

Balancing Management of Marina Water Quality and Invasive Hull-Fouling Species: Pertinent Scientific Findings

ALTERNATIVE HULL COATINGS

SERVICE LIFE

- Our 2008 survey¹ of California boatyards found average hull coating service lives:
 - Copper = 2.4 years
 - Zinc = 1.8 years
 - Nontoxic Epoxy = 3.0 years
 - Nontoxic Slick = 5.0 years
- Follow-up contacts with 4 boat owners who participated in our 2002-2003 field demonstration found that nontoxic epoxy coatings lasted 5-8 years in San Diego Bay.²
- The longer service life of nontoxic coatings can make them cost effective, despite increased costs for application and more frequent hull cleaning.³

BOATING INDUSTRY CAPACITY FOR ALTERNATIVE COATINGS NEEDS TO BE DEVELOPED⁴

- Our 2008 survey of 60 California (CA) and Baja California peninsula (BCP) boatyards and hull cleaners found much capacity to apply and maintain copper antifouling paint.
- Zinc coatings were 1% and nontoxic coatings were 3% of CA boatyards' business. Only 1 BCP boatyard had applied zinc coatings and none had applied nontoxic coatings.
- Zinc coatings were 7% and nontoxic coatings were 5% of CA hull cleaners' business. No BCP hull cleaners worked on alternative coatings.

NONTOXIC COATINGS FOR BOATS THAT STAY HOME⁵

- Our 2008 survey of CA and BCP marinas found that half of boats rarely leave home.
- Much recreational boat traffic occurs along the coast, especially to and from San Francisco Bay and between Southern CA and the BCP.
- Copper risks are higher for boats that stay home; lower for active boats.
- Invasive species risks are lower for boats that stay home; higher for active boats.
- Nontoxic hull coatings + more frequent cleaning may be better for boats that rarely travel.
- Pesticidal hull coatings may be better for boats that travel often.

COPPER TOLERANCE OF HULL-FOULING SPECIES

SCIENTIFIC EVIDENCE

- There is plentiful scientific evidence that hull fouling species, and especially the invasive species, are becoming tolerant of copper. Work in the lab and the field has shown that some species can attach directly on copper coatings, and thrive in copper polluted environments.
 - One study showed that, of surfaces covered in copper antifouling paints, 64% were covered in an invasive bryozoan (*Watersipora subtorquata*).⁶
 - Many other studies repeatedly showed that invasive species were able to grow on copper surfaces^{7,8} and reduce native diversity in polluted environments.^{9,10,11,12}
 - Evidence is beginning to appear for copper tolerance of some native species.^{13, 14}

OTHER SPECIES "PIGGY-BACK" ON COPPER-TOLERANT ONES

- Copper-tolerant species not only pose a threat of invasion themselves, they also provide an opportunity for other, less-tolerant native and invasive fouling species to "piggy-back" into new environments, by creating a barrier that protects them from the copper paint.
 - Scientists observed that other fouling species were 248 times more abundant on the invasive *Watersipora subtorquata*, than were directly on the copper coated surfaces. The *Watersipora subtorquata* also allowed 22 species to grow on it, which did not grow directly on the antifouling surfaces.¹⁵

COPPER-POLLUTED WATER FAVORS TOLERANT SPECIES

- Invasive species thrive, and natives falter in polluted environments. A clean environment can help buffer against invasions: science shows that copper tolerant invasive species did not exhibit an advantage in clean harbors.¹⁶

References Cited

- 1 Johnson LT and Fernandez LM. *In press*. A Binational, Supply-Side Evaluation for Managing Water Quality and Invasive Fouling Species on California's Coastal Boats. *Journal of Environmental Management*
- 2 Gonzalez JA and Johnson LT. 2007. Nontoxic Hull Coating Field Demonstration: Long-Term Performance 2007 Update. UCSGEP-SD Fact Sheet 07-5. October 2007. 2 p.
http://ucanr.org/sites/coast/Nontoxic_Antifouling_Strategies/
Accessed June 1, 2011
- 3 Carson RT, Damon M, Johnson LT, Gonzalez JA. 2009. Conceptual Issues in Designing a Policy To Phase Out Metal-Based Antifouling Paints on Recreational Boats in San Diego Bay. *Journal of Environmental Management* 90: 2460-2468
- 4 Johnson LT and Fernandez LM. *In press*. A Binational, Supply-Side Evaluation for Managing Water Quality and Invasive Fouling Species on California's Coastal Boats. *Journal of Environmental Management*
- 5 Johnson LT and Fernandez LM. *In press*. A Binational, Supply-Side Evaluation for Managing Water Quality and Invasive Fouling Species on California's Coastal Boats. *Journal of Environmental Management*
- 6 Floerl O, Pool TK, Inglis GJ. 2004. Positive interactions between nonindigenous species facilitate transport by human vectors. *Ecological Applications* 14(6):1724-1736
- 7 Dafforn KA, Glasby TM, Johnston EL. 2008. Differential effects of tributyltin and copper antifoulants on recruitment of non-indigenous species. *Biofouling* 24(1):23-33
- 8 Jelic-Mrcelic G, Sliskovic M, Antolic B. 2006. Biofouling communities on test panels coated with TBT and TBT-free copper based antifouling paints. *Biofouling* 22(5):293-302
- 9 Crooks JA, Chang AL, Ruiz GM. 2011. Aquatic pollution increases the relative success of invasive species. *Biological Invasions* 13(1):165-176
- 10 Piola RF, Johnston EL. 2006. Differential resistance to extended copper exposure in four introduced bryozoans. *Marine Ecology-Progress Series* 311:103-114
- 11 Han T, Kang SH, Park JS, Lee HK, Brown MT. 2008. Physiological responses of *Ulva pertusa* and *U. armoricana* to copper exposure. *Aquatic Toxicology* 86(2):176-184
- 12 Piola RF, Johnston EL. 2009. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques. *Environmental Pollution* 157(10):2853-2864
- 13 Crooks JA, Chang AL, Ruiz GM. 2011. Aquatic pollution increases the relative success of invasive species. *Biological Invasions* 13(1):165-176
- 14 <http://bcbiodiversity.lifedesks.org/pages/20343>
- 15 Floerl O, Pool TK, Inglis GJ. 2004. Positive interactions between nonindigenous species facilitate transport by human vectors. *Ecological Applications* 14(6):1724-1736
- 16 Piola RF, Johnston EL. 2006. Differential tolerance to metals among populations of the introduced bryozoan *Bugula neritina*. *Marine Biology* 148(5):997-1010

Acknowledgments This publication was supported in part by the California Department of Boating and Waterways Project No. 06-106-109, California Department of Pesticide Regulation Project No. 06-0069C, NOAA Grants Nos. NA100AR4170060, NA080AR4170669 and NA040AR4170038, California Sea Grant Project No. A/EA-1 through NOAA's National Sea Grant College Program, U.S. Dept. of Commerce; University of California Agriculture and Natural Resources; University of California Cooperative Extension; California Resources Agency; and County of San Diego.

The views expressed herein do not necessarily reflect the views of those organizations.

Non-Discrimination Statement The University of California Division of Agriculture & Natural Resources (ANR) prohibits discrimination or harassment of any person in any of its programs or activities (Complete nondiscrimination policy statement can be found at <http://ucanr.org/sites/anrstaff/files/107734.doc>). Inquiries regarding ANR's equal employment opportunity policies may be directed to Linda Marie Manton, Affirmative Action Contact, University of California, Davis, Agriculture and Natural Resources, One Shields Avenue, Davis, CA 95616, (530) 752-0495.

**Leigh Johnson, Coastal Resources Advisor
Michelle Lande, Coastal Resources Program Representative
University of California Cooperative Extension
of UC Agriculture and Natural Resources**

**UCCE-SD Fact Sheet 2011-4
July 2011 (rev. September 2011)**

For more information visit:

<http://ucanr.org/coast>

<http://cesandiego.ucdavis.edu>

