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in this paper, a number of sampling problems for populations that have

an underlying negative binomial distributisn with mean m and aggregation

o . U e - . kK .k, m \x
paraneter k {i.e., Pr {observing a level xj = (T(k*x)/F(k)x!)(E:EJ (k+m) )
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prior distribution fD(m). The objective is to deternine if m excesds a
critical level e - Three modals are introduced: presence azbsence sampling

wnen all sampling sites are habitats, presence-absence sampling when a site
may not be a habitat, and actual updating of the mean. Both lixed sample
and sequantial procedures are described using a Bayesian approach. The
problem of knowing when a habitat has been exited is also discussed. The
theory is motivated and applied to egg surveys {for Pacifie Sardine. In the

Appendix, a nevw modzl (Zero/Random or Z/R) for aggregation is proposed.
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L ey elemznt in blological resource management is having some
estimate ol the current state of the resource {a spseific example - Pacific
Sardinre — is describad in the next section). In order to obtain such
information, fisrhery scientists very often run surveys to sample the
resource (e.g., fish schools) or some proxy to it {(e.g., egg or larval
surveys). This paper is concerned with questions in the design of such
surveys when the sampled population is highly aggregated. Aggregation is
common property of many biological species (efg., Taylor {1971), Bliss
(1958)) and is certainly observed in populations of fish (see, e.g., Taylor
(1953), Gunderson et al. (1980), Smith (1978 a,b), Zweifel and Smith
(1981)), Hewitt (1978)). (A biological mechanism for aggregation is
discussed in the next section). One Wway to describe the aggregation is to
assume that'the population follows a negative binominal (NB) distribution
(Pielou (1977), Mangel (198%)). That is, if X is a random variable

corresponding to the observation, then

Hed ety

Pr{X=x} =
In this equation, F(+) is the gamma function (for integer values
F{n} = {n-1)!) and m and k are parameters. In particular (Feller,
1971)

E{X} = m
mz.

Var{X} = o + ”

(2)

so that m is the mean of the distribution and k can be interpreted as a
measure of agsregztion (Anscombe (1950) provides a nice discussion of these
concepis}. As «k increases, the level of aggregation decreases (for

k = =, (2} sho~s that E{X} = Var {X}, corresponding to the Poisson
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distribution}. Values of Kk for fish populations rangs from 0.1 up. Very
often, k 1is relatively constant if one samples the same species or the
same physical scale (Taylor (1971)).

Observe from (1) that the probability of nonpositive sample (i.e.,

X=0, which will henceforth be called a negative sample) is

k]k

Pr{X=0} = e

. (3)

Figure 1 shows Pr{X=0} as a function of k and m. The impact of the

figure is this: m can be enormous (e.g., 10') but if k 1is small enough

(e.g.,.1) there can still be a sizable chance {for m = 107, k - .1, it is

.15) of a negative sample. The converse is true as well; when %k is
small, a small fraction of the samples will drive the dynamics of the
sample mean. That is, a few samples will yield enormous values of X.
{(For k = .2 to .6 the chance of an observation greater than tyice the mean
is about 15%; for an observation greater than 5 times the mean, the chance
Is 53 for k=.2, L% for k=.4 and 2% for k=.6.,) Tableli, for example, shows
typical data on samples of anchovy larve. Clearly the few large samples

Wwill drive the dynamics of the sample nezan.
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Table 1
Data on 3.75 mm Anchovy Larvae in January, 1969

(from Zweifel and Smith, 1981).

Station Larve
80.51 ' 9
752 3
.60 0
82.47 84
83.43 343
.51 45
.55 0
IBT.HO 550
A5 In
.50 14
.55 7
90.32 ' 223
.53 | 632
93730 4
.35 2
.ho 118
A5 2
94.30 L6

97.40 0
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The level of aggregation of a species thus clearly effects design of a
stock survey. In particular, the more highly aggregated a species, the
more effort one would expect to put into survey ror the same level of
accuracy on the estimates; Leaman {(1981) Hewitt, Smith and Brown (1976),
Hewitt and Smith (1979), Hewitt (1976), and Hewitt and Smith (1982) discuss
the problems of sample survey design. 1In particular, Hewitt and Smith
(1982) study the effects of aggregation ﬁn the design of an acoustic survey
and try to estimate the number of samples needed to achieve a given level
of confidence.

This paper is concerned with the problem of sampling a population that
has a NB distribution with known k but unknown m. (The case of both k
and m unknown is deferred to a2 later paper.j The kinds of questions that
must be addressed are:

b) Given a discovery, say of xt in n samples, what can one Say

about the distribution of m? What happens if one only pays attention to
prasence-absence of the sampled species?

2} What can one say about the confidence limits on m?

3) How many negative samples (i.e., zerc counts) are neceded before
one can say wWith a given level of accurécy that m is less than a critical

value mc? The third question was the origina! motivation for this work; it

is discussed in more detail on the next section.

In this paper, a Bayesian approach is advocated for two reasons.
First, the Bayssian approach provides an objeclive method for incorporating
information into the analysis. Second, the Bayeslan approach. 1is ideally

suited for th2 use of "negative" information.
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The kinds of sampling schemes discussed here are both fixed sample
{i.e,, take a fixed number of samples and then make inferences) and
sequential sampling {Wald (1947), DeCGroot (1970), Plant and Wilson {1985))
in which one consistently makes probability inferences. Seguential
sampling schemes have the advantage of potentially requiring fewer samples.
In addition, the methods developed here are simple and robust enough to be
used in real times on the survey vessel if the vessel has a small
microcomputer.

In the next section, the operational and biological motivations of
this work (surveys for the Pacific Sardine) are discussed. The third ard
fourth sections concern presence-absence sampling in which the only data
used are whether X=0 or X>0. The fifth section discusses a more
traditional appreoach in which the value of X 1is actually uséd. In the
sixth section, the problem of knowing when a habitat was exi;ed is studied.
The seventh section contains conclusions and directions for future work.,
There are thres appendices. The first discussea the NB model and a new
model (called Z/R) for aggregation. In the second appendix, the
approximate noninformative prior for the mean of a negative binomial
distripution is derived. 1In the third appendix, approximations for the

integrals that arise in the paper are studied.
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OPERATIONAL AND BICLOGICAL MOTIVATION: PACIFIC SARDINE MANAGEMENT

The work in this paper was motivated by the problem of designing egg
surveys for the northern subpopulation of the Pacific Sardine (sardinops
sagax, immortalized by John Steinbeck). This sardine population, which
once may have been at a biomass greater than 11,000,000 metric tons (Smith
1978b) is now less than 20,000 short tons. Under the current ménagement
agreement, there will be no fishing on the sardine population until it
exceeds 20,000 short tons, and egg surveys, which adapt the egg production
method (Santander et al. (1982), Hewitt (1984), naeCall {1984), Wolf and
Smith (198%4)), will be used to determine whether the population exceeds thne
critical blomass level of 20,000 short tons or not. If there is sufficient
evidence that the biomass exceeds the critical level, then é full biomass

survey will be conducted and (possibly) some fishing pressure exerted.

The egg survey involves sampling areas of 0,05 m2 at speéified sites
that are spaced Ynm by 10 nm apart. Figure 2 shows a proposed sardine egg
sampling plan for a cruise in May, 1985 to be run by scientists at the
Southwest Fisheries Center, La Jolla, California,. Any eggs discovered at a
sampling site are classified by age. Using historical data, Smith and
Richardson (1977) estimated spawning biomass and the parameters m and k
in the negative binomial distribution (1). They found k relatively
constant, between 0.1 and 0.2 as the spawning biomass varied by a factor of
40. Why should the eggs be so highly aggregated with a parameter that is
virtually indepsndent of spawning biomass? One explanation is the
following (P, Smitn, Southwest Fisheries Center, La Jolla, California).
Regardless of spawning biomass, the egzs can get fertilized only if they

{and the sperm) are sulfficiently clumped at the time of fertilizaﬁion.
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That is, if the eggs are uniformly distributed, there is a considerable
chance that most of them will not get fertilized. = An observation
consistent with this model is that eggs under 1 day old have k ~ .2,
between 1 and 2 days old have k¥ = .4 and greater than 3 days old have

k = .6, This phenomenon is explained by assuming that after fertilization,
the eggs begin to disperse, presumably due to random diffusion.

There is one more major biological difficulty -- one does not know if
sampling site is actually a habitat for the sardine. (Smith 1978b, Fig. 98
shows historical spawning regions). Thus, if a negative sample is
obtained, it can be because the site is not 2 habitat or because the site
is a habitat and there were simply no eggs present. This leads cone to a
thorny operational problem. Superimposed upon the sampling sites on
Figure 2 is a "habitat region." Hopefully, the habitat region is contalned
by the sampling plan, hut the boundaries are unknown. Thus, as one
ttaverses the sampling lines on Figure 2 from NE to SW, how does one know

when the habitat has been exited?
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PRESENCE-ABSENCE SAMPLING WHEN ALL SITZS ARE HABITATS

To begin, consider the problem of sampling when all sites are
habitats, and the only data uséd are whather or not a site has eggs.
(Although this problem is not really relevant for the sardine survey, it
may be for other surveys and is thus inecluded here for completeneas.) It
is assumed that corresponding to the critical biomass level is a eritical

value of m, mc. That is, if the spawning biomass is less than the
critical level, then m < mc. The problem is to then determine the

probability that m < m, as a function of the data.

Let xidenote the ith observation. When all sites are habitats, one

has

k ]k

Pr[Xi=0} = (k+m

(4)

Prix,>0} = 1 - (

K+m

Assume that N samples are taken with Np of them positive and Nn of them
negative (and N = Np + Nn). Let £(Nn,Np|m) denote the likelihood of the
sample, given a value of m, sb that

N k N
kKyniot. rkykyp
i A

. (5)

£ NN m) =
In order to uss a BafESian approach, one must specify a prior density
fo(m). Two choices are the uniform prior (UP)

folm) = 1, m20 (6)
and the approximate noninformative prior (NP)

1/2(k+m)-”2. n (7)

A%
L]

fo(m) _y
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(The 1P (7) is derived In Appendix 2. A prior islnoninformative if the
data change only the location, but not the shape of the posterior density.)
The UP given in (6) and NP given in (7) are improper in that they cannot be
integrated on [O.w]f It will be seen that the posterior densities can be
integrated under very general conditions. Figure 3 shows the prior
densities UP and NP. Each has a certain attraction: UP because it
essentially allows one to say "I don't know the value of m and I
initially give all values equal weight" and NP bezcause of its property
related to the data. HNote that NP uweights smaller values of m more
highly.

The posterior density on m given Nn and Np’ f(m[Nn.Np) is computed

by Bayes Theorem

fO(m)S(Nn.Np[m)

f(m|N_,N )} - (8)
nop Ifo(m)L(Nn,Np]m)dm
The posterior probability that m S L P(m < mc), is then
. | (41
ot c
P(m s mc) = IO f(m|Nn,Np)dm : (9)

In order to compute (8) and (9), it is helpful to rewrite the

likelihood (5) as follows .
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n K Np
S(Nn.Nplm) = [k+n] [1 ‘f*f;] ]

Nk N N .
=™ 3P OO o TH M)

J=0

(10)

Let PUP(m 3 mc) denote the posterior probability that m € m, when the

uniform prior is used. Then

Np N m
P J)(—1)J “Jf (eom) K 304
=0
TN M 3
Ep ( g)(—1) K
j=0

(11)

f (kem) ¥ Pp* g

In order to insure that the integrals in (11) converge, one should sample

until Nn > 1/k. Then

N

p kj _ . _ ]
_E ( p)( 1)3'ET§'IET-T {k k(Nn j)+1-(k+mc) k(Nn+J)+1l
Pyp(m S m ) = J;°
) ¢ )( VD k(N +J) 1

j=0
The expression (12) is easily computed on a desktop microcomputer.

Let P, (m £ mc) denote the posterior probability that m & mn, when the

NP

noninformative prior is used. Then

N m
p? _ _
7 ?)c 19K 172 gy R 212
PNP(m P mc) = HHG 2 {13)

kJJ 0172 ey KB #3172
j=0 0

The integrals in {13) are most easily computed by seiting
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m=Kk tan20
dm = 2k tan Gd@/cos20 (14)
2
k+m = k/cos“0

and defining

/ n
@ = arc tan [ —%); {15)

e

When this is done, one finds that

2k(Nn+3)~1

Z ( )( -3k kJJ (cos 0) a0

NP(m P m Yy = N (16)
57 p)( 1)31«"3[ (cos e)z““*k”’ 1
j=0

In order to insure convergence of the integrals in (16), one should samnple

until Nn > 1/2k. Although slightly more complicated than (12), (16) is

also easily evaluated on a desktop microcomputer.
A discussion of sequential sampling plans and other probability
statemenis is deferred until the next section when the generalization of

this problem is treated.
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PRESENCE-ABSENCE SAMPLING WHEN SOME SITES ARE HABITATS

Now consider the case in which the ith site has a probability Pi of

being a habitat. Then, if a site is not a habitat X = 0 with probability

i

1. Consaquently,

' kK 1k
Pr{X =0} = 1 Pi+Pi(-E+—m-
(17)
k 1k
Pr{X,>0} - Pi-Pi(k+m]

(Pennington (1983) and Pennington and Berrien (198Y4) discuss similar
problems, but from a very different perspective.) Again, assume that there

are Nh negative samples and Np positive samples. Let h denote those sites

at which a negative sample was obtalned and P denote those sites at which

a positive sample was obtained. The likelihood is then

£ NN ) = @ [1*Pi+Pi(—E§H]k] n{Pi-Pi[k'fm)"l (18)
fen - iep

A number of different kinds of -sampling schemes can be derived, based on

assumptions about the values of PI' Some of these will now be discussed.
First consider the case in which all the Pi take the same value, P.

Then (18) becomes

r k 1k Nn K 1k Np
5 (Nn.Np|m) = t1-P+P(k+m] ] [P-P[m] ] (19)
Consider first a simple probability statement that, after the Nn negative

and N positiiys osbservations, m 2 m It becomes convenient at this point

to introduce = maximum allowed value of m, denoted by mn. The value of
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Mmoo like the value of n,s can be viewed as a {subjective) user input. When

the uniform prior is used, one has

J, e () B pp( 1) Pe

o k+m o
PUP(m 2 mc) = - (20)
[ Tiopen( ]k]N“[P-P(LJ"]N"d
o k+m k+m m

Since m may be quite large (say of the order of 1000) it helps to

introduce
w o= K
k+m
2

dw = - X 2dm = - %— dm
(k+m)

w = K w = K

c k+m n- k+m ‘

[ m

The integral in (20) becomes

e p o
k k dw
- P - —_—
J“$1 P+Pu ] [P-Pw"] 2
PUP(m 2 mc) = Np Np .
k k dw
IHET-P+PH 1 [P-Pw ] )
m w

These integrals are easily computed on a desktop microcomnputer. In
addition, in Appendix 3 Gaussian approximations to the integrals are

discussed.

When the noninformative prior and the transformation (14) are used,

one obtains
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6 N N
Iem[1-P+P(cos 8)2%] "[p-p(cos 8)2£] P ,_55175
Pyp(m 2 m.) = ec N N cos.® (21)
' Iom[T-P+P(cos 8)2k] N{p-P(cos 8)°F] P do

cos ©
Figure 4 shows Prim 2 mc} as a function of the number of positive samples
using both priors. The NP is more "conservativeﬁ than the UP.
Figure 4 is a ex post facto probability statement made after the data
are collected. On the other hand, for many situations a seguential
sampling plan is often more useful. Figure 5 is a sequential sampling

diagram used to compute the probability that m 5 Mo under the uniform
prior. In this diagram one plots Nn versus N = Np+Nn° If an observation
falls in the shaded region then one can conclude that m & LR with

probability .95 (Fig. 5a) or .99 (Fig. 5b). If the current data point (N,

Nn) does not fall in the shaded region, then an additional site is sampled.

These same kinds of calculations can be performed when the generalized
likelihood (18) is used. For example, when the UP is used one finds

i ky, 1 p Ky dw
. fen (1 P1+Piw } jep (P1 ?iw )} w2
(22)

k p Ky dW
1gh (1 P AP } 159 (P, P W )-—:2
m W
The only difficulty is.that one cannot develop charts similar to Figures M
and 5. 0On the other hand, (22) is ideal for use in real time with a

microcomputer. rfor example, assume that mc= 1.14%, mm= 1000, k=.2 and let

each data point (P Xi) be represented with Xi= 1 for a positive sample and

i’

Xi= 0 for a negative sample. Suppose that the first 10 data points are
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(1,0}, (1,0), (.95,0), (.95,0) (.9,0), (.9,0), (.85,0), (.85,0}, (.8,0),

and (.8,0). Using (22) shows that P__(m $m ) = .52. Suppose that the

up o]
next five data points are (1,0}, (.95, 1), (.95,0), (.95,0) and (.9,0).

Using the 15 data points gives PUP(m k-4 mc) = .82. 1If the next five data
points are (1,0), (1,0), (.95,0), (.95,0), and (.9,1) then PUP(m g mc) =

.86, If the next five data points are {1,0), (1,0), (.95,0}), (.95,0) and

(.9,0) then PUP(m s mc) = .96 and sanmpling can stop if a 95% confidence

level is desired.

Two points are worth noting. First, there is a preponderance of
zeroes in the data. This kind of result is, in fact, observed in sampling.
For example, in the sardine cruise depicted in Figure 2, only 15 of the 300
sites may have eggs (pers. comm. P. Smith, SWFC, La Jolla, CA). Second, a

large amount of negative information Is needed to insure that m = m, with a
high confidence level. One must remember, however, that with the UP, the
initial probability that m S m_ 1s mc/mm. So, for example, for the values

presznted here the prior probability that o s m, is 1.1hx10~3. In

addition, since not every site iz a habitat the effects of negative

information on the updated distribution are mitigated (i.e., as Pi+0 the

data have decreasing effects on the Bayssian update).
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BAYESIAN UPDATILSG OF THE MEAN

How consider the situation in which the actual values of Xi are used

to update the distribution of the mean. Observe from (1) that if every
site is 2 habitat, then

X

PriX=x} « (i k+X (@23

where the proportionality constant contains terms independent of m.

Consequently, if N samples are taken, with Xi having the value x, and

1
N
xp = ) x;, the likelihood of the data is
i=1
xr ~Nk-x
£ =n {k+n) T (24)

If the prior density fo(m) is assumed to be of the form

fo(m) « n%(kem)® (23)

then the posterior density is

a+xT -Nk-x%_+8
finfx) =« m (k+m) . {26)

The uniform prior corresponds to u=5=0 and the noninformative prior
corresponds to o=3=-1/2. The posterior density (26) can be integrated
using one of the two substitutions discussed in the previous section.

For purposes of sequential sampling, observe that (24) - (26) can be
sumnarized as fﬁllows. At any point in the sampling scheme, the density of
m 'is.proporticnal to

n a(k+:)5 _ 27)

If the next szxple has the valus X, the updated density has the same form

as (27) witr uidated parameters a', 3' given by
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]
2

+
b

al

U

™
x-
™

g (28)

Next consider the case in which the ith site is a habitat with probability

Pi. Then

Pr{x =Q} = 1- P +P_( )k

i k+m

(29}

X, -k-x

i i
Pr{xi— xi>0} « Pim {k+m}

As before, let h denote those 1 for which Xi= 0 and $® those 1 for

which X, > 0. The likelihood of the data is then

i
K % kX,
£« 1 {1-P, Pl(k+“) 1 1 {pim " {k+n) ] (30}
ien iep Co
If @ contains p data points, x = J ., and the prior density (25) is
iep
used, the posterior density is
o g x —k—xi
fm|X) « m (k+n)" { }{ IP.m (k+m) ]
ien 1ap
at+x ~pk-x_+8
<m0~ e, % @ p, dm Pl P, (31)
ik+m
ien 159

Equations (2%8) and (31) provide a complete Bayesian method for
updating the pzen. The only difficulty involved may be one in which
computational problems occur, due to exponentiation to very high powers

(caused by lzrgn values of Xp or xp). This problem aside, one can redo all

of the kKinds of szmpling plans that were done in the previous section.
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2LIT FROHVA HASLITAT

Next, consider the problem of estimating when the habitas has been
exited. That is,'suppose a string of negative samples has been obtained.
Hha£ is the probability that one is sampling a region in which the sites
are simply not habitats? In order to fprmulaté this problem, a habitat
profile is needed. That is, define a "site" variable s and let p{s)
denote the prodability that 2 site at point s is a habitat. Panels

a) —c¢) of Figure 6 show three possible habitat profiles. These are

respectively
1 - s/s s <s
p(s) = {7 ,7"%0 NI (32a)
0
1 s < s
p(s) = {g s 3 80 (32v)
0
_ fT-as 5 (s
p(s) = {; N (320)

The first two profiles are single parameter models in which the parameter

Sy nust be estirmated; the last profile is a two parameter model in which s0

and a must be estimated. For the sardine eggs, at least, no gradations
of habitat appear to be observed (P. Smith, personal communication, SWFC,
La Jolla, California) so that profile (32b) is the one of choice.

The set up for Bayesian updating is shown in Figure 6d. Let s

denote the current position of the vessel, 8, the first negative sample in

the current siring end A the distance betwsen sites (so that the last

positive samplz was at 31— A). One wishes to compute the posterior

probability tra: 50 $ s, given the string of negative samples. For the

nabitat profilz (32b), one has
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L P O S

Pr[Xi= 0} = {(k+m (33)
1 if iz2s
_ o
Consequently, the likelihood of the data, conditioned on S,= 8, is
5-3
ot gk \k[—=1]
I {data[so—s} = (k+m) A (3%)

ir fo(s) is the prior probability density for Sy» the posterior density is

f (s )( k ks/A
+ S 2 8

[If()(k ks/& ] 1

(35)

k+m
For example, a relatively robust and versatile choice of prior

densities is the family of gamma densities

Q S Bv—l (36)

rﬁ(s) - T

with two parameters v and a. For v =1, (36) is an exponential density,

which is rewritten as

-s/s
fols) = ——e /s (37)
=

where s is the pricr estimate of the mean of g A 1ittle calculation
shows that

Pr{s0 < s|data} = 1 - eh(s-sl)/A 82 s, (38)
where

1 1 Kk
S e e G (39)

For the g=n=ral gamma density (30}, one finds after some calculation

that
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Pri{s, < s|data} = (v, (a+k)s)-Y(v,(ark) 3) s

r{v) = Y(v,(a+k)s,)

(40)

v
4]

where K = (-k/4) log (k/k+m) and Y(v,x) is the incomplete gamma function
definad by

n

x _ - - L]
Yo,x) - | e v gy o B9 ox !{P TTornel) (41)

0 x ¥ 0
Observe that in order to use (38) or (40) one must specify a value of
m. (The problem of jointly estimating m and whether one is inside or

outside of a habltat is a more difficult problem, deferred to a later

papsr). Also, observe that if s and v are given, then
Yy .3 _ (82)
o

80 that &« = v/s. Table 2 shows sample output using (38) and (40). For the

second set of data, when v=.25, the posterior probability that s < Sg

exceeds .99 only for s > 104,



‘Data

| ea

12
16
20
24
28
32
36
4o
by
48

h2

k=.2 m=1

Table 2

Exiting the Habitat

s5,=12

1

Pr{so < s} for v =

2(Cv=.71)

0
42
.68
.83
-9
.95
.97
<99
.99
.99
.99

1 {CV=1)

.43
f57
.81
.89
.94
.96
.98
.99
.99
f99

1/2 (CV=1.41})
0
.43
.67

.88
-93
.96
.97
.98
+99
.99

1/4 (Cv=2)

0
.43
-67
.80

.88

.93

.95

.97

.99
.99
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Table 2 (continued)

Data k=.2 m=1 8=20 s, =12 A=Y

Pr{so < 5} for v =

) 1 .25
12 . 0 0
16 .25 . 22
20 1“3 .38
24 57 .50
.28 .68 .59
32 .75 .66
36 .81 72
4o .86 7
hy .89 .81
48 .92 . 84
52 .94 .86
56 .95 .89
60 .97 .90
64 .97 | .92
68 .98 .93
72 .99 .94
76 .99 .95
80 .93 .96

84 .99 .96
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CONCLUSICHNS AND DISCUSSION

In this paper, a number of different Bayesian methods for sampling
highly aggregated popluations are introduced. There remain issues and
questions associated with these models that are worth discussing. These
include the following.

1. Which Technique Should Be Used? The three techniques introduced here

are i) presence-absence sampling when all sites are habitats, ii) presence-
absence sampling when.some sites are habitats and 1ii) Bayesian updating of
the mean. From the standpoint of both operational reality and
computational feasibility, it appears that technique ii) is the one of
choice.' Operational realism is included by allowing sites to have a non
zero probability of not being a nabitzt. 3y doing only presence-absence
sampling one avoids the kinds of computational difficulties that were
described in the fifth section. Finally, the software for technique 1i) is
easily developad and'robust. The ultimate decision about the technique of
choiece must depznd, to some extenl, upon operational testingf

2. Many Age Classes of Eggs. in the actuzl sardine survey, three age

classes of eggs {1 day, 1-2 day, 2-3 days old) are sampled, each with a
different aggregation parameter (k=.2, L4, .6 respectively). Thus, the
data are more complicatéd, consisting of presence—absence of the three age
classes or the actual counts of the three age classes. The question of how
to use these data is complex. One could assune, for example, that the
three age classes represent completely independent events (probably an
unrezlistic assumption). The other extreme is one of complete correlation:
if any age class is present, then they all are. Reality probably lies

somexhere between the two extremes, with 2 partial correlation. A Bayesian

T
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approach to this probdlem can also be developed (see Mangel et al. (1984)
page 568) wnere the correlation level is a user inputted variable.

For_the sardines, at least, biologists believe that the three age
classes can indeed be treated as independent variables (P. Smith, Southwest
Fisheries Center, La Jolla, CA). The reason for this belief is that the
sardines are highly mobile and egés of different ages are spawned by
different schools. There is considerable acoustic evidence that different

schools of sardines move independently.
Ir mj and kj now denote the values of m and k for the jth egg class,
the independence assumption implies that the probability of no eggs at the

.th . . . -
i sampling site is given by

RIRR
Pr{X =0} =~ ;[{1-?1+pi[kj+mj) } (43)

All of the results presented in the previous sections can easily be
modified using (43).

3. Joint Estimation of soand m. One problem not discussed in any of the

previous sections was the joint estimation of the extent of the habitat and
the value of m. In principle, this joint estimation problem can be
tackled using the same kinds of methods found in sections 3-6, It is
likely, however, that the details will be more complex. For this reason,
discussion of the joint estimation problem is deferred.

4, Imperfect Sampling. Another possible extension allows for the chance

of imperfect =ampling. One vay to do this is to use the weighted NB (WNB)

model of Bisnell (1972). According to that model, if a site is a habitat
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k miW b'e

F(k+x) ¢ X i ‘
PriX; = x} - xIF{k) mw1+k] [mwiﬂ(] (§4)

where wi is a measure of sampling efficiency. (Zweifel and Smith (198%1)
discuss the interpretation of wi.) The data now consist of triplets

» X,). The methods of the previous sections can be extended to

(Pi’ Hi i

cover this case with essentially no conceptual difficulty and only minor

computational difficulty.

5. Economic Modeling. Recall that the purpose of the egg survey is to
determine a level of confidence about the biomass ahd-that if the biomass
exceeds a critical level, then a complete stock survey will be conducted.
Cne can easily extend the methods of this paper to include the costs of the
egg survey, the cost of the complete stock swrvey, and the cost of not
allowing fishing when the stock exceeds the critieal 1eve1._

6. Egg Surveys as Priors. Assuming that one decides to pursue a complete

stock survey. The results of the egg survey can be used as a prior density
wnen planning the larger survey. The results presented in the previous

section on estimating the extent of the habitat could be especially useful.
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APPENDIX 1. The MNB and Z/R Models

In this appendix an operational motivation of the KB model is
presented. It is used to motivate a new model, the Z/R (Zero/Random)
model, for aggregation.

Suppose that at any site counts are random; thus they are given by the
Poisson with parameter )

e—xlx
Prix[a} = =5 (A-1)

Assume next that ) varies globally, so that in any given site the actual
value of X is unknown. For a distribution on A, pick the gamma density

with parameters k and w:

-wlAk-lwk
£{1) = TR (A-2)
The unconditional distribution of counts is then
@ e-xlx e-wllk_1 wk
Prix} = jo X1 r(x) a
{(a-3)

- T(k+x) W )k[ 1 ]
xIT(k) ‘w+l w+1

Next, define m by m = k/w. Then (A-3) can be rewritten as

X

k
T(k+x) k
retx) - HE () ) )

Equation {(A-4) is the NB distribution (1).

This kind of calculation motivates the Z/R model. That is, assume
that a given site has a probability p of containing a positive number of
eggs. If it contains eggs, assume that the number of eggs at the site is

randomly distributed (i.e. Poisson). Thus
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Pr{Xi= 0} = 1-p

PriX = x} = B A X = 1,2... (A-5)

The e*-1 in the denominator arises because Y AZkt ~ et-1. A
: k=1

straightforvard calculation shows that

A
E{x}-B—}E—

1 e -1

(2-6)

A 2
E(x0) - B2 AR )
e -1

Although an analytic form for the variancs Var{xi} is not espescially
tractable, it is easily computed. Figure A-1 shows a plot of Var{xi}/E{xi}

as a function of the mean E{Xi}. Clearly, very large variance-mean ratios

can be observed, as in the case of the NB distribution.
For this reason, it is worth considering inference for the Z/R model.

Suppose that of N  samples, n are negative and N-n are non-zero, with xi

denoting the value of the ith sample., The likelihood, £, of such a data

set is

N 4q_.an N1 A _

so that the lcg-likelihood, £, is



£= nlog{1-p) + (N—n)p—(n—n)log(el~1)

- 1
+ inlog A - x;t.

Differentiating L with respect to p gives

8L _-n_, ¥-n
ap 1-p p

9L _-n _ N-n
ap (1-p)2 p°

Thus the MLE p is given by

” N-n
PN

and
32£ Ia = "'N3
ap2 p n(N-n)

Differentiating (A-8) with respect to A gives

_ X
8L _ (N-n) el N E__%

TN

9%c %t (N-n)e

= +
_1)2

812 12 {1-e

where xt = E X, . Thus, the MLE for X satisfies
i

() x, =220 oA
v eA—1 1-e A

(A-8)

(A-9)

(A-10)

(A-11)

(a-12)

(A-13)

T e T

-
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Equation (A-13) is easily solved numerically. As an example, consider the

egg data shown in Table A.1, corresponding to anchovy per 10m2. There were.
208 zerces.
The sample mean is 206, the sample standard deviation in the 419

samples is 1022 and X, = 86120. Solution of equations (A-3) to (A-13)

shows that
p = .504

Manipulating such large values of 1 in (A-5) is difficult. Hence, it

helps to rewrite (4-5) as

p Jnxe-Jl
PriX;=x} = PSS
(A-15)
p 1
= Ty ¥ 2P {xlog A-1A)
i-e ’

Further investigation of the Z/R model seems warranted since it has such a

nice cconeceptual base.



Sample Size: 419

Number of Zeroas: 208

Positive Data

X

Number of Qcecurrences

- ool o
L) o

--‘—"—“N—‘l\}—“—'—'—"-‘—'—"-""“-"‘F‘ww—"‘m—‘w#mmm\.q—‘c\‘qw

TABLE A1

58
60
62
63
66
T
72
73
86
90
93

a7

104
111
119
120
123
125
156
157
163
167
175
217
225
227
230
237
243
275
314
315
381
389
i3
448
Ls6
487
524
540
562

Number of Occurrences

.-nN.—l-n—lN—l_n-.-lmml-..l—l—l_l_u_-u...l—h—l-ﬂ_n_.-—lmﬂm—h_t_h—u_a—l_.—b—n-l—h_l_n
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Xi Number of QOccurrences

632
634
745
747
791
964
1025
1058
1061
1155
1315
1388
1484
1535
1613
1838
1851
1856
2506
2874
byye
5819
6619
8390
9488
12232

1
i
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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APPENDIY 2. Derivation of the Noninformative Prior

The approximate noninformative prior for the NB distribution is
derived as described by Martz and Waller (1982, pg. 224). Viewing (1) s
‘the likelihood of m given x, the log-likelihood is

L(mjx) = - k log(k+m) + x[log m - log(m+k)] (A-16)

+ 2(x,k)

where £(x,k) contains'terms independent of m. The derivatives of the log-

likelihood are

Lk L x _x
om ~  ktm m  mtk

(a-17)
82L k . X L, _ X

. (kem)2 me (mrk)2

-~

Setting 3L/8m = 0 shows that the maximum likelihood estimate is m=x. {For

-

n independent observations, the MLE m i3 easily shown to be the sample

mean.) Define

- 2
Im) = - &2 |
an
m n+k k _ _
=7‘2—_ "‘2="‘ ~ (A18)
m (k+m) n{k+m)

The approximate non~informative prior is then

fo(m) < J(h)1/2= m_1/2(k+m)'1/2 (A-19)
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APPENDIX 3: Gaussian Approximations for the Posterior Distributions

In this appendix, various methods for approximating some of the
integrals that arise in the body of the paper are discussed. The typical
integral (a2nalogous to (26)) is

]

1 N
Jw[1—P+Pwk] Neppyky P ¥

4] H2
{A~20)

Pup(m g mc) ==

N N
w[1—P+Pwk] "rp-puy P 4
m W

Since Np= N - Nn’ the numerator (for example) in (A-20) can be rewritten as

1
I= I —%—exp [(N—Hn)log(P—Pwk)+anog(1—P+Pwk)] aw (a-21)
W W

44

Now set Hn = PN, where 0 £ f 2 1, to obtain

1
I = 1 exp I [1og(P"Pwk) + flog(1-P+Pu’)
sz

~flog(P-Pw*) ]} dw

1 Kk
- I -12 exp [N [log(P—Pwk) + flog [llgigﬂ— ]]}dw _ (A-22)

w P-Pw
Y
c
If N is large (as it will be in many applications) then (A-22) is of the
form of a Laplace integral and can be analyzed accordingly (Bleistein and
Handelsman {1975), Bender and Orszag (1978)}).

To do this, define

1-—P+Pwk

p-pu”

Qlw,r) = log{?—Pwk) + f log | } (A-23)

s¢o that
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1= I lb exp [M Qw,f)} dw (A-24)

The main contribution to the integral I will come from the vicinity of
the maximum of Q(w,f). If f 1is large enough, the equation
—_— = 0 (A_zs)

has a solution wo. It is easy to show that Q(wo,f) corresponds to a

maximum of Q(w,f). Thus, let

2
Q - |-3—Q- l,, (A-26)
ow 0
Now consider the generalization of (A-24) to
1
I - I 1 exp [NHQG,f)dw (A-27)
W wz

[

where we denotes an end point, either we = wc or ”e = wm. Two cases need

to be considered.

Case 1 v, < Wy < 1 and Q(wo,f) > Q(we,f)

(Note that Q(w,f) » - @ as w » 1). This case corresponds to an internal

maximum of Q(w,f}. One procseds as follows.

2
W
W
e

1 .
1= J L exp {HQ(w;£)} du

i Q
exp{NQ{w ;) } S, &
0 exp { N—E(w ho) } dw (A-28)

=

J
w0 we

Now set
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2 2
y = NQs(w wo)

y = /ﬁas(w-wb) (A-29)
dy = /ﬁas dw

Using (A-29) gives

/ﬁ53(1-w0)
/27 exp{MQ(w_;1)} -
Te—— 0 | eV 2 (A-30)
NQ w i :
5 0 {'N_ds(we "0
expINQ(w ;f) : '
27 0
= W > [o (/ﬁﬁs(l—wo)) (a-31)
s W
_ o _
-¢(/E55(we-w0))]
where
z 2
o(z) = Jé?]:“J eV 72 4y (A-32)

-t
is the cumulative distribution function for the Gaussian density. Using
{A~31), the Gaussian approximation to {(A-20) is

(/NG (1-w)) - (/N (v ~w,))
o(VNQ (1-wy)) — &(VNQ (W —w))

PUP(m < mc) ~ {A~33)
Case 2 wge [we,1} gz_q(we) > Q(wo)

In this case, the main contribution to the integral (A-27) comes from

the end point we. One proceeds as follows,
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1

- | L5 expliaGuin)} o - (A-34)
W
Ve
exp(NaCu,0)} '
- > I exp {NQw(we;f)(w—we)} dw {A-35)
Ve Ye
Now set
2Q
Q= " Fula
e
to obtain
exp(NQ(u_;f)} | |
I = > J exp{—Nq(w~we)}dw (A-36)
We we

Setting y = Nq(w-w ), dy = Nqdw gives

Nq(l—we)
exp{NQ{w ;f)} .
I - — f e Vay
Ngq “e 0
exp{NQ(w_;f)} “Ng(1-w )
que

With this approximation, one has

NQ(wc;f) —Nq(1-wc)
e {1-e
NQ(w_;f)

e m (1-

)
e Nallw,),

(A-38)

< -
Pup(m 4 mc)

The advantage of (A-33) or (A-38) is clear: They no longer involve

numerical integration. The most that one has to do is numerically solve
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the nonlinear eguation (A-25) and evaluate the cumulative Gaussian

distribution.
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CAPTIOQNS FOR FICURES

Figure 1. Likelihood of a zero observation in a NB distribution with
parameters m and k.

Figure 2. The sampling sites for the 1385 sardine egg swvey proposed
' by NMFS Scientists (taken from Wolf and Smith (1984)).

Figure 3. Uniform {UP) and noninformative {NP) priors fo(m).

Figure 4. Probability that m exceeds mc-1.lu as a function of the
number of positive samples (Np) in a total of N=100 samples.

Other parameters: mm=1000, k=.2, p=.8.

Figure 5. Sequential sampling charts in which the number of negative
’ sanples (Hn) is plotted against the total number of samples.

If the data fall in the shaded region, one can conclude with
95% confidence (Figure 52) or 99% confidence (Figure 5b)
that m < M. Other parameters: mc=1.1k, k.2, p=.8, '

mm=1000. The uniform prior was used in the calculations.

Figure 6. Three possible habitat models, p (S) (panels a) ~ ¢)) and the
set-up for Bayesian analysis of the exit problem (panel d)}).

Figure A-1. Variance-mean ratio for the Z/R model.
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