Supplementary information

Antarctic sea-ice expansion and Southern Ocean cooling linked to tropical variability

In the format provided by the authors and unedited

1	Supplementary Information for
2	
3	Antarctic sea ice expansion and Southern Ocean cooling linked to tropical
4	variability
5	
6	Eui-Seok Chung ¹ , Seong-Joong Kim ^{1*} , Axel Timmermann ^{2,3} , Kyung-Ja Ha ^{2,4,5} , Sang-Ki Lee ⁶ ,
7	Malte F. Stuecker ⁷ , Keith B. Rodgers ^{2,3} , Sun-Seon Lee ^{2,3} , and Lei Huang ^{2,3}
8	
9	¹ Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, South Korea
10	² Center for Climate Physics, Institute for Basic Science, Busan, South Korea
11	³ Pusan National University, Busan, South Korea
12	⁴ Department of Climate System, Pusan National University, Busan, South Korea
13	⁵ BK21 School of Earth and Environmental Systems, Pusan National University,
14	Busan, South Korea
15	⁶ Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, FL, USA
16	⁷ Department of Oceanography and International Pacific Research Center, School of Ocean
17	and Earth Science and Technology,
18	University of Hawai'i at Mānoa, Honolulu, HI, USA
19	
20	*e-mail: seongjkim@kopri.re.kr
21	

22 Supplementary Text 1

In this study, given the quasi-oscillatory nature of internal variability, we assume that 23 longer records with multiple independent observations give a better indication of the forced 24 response. For instance, although the external forcing is much stronger over 1979–present than 25 it is over 1950-present, as shown in Extended Data Fig. 2, it is possible that internal variability 26 could obscure or offset much of the GHG-induced warming over the period 1979-present. In 27 contrast, over 1950-2020 the GHG-induced warming signal clearly emerges from the noise of 28 internal variability. This contrast, therefore, supports the assumption that longer observational 29 30 records give a better indication of the forced response. Due to the data quality issue over the period prior to ~1979, it is possible that the inferred forced response is incorrect in sign. 31 However, such a case can be avoided by employing multiple independent observations. 32

33

Supplementary Fig. 1: Timeseries of Southern Ocean-mean SST anomalies relative to the 1961-1990 means for non-interpolated (HadSST4) and interpolated (ERSST, ERA5, HadISST and COBE) datasets. Note that Southern Ocean-mean (south of 50°S) timeseries are constructed using SST anomalies at the grid points where HadSST4 data are available.

39

41 Supplementary Fig. 2: Mean seasonal cycle of Antarctic total sea ice extent over the period

42 1979–2014 for observations (NSIDC G02135, thick red line) and model simulations (ensemble

43 mean for individual models).

Supplementary Fig. 3: Time evolution of tropical decadal variability over 1950–2020. a,
Timeseries of unfiltered AMV index, with low-pass filtered quantity represented by thick blue
curve. b, Same as in a, but for the IPO index.

Supplementary Fig. 4: Observed AMV and IPO trends over the period 1979–2014 in the context of model-simulated probability distributions. a,b, Histograms of the AMV trends (a) and the IPO trends (b) over overlapping 36-year periods in pre-industrial control runs. The vertical lines in red denote the observed trends over the period 1979–2014.

Data Set	Variable	Period					
NSIDC G02135	Sea Ice Extent	1979–2020					
NSIDC 0192	Sea Ice Extent	1973–2002					
NSIDC G00917	Sea Ice Extent	1973–1990					
Nimbus-1	Sea Ice Extent	September 1964					
HadISST	Sea Ice Concentration	1979–2020					
ERSSTv5	SST	1950–2020					
HadISST	SST	1950–2020					
COBE SST2	SST	1950–2019					
ERA5	SST	1950–2020					
HadCRUT5	Surface Temperature	1950–2020					
GISTEMPv4	Surface Temperature	1950–2020					
Berkeley Earth	Surface Temperature	1950–2020					
NOAA globaltemp	Surface Temperature	1950–2020					

Supplementary Table 1. List of the observational datasets analyzed in this study.

Model	Number of ensemble members	Analysis period and forcing information	Ensemble-mean trends (10 ⁶ km ² decade ⁻¹ or °C decade ⁻¹)	Length of pre- industrial control run (years)
CanESM2 Large Ensemble (M1 in Extended Data Fig. 1)	50	1950–2020 (CMIP5) Historical: 1950–2005 RCP8.5: 2006-2020	1950–1978: -0.109 (SIE) 0.017 (SST) 1979–2014: -0.423 (SIE) 0.088 (SST)	1096
CESM1 Large Ensemble (M2)	40	1950–2020 (CMIP5) Historical: 1950–2005 RCP8.5: 2006-2020	1950–1978: -0.147 (SIE) 0.027 (SST) 1979–2014: -0.431 (SIE) 0.093 (SST)	1801
ACCESS-ESM1-5 (M3)	40	1950–2014 (CMIP6) Historical: 1950–2014 SSP370: 2015–2020	1950–1978: 0.032 (SIE) 0.000 (SST) 1979–2014: -0.130 (SIE) 0.030 (SST)	900
CanESM5 (M4_1 and M4_2)	25 (physics 1) 25 (physics 2)	1950–2020 (CMIP6) Historical: 1950–2014 SSP370: 2015-2020	1950–1978: -0.139/-0.065 0.015/0.010 (SST) 1979–2014: -0.474/-0.504 0.100/0.096 (SST)	1000 (physics 1) 1000 (physics 2)
CESM2 Large Ensemble (M5)	100*	1950–2020 (CMIP6) Historical: 1950–2014 SSP370: 2015-2020	1950–1978: -0.116 (SIE) 0.016 (SST) 1979–2014: -0.393 (SIE) 0.083 (SST)	1200
EC-Earth3 (M6)	69 (1979–2014) 19 (1950–1978) 57 (1979–2020)	1950–2014 (CMIP6) Historical: 1950–2014 SSP370: 2015-2020	1950–1978: 0.040 (SIE) -0.004 (SST) 1979–2014: -0.225 (SIE) 0.068 (SST)	501
IPSL-CM6A-LR (M7)	32 (1950–2014) 11 (1979–2020)	1950–2014 (CMIP6) Historical: 1950–2014 SSP370: 2015-2020	1950–1978: 0.002 (SIE) -0.002 (SST) 1979–2014: -0.431 (SIE) 0.068 (SST)	2000
NorCPM1 (M8)	30	1950–2020 (CMIP6) Historical: 1950–2020	1950–1978: -0.123 (SIE) 0.024 (SST) 1979–2014: -0.336 (SIE) 0.074 (SST)	500
UKESM1-0-LL (M9)	17 (1950–2014) 13 (1979–2020)	1950–2014 (CMIP6) Historical: 1950–2014 SSP370: 2015-2020	1950–1978: -0.029 (SIE) -0.010 (SST) 1979–2014: -0.868 (SIE) 0.133 (SST)	1880
IPSL-CM6A-LR (Pacemaker)	10	1950–2014		

Supplementary Table 2. Information on the model simulations analyzed in this study.

60

*Regarding biomass burning over the period 1990–2020, two different sets of forcing fields were used in the CESM2 Large Ensemble: while the first 50 members follow CMIP6 protocols, a smoothed version of forcing fields with a 11-year running-mean filter was applied to the second 50 members⁷⁷. As the biomass burning forcing is mainly related to wildfires over Siberia, we assume that the response of Southern Ocean climate to biomass burning is not critically sensitive to the difference between the two sets of forcing fields.