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ABSTRACT
Nitrogen (N) and phosphorus (P) commonly co-limit primary productivity in lakes, and chlorophyll a 
(Chl-a) is predicted to be greatest under high N, high P regimes. Because land use practices can 
alter N and P biogeochemical cycles in watersheds, it is unclear whether previously documented 
phytoplankton–nutrient relationships apply where landscapes are highly disturbed. Here, we 
analyzed a lake water quality database from an agricultural region to explore relationships among 
Chl-a, total N (TN), and total P (TP) under extreme nutrient concentrations. Chl-a was weakly related 
to TN when TP was ≤100 μg L−1 but displayed a stronger response to TN at higher TP. When TP 
exceeded 100 μg L−1, Chl-a increased with increasing TN until reaching a TN threshold of ~3 mg L−1 
and decreased thereafter, resulting in a high nutrient, low Chl-a region that did not coincide with 
shifts in nutrient limitation, light availability, cellular Chl-a content, phytoplankton composition, or 
zooplankton grazing pressure. Beyond the threshold, nitrate comprised most of TN and occurred 
with reduced dissolved organic matter (DOM). These observations suggest that photolysis of 
nitrate may produce reactive oxygen species that damage DOM and phytoplankton. Reduction in N 
loading at high P could therefore increase Chl-a and decrease water clarity, resulting in an apparent 
worsening of water quality. Our data suggest that monitoring Chl-a or Secchi depth may fail to 
indicate water quality degradation by extreme nutrient concentrations. These findings highlight 
how extreme nutrient regimes in lakes can produce novel relationships between phytoplankton 
and nutrients.
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Introduction

Current debate regarding nutrient management strategies to 
mitigate cultural eutrophication in lakes (e.g., Schindler et al. 
2008, Scott and McCarthy 2010, Paerl et al. 2016, Schindler 
et al. 2016) warrants further study of phytoplankton–nutri-
ent relationships. Early empirical studies of these relation-
ships focused largely on phosphorus (P) because it was 
demonstrated to limit primary productivity in most lakes 
(Vollenweider 1968, Edmondson 1970, Schindler 1977). In 
temperate lakes, chlorophyll a (Chl-a) could be predicted as 
a positive log-linear function of total P (TP; Sakamoto 1966, 
Dillon and Rigler 1974, Jones and Bachmann 1976), thereby 
supporting P-limitation of primary productivity in lakes. 
Although log-linear models nicely predicted Chl-a from TP 
in some lakes or regions, they tended to over-predict Chl-a 
at high TP across large TP gradients using global datasets, 
resulting in Chl-a–TP relationships better described as 
sigmoidal functions on log-transformed scales (McCauley 
et al. 1989). Although Chl-a response to TP in individual 
lakes may differ from global empirical models (Smith and 

Shapiro 1981), the upper Chl-a threshold to increasing TP 
suggested that another resource, such as nitrogen (N) or 
light, becomes limiting under high TP. While early whole 
ecosystem nutrient manipulations focused on oligotrophic 
lakes, where P-limitation was likely, phytoplankton biomass 
may commonly be limited by multiple nutrients in more 
productive lakes, especially over shorter temporal scales 
(see Sterner 2008).

The influences of N or N:P ratios on phytoplankton bio-
mass are well established, and current evidence strongly 
supports N and P co-limitation of primary productivity 
in most lakes and synergistic responses of phytoplank-
ton to dual (N+P) nutrient enrichment (Elser et al. 2007, 
Allgeier et al. 2011, Bracken et al. 2015). In addition to 
Chl-a–TP relationships, Sakamoto (1966) observed a 
strong log-linear relationship between Chl-a and total 
N (TN) in Japanese lakes, where deviations from these 
relationships were hypothesized to result from chang-
ing nutrient supply ratios (i.e., N:P). Subsequent studies 
found that either TN or TN:TP ratios, in addition to TP, 
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et al. (2014b) demonstrated that regional maximum 
Chl-a observed under high TP conditions was greater in 
regions with more pasturelands, whereas Chl-a–TP rela-
tionships were steeper in regions with less wetland cover. 
Although these studies showed that agricultural practices 
could modify Chl-a response to TP gradients, they did 
not consider the role of N in shaping these relationships.

In this study, we analyzed a 13-year water quality 
database for 139 lakes located within an intense agricul-
tural region to examine phytoplankton biomass–nutri-
ent relationships in mesotrophic to hypereutrophic lakes. 
Specifically, we were interested in how Chl-a would 
respond to nearly orthogonal gradients in TN and TP in 
these lakes and whether or not empirical relationships 
among Chl-a, TN, and TP developed from other regions 
would hold in this disturbed region with extreme nutri-
ent concentrations. Based on our findings, we evaluated 
several potential mechanisms, including shifts in nutrient 
limitation, light availability, cellular Chl-a content, phy-
toplankton composition, zooplankton grazing pressure, 
and nitrate-derived reactive oxygen species (ROS) to help 
explain relationships observed in this region.

Methods

Study region

To test our hypotheses, we analyzed a water quality data-
set from an intensively managed agricultural region in 
the Midwestern United States. Agriculture accounts for 
~90% of land use and land cover in this region, with cov-
erage relatively consistent since the early 1900s (Arbuckle 
and Downing 2001, Heathcote and Downing 2012). The 
Iowa Lake Monitoring Program dataset contains physical, 
chemical, and plankton compositional data from 139 lakes 
located within the state of Iowa (Fig. 1). Most of the lakes 
in the dataset are manmade (n = 107), including 4 large 
reservoirs and 10 surface mine lakes. Of the 32 natural 
lakes, 7 were oxbows and 1 was a shallow, emergent mac-
rophyte-dominated lake. Because of these diverse origins, 
lakes varied widely in surface area (0.04–60.39 km2), max-
imum depth (1.2–39.6 m), and watershed to lake area ratio 
(0.3–763.6). These lakes are classified as mesotrophic to 
hypereutrophic and receive high external nutrient load-
ing rates from their watersheds that support large phy-
toplankton biomasses (Jones et al. 1976, Stenback et al. 
2011), commonly dominated by Cyanobacteria (Filstrup 
et al. 2016).

Sample collection and field observations

Lakes were sampled at their historically deepest point 3 
times per year from 2001 to 2014, when possible, excluding 

improved predictive relationships for Chl-a across large 
N:P gradients (Smith 1982, Canfield 1983). TN:TP ratios 
can influence parameter estimates (i.e., slope and inter-
cept) of log-linear relationships between Chl-a and either 
TN or TP, despite Chl-a being well correlated to individual 
nutrients across the entire TN:TP gradient (Prairie et al. 
1989). Within a classification and regression tree frame-
work, TN:TP ratios were often selected as an important 
factor in classifying lakes to improve Chl-a predictions 
from TP (e.g., Yuan and Pollard 2014). In regions where 
N-limitation occurs, Chl-a may show smaller responses 
to TP changes, however, and models including TN only 
may better predict Chl-a where N-limitation is common 
(Smith and Shapiro 1981, Jones et al. 1989).

N and P cycles can be coupled in lakes and streams 
(Finlay et al. 2013, Gibson et al. 2015), but human activ-
ities within watersheds may alter natural biogeochemical 
cycles. Agricultural practices such as fertilizer amendments 
or manure application not only contribute to increased N 
loads in receiving streams but can also cause shifts in the 
dissolved N pool (Howarth et al. 1996, Stanley and Maxted 
2008). Eutrophic lakes can have low TN:TP compared to 
lakes in watersheds with natural land cover, although 
ratios depend on the type of agriculture (Downing and 
McCauley 1992). While lakes in regions with large-scale 
animal agriculture can have low TN:TP, lakes in regions 
dominated by row-crops commonly have high TN:TP 
(Arbuckle and Downing 2001). For example, high TN:TP 
loads from receiving streams in agricultural regions can 
maintain strict P-limitation of primary productivity (Vanni 
et al. 2011), whereas systems may be driven to N-limitation 
in livestock production regions. Additionally, watershed 
permeability and climate interact with land use and land 
cover to modify the effect of agricultural practices on 
lake nutrients (Fraterrigo and Downing 2008, Hayes et al.  
2015). Because agricultural practices may modify N and 
P biogeochemical cycles, empirical relationships between 
phytoplankton and nutrients developed from regions with 
more diverse landscape characteristics may not apply to 
intense agricultural regions.

Previous studies have demonstrated that regional 
landscape characteristics can modify Chl-a–TP relation-
ships in lakes. For example, Jones et al. (2011) showed 
that the maximum Chl-a concentration observed for a 
given TP differed among lake datasets spanning different 
geographic extents. When modeled as log-linear relation-
ships, the slopes of Chl-a–TP relationships for individual 
regions within the United States were positively related to 
proportion of pasturelands, whereas the intercepts of these 
models were negatively related to proportion of wetlands, 
which are often negatively correlated to agricultural land 
use (Wagner et al. 2011). By using the same dataset to 
model relationships using sigmoidal functions, Filstrup 
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a program hiatus in 2008. Multiple sampling events per 
lake were intended to characterize water quality condi-
tions in early (mid-May–Jun; Round 1), mid (Jul–mid-
Aug; Round 2), and late summer (mid-Aug–Sep; Round 
3). Nutrient and phytoplankton samples were collected as 
surface mixed-layer samples using either flexible tubing 
and a pump (prior to 2006) or an integrated water column 
sampler to the depth of the thermocline (maximum depth 
of 2.0 m beginning in 2006). Zooplankton samples were 
collected using a Wisconsin net (63 μm mesh) by vertically 
towing the net from the thermocline to the lake surface. 
Phytoplankton and zooplankton samples were preserved 
in the field with Lugol’s solution (APHA 1998) and  
formalin (Haney and Hall 1973), respectively. All samples 
were stored on ice in the field, and chemical samples were 
stored at 4 °C on return to the laboratory.

Water transparency and mixing depth were recorded 
in the field and used to estimate underwater light climate 
experienced by phytoplankton. Water transparency was 
measured as Secchi depth (zSecchi). Mixing depth (zmix) was 
determined from vertical temperature profiles recorded 
using a multiparameter data sonde. Thermocline depth 
was identified as the depth of the maximal rate of change 
in temperature, where temperature change was >1 °C m−1 
(Kalff 2001). The Secchi depth to mixing depth ratio  
(zSecchi:zmix) was calculated as an estimate of the proportion 
of time phytoplankters remain in the euphotic zone.

Laboratory analyses

Chl-a, TP, TN, nitrate + nitrite (hereafter nitrate), ammo-
nium + ammonia (hereafter ammonium), and dissolved 
organic carbon (DOC) were analyzed within 36 h of sam-
pling or preserved for later analyses. Chl-a samples were 

filtered (GF/C filter), extracted in 100% acetone, and ana-
lyzed using the nonacidified fluorometry method (Arar 
and Collins 1997, Wright et al. 1997). TP samples were 
digested with persulfate and analyzed using the ascorbic 
acid method (APHA 1998). TN samples were digested with 
persulfate and analyzed using the second-derivative spec-
troscopy method (Crumpton et al. 1992). To investigate 
dissolved inorganic N (DIN) composition, we analyzed 
nitrate and ammonium samples using the second-deriv-
ative ultraviolet spectroscopy method (Crumpton et al. 
1992) and either manual or semiautomated phenate meth-
ods on filtered (0.45 μm) water samples (USEPA 1993, 
APHA 1998), respectively. DOC samples were filtered 
(0.45 μm), acidified, and analyzed using the high-tem-
perature combustion method (APHA 1998).

Phytoplankton and zooplankton samples were analyzed 
using light microscopy to calculate taxonomic biovolume 
and biomass, respectively, as described by Filstrup et al. 
(2014a). Phytoplankters were identified to genus, counted 
and measured (first 50 individuals per genera) using an 
inverted microscope (Lund et al. 1958, APHA 1998), and 
quantified as biovolume using taxon-specific linear meas-
ures (Hillebrand et al. 1999). Zooplankters were identified 
to genus for cladocerans and for copepods, counted and 
measured using a stereoscopic microscope (APHA 1998), 
and quantified as biomass using published length–bio-
mass relationships (Dumont et al. 1975, McCauley 1984).

Statistical considerations

Although previous studies of phytoplankton–nutrient 
relationships primarily analysed data using seasonal aver-
ages, data were analysed here as individual sampling events 
to allow analyses across the widest range in nutrients. 

Figure 1.   study area indicating location of lakes, all lakes located within the state boundaries of Iowa, although some crossed into 
bordering states. Black points indicate lakes with observed total phosphorus >100 μg l−1; gray points indicate lakes with observed total 
phosphorus ≤100 μg l−1.
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surface to extending throughout the entire surface mixed 
layer. Only a quarter of observations had zSecchi:zmix ≥0.5, 
suggesting that phytoplankters spent over half their time 
in the aphotic zone for most observations.

Empirical relationships among phytoplankton 
biomass, TN, and TP

Visually, phytoplankton biomass varied across both TN 
and TP gradients, although relationships between phyto-
plankton biomass and TN differed depending on TP. For 
oligotrophic to eutrophic observations (TP ≤ 100 μg L−1 or 
2.0 log units), both Chl-a and total phytoplankton biomass 
were unrelated to TN, as shown by the nearly vertical con-
tour lines (Fig. 2). Chl-a and total phytoplankton biomass 
increased with increasing TP for these observations but 
did not vary with respect to TN. The region of high total 
phytoplankton biomass under low TP and high TN (i.e., 
upper left corner) likely resulted from low sample size  
(n = 4), where 2 observations had total phytoplankton 
biomass exceeding 100 mg L−1. By contrast, phytoplankton 
biomass varied with TN for hypereutrophic observations  
(TP > 100 μg L−1 or 2.0 log units). Chl-a and total phyto-
plankton biomass increased with increasing TN and TP, 
but both were greatest at medium TN (~1.6–4.0 mg L−1; 
0.2–0.6 log units) and decreased at higher TN for these 
observations. The high nutrient, low Chl-a region (HNLC; 
i.e., upper right corner) contained 271 observations from 
64 different lakes spanning the entire study period. Median 
Chl-a was 20 μg L−1 (interquartile range [IQR]: 7–46 μg L−1) 
for this region compared to 62 μg L−1 (IQR: 31–107 μg L−1) 
for the Chl-a maximum region. In the bottom right cor-
ner were 3 observations with Chl-a exceeding 200 μg L−1, 
which likely inflated Chl-a contour values in this low sam-
ple size region (n = 47).

Ordinary least squares regression further supported 
both TN and TP as significant predictors of Chl-a across 
all observations, although the best model also included 
zSecchi:zmix (Table 2). The TP-only model (F2, 4558 = 927.1; p 
< 0.001) explained 29% of the variance in log10 Chl-a and 

Although this approach introduces issues with sample 
independence (i.e., multiple observations per year per 
lake), the high degree of landscape modification within this 
region contributes to lakes that change rapidly in nutrient 
and phytoplankton conditions. To visualize phytoplank-
ton biomass response to TN and TP, we created contour 
plots of Chl-a and total phytoplankton biomass with 
local polynomial smoothing (second-degree polynomial) 
to grid data using Surfer 8 software (Golden Software, 
LLC; Golden, CO, USA). All data were retained in the 
analyses (i.e., no filtering), and contours were not extrap-
olated beyond the range of data. This approach was also 
used to visualize underwater light conditions (zSecchi:zmix 
contours) across lake nutrient space. All other analyses 
were performed using the program R (R Core Team 2016). 
Ordinary least squares regression was used to model Chl-a 
as a function of (1) TP only; (2) TN and TP; and (3) TN, 
TP, and zSecchi:zmix, where linear, squared, and cubed pre-
dictors and a TN × TP interaction term were included in 
models. We did not include interaction terms between 
TN or TP and zSecchi:zmix because we could think of no a 
priori theoretical reason to do so. Prior to analyses, predic-
tor variables were visually assessed for multicollinearity. 
Stepwise selection was used to eliminate or retain predic-
tor variables based on the Akaike Information Criterion 
(AIC). The 3 competing models were compared using AIC. 
Because of wide variation among observations, variability 
in response variables across TN gradients were visualized 
using boxplots by TN interval (bin width = 0.1 log TN) 
within ggplot2 (Wickham 2009). Piecewise linear models 
of Chl-a–N relationships were fit using the package SiZer 
(Sonderegger 2012). LOWESS (locally weighted scatter-
plot smoothing) lines, in which the smoothing factor (f) 
was set at two-thirds a priori, were added to scatterplots 
to aid with visual interpretation of relationships as needed. 
Response and predictor variables were log10-transformed 
prior to analyses to improve normality and reduce heter-
oscedasticity, as needed.

Results

Dataset description

Phytoplankton biomass, nutrients, and underwater light 
climate varied across several orders of magnitude, with 
observations representing oligotrophic to hypereutrophic 
conditions included in the dataset (Table 1). Only 0.5% of 
observations (n = 24 of 4561) had TP < 10 μg L−1, however. 
Because of large ranges in TN and TP, TN:TP ratios varied 
widely, with a median TN:TP of 46.7 by atoms. Water 
transparency (zSecchi) ranged across 2 orders of magnitude, 
with 25% of observations having values <0.5 m. Similarly, 
zSecchi:zmix values suggested that light availability in the sur-
face mixed layer varied from being restricted to the lake 

Table 1.  summary statistics for observations of water column 
chlorophyll a (Chl-a; μg l−1), total phytoplankton biomass (Bio-
massphyto; mg l−1), total nitrogen (tn; mg l−1), total phosphorus 
(tP; μg l−1), total nitrogen to total phosphorus ratio (tn:tP; by 
atoms), water transparency (zsecchi; m), and the secchi depth to 
mixing depth ratio (zsecchi:zmix).

Variable Average Median Minimum Maximum
Chl-a 40.3 26.0 0.4 743.0
Biomassphyto 130.2 30.2 <0.1 21502.8
tn 2.54 1.56 0.29 23.04
tP 104.6 75.0 5.0 918.5
tn:tP 90.1 46.7 1.5 2023.5
zsecchi 1.2 0.8 0.1 9.5
zsecchi:zmix 0.35 0.25 0.01 1.00
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TN but were relatively consistent beyond a TN of ~1.6 and 
2.0 mg L−1 (0.2 and 0.3 log units), respectively, thereby 
resembling a positive asymptotic relationship (Fig. 3a and 
b). Because sample size was low, trends in Chl-a distri-
butions across TN gradients were not as smooth for olig-
otrophic plus mesotrophic observations (n = 580) compared 
to eutrophic observations (n = 2370). For hypereutrophic 
observations (TP > 100 μg L−1), however, Chl-a distributions 
across the TN gradient approximated a unimodal (“hump-
shaped”) response curve when excluding several high Chl-a 
distributions at low TN (Fig. 3c). Median Chl-a decreased 
rapidly with increasing TN after reaching a maximum con-
centration and remained at consistently low concentrations 
for the highest TN intervals.

When modeled, the relationship between Chl-a and 
TN for hypereutrophic observations was better approx-
imated by a piecewise linear model rather than a linear 
model (Fig. 4). Although the linear regression model was 
significant (F1, 1609 = 77.8; p < 0.001), TN explained little 
variance in Chl-a (adj. r2 = 0.05) across the entire TN 
range. The linear regression over-predicted Chl-a at TN 
extremes and under-predicted them at medium TN. The 
piecewise linear model revealed a significant negative rela-
tionship between Chl-a and TN (F1, 401 = 68.7; p < 0.001) 

included significant squared and cubed TP terms. The TN 
and TP model (F6, 4554 = 371.0; p < 0.001) explained slightly 
more variance in log10 Chl-a (adj. r2 = 0.33) and included 
significant linear and nonlinear terms for TN and TP, as 
well as a significant TN × TP interaction term. The TN and 
TP model (AICTN+TP = 5177.9) was selected as the better 
fitting model compared to the TP-only model (AICTP = 
5428.4) despite the slight improvement in explained vari-
ance. A third model including significant linear and non-
linear terms for TN, TP, and zSecchi:zmix (F9, 4551 = 323.4;  
p < 0.001) was selected as the best Chl-a predictive model 
overall (AICTN+TP+LIGHT = 4744.0) by explaining 39% of the 
variance in log10 Chl-a. Although linear terms of model 
predictors were significantly correlated (α = 0.05), correla-
tions were weak, with the strongest correlation occurring 
between TP and zSecchi:zmix (r = −0.48; Supplemental Fig. 
S1).

Despite considerable overlap, Chl-a distributions for indi-
vidual TN intervals further suggested differences in Chl-a–
TN relationships for different trophic conditions (Fig. 3). For 
oligotrophic combined with mesotrophic (TP < 30 μg L−1 or 
1.48 log units) and eutrophic (30 μg L−1 ≤ TP ≤ 100 μg L−1)  
conditions, Chl-a distributions increased with increasing 

Figure 2.  (a) Chlorophyll a and (b) total phytoplankton biomass 
contour plots on total nitrogen vs. total phosphorus nutrient 
space. Contour lines were generated using second-degree local 
polynomial regression of lake observational data. all variables 
were log10-transformed prior to analyses.

Table 2. least squares regression models of chlorophyll a (μg l−1; 
log10-transformed) predicted by total phosphorus (tP)-only 
(μg l−1; log10-transformed); tP and total nitrogen (tn; mg l−1; 
log10-transformed); and tP, tn, and secchi depth to mixing depth 
ratio (zsecchi:zmix). linear, squared, and cubed terms of predictor 
variables as well as an interaction term between tn and tP were 
considered. Predictor variables were entered or removed using 
stepwise selection and retained based on akaike Information Cri-
terion (aIC). significance was evaluated at α = 0.05. se = standard 
error; ns = not significant.

Parameter Estimate SE t-value p-value

Model 1. tP only: F2, 4558 = 927.1; p < 0.001; adj. r2 = 0.29

 Intercept −0.259 0.053 −4.919 <0.001
 (log tP)2 0.956 0.042 22.931 <0.001
 (log tP)3 −0.258 0.014 −18.523 <0.001

Model 2. tP + tn: F6, 4554 = 371.0; p < 0.001; adj. r2 = 0.33

 Intercept 1.408 0.433 3.253 <0.001
 log tP −2.468 0.720 −3.428 <0.001
 (log tP)2 2.100 0.390 5.392 <0.001
 (log tP)3 −0.420 0.068 −6.136 <0.001
 log tn 1.500 0.109 13.713 <0.001
 (log tn)2 −0.486 0.050 −9.734 <0.001
 log tP × log tn −0.625 0.061 −10.335 <0.001

Model 3. tP + tn + zsecchi:zmix: F9, 4551 = 323.4; p < 0.001; adj. r2 = 0.39

 Intercept 1.792 0.414 4.333 <0.001
 log tP −2.432 0.689 −3.530 <0.001
 (log tP)2 1.823 0.373 4.884 <0.001
 (log tP)3 −0.342 0.066 −5.212 <0.001
 log tn 1.426 0.105 13.637 <0.001
 (log tn)2 −0.350 0.048 −7.249 <0.001
 zsecchi:zmix 1.051 0.235 4.470 <0.001
 (zsecchi:zmix)2 −3.211 0.545 −5.894 <0.001
 (zsecchi:zmix)3 1.798 0.350 5.134 <0.001
 log tP × log tn −0.638 0.058 −11.015 <0.001
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Hypotheses to explain the high nutrient, low Chl-a 
region

Because finding a region of HNLC at extreme TN con-
centrations requires explanation, we tested 4 potential 
interpretations for this pattern. They posit that the HNLC 
region coincided with (1) shifts in resource limitation due 
to nutrient and light deficiency, (2) phytoplankton phe-
nology or reduced cellular Chl-a content, (3) high zoo-
plankton grazing pressure, or (4) increased damage to 
phytoplankton under high N concentrations.

Resource limitation hypothesis

We tested whether the HNLC region coincided with shifts 
in nutrient deficiency. For hypereutrophic observations, 
TN:TP varied from 2 to 385 (by atoms), suggesting that 
both N- and P-deficient growth conditions were repre-
sented in the dataset, but the pattern in these values across 
the Chl-a–TN relationship did not support this hypoth-
esis. Growth conditions were mostly P-deficient above 
the TN threshold (2.9 mg L−1 or ~0.5 log units) but were 
a mixture of balanced and N-deficient conditions below 
the threshold, with the latter predominating at the low-
est TN (Fig. 5). Because growth conditions were inferred 
from TN:TP ratios based on previous empirical analyses 
(Guildford and Hecky 2000), we also evaluated changes 
in nitrate and soluble reactive phosphorus (SRP) concen-
trations across the Chl-a–TN relationship. As anticipated, 
nitrate concentrations in the water column were relatively 
low when TN:TP was <20 by atoms (i.e., N deficiency) and 
relatively high when TN:TP was >50 by atoms (i.e., P defi-
ciency; Fig. 5a). SRP concentrations were more variable 
relative to growth status, but the highest concentrations 
most commonly occurred under N deficiency, whereas 
smaller concentrations were found under P-deficient and 
balanced growth conditions (Fig. 5b). If Chl-a was pri-
marily responding to a shift toward P deficiency above 
the TN threshold, then Chl-a concentrations would be 
unrelated to TN (i.e., flat relationship) rather than dis-
playing a significant decrease (Fig. 4).

Because zSecchi:zmix was a significant predictor of Chl-a 
(Table 2), we tested whether the HNLC region coincided 
with reduced light availability in the surface mixed layer. 
Contours of zSecchi:zmix plotted on TN and TP space largely 
mirrored Chl-a contours, in which low zSecchi:zmix coin-
cided with high Chl-a and vice versa (c.f. Fig. 6 and 2a). 
As an exception, some of the lowest zSecchi:zmix contours 
occurred in the HNLC region, suggesting that these low 
values did not solely result from Chl-a concentrations. 
Distributions of zSecchi:zmix were not significantly lower for 
the highest TN intervals, however, and actually displayed 
a trend toward increasing zSecchi:zmix (Fig. 7).

for TN > 2.93 mg L−1 (0.47 log units) that explained 14% 
of Chl-a variance. Below this threshold, Chl-a and TN 
were unrelated (F1, 1206 = 18.0; p < 0.001; adj. r2 = 0.01). 
Confidence intervals (CI: 97.5%) for the threshold esti-
mate were 2.26–3.24 mg L−1 (0.35–0.51 log units).

Figure 3.   Boxplots of chlorophyll a concentrations by total 
nitrogen interval (bin width = 0.1 log total nitrogen) for 
(a) oligotrophic and mesotrophic, (b) eutrophic, and (c) 
hypereutrophic observations. total phosphorus (tP) ranges of 
observations are provided for each panel. Markers representing 
outliers are transparent, so darker clusters represent overlapping 
markers. all variables were log10-transformed prior to analyses.
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for observations in which TN exceeded 3 mg L−1, with 
ammonia making up a much smaller fraction (Fig. 9),  
suggesting that nitrate may be playing a prominent role 
in the underlying mechanism. The maximum nitrate 
concentration was 19.39 mg L−1 (median: 0.17 mg L−1) 
compared to a maximum ammonium concentration of 
1.56 mg L−1 (median: 0.03 mg L−1). Additionally, DOC 
concentrations changed slightly across the TN gradient, 
where lower DOC distributions co-occurred with the 
highest TN (Supplemental Fig. S4). Although distribu-
tions overlapped considerably below the TN threshold, 
trends in DOC across TN resembled a unimodal curve, 
thereby resembling the pattern in Chl-a distributions (c.f. 
Supplemental Fig. S4 and S3c). Despite this similarity, 
DOC and Chl-a were not correlated (r = 0.06; p < 0.050).

Discussion

In this study, we showed that Chl-a covaried with both 
TN and TP, although relationships between Chl-a and 
TN differed depending on TP concentrations. Although 
Chl-a varied little with increasing TN for mesotrophic or 
eutrophic observations (TP ≤ 100 μg L−1), it displayed a 
stronger, novel relationship with TN for hypereutrophic 
observations (TP > 100 μg L−1). Counter to expectations 

Phytoplankton composition hypothesis

We tested whether phytoplankton phenology or shifts 
in cellular Chl-a content of dominant taxa aligned with 
the Chl-a–TN pattern for hypereutrophic observations. 
Because each lake was sampled 3 times from mid-May 
through September, the timing of TN pulses from the 
watershed (e.g., early summer storm events) may have 
yielded high TN before phytoplankton biomass had time 
to develop, but theses pulses could also have diluted 
existing lake phytoplankton biomass with storm runoff 
or coincided with large loads of inorganic particles that 
reduce light availability. Observations from mid-summer 
(Round 2) and early autumn (Round 3) composed the 
majority of observations at medium TN (Fig. 8a). Above 
the TN threshold, however, observations shifted to pre-
dominantly from early summer (Round 1). TN and surface 
water temperature were significantly but weakly corre-
lated (r = −0.26; p < 0.001), however, suggesting that TN 
was also responding to other factors besides season. We 
also examined whether the HNLC region coincided with 
reduced cellular Chl-a content (Chl-a:biomass ratio). Chl-
a:biomass ratios were relatively constant for individual TN 
intervals across the entire range of TN for hypereutrophic 
observations (Fig. 8b). Additionally, Cyanobacteria con-
sistently composed the majority of phytoplankton bio-
mass below the TN threshold and generally decreased 
with increasing TN above the threshold (Supplemental 
Fig. S2), which counters the hypothesis that the HNLC 
region coincided with a shift toward Cyanobacteria dom-
inance. These findings support prior analyses in which 
contour plots displayed consistent patterns for Chl-a and 
phytoplankton biomass (Fig. 2).

Zooplankton grazing hypothesis

We tested if the HNLC region coincided with high crus-
tacean zooplankton biomass, which may have influenced 
Chl-a through top-down mechanisms that could have 
uncoupled Chl-a–nutrient relationships. For hypere-
utrophic observations, crustacean zooplankton biomass 
distributions for individual TN intervals overlapped con-
siderably across the entire TN range (Supplemental Fig. 
S3). Counter to the proposed mechanism, a slight trend 
toward reduced crustacean zooplankton biomass was 
observed at the highest TN intervals.

High N sensitivity hypothesis

We evaluated whether high TN concentrations were 
accompanied by changes in DIN composition that could 
be interacting with organic carbon pools. For hypere-
utrophic observations, nitrate composed almost all of TN 

Figure 4.   Piecewise linear regression of chlorophyll a–total 
nitrogen relationship restricted to hypereutrophic observations 
(total phosphorus >100 μg l−1). the thick dashed line represents 
the estimated change point, whereas the thin dashed lines 
represent 97.5% confidence intervals of the estimate. Markers 
representing individual lake observations are transparent, so 
darker clusters represent overlapping markers. Both variables 
were log10-transformed prior to analyses.
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measurements rather than using seasonal averages as in 
previous studies (Jones et al. 1998). To our knowledge, 
this is the first study to document a Chl-a–TN threshold 
relationship in nutrient-enriched lakes. In general, these 
findings support previous studies demonstrating that TN 
has little effect on Chl-a at low TP but has an increasingly 
stronger effect in TP-rich lakes (Canfield 1983, McCauley 
et al. 1989). More important, these findings suggest that 
nutrient enrichment may produce novel phytoplankton 
biomass–nutrient relationships in lakes located in inten-
sively human-modified landscapes.

Additionally, trends in Chl-a distributions across TN 
gradients suggested differing Chl-a–TN relationships for 
different trophic conditions. Although TN had little effect 
on Chl-a at low TP, boxplots revealed weak log-sigmoi-
dal relationships between Chl-a and TN for mesotrophic 
and eutrophic observations (Fig. 3a and b). Under these 
trophic conditions, our findings support previous studies 
(Prairie et al. 1989, Jones et al. 2008b) demonstrating that 
relationships between TN and Chl-a or the frequency of 
Chl-a > 10 μg L−1 are better approximated as asymptotic 
relationships (log-log scales). The unimodal relationship 
for hypereutrophic lakes suggests the form of this relation-
ship is not consistent across all TP ranges, however (Fig. 
3c). Numerous studies have documented sigmoidal phy-
toplankton biomass–TP relationships in lakes, in which 
Chl-a or biomass begins decelerating with increasing TP 
as other resources become limiting under TP-replete con-
ditions (McCauley et al. 1989, Watson et al. 1992, Filstrup 
et al. 2014b). Although a similar interpretation could 
apply to mesotrophic and eutrophic observations in this 
study, the negative relationship between Chl-a and TN 
beyond the TN threshold suggests a different underlying 
mechanism was operating under the most nutrient-rich 
conditions.

Further, regression analyses of all observations demon-
strated the importance of both TN and TP as well as under-
water light climate (zSecchi:zmix) in predicting Chl-a while 
also revealing novel interactions among Chl-a and TN in 
this region. In addition to including TP and zSecchi:zmix, the 
best Chl-a predictive model included linear and squared 
TN terms and a TN × TP interaction term (Table 2).  
In contrast to McCauley et al. (1989), TN had significant 
partial effects on Chl-a in this study, whereas TN was only 
included as a TN × TP interaction term in their study. 
Although the TN × TP interaction term suggests TN has 
differing effects on Chl-a depending on concurrent TP, 
the linear and nonlinear TN terms suggest that TN had 
a stronger overall effect on Chl-a for lakes in this region. 
Similar to our findings, Jones et al. (2008b) found that 
significant TN terms resulted in a slight improvement 
in the amount of variance explained by Chl-a predictive 
models compared to TP-only models in a nearby region. 

based on nutrient limitation paradigms, Chl-a concen-
trations were greatest under high TP, medium TN con-
ditions but were reduced under the highest nutrient 
regimes (Fig. 2). As a result, Chl-a–TN relationships were 
best described by a threshold model for hypereutrophic 
observations in which Chl-a was unrelated to TN for  
TN < 2.93 mg L−1 (97.5% CI: 2.26–3.24 mg L−1) and sig-
nificantly negatively related to TN beyond this threshold 
(Fig. 4). The amount of variance in Chl-a explained by 
TN was low for the negative limb, especially compared 
to the high amounts of variance explained by previous 
Chl-a predictive models (e.g., Dillon and Rigler 1974, 
Jones and Bachmann 1976, Smith and Shapiro 1981), but 
was likely influenced by our use of single observational 

Figure 5.   Chlorophyll a–total nitrogen relationships for 
hypereutrophic observations (total phosphorus >100 μg l−1) 
showing predicted phytoplankton growth deficiency and either 
(a) nitrate (mg l−1) or (b) soluble reactive phosphorus (μg l−1) 
concentrations. Chlorophyll a and total nitrogen were log10-
transformed prior to analyses, whereas dissolved inorganic 
nutrients were not transformed.
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Although correlation does not necessarily imply causa-
tion, we were interested in whether any potential under-
lying mechanisms could have produced the HNLC region 
observed in this study. First, we tested whether the Chl-a 
threshold response to increasing TN for hypereutrophic 
observations could be explained by shifting resource limi-
tation across the TN gradient, as demonstrated previously 
(e.g., McCauley et al. 1989, Prairie et al. 1989). For example, 
iron deficiency can limit phytoplankton growth in some 
areas of the ocean, thereby creating high macronutrient 
(N, P, Si), low Chl-a regions (Martin and Fitzwater 1988). 
Additionally, light availability can limit phytoplankton bio-
mass in lakes, either through phytoplankton self-shading 
or through large loads of inorganic particles (Jewson 1977, 
Vörös and Padisák 1991, Jones et al. 2008b). For example, 
inorganic turbidity can cause reduced Chl-a compared to 
concentrations predicted from nutrients within reservoirs 
from a nearby region (Jones and Knowlton 2005, Jones 
et al. 2008b). Variability in growth deficiency status (as 
inferred from TN:TP; Guildford and Hecky 2000) and 
underwater light climate (zSecchi:zmix) across Chl-a–TN 
relationships did not support these mechanisms. TN:TP 
ratios, combined with commonly low SRP and high nitrate 
concentrations, suggested consistent P-deficient growth 
conditions for observations beyond the TN threshold 
(Fig. 5). Slightly higher zSecchi:zmix values for the highest 
TN intervals indicated that underwater light climate was 
more favorable within the HNLC region, despite contours 
indicating relatively low zSecchi:zmix (Fig. 6 and 7). Although 
data on micronutrients are not available, Downing et al. 
(2016) showed that silica (Si) is not likely limiting produc-
tion in these Cyanobacteria-dominated systems. Further, 
Chl-a would be unrelated to TN beyond the TN threshold 
if another factor were limiting, thereby approximating a 
sigmoidal relationship across the entire TN gradient, as 
demonstrated for mesotrophic and eutrophic observations 
in this study (Fig. 3a and b) and in previous Chl-a–TP 
studies (McCauley et al. 1989). The significant negative 
Chl-a–TN relationship beyond the threshold suggests that 
either high TN negatively affects Chl-a or another antag-
onistic factor coincides with high TN (Fig. 4).

Next, we tested whether seasonal or long-term shifts 
in phytoplankton community composition could have 
produced the Chl-a–TN threshold relationship as an 
artifact of fluctuations in cellular Chl-a content of domi-
nant taxa. Cellular Chl-a content can vary by 2 orders of 
magnitude (0.1–9.7% of wet weight) across studies and 
even 5-fold (0.5–23.6 μg mm−3 biovolume) within a sin-
gle lake, depending on phytoplankton composition and 
environmental conditions (Nicholls and Dillon 1978, Felip 
and Catalan 2000). Because Cyanobacteria can have low 
cellular Chl-a content and are predicted to dominate in 
nutrient-rich lakes (Trimbee and Prepas 1987, Downing 

Additionally, the signs of TN terms in our study indicate 
that the partial effect of TN on Chl-a changes from pos-
itive to negative with increasing TN, thereby contrasting 
with previous studies demonstrating positive log-linear 
partial effects of TN (Smith 1982, Canfield 1983, Jones 
et al. 2008b). Overall, these findings suggest that either 
the magnitude of nutrient enrichment in this region, as 
compared to previous studies, or regional landscape char-
acteristics, which can modify Chl-a–nutrient relationships 
(Jones et al. 2011, Wagner et al. 2011, Filstrup et al. 2014b), 
are contributing to these novel relationships.

Figure 6.   secchi depth to mixing depth ratio contour plot on 
total nitrogen vs. total phosphorus nutrient space. Contour lines 
were generated using second-degree local polynomial regression 
of lake observational data. total nitrogen and total phosphorus 
concentrations were log10-transformed prior to analyses.

Figure 7.   Boxplots of secchi depth to mixing depth ratios by 
total nitrogen interval (bin width = 0.1 log total nitrogen) for 
hypereutrophic (total phosphorus >100 μg l−1) observations. 
Markers representing outliers are transparent, so darker clusters 
represent overlapping markers. total nitrogen concentrations 
were log10-transformed prior to analyses.
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(Fig. 2b). Additionally, the proportional abundance of 
Cyanobacteria decreased under high TN (Supplemental 
Fig. S2), which contradicts this mechanism but supports 
previous research from this region (Filstrup et al. 2016). 
Instead, the Chl-a–TN threshold relationship seemed to 
reflect changes in phytoplankton biomass.

Data did support a possible seasonal effect underly-
ing Chl-a–TN relationships displayed in this study. High 
TN concentrations tended to occur more frequently in 
early summer (Fig. 8a), which may have resulted in high 
nutrient concentrations occurring before phytoplankton 
biomass had time to develop under more favorable tem-
perature and light conditions later in the growing season. 
In this region, N concentrations in receiving streams are 
typically greater during spring following fertilizer appli-
cations and major runoff events, whereas concentrations 
decrease in summer because of lower runoff and greater 
in-stream nutrient processing (Becher et al. 2001).

Although the underlying mechanisms likely differ, these 
seasonal patterns are consistent with those from a nearby 
region, where observed maximum Chl-a commonly 
exceeded predicted values in late summer, but Chl-a:TP 
ratios were reduced in early summer because of turbid 
inflows (Jones and Knowlton 2005, Jones et al. 2011). 
Additionally, Cyanobacteria, which commonly form large 
blooms within this region (Graham et al. 2004, Filstrup et al. 
2016), are favored under warmer temperatures in mid to 
late summer (Sommer 1986, Reynolds 2006, Paerl and 
Huisman 2008), which would further contribute to the 
offset of high Chl-a from high TN. The overall decline 
in Cyanobacteria relative abundance with increasing TN 
lends support to this mechanism (Supplemental Fig. S2). 
For this same region, Filstrup et al. (2016) found a sim-
ilar nonlinear decrease in Cyanobacteria proportional 
abundance across a TN gradient using data averaged by 
lake-year, suggesting this relationship may not be simply 
driven by seasonal phytoplankton phenology.

Next, we tested whether zooplankton grazing pres-
sure could help explain the HNLC region. Zooplankton 
grazing can strongly affect phytoplankton biomass and 
composition in lakes (Carpenter et al. 1998), in which zoo-
plankton biomass and body size help explain residual var-
iance in Chl-a–TP relationships (Pace 1984, Kamarainen 
et al. 2008). Most notably, zooplankton grazing pressure 
can induce a spring clear-water phase common in mes-
otrophic and eutrophic lakes, although its timing is highly 
lake dependent (Lampert et al. 1986, Dröscher et al. 2009). 
Crustacean zooplankton biomass was relatively consistent 
across the entire TN range of hypereutrophic observa-
tions and slightly decreased with increasing TN across the 
highest TN intervals (Supplemental Fig. S3). Further, this 
mechanism would suggest that zooplankters were prefer-
entially consuming Cyanobacteria, which are known as 

et al. 2001, Kasprzak et al. 2008), the HNLC region could 
have resulted from reduced cellular Chl-a content of 
Cyanobacteria rather than an actual decrease in phy-
toplankton biomass. Additionally, the amount of Chl-a 
produced per unit TP varies across the trophic gradient 
as a “hump-shaped” relationship in Missouri reservoirs 
(Jones et al. 2011), which could also support the finding 
of low Chl-a in nutrient rich waters within the region. 
Data did not support this mechanism; Chl-a:biomass 
ratios were consistent across the entire TN range of 
hypereutrophic observations (Fig. 8b), and phytoplank-
ton biomass was also reduced beyond the TN threshold 

Figure 8.   (a) distribution of observations by sampling round 
and (b) boxplots of chlorophyll a to total phytoplankton biomass 
ratio across the total nitrogen gradient for hypereutrophic (total 
phosphorus >100 μg l−1) observations. For sampling rounds (a), 
round 1 = mid-May–Jun; round 2 = Jul–mid-aug; round 3 = 
mid-aug–sep. For chlorophyll a:total biomass (b), total nitrogen 
bin width = 0.1 log total nitrogen. Markers representing outliers 
are transparent, so darker clusters represent overlapping markers. 
total nitrogen concentrations and chlorophyll a:total biomass 
ratios were log10-transformed prior to analyses.
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mechanisms in treatment wetlands (Jasper et al. 2013, 
Jasper and Sedlak 2013). Excited triplet state dissolved 
organic matter (3DOM*) can also produce free radicals 
by oxidizing water molecules, but nitrate is commonly 
the primary source of ROS under high nitrate conditions 
(Takeda et al. 2004, Vione et al. 2006). Although ROS 
formation through nitrate photolysis has been studied in 
marine ecosystems since the 1970s (Zafiriou 1974) and are 
known to indiscriminately oxidize organic matter (Salin 
1988), no studies to our knowledge have documented neg-
ative impacts of nitrate-derived ROS or other free radi-
cals on phytoplankton in lakes. Concurrent observations 
of high nitrate and low DOC concentrations beyond the 
TN threshold may lend support to this mechanism (Fig. 
9a; Supplemental Fig. S4). We anticipated similar DOC 
concentrations across observations because of similar 
land use and land cover within this region and previous 
studies demonstrating that lake DOC is largely influenced 
by terrestrial landscape characteristics (Gergel et al. 1999, 
Webster et al. 2008). The high occurrence of low DOC 
observations beyond the TN threshold suggests that some 
process, potentially negative interactions with nitrate-de-
rived ROS, may have degraded DOC under high nutrient 
regimes.

Because DOM is a known scavenger for ROS (Brezonik 
and Fulkerson-Brekken 1998), this hypothesis seems plau-
sible. If observations beyond the TN threshold coincided 
with low DOC inflows, however, then ROS may have been 
more damaging to phytoplankters because of reduced 
scavenging by DOC. Although chloroplasts have evolved 
defence mechanisms to protect against damage from ROS 
(Salin 1988), accumulation of ROS in the water column 
through nitrate photolysis may be placing added strain on 
these mechanisms. Alternatively, these findings may indi-
cate that large storm pulses are delivering large nutrient 
loads low in DOC to lakes (Dalzell et al. 2011), which may 
promote high rates of ROS formation after storms pass.

A plausible ROS mechanism requires an underwater 
light climate (especially with respect to ultraviolet [UV] 
wavelengths) conducive to promoting nitrate photolysis, 
despite a euphotic zone restricted to the surface layer in 
these highly productive lakes. In fact, algal self-shading 
has been demonstrated to reduce oxidative stress in exper-
imental mesocosms, although whether this phenomenon 
occurs in natural environments is unclear (Barros et al. 
2003). Agricultural practices can modify underwater light 
climate by increasing both abiogenic and biogenic tur-
bidity through increased sediment and nutrient loading, 
respectively (Allan et al. 1997, North et al. 2013). The 
predominance of surface bloom-forming Cyanobacteria 
in these lakes also contributes to reduced light penetra-
tion (Filstrup et al. 2016). By contrast, Zepp et al. (1987) 
showed that hydroxyl radical (OH) production rates in 

poor food sources (Wilson et al. 2006, Heathcote et al. 
2016), thereby making this an unlikely mechanism.

Finally, we considered whether high TN in these lakes, 
which was primarily driven by nitrate (Fig. 9a), could 
have either a direct or indirect negative effect on phy-
toplankton biomass. For example, nitrate can undergo 
photolysis under high light irradiance to produce vari-
ous reactive oxygen species (ROS; e.g., NO2, 

OH, 1O2) 
that can damage organic compounds (Zafiriou 1974, 
Salin 1988, Vione et al. 2006). In fact, both direct and 
indirect (ROS-mediated) photolysis of trace organic com-
pounds are well studied as potential contaminant removal 

Figure 9.  total nitrogen composition by (a) nitrate + nitrite and 
(b) ammonium for hypereutrophic (total phosphorus >100 μg l−1) 
observations. Markers representing individual lake observations 
are transparent, so darker clusters represent overlapping markers. 
the solid lines represent 1:1 lines for reference. all variables were 
log10-transformed prior to analyses.
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that these monitoring data were collected at the histor-
ically maximum depth location in each lake, whereas 
nitrate concentrations commonly exceed 30 mg L−1 in 
inflowing streams (Filstrup and Downing unpubl.). In 
addition to region-specific agricultural practices, other 
regional factors (e.g., climate, hydrology, geology) may 
influence production and accumulation of ROS in the 
water column. For example, Jones et al. (2008a) found 
flushing rates accounted for almost twice the variability in 
TP for Missouri reservoirs compared to those in southern 
Iowa, suggesting that flushing rates may have a stronger 
influence on phytoplankton–nutrient relationships in 
Missouri. Bicarbonate and carbonate ions are known scav-
engers of free radicals in well-buffered systems (Brezonik 
and Fulkerson-Brekken 1998), so ROS may not accumu-
late in lakes within limestone regions.

Finally, the level of data aggregation prior to analy-
ses may have influenced the form of Chl-a–TN relation-
ships demonstrated here compared to previous studies. 
Although we used individual sampling observations to 
consider the widest range in nutrients, previous studies 
typically aggregated data by seasonal or lake-wide aver-
ages (e.g., Dillon and Rigler 1974, Jones and Bachmann 
1976, Smith and Shapiro 1981). Aggregating data by 
averages could have influenced phytoplankton–nutrient 
relationships by (1) reducing nutrient ranges by “averag-
ing out” the extreme nutrient concentrations needed to 
reveal threshold responses and (2) reducing variability in 
response and predictor variables that helped contribute 
to extremely high levels of Chl-a variance explained by 
previous predictive models (commonly r2 > 0.90).

In this study, numerous observations had TN con-
centrations >10 mg L−1 (Fig. 4). Compared to mode-
ling log-linear relationships, threshold relationships on 
log10-transformed scales require increasingly more obser-
vations to accurately estimate the breakpoint and to main-
tain adequate statistical power to model both limbs. By 
analyzing the same dataset using different levels of data 
aggregation, Jones et al. (1998) showed that the amount 
of log10 Chl-a variance explained by TP increased from 
52% for individual sampling observations to 84% for lake-
wide averages, and the form of the model seemed more 
nonlinear for the unaggregated data. Further investigation 
of Chl-a, TN, and TP relationships from other hypere-
utrophic waters using different levels of data aggregation 
is warranted to determine whether negative effects of 
nitrate-derived ROS on Chl-a are common elsewhere.

Conclusions

Although mechanisms underlying these relationships 
require further study, our findings suggest that agricul-
tural practices, including large nutrient amendments to 

Greifensee were comparable to the open ocean because 
much higher nitrate concentrations compensated for 
reduced solar irradiance and light penetration, suggest-
ing that nitrate photolysis can be an important source of 
ROS in nitrate-rich, productive lakes. Although delayed 
initiation of nitrate photolysis in these systems may be due 
to UV light attenuation, OH production rates are com-
monly much more rapid than lake flushing rates, which 
can result in accumulation of ROS in the water column 
(Zepp et al. 1987).

If accumulation of ROS through nitrate photolysis was 
the primary mechanism causing the HNLC region, then 
the low TN threshold observed in this study (2.93 mg L−1) 
leads to the speculation that Chl-a–TN threshold relation-
ships should be common in nutrient-rich lakes from other 
agricultural regions worldwide. Yet, to our knowledge, 
this relationship has not been previously demonstrated 
by empirical studies using existing monitoring datasets. 
For example, Chl-a–nutrient relationships have been stud-
ied extensively in reservoirs in Missouri, which shares 
Iowa’s southern border, using long-term monitoring data 
without producing similar results (e.g., Jones et al. 2008b, 
2011). Despite the proximity of these 2 regions, landscape 
characteristics may contribute to different biogeochemical 
nutrient cycles within their watersheds. In a cross-regional 
comparison, Jones et al. (2008a) demonstrated that reser-
voirs in southern Iowa had ~2-fold higher nutrient con-
centrations than reservoirs in the Missouri Plains. Further, 
Missouri reservoirs tend to have lower TN relative to TP 
compared to empirical models based on world lakes (Jones 
et al. 2008b). Whereas TN and TP (log10 - transformed) 
were weakly correlated in Iowa lakes (r2 = 0.10), they were 
tightly coupled in Missouri reservoirs (r2 = 0.84), resulting 
in Chl-a–TN relationships strongly approximating  
Chl-a–TP relationships (Jones et al. 2008b). The Missouri 
dataset therefore contains more densely populated data at 
the lower nutrient end of the relationship, suggesting that 
agricultural practices and landscape characteristics were 
not driving the extreme nutrient concentrations needed 
to reveal the Chl-a threshold response to TN. Note that 
relationships from Missouri were illustrated using lake-
wide average data instead of individual sampling event 
data, as in this study.

Additionally, several other characteristics can influ-
ence phytoplankton–nutrient relationships in lakes, 
which may help explain why previous studies have not 
documented similar threshold responses. For this mech-
anism to hold, high TN concentrations must be driven 
by nitrate rather than other forms of dissolved inorganic 
or organic N (DIN and DON, respectively) and there-
fore would not be observed in regions where agricultural 
N amendments are not oxidized to nitrate through soil 
microbial processes before entering receiving waters. Note 
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