287–299.

521 Mackie, G.L., Schloesser, D.W., 1996. Comparative biology of zebra mussels in Europe and North
522 America: an overview. *Am. Zool.* 36:3, 244-258.

523 Madenjian, C.P., Holuszko, J.D., Desorcie, T.J., 2003. Growth and condition of alewives in Lake
524 Michigan, 1984–2001. *Trans. Am. Fish. Soc.* 132, 1104–1116.

525 Madenjian, C.P., O’Gorman, R., Bunnell, D.B., Argyle, R.L., Roseman, E.F., Warner, D.M., Stockwell,
526 J.D., Stapanian, M.A., 2008. Adverse effects of alewives on Laurentian Great Lakes Fish
527 communities. *N. Am. J. Fish. Manag.* 28, 263–282.

528 Marsden, J.E., Chipman, B.D., Nashett, L.J., Anderson, J.K., Bouffard, W., Durfey, L., Gersmehl, J.E.,
529 Schoch, W.F., Staats, N.R., Zerrenner, A., 2003. Sea Lamprey control in Lake Champlain. *J. Great
530 Lakes Res.* 29, 655–676.

531 Marsden, J.E., Hauser, M., 2009. Exotic species in Lake Champlain. *J. Great Lakes Res.* 35, 250–265.

532 Marsden, J.E., Langdon, R.W., 2012. The history and future of Lake Champlain’s fishes and fisheries. *J.
533 Great Lakes Res.* 38, 19–34.

534 Marsden, J.E., Stangel, P., Shambaugh, A., 2013. Influence of environmental factors on zebra mussel
535 population expansion in Lake Champlain, 1994–2010, in: *Quagga and Zebra Mussels*. CRC Press,
536 pp. 33–54.

537 Mihuc, T.B., Dunlap, F., Binggeli, C., Myers, L., Pershyn, C., Groves, A., Waring, A., 2012. Long-term
538 patterns in Lake Champlain’s zooplankton: 1992–2010. *J. Great Lakes Res.* 38, 49–57.

539 Miller, R.R., 1957. Origin and dispersal of the alewife, *Alosa pseudoharengus*, and the gizzard shad,
540 *Dorosoma cepedianum*, in the Great Lakes. *Trans. Am. Fish. Soc.* 86, 97–111.

541 Mills, E.L., Leach, J.H., Carlton, J.T., Secor, C.L., 1993. Exotic species in the Great Lakes: a history of
542 biotic crises and anthropogenic introductions. *J. Great Lakes Res.* 19, 1–54.

543 Myers, J.T., Jones, M.L., Stockwell, J.D., Yule, D.L., 2009. Reassessment of the predatory effects of
544 rainbow smelt on ciscoes in Lake Superior. *Trans. Am. Fish. Soc.* 138, 1352–1368.

545 Ogle, D.H. 2016. *Introductory Fisheries Analyses with R*. Chapman & Hall/CRC, Boca Raton, FL.

546 O’Gorman, R., 1974. Predation by rainbow smelt (*Osmerus mordax*) on young-of-the-year alewives
547 (*Alosa pseudoharengus*) in the Great Lakes. *Prog. Fish. Cult.* 36, 223–224.

548 O’Malley, B.P., Stockwell, J.D., 2019. Diel feeding behavior in a partially migrant *Mysis* population: A
549 benthic-pelagic comparison. *Food Webs* e00117.

550 Parker Stetter, S.L., Stritzel Thomson, J.L., Rudstam, L.G., Parrish, D.L., Sullivan, P.J., 2007. Importance
551 and predictability of cannibalism in rainbow smelt. *Trans. Am. Fish. Soc.* 136, 227–237.

552 Peterson, B.G., Carl, P., 2020. PerformanceAnalytics: Econometric tools for performance and risk
553 analysis. R package version 2.0.4.

554 Power, M.E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy. *Ecology* 73,
555 733–746.

556 R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for
557 Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing.

558 Ray, B.A., Hrabik, T.R., Ebener, M.P., Gorman, O.T., Schreiner, D.R., Schram, S.T., Sitar, S.P., Mattes,
559 W.P., Bronte, C.R., 2007. Diet and prey selection by Lake Superior lake trout during spring, 1986–
560 2001. *J. Great Lakes Res.* 33, 104–113.

561 Recksiek, C.W., McCleave, J.D., 1973. Distribution of pelagic fishes in the Sheepscot River - Black
562 River estuary. *Trans. Am. Fish. Soc.* 102, 541–551.

563 Ricciardi, A., MacIsaac, H.J., 2010. Impacts of biological invasions on freshwater ecosystems, in: *Fifty*
564 *Years of Invasion Ecology*. John Wiley & Sons, Ltd, pp. 211–224.

565 Ricciardi, A. 2006. Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector
566 activity. *Divers. Distrib.* 12, 425–433.

567 Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish populations. *Bulletin of*
568 *the Fisheries Research Board of Canada* 191, 1–382.

569 Schaeffer, J.S., Margraf, F.J., 1987. Predation on fish eggs by white perch, *Morone americana*, in western
570 Lake Erie. *Environ. Biol. Fish.* 18, 77–80.

571 Simberloff, D., Von Holle, B., 1999. Positive interactions of nonindigenous species: invasional
572 meltdown? *Biol. Invasions* 1, 21–32.

573 Simonin, P.W., Parrish, D.L., Rudstam, L.G., Sullivan, P.J., Pientka, B., 2012. Native rainbow smelt and
574 nonnative alewife distribution related to temperature and light gradients in Lake Champlain. *J. Great
575 Lakes Res., Lake Champlain in 2010.* 38, 115–122.

576 Simonin, P.W., Rudstam, L.G., Parrish, D.L., Pientka, B., Sullivan, P.J., 2018. Piscivore diet shifts and
577 trophic level change after alewife establishment in Lake Champlain. *Trans. Am. Fish. Soc.* 147,
578 939–947.

579 Simonin, P.W., Rudstam, L.G., Sullivan, P.J., Parrish, D.L., Pientka, B., 2019. Early mortality and
580 freshwater forage fish recruitment: nonnative alewife and native rainbow smelt interactions in Lake
581 Champlain. *Can. J. Fish. Aquat. Sci.* 76, 806–814.

582 Smeltzer, E., Shambaugh, A. d., Stangel, P., 2012. Environmental change in Lake Champlain revealed by
583 long-term monitoring. *J. Great Lakes Res.* 38, 6–18.

584 Smith, S.H., 1970. Species interactions of the alewife in the Great Lakes. *Trans. Am. Fish. Soc.* 99, 754–
585 765.

586 Smith, S.H., 1968. Species succession and fishery exploitation in the Great Lakes. *J. Fish. Res. Bd. Can.*
587 25:4, 667-693.

588 Stewart, D.J., Binkowski, F.P., 1986. Dynamics of consumption and food conversion by Lake Michigan
589 alewives: an energetics-modeling synthesis. *Trans. Am. Fish. Soc.* 115, 643–661.

590 Stewart, D.J., Ibarra, M., 1991. Predation and production by salmonine fishes in Lake Michigan, 1978–
591 88. *Can. J. Fish. Aquat. Sci.* 48, 909–922.

592 Stewart, D.J., Kitchell, J.F., Crowder, L.B., 1981. Forage fishes and their salmonid predators in Lake
593 Michigan. *Trans. Am. Fish. Soc.* 110:6, 751-763.

594 Stewart, T.J., Sprules, W.G., O’Gorman, R., 2009. Shifts in the diet of Lake Ontario alewife in response
595 to ecosystem change. *J. Great Lakes Res.* 35, 241–249.

596 Stritzel Thomson, J.L., Parrish, D.L., Parker-Stetter, S.L., Rudstam, L.G., Sullivan, P.J., 2011. Growth
597 rates of rainbow smelt in Lake Champlain: effects of density and diet: Growth rates of rainbow
598 smelt. *Ecol. Freshw. Fish* 20, 503–512.

599 Tamayo, M., Olden, J.D., 2014. Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions. *Invas.
600 Plant Sci. Mana.* 7, 32–45.

601 Urban, T.P., Brandt, S.B., 1993. Food and habitat partitioning between young-of-year alewives and
602 rainbow smelt in southeastern Lake Ontario. *Environ. Biol. Fish.* 36, 359–372.

603 VTDEC, 2020. Lake Champlain long-term monitoring project. Vermont Department of Environmental
604 Conservation, Montpellier, VT.

605 Wehse, R., Hanson, D., Treska, T., Holey, M., 2017. Summary of 2016 lake trout and salmonid stocking
606 in Lake Michigan (No. 2017- 02). U.S. Fish and Wildlife Service. Green Bay Fish and Wildlife
607 Conservation Office, New Franken, WI.

608 Warner, D.M., Rudstam, L.G., Klumb, R.A., 2002. In situ target strength of alewives in freshwater.
609 Trans. Am. Fish. Soc. 131, 212–223.

610 Wickham, H., 2016. *ggplot2: elegant graphics for data analysis*, Second edition. ed, Use R! Springer-
611 Verlag, New York.

612

613 **Table 1.** Characteristics of the three major basins in Lake Champlain and variables that we hypothesized
 614 may affect rainbow smelt response to alewife invasion. Variables are numbered according to hypotheses
 615 outlined in the Introduction. Hypotheses 6-7 are not in the table because they relate to specific
 616 mechanisms of how alewife might impact rainbow smelt. Basin morphometry data from Myer and
 617 Gruendling (1979); total phosphorus (TP) data from Smeltzer et al., (2012); predator abundance data from
 618 B. Pientka (unpublished data). Asterisk (*) denotes variables calculated within this study. Grey shading
 619 means we expect the variable to support rainbow smelt populations stability in the specified basin. The
 620 metrics represent conditions during the study period (1987-2015).

621

	Main Lake	Malletts Bay	Northeast Arm	
Basin volume (km ³)	large (21.0)	small (0.72)	medium (3.45)	
Variables				Mechanism driving rainbow smelt stability
(1) Predator abundance	high	low	low	Greater top-down control in the Main Lake
(2) Oxythermal habitat*	high	low	low	Greater habitat volume in the Main Lake
(3) Productivity (µg TP L ⁻¹)	low (10-15)	low (8-12)	high (20-25)	Higher productivity in the Northeast Arm may increase food availability
(4) Zooplankton densities*	lower	higher	higher	Higher food availability in the smaller basins
(5) <i>Mysis</i> *	presence	absence	absence	Resource subsidies in the Main Lake

622

623 **Figure captions**

624

625 **Figure 1** – Lake Champlain bathymetry and basins, with the five trawling sites and the two long-term
626 monitoring stations. Stations in the Main Lake are, from north to south, Valcour Island, Juniper Island,
627 and Barber Point. Grey lines show major tributaries.

628

629 **Figure 2** – **(A)** Boxplot of average rainbow smelt CPUE and **(B)** changes in CPUE by period in for the
630 Main Lake, Malletts Bay, and the Northeast Arm of Lake Champlain. Limits of each box represent the
631 25-75% quantiles, dark bars represent the median, lines show the 10-90 % limits of the CPUE, and dots
632 represent outliers from the 10-90% distribution. The y-axis scale is logarithmic. Letters indicate groups
633 that are significantly different (Kruskal-Wallis test with Bonferroni correction).

634

635 **Figure 3** – **(A)** Boxplot of average alewife CPUE and **(B)** changes in alewife CPUE in the Main Lake,
636 Malletts Bay, and the Northeast Arm of Lake Champlain. See Fig. 2 for description of boxplot.
637 Horizontal dotted line represents average CPUE. YOY and YAO caught by floating gillnets were
638 summed together. Striped area indicates period before alewife invasion.

639

640 **Figure 4** – **(A)** Average total length of rainbow smelt (age-2+) in the Main Lake, Malletts Bay, and the
641 Northeast Arm of Lake Champlain of Lake Champlain for three survey periods, **(B)** average condition for
642 age 2 and 3 rainbow smelt, and **(C)** annual mortality per cohort. Letters indicate groups that are
643 significantly different (Kruskal-Wallis test with Bonferroni correction).

644

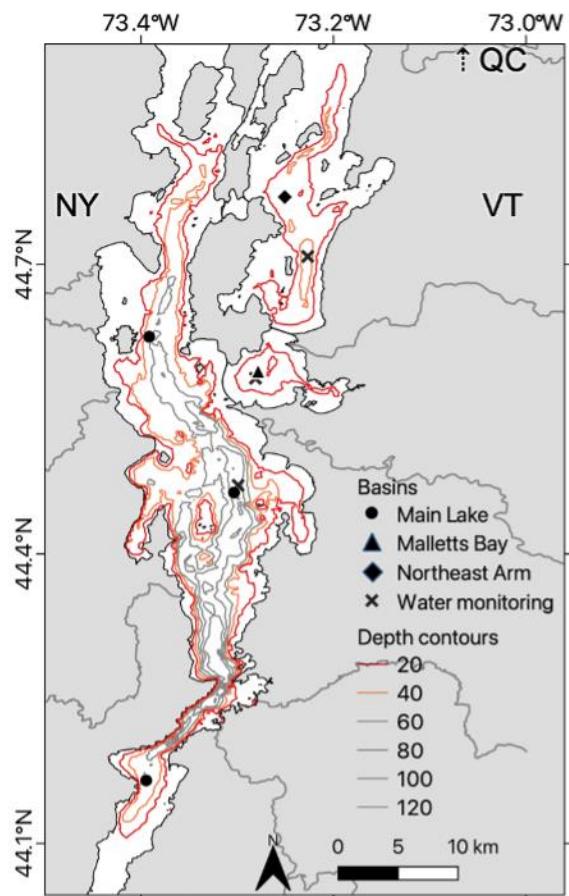
645 **Figure 5** – Habitat available for rainbow smelt per month, and year, expressed by depths with oxygen >
646 4.5 mg/l and temperature < 16°C, for the Main Lake, Malletts Bay, and the Northeast Arm of Lake
647 Champlain. Horizontal lines represent lake surface and bottom sediment (not visible for the Main Lake
648 station because depth is 102 m). Lighter grey vertical lines indicate absence of data.

649

650 **Figure 6** – Percentage of days in August-October per year and for which suitable water column habitat
651 (defined by temperature below four possible thresholds and > 4.5 mg O₂/L) was between 2-4 m, 0-2 m, or
652 unavailable, for the Main Lake, Malletts Bay, and the Northeast Arm of Lake Champlain. Dashed vertical
653 lines indicate the separation between the periods used for Fig. 2-4.

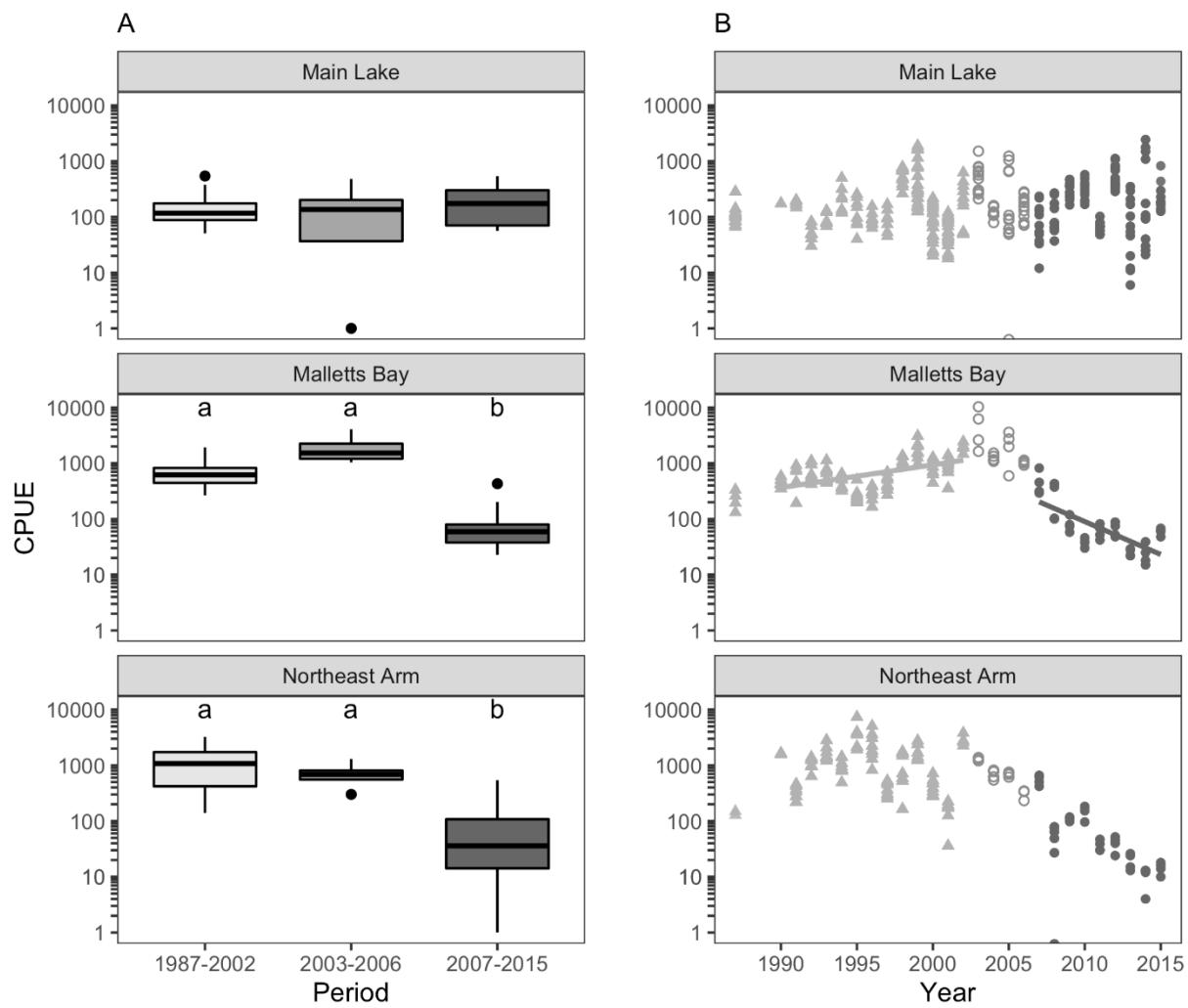
654

655 **Figure 7** – Mean summer density (#/m³) of most abundant zooplankton groups, for the Main Lake,
656 Malletts Bay, and the Northeast Arm of Lake Champlain. Grey background in plots indicate available
657 length data (see Fig. 8).

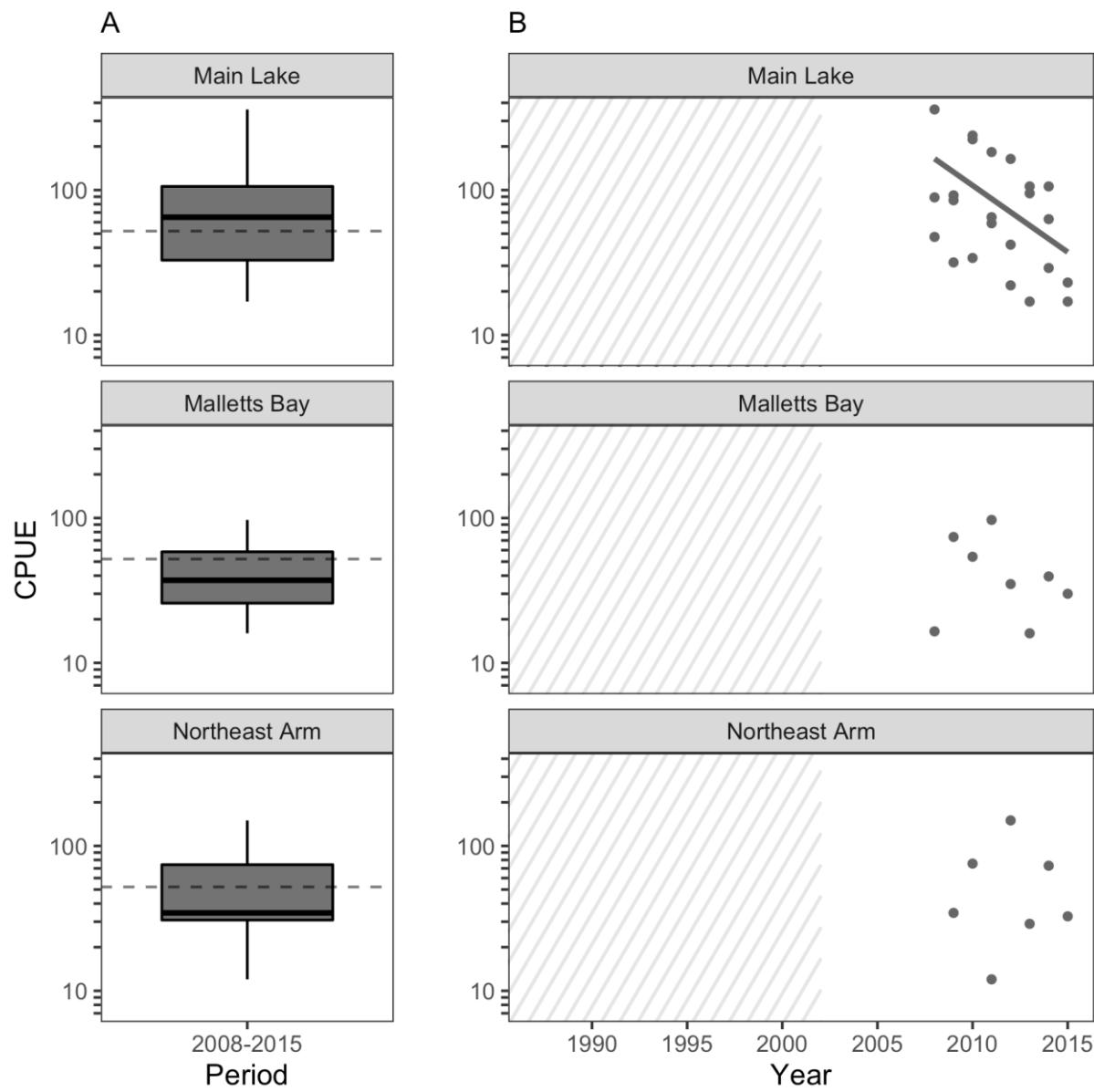

658

659 **Figure 8** – Mean length (mm) of most abundant zooplankton taxa in the Main Lake and Northeast Arm of
660 Lake Champlain during pre-invasion (2001-2002), transitional (2003-2006), and post-invasion (2007-
661 2015) of alewife.

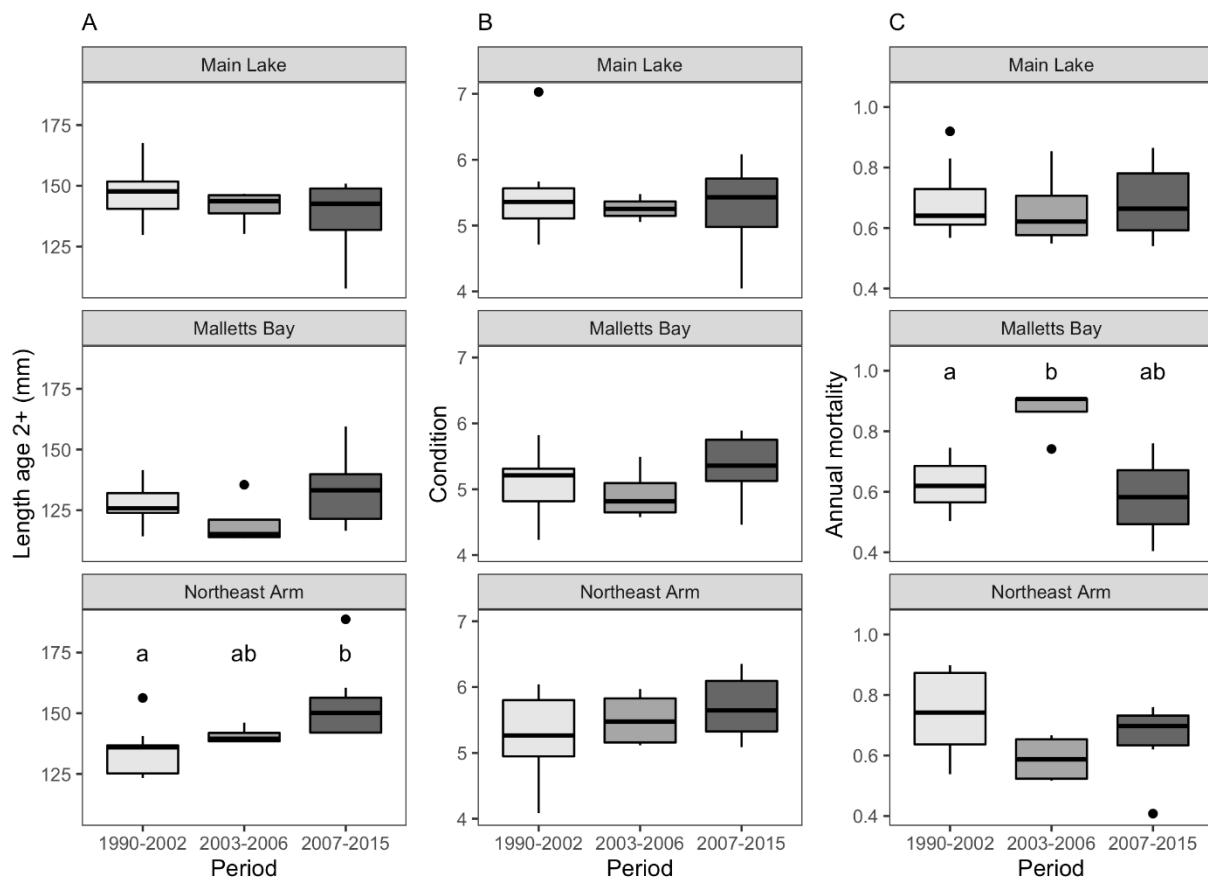
662


663

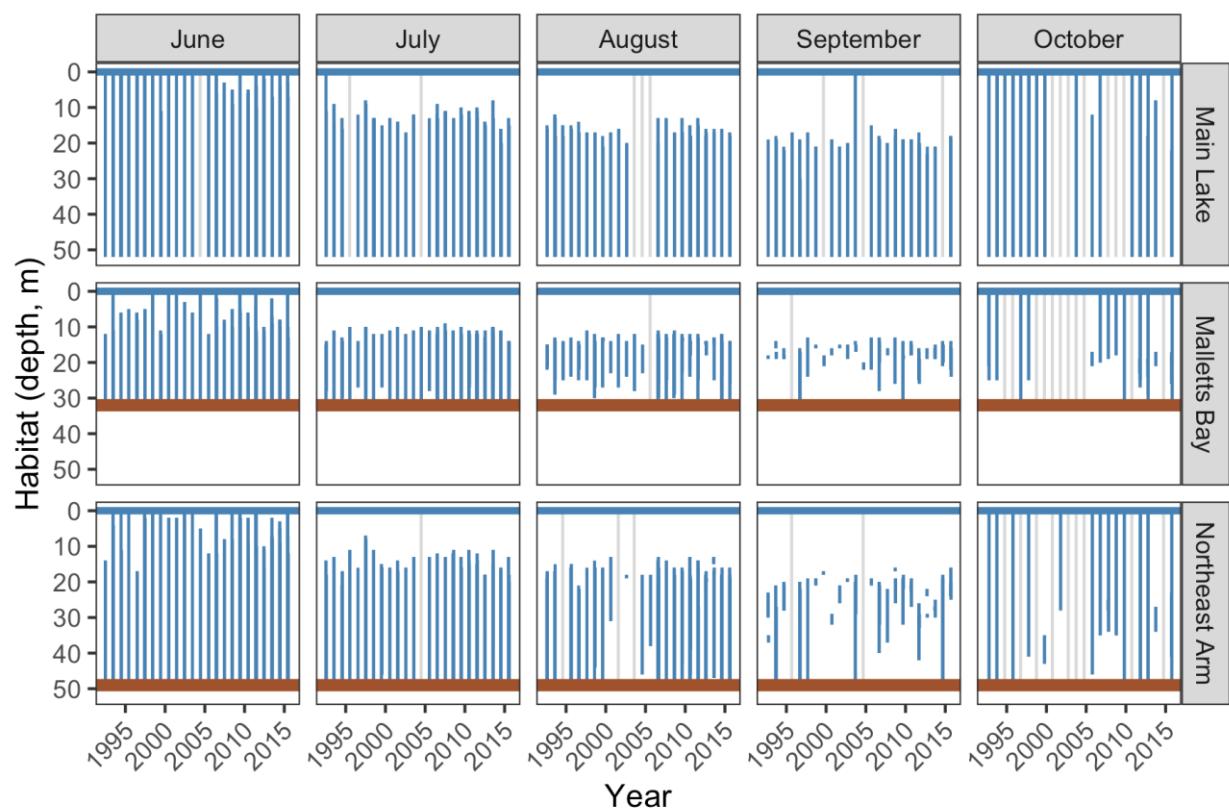
664 **Figure 1**


665

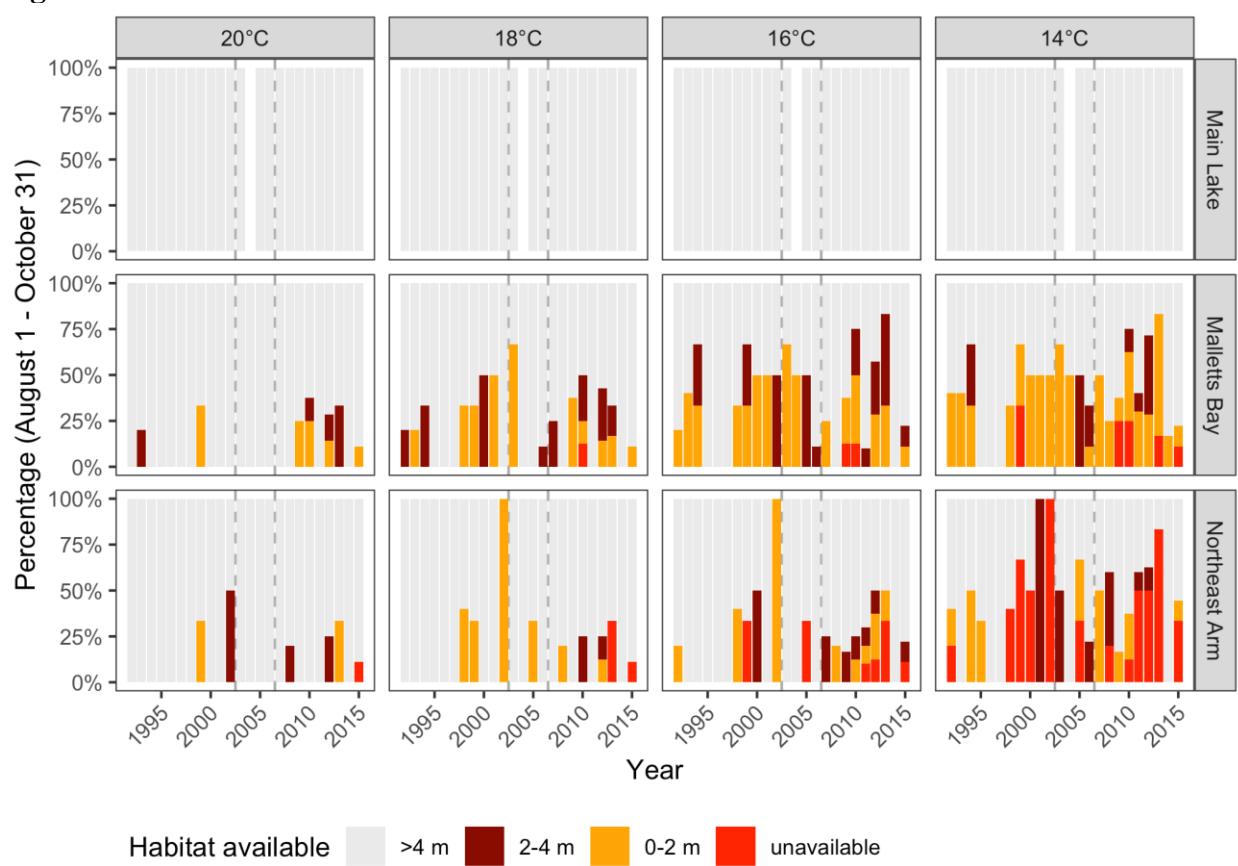
666 **Figure 2**


667

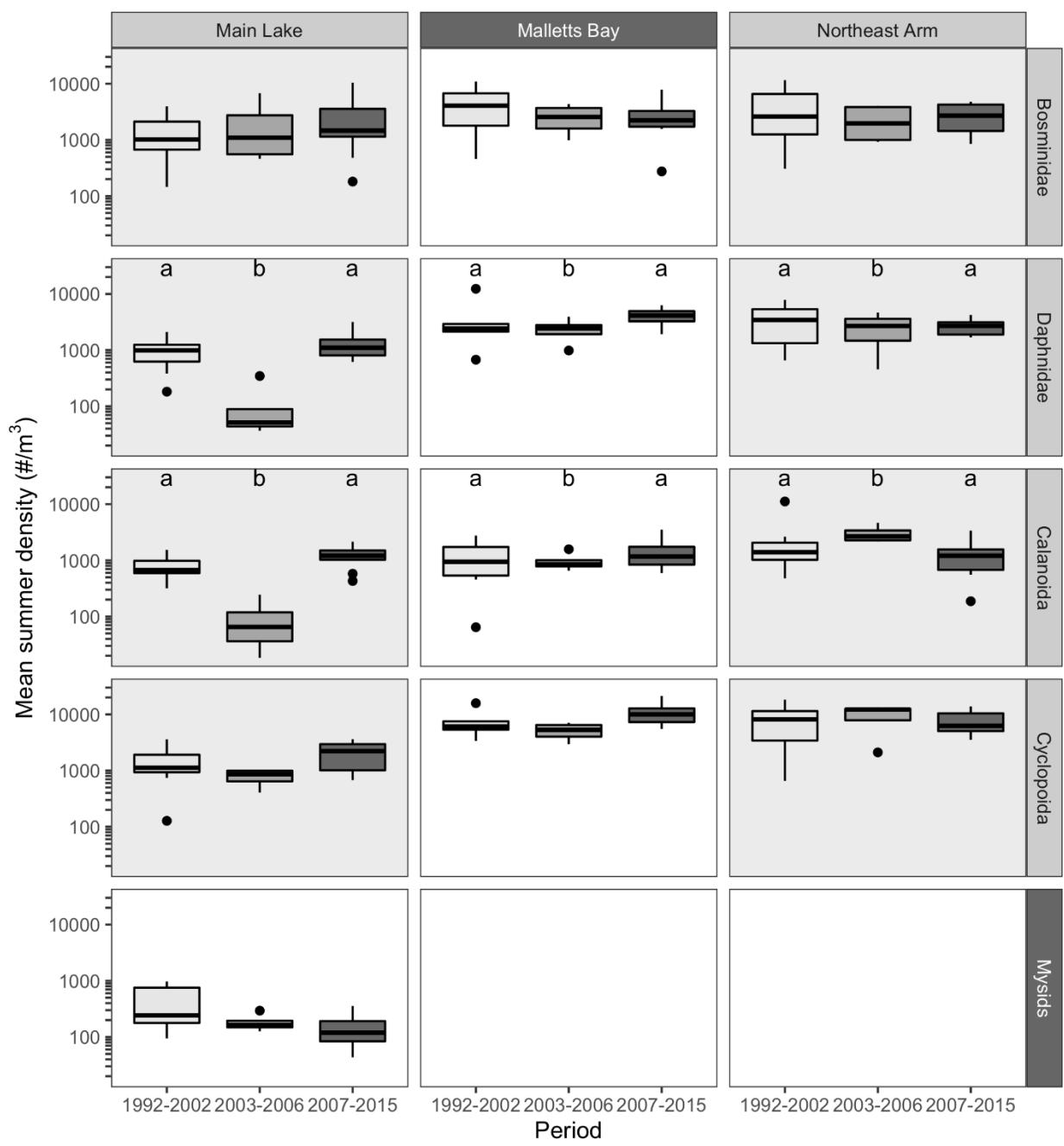
668 **Figure 3**


669

670 **Figure 4**


671
672

673


Figure 5

674

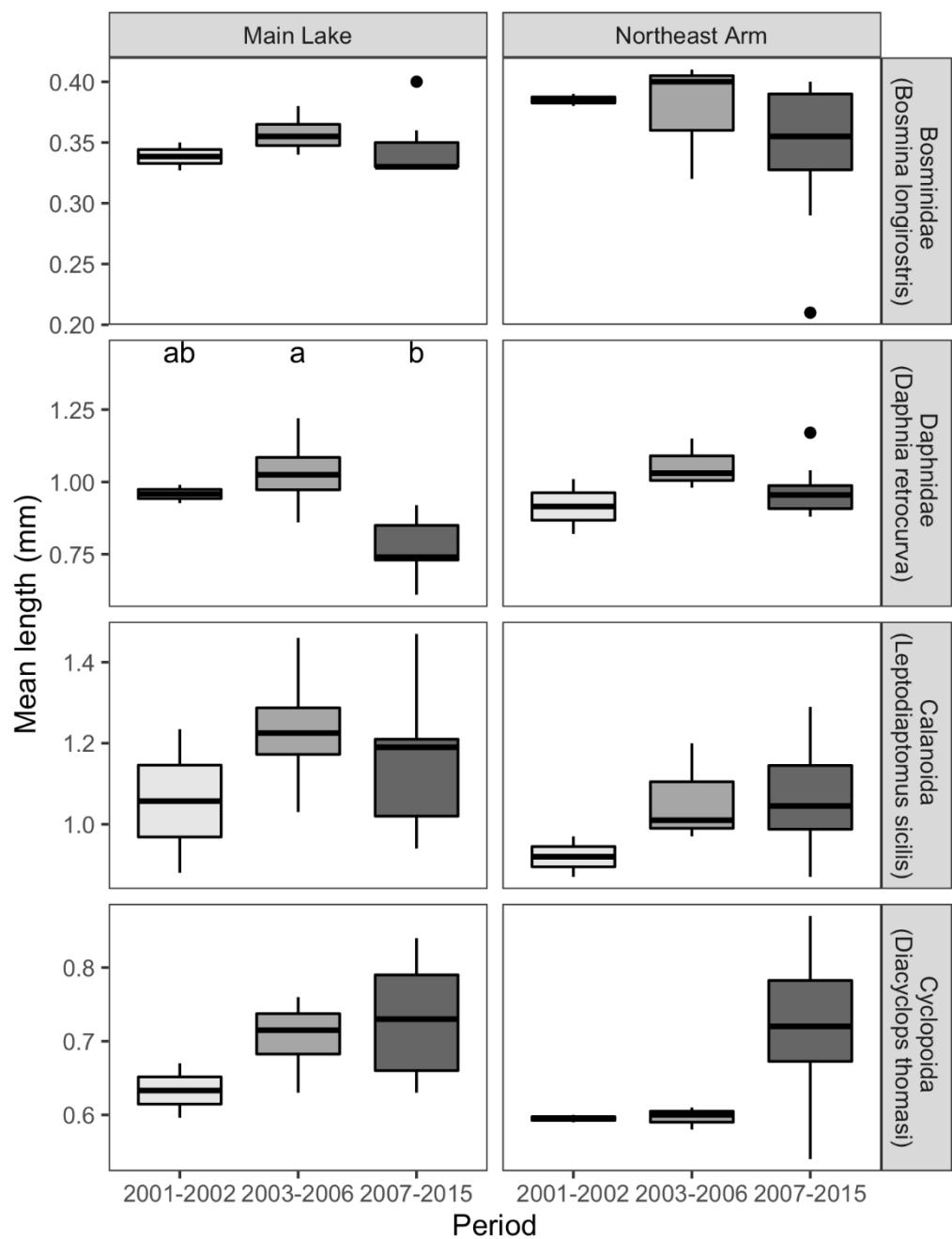

675

Figure 6676
677

678 **Figure 7**

679

Figure 8

684 Electronic Supplementary Material

685 Rainbow smelt population responses to species invasions and change in environmental condition

686 Rosalie Bruel^a, J. Ellen Marsden^a, Bernie Pientka^b, Nick Staats^c, Timothy Mihuc^d, Jason D. Stockwell^a

687

688

689

690

691

692

1. Characteristics of sampling station

693

694 **Table S1.** Characteristics of sampling station (maximum depth, typical starting depth for trawling, and
695 trawling time) in Lake Champlain with average catches of rainbow smelt standardized to 55 min trawl
696 time at each station each year. Number in parentheses is the number individuals kept for biological
697 analyses. A ‘-’ indicates data or subsamples were not collected. No sampling was conducted in 1988-
698 1989.

Basin	Main Lake					
	Station	Barber Point	Juniper Island	Valcour Island	Malletts Bay	Northeast Arm
max depth (m)	50-60	70-90	56-62	22-32	22-40	
starting depth (m)	35	35	35	26	29	
trawling time (min)	55	55	55	40	45	
Year			mean CPUE			
1987	139 (-)	110 (-)	-	231 (-)	139 (-)	
1990	-	175 (119)	-	448 (199)	1,628 (125)	
1991	-	173 (172)	-	614 (125)	324 (191)	
1992	-	53 (176)	-	654 (199)	1,104 (192)	
1993	93 (49)	-	-	654 (201)	1,674 (205)	
1994	316 (284)	126 (101)	-	461 (203)	977 (100)	
1995	202 (92)	72 (93)	-	278 (195)	3,553 (217)	
1996	79 (100)	111 (100)	-	305 (200)	2,440 (200)	
1997	124 (57)	66 (-)	-	465 (202)	398 (199)	
1998	-	572 (303)	-	1,127 (196)	1,069 (208)	
1999	317 (200)	146 (200)	1,288 (200)	1,696 (200)	1,814 (200)	
2000	65 (175)	55 (199)	155 (198)	864 (200)	440 (195)	
2001	63 (100)	84 (201)	35 (138)	864 (198)	158 (183)	
2002	247 (203)	51 (168)	374 (200)	1,957 (200)	2,869 (196)	
2003	587 (200)	825 (200)	285 (200)	5,193 (200)	1,304 (200)	
2004	138 (203)	113 (200)	-	1,276 (200)	690 (200)	
2005	902 (200)	50 (194)	78 (198)	2,226 (199)	693 (200)	
2006	256 (201)	131 (196)	121 (199)	1,037 (200)	306 (179)	
2007	152 (162)	77 (172)	56 (210)	470 (200)	551go (200)	
2008	209 (202)	67 (194)	64 (210)	252 (224)	49 (201)	
2009	300 (206)	400 (197)	248 (198)	82 (224)	108 (199)	
2010	459 (199)	305 (200)	185 (201)	38 (104)	150 (202)	
2011	66 (199)	67 (214)	71 (187)	61 (164)	36 (114)	
2012	811 (205)	388 (201)	595 (205)	66 (235)	40 (155)	
2013	12 (48)	254 (197)	68 (200)	25 (69)	20 (63)	
2014	1,697 (193)	117 (160)	29 (115)	24 (67)	10 (32)	
2015	630 (200)	223 (200)	153 (199)	60 (162)	14 (45)	

727

728

729

730 **2. Results of Kruskal-Wallis**

731
 732 **Table S2.** Results of Kruskal-Wallis pairwise comparison test between periods for the three basins and
 733 the four variables of interest. *p* is the overall p-value, *p.adj* is the p-value with Bonferroni correction to
 734 account for multiple comparison. *p.signif* indicates the level of significance: ns (*p.adj* > 0.05); *
 735 (*p.adj* > 0.01); ** (*p.adj* > 0.001); *** (*p.adj* > 0.0001); **** (*p.adj* ≤ 0.0001).

736

variable	Basin	Period 1	Period 2	p	p.adj	p.signif
log(CPUE)	Main Lake	1987-2002	2003-2006	0.362	1.000	ns
		1987-2002	2007-2015	0.688	1.000	ns
		2003-2006	2007-2015	0.727	1.000	ns
	Malletts Bay	1987-2002	2003-2006	0.018	0.053	ns
		1987-2002	2007-2015	0.000	0.000	****
		2003-2006	2007-2015	0.003	0.008	**
	Northeast Arm	1987-2002	2003-2006	0.442	1.000	ns
		1987-2002	2007-2015	0.000	0.001	***
		2003-2006	2007-2015	0.008	0.024	*
Average length age-2+ (mm)	Main Lake	1987-2002	2003-2006	0.412	1.000	ns
		1987-2002	2007-2015	0.209	0.630	ns
		2003-2006	2007-2015	1.000	1.000	ns
	Malletts Bay	1987-2002	2003-2006	0.130	0.390	ns
		1987-2002	2007-2015	0.324	0.970	ns
		2003-2006	2007-2015	0.050	0.150	ns
	Northeast Arm	1987-2002	2003-2006	0.060	0.180	ns
		1987-2002	2007-2015	0.000	0.000	***
		2003-2006	2007-2015	0.034	0.100	ns
Average condition (age 2-3)	Main Lake	1987-2002	2003-2006	0.549	1.000	ns
		1987-2002	2007-2015	0.896	1.000	ns
		2003-2006	2007-2015	1.000	1.000	ns
	Malletts Bay	1987-2002	2003-2006	0.477	1.000	ns
		1987-2002	2007-2015	0.357	1.000	ns
		2003-2006	2007-2015	0.260	0.780	ns
	Northeast Arm	1987-2002	2003-2006	0.871	1.000	ns
		1987-2002	2007-2015	0.126	0.380	ns
		2003-2006	2007-2015	0.503	1.000	ns
Annual mortality	Main Lake	1987-2002	2003-2006	0.839	1.000	ns
		1987-2002	2007-2015	0.635	1.000	ns
		2003-2006	2007-2015	0.762	1.000	ns
	Malletts Bay	1987-2002	2003-2006	0.002	0.007	**
		1987-2002	2007-2015	0.945	1.000	ns
		2003-2006	2007-2015	0.114	0.340	ns
	Northeast Arm	1987-2002	2003-2006	0.102	0.310	ns
		1987-2002	2007-2015	0.521	1.000	ns
		2003-2006	2007-2015	0.257	0.770	ns

737

738

739 **Table S3.** Results of Kruskal-Wallis pairwise comparison test between periods for the three basins and
740 the zooplankton taxa of interest. p is the overall p-value, $p.adj$ is the p-value with Bonferroni correction.
741 $p.signif$ indicates the level of significance: ns, $p>0.05$; *, $p>0.01$; **, $p>0.001$; ***, $p>0.0001$; ****:
742 $p\leq 0.0001$

743

variable	Taxa	Basin	Period 1	Period 2	p	p.adj	p.signif
Mean summer density (#/ m ³)	Cyclopoida	Main Lake	1992-2002	2003-2006	0.104	0.310	ns
			1992-2002	2007-2015	0.230	0.690	ns
			2003-2006	2007-2015	0.050	0.150	ns
	Malletts Bay	Malletts Bay	1992-2002	2003-2006	0.476	1.000	ns
			1992-2002	2007-2015	0.067	0.200	ns
		Northeast Arm	2003-2006	2007-2015	0.020	0.059	*
			1992-2002	2003-2006	0.661	1.000	ns
			1992-2002	2007-2015	0.976	1.000	ns
			2003-2006	2007-2015	0.446	1.000	ns
	Calanoida	Main Lake	1992-2002	2003-2006	0.001	0.004	**
			1992-2002	2007-2015	0.056	0.170	ns
			2003-2006	2007-2015	0.003	0.008	**
		Malletts Bay	1992-2002	2003-2006	0.762	1.000	ns
			1992-2002	2007-2015	0.616	1.000	ns
			2003-2006	2007-2015	0.446	1.000	ns
		Northeast Arm	1992-2002	2003-2006	0.056	0.170	ns
			1992-2002	2007-2015	0.413	1.000	ns
			2003-2006	2007-2015	0.030	0.089	ns
Bosminidae	Main Lake	Main Lake	1992-2002	2003-2006	0.851	1.000	ns
			1992-2002	2007-2015	0.295	0.880	ns
			2003-2006	2007-2015	0.825	1.000	ns
	Malletts Bay	Malletts Bay	1992-2002	2003-2006	0.610	1.000	ns
			1992-2002	2007-2015	0.682	1.000	ns
			2003-2006	2007-2015	1.000	1.000	ns
		Northeast Arm	1992-2002	2003-2006	0.753	1.000	ns
			1992-2002	2007-2015	0.740	1.000	ns
			2003-2006	2007-2015	0.446	1.000	ns
Daphnidae	Main Lake	Main Lake	1992-2002	2003-2006	0.003	0.009	**
			1992-2002	2007-2015	0.412	1.000	ns
			2003-2006	2007-2015	0.003	0.008	**
	Malletts Bay	Malletts Bay	1992-2002	2003-2006	1.000	1.000	ns
			1992-2002	2007-2015	0.102	0.310	ns
			2003-2006	2007-2015	0.030	0.089	ns
		Northeast Arm	1992-2002	2003-2006	0.489	1.000	ns
			1992-2002	2007-2015	0.566	1.000	ns
			2003-2006	2007-2015	0.862	1.000	ns
Rotifera	Main Lake	Main Lake	1992-2002	2003-2006	0.343	1.000	ns
			1992-2002	2007-2015	0.080	0.240	ns
			2003-2006	2007-2015	0.604	1.000	ns
	Mysids	Main Lake	1992-2002	2003-2006	0.280	0.840	ns
			1992-2002	2007-2015	0.020	0.060	ns
			2003-2006	2007-2015	0.503	1.000	ns
Mean length (mm)	<i>Diacyclops thomasi</i>	Main Lake	2001-2002	2003-2006	0.267	0.800	ns
			2001-2002	2007-2015	0.288	0.860	ns

			2003-2006	2007-2015	0.588	1.000	ns
	Northeast Arm		2001-2002	2003-2006	1.000	1.000	ns
			2001-2002	2007-2015	0.178	0.530	ns
			2003-2006	2007-2015	0.085	0.250	ns
<i>Daphnia retrocurva</i>	Main Lake		2001-2002	2003-2006	0.533	1.000	ns
			2001-2002	2007-2015	0.045	0.130	ns
			2003-2006	2007-2015	0.017	0.050	*
	Northeast Arm		2001-2002	2003-2006	0.400	1.000	ns
			2001-2002	2007-2015	0.694	1.000	ns
			2003-2006	2007-2015	0.184	0.550	ns
<i>Leptodiaptomus sicilis</i>	Main Lake		2001-2002	2003-2006	0.800	1.000	ns
			2001-2002	2007-2015	0.723	1.000	ns
			2003-2006	2007-2015	0.315	0.950	ns
	Northeast Arm		2001-2002	2003-2006	0.236	0.710	ns
			2001-2002	2007-2015	0.190	0.570	ns
			2003-2006	2007-2015	1.000	1.000	ns
<i>Bosmina longirostris</i>	Main Lake		2001-2002	2003-2006	0.348	1.000	ns
			2001-2002	2007-2015	0.532	1.000	ns
			2003-2006	2007-2015	0.201	0.600	ns
	Northeast Arm		2001-2002	2003-2006	0.800	1.000	ns
			2001-2002	2007-2015	0.507	1.000	ns
			2003-2006	2007-2015	0.304	0.910	ns

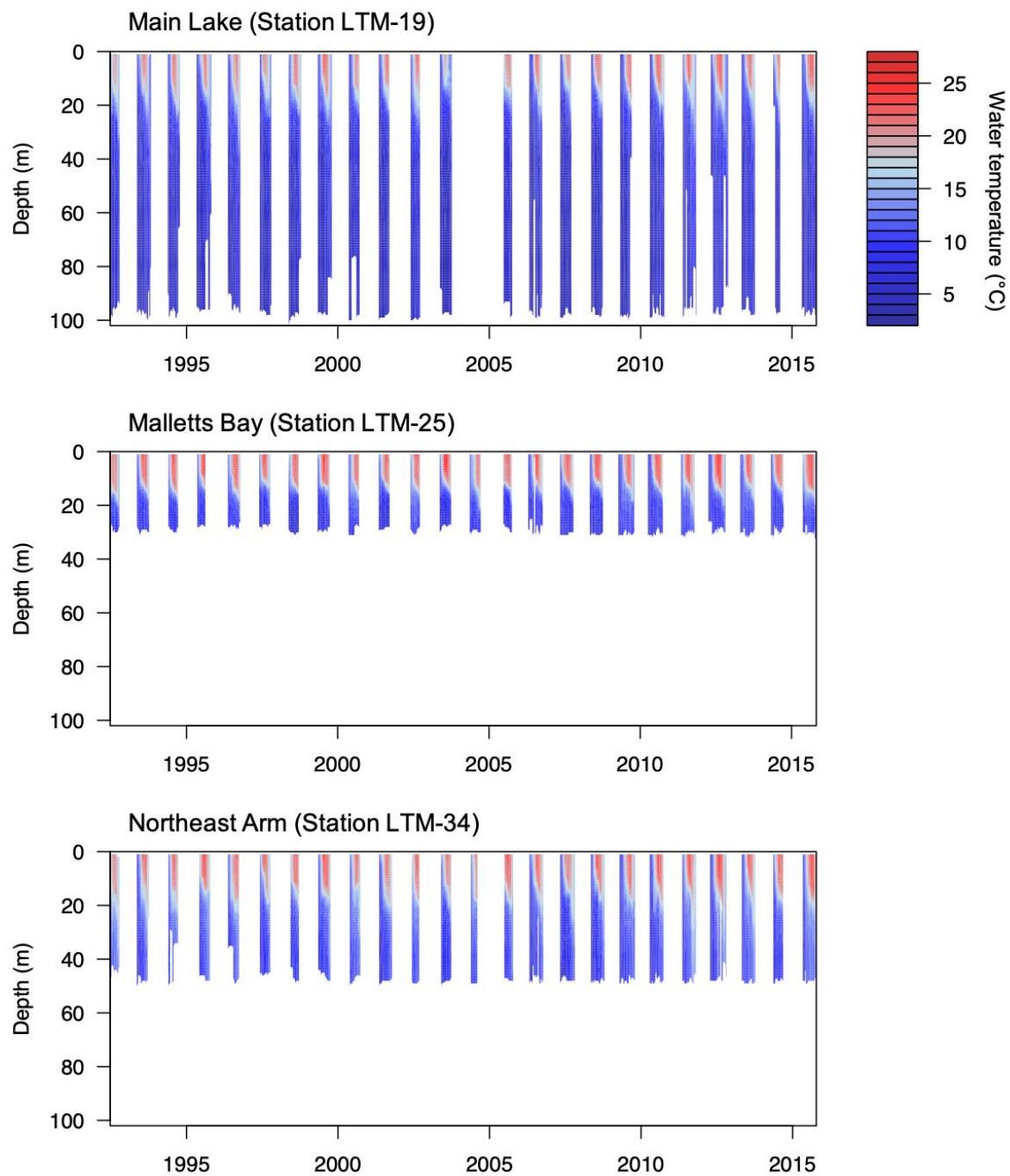
744
745
746
747
748
749
750
751
752

3. Temperature and DO profile

753
754
755
756
757
758
759
760

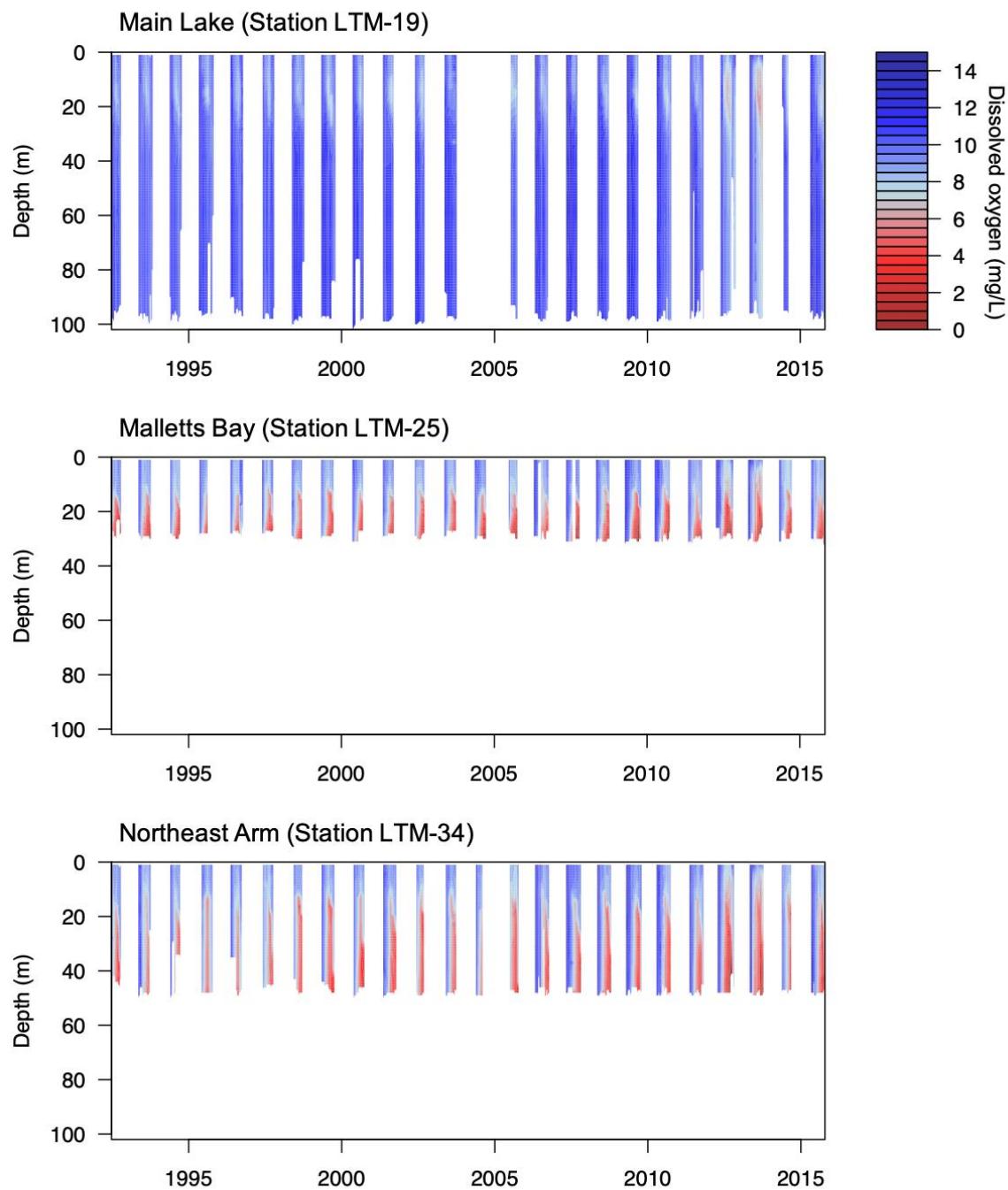
We used vertical profile data obtained with a multiprobes sensor by the Vermont Department of Environmental Conservation (DEC), as part of the Lake Champlain long-term monitoring program initiated in 1992 (<https://dec.vermont.gov/watershed/lakes-ponds/monitor/lake-champlain>). The program is carried on jointly with the New York DEC with fundings from Lake Champlain Basin Program and the two states. Fifteen stations are sampled fortnightly from late April to early November, and we selected stations 19, 25 and 34 to represent conditions in the Main Lake, Malletts Bay, and the Northeast Arm respectively (Fig. 1 main text).

761
762
763


We rounded the depths to the closest meter and built heatmaps using the function *filled.contour()* in R (Fig. S1, S2) (Read et al., 2011).

764
765
766

References


767
768
769
770
771

Read, J.S., Hamilton, D.P., Jones, I.D., Muraoka, K., Winslow, L.A., Kroiss, R., Wu, C.H., Gaiser, E., 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336.

772
773
774
775

Figure S1. Water temperature ($^{\circ}\text{C}$) in three basins of Lake Champlain each summer between 1992 and 2015.

776
777
778
779
780
781
782

Figure S2. Dissolved oxygen (mg/l) in three basins of Lake Champlain each summer between 1992 and 2015.