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Supplementary Figure 1: Literature selection flowchart for this study, based on the flowchart 
from Maki et al. 20191. 
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Supplementary Table 1: Results of tests to identify possible publication bias. When significant bias was identified using Egger’s 
Test (p ≤ 0.05), we removed the outlier studies and used the updated, outlier free model. There were not enough studies to perform 
outlier tests or publication bias tests for NO2- or DSi fluxes. 
Effect Size Metric Random Effects Model 

(Before) 
Publication Bias 
Test 

Outliers Random Effects Model (After) 

 n g ±95% CI t-value p-value n n g ±95% CI Change? 
N2 Flux (N2/Ar) 20 0.617 0.284 3.124 0.006 1 19 0.682 0.276 Yes 
N2 Flux (IPT) 7 0.239 0.745 0.045 0.966 0 7 0.239 0.745 No 
NH4+ Flux 25 0.750 0.377 1.757 0.092 4 21 0.692 0.372 No 
NOx Flux 12 0.406 1.577 0.432 0.675 2 10 0.354 0.594 No 
NO3- Flux 9 0.012 0.478 -1.200 0.269 0 9 0.012 0.478 No 
NO2- Flux 2 0.784 0.927 -- -- -- -- -- -- -- 
PO43- Flux 12 0.561 0.319 -0.917 0.381 0 12 0.561 0.319 No 
DSi Flux 2 0.375 0.974 -- -- -- -- -- -- -- 
CO2 Flux 3 0.620 1.194 0.205 0.871 0 3 0.620 1.194 No 
N2O Flux 4 -0.771 2.969 -2.696 0.114 0 4 -0.771 2.969 No 
CH4 Flux 3 0.432 1.592 -0.063 0.960 0 3 0.432 1.592 No 

 



Supplementary Table 2: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment denitrification (net N2 flux) meta-analysis. For context, small effect: g = 0 - 0.2, 
medium effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Porter et al. 2004 0.2185 -0.9181 – 1.3551 4.1 
Piehler & Smyth 2011 0.7128 -0.1172 – 1.5427 5.7 
Smyth et al. 2013a 0.5643 -0.2546 – 1.3833 5.7 
Kellogg et al. 2013 1.7035 0.8656 – 2.5415 5.6 
Higgins et al. 2013 0.5572 -0.3894 – 1.5038 5.0 
Hoellein et al. 2015 0.5797 -0.5901 – 1.7419 4.0 
Smyth et al. 2015 – low 1.2981 0.2570 – 2.3392 4.5 
Smyth et al. 2015 – high 1.9519 0.7797 – 3.1241 3.9 
Mortazavi et al. 2015 0.6502 -0.3588 – 1.6592 4.7 
Testa et al. 2015 -0.0415 -0.8418 – 0.7587 5.8 
Smyth et al. 2016 1.4092 0.2793 – 2.5391 4.1 
Humphries et al. 2016 - Aquaculture 0.5520 -0.0379 – 1.1419 7.2 
Humphries et al. 2016 - Reef 0.9822 0.3673 – 1.5971 7.1 
Onorevole et al. 2018 0.1902 -0.1570 – 0.5374 8.9 
Westbrook et al. 2019 -0.0114 -0.7044 – 0.6815 6.5 
Smyth et al. 2013b 2.3369 -0.4295 – 5.1032 1.0 
Ray et al. 2020 0.6437 -0.0323 – 1.3196 6.6 
Hasset 2015 -0.0107 -1.1423 – 1.1209 4.1 
Jackson 2019 – Ch. 4 0.7523 -0.1395 – 1.6442 5.3 
Grand Mean 0.6817 0.4053 – 0.9581 100 

 



Supplementary Table 3: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment denitrification (Isotope Pairing Technique; IPT) meta-analysis. For context, small 
effect: g = 0 - 0.2, medium effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 

Study g 95% CI % Weight 
Higgins et al. 2013 -1.1986 -1.9848 – -0.4124 16.0 
Hoellein et al. 2015 1.1916 -0.0808 – 2.4639 11.2 
Smyth et al. 2018 0.7110 -0.2496 – 1.6716 14.1 
Lunstrum et al. 2018 0.8785 0.2423 – 1.5147 17.5 
Erler et al. 2017 -0.1995 -1.4442 – 1.0452 11.4 
Hassett 2015 0.2618 -0.8770 – 1.4006 12.4 
Vieilliard 2017 0.1863 -0.4686 – 0.8412 17.3 
Grand Mean 0.2387 -0.5069 – 0.9843 100 

  



Supplementary Table 4: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model)for each study included in 
sediment ammonium (NH4+) meta-analysis. For context, small effect: g = 0 - 0.2, medium effect: 
g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Boucher-Rodoni & Boucher 1990 1.3735 0.1827 – 2.5643 3.8 
Mazouni et al. 1996 0.7384 0.3828 – 1.0941 4.7 
Porter et al. 2004 1.2113 0.1846 – 2.2380 4.0 
Green et al. 2012 0.4180 -0.4455 – 1.2815 4.2 
Smyth et al. 2013a 0.6310 -0.1927 – 1.4546 4.3 
Kellogg et al. 2013 1.9174 1.0427 – 2.7875 4.2 
Higgins et al. 2013 0.9867 -0.0066 – 1.9800 4.0 
Green et al. 2013 0.4490 -0.6967 – 1.5947 3.8 
Hoellein & Zarnoch 2014 0.1291 -0.0776 – 0.3359 4.8 
Andrieux-Loyer et al. 2014 1.1161 0.6548 – 1.5774 4.6 
Hoellein et al. 2015 0.4778 -0.6776 – 1.6332 3.8 
Smyth et al. 2015 – low 0.2252 -0.7025 – 1.1529 4.1 
Smyth et al. 2015 – high 0.6841 -0.2738 – 1.6420 4.1 
Mortazavi et al. 2015 0.5069 -0.4909 – 1.5046 4.0 
Testa et al. 2015 2.9066 1.7028 – 4.1104 3.8 
Smyth et al. 2016 0.7649 -0.2615 – 1.7914 4.0 
Smyth et al. 2018 -0.2895 -1.2196 – 0.6406 4.1 
Lunstrum et al. 2018 1.5090 0.8156 – 2.2023 4.4 
Smyth et al. 2013b 12.9279 0.3425 – 25.5133 0.2 
Erler et al. 2017 0.7650 -0.5509 – 2.0720 3.6 
Ray et al. 2020 0.3954 -0.2786 – 1.0694 4.4 
Ayvazian et al. In Prep 1.6592 1.1860 – 2.1324 4.6 
Hasset 2015 -0.6898 -1.8704 – 0.4908 3.8 
Vieilliard 2017 -0.2888 -0.9460 – 0.3683 4.4 
Jackson 2019 – Ch. 4 0.0447 -0.8108 – 0.9003 4.2 
Grand Mean 0.7495 0.3730 – 1.1260 100 

 
 
  



Supplementary Table 5: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model)for each study included in 
sediment phosphate (PO43-) flux meta-analysis. For context, small effect: g = 0 - 0.2, medium 
effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Mazouni et al. 1996 0.8045 0.4466 – 1.1623 13.6 
Gaertner-Mazouni et al. 2012 0.5297 -0.4729 – 1.5322 6.1 
Kellogg et al. 2013 1.5124 0.7009 – 2.3240 7.8 
Hyun et al. 2013 0.5271 -1.0270 – 2.0812 3.3 
Andrieux-Loyer et al. 2014 0.9410 0.4891 – 1.3928 12.3 
Hoellein et al. 2015 0.6686 -0.5091 – 1.8463 5.0 
Lacoste & Gaertner-Mazouni 2016 0.3431 -0.5122 – 1.1984 7.4 
Lunstrum et al. 2018 0.9586 0.3166 – 1.6007 9.8 
Ray et al. 2020 -0.0923 -0.7617 – 0.5771 9.4 
Ayvazian et al. In prep 0.3606 -0.0704 – 0.7915 12.6 
Hasset 2015 -0.1763 -1.3112 – 0.9585 5.2 
Jackson 2019 – Ch. 4 -0.1782 -1.0357 – 0.6793 7.4 
Grand Mean 0.5607 0.2421 – 0.8794 100 

  



Supplementary Table 6: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model)for each study included in 
sediment nitrate+nitrite (NOx) meta-analysis. For context, small effect: g = 0 - 0.2, medium 
effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Mazouni et al. 1996 0.2037 -0.1411 – 0.5484 8.9 
Porter et al. 2004 -0.0641 -0.9884 – 0.8601 8.6 
Smyth et al. 2013a -0.0914 -0.8921 – 0.7092 8.7 
Kellogg et al. 2013 2.3291 1.3904 – 3.2678 8.6 
Higgins et al. 2013 0.9594 -0.0303 – 1.9490 8.6 
Smyth et al. 2015 – low 0.7907 -0.1784 – 1.7597 8.6 
Smyth et al. 2016 -5.4333 -7.8127 – -3.0538 7.2 
Smyth et al. 2018 6.6431 4.0197 – 9.2665 6.9 
Smyth et al 2013b 0.7343 -1.0161 – 2.4846 7.9 
Ray et al. 2020 -0.2342 -0.9051 – 0.4366 8.8 
Hasset 2015 -0.0914 -0.8921 – 0.7092 8.7 
Jackson 2019 – Ch.4 -0.5275 -1.4010 – 0.3460 8.7 
Grand Mean 0.4059 -1.1713 – 1.9830 100 

 
  



Supplementary Table 7: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment nitrate (NO3-) flux meta-analysis. For context, small effect: g = 0 - 0.2, medium effect: 
g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Boucher-Rodoni & Boucher 1990 0.6518 -0.4369 – 1.7404 8.8 
Hoellein et al. 2015 0.1587 -0.9756 – 1.2929 8.5 
Mortazvi et al. 2015 -0.3001 -1.2863 – 0.6862 9.8 
Testa et al. 2015 -0.9831 -1.8391 – -0.1271 11.0 
Lunstrum et al. 2018 0.3991 -0.2123 – 1.0106 13.8 
Westbrook et al. 2019 0.5716 -0.1353 – 1.2786 12.7 
Erler et al. 2017 -1.3891 -2.8548 – 0.0766 6.2 
Ayvazian In Prep 0.1722 -0.2455 – 0.5898 16.0 
Vieilliard 2017 0.0750 -0.5786 – 0.7286 13.3 
Grand Mean 0.0119 -0.4660 – 0.4898 100 

  



Supplementary Table 8: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment silica flux meta-analysis. For context, small effect: g = 0 - 0.2, medium effect: g = 0.2 - 
0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Gaertner-Mazouni et al. 2012 0.4416 -0.5541 – 1.4373 56.6 
Green et al. 2013 0.2870 -0.8504 – 1.4243 43.4 
Grand Mean 0.3745 -0.5991 – 1.3481 100 



 
Supplementary Table 9: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment nitrite (NO2-) flux meta-analysis. For context, small effect: g = 0 - 0.2, medium effect: 
g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Ayvazian et al. In prep 0.8313 0.3959 – 1.2668 70.3 
Jackson 2019 – Ch. 4 0.6717 -0.0020 – 1.3454 29.7 
Grand Mean 0.7839 -0.1426 – 1.7104 100 

 



Supplementary Table 10: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment carbon dioxide (CO2) meta-analysis. For context, small effect: g = 0 - 0.2, medium 
effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Green et al. 2012 1.1991 0.2791 – 2.1192 31.1 
Green et al. 2013 0.2675 -0.8692 – 1.4041 22.9 
Ray et al. 2019 0.4054 -0.2569 – 1.0677 46.0 
Grand Mean 0.6204 -0.5732 – 1.8139 100 

 



Supplementary Table 11: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment methane (CH4) flux meta-analysis. For context, small effect: g = 0 - 0.2, medium 
effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Green et al. 2012 1.1327 0.2194 – 2.0460 32.5 
Green et al. 2013 -0.2043 -1.3389 – 0.9302 25.9 
Ray et al. 2019 0.2809 -0.3821 – 0.9438 41.6 
Grand Mean 0.4317 -1.1601 – 2.0234 100 

 
  



Supplementary Table 12: Calculated Hedges g-values, 95% confidence interval range, and 
weight (determined using a random effects meta-analysis model) for each study included in 
sediment nitrous oxide (N2O) flux meta-analysis. For context, small effect: g = 0 - 0.2, medium 
effect: g = 0.2 - 0.5, and a strong effect: g > 0.52. 
 

Study g 95% CI % Weight 
Green et al. 2013 -0.4377 -1.5826 – 0.7073 25.9 
Onorevole et al. 2018 0.1859 -0.1613 – 0.5330 28.4 
Erler et al. 2017 -4.1774 -6.8359 – -1.5189 18.0 
Ray et al. 2019 0.1478 -0.5135 – 0.8091 27.7 
Grand Mean -0.7711 -3.7401 – 2.1979 100 
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