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ABSTRACT

GAL: A 3-D Numerical Model to Calculate
Currents with a Depth Varying Vertical Eddy Viscosity

A 3-D numerical model for simulating currents in cecastal
regions and lakes is presented. The model uses the Galerkin
numerical method, allows for the vertical variation of the
vertical eddy viscosity, and ¢an simulate complicated bathvmetry,
density gradients and boundary conditions. The computer time
and storage raquirements are quite reasonable. These features
make the model particularly attractive in the calculation of
wind-induced drift or oil slick trajectory analysis.

Emphasis in this report is placed on the theoretical

advantages of the model, the detailed formulation and comparisons

of the model to various analytic solutioms.
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CHAPTER 1

*
1.1 Justification for Development of a Three-Dimensional Model

A simple; efficient method to predict velocities which vary
laterally and vertically in a water body has important implications for
several areas of coaétal engineering. In a practical sense, the model
can play a role in environmental assessment, particularly in the
development of offshore resources. For example, a three-dimensiomal
velocity model could serve as the basis for predicting storm—induced
current forces on offshore structures. As the water depth in which
these structures are buillt increases (currently 250 meters but soon to
" be 330 meters) costs mushroom, and enhanced accuracy in predicting
currents could mean substantial savings for even a single structure.

Another application of a three~dimensional circulation model
is in the area of pollution control, specifically in predicting the
trajectory of a surface pollutant such as oil. The state-of-the-art
for predicting the advection of oil slicks is the "fixed wind factor"
approach. This method consists of simply taking the center of mass
movement to be a fixed percentage of the wind speed. When the factor
is taken as 3%, as is commonly done, the procedure is known as the "3%

rule."

The effect of the earth's rotation on fluid motion, known as
the Coriolis "force," is sometimes accounted for by deflecting the

surface current a constant angle to the right of the direction of the

*
A "three~dimensional model" is defined here as a model which yields
the horizontal velocity variations in the vertical direction as well as
in the horizontal. Vertical velocity is neglected.



wind (to the left in the Southern Hemisphere), This angle is commonly
termed the deflectiom angle,

011 spill modelers usually justify the fixed wind factor
approach by referencing any mumber of previous field and laboratory
studies investigating the wind factor. Stolzenbach et al. (1977) compiled
the results of the most often quoted experiments, included here in
Table 1.1. Note that the supposedly constant wind factor varies by a
factor of five depending upon which investigator one chooses to believe.
Even individual investigators found large variations in this wind factor
as evidenced by the significant standard deviations. This should come
as no surprise, as one would expect that the complex interactiom of wind,
waves, bathymetry, etc., could not be modeled for all cases by a single,
constant parameter.

A three-dimensional modeling effort also has importance in a
scientific sense. Such a model may be used as a tool to acquire
greater understanding of the factors contributing to circulation in a
water body. By comparing results from the model with field data or
experimental results, it may be possible to determine some of the effects

of parameters such as shear, density, or bathymetry on circulation.

1.2 Discussion of the Eddy Viscosity Concept

Since the eddy viscosity is considered an important addition
to the formulation of this model, some discussion of the eddy viscosity
concept is warranted. Central to the concept of frictionm in fluid
motion is that shear stresses are produced when fluid layers slip.

For laminar flow, velocities near a solid boundary are smaller



than the velocities further from the boundary, This can be seen from
a typical velocity profile for one-dimensional f¥ow in an

infinitely long channel shown in Figure 1.1. Shear occurs between the
layers moving at different velocities. The expressions for shear

stresses in the x-direction are:

T T T

Jxx _ du _xz _ 3y, _xy _ du
) v'a';s ) \"a_é': iy \"a_y_ (1.1)

Tij is the shear stress acting in the j-direction on a plane
normal to the i-direction,

p is the fluid density

v is the kinematic viscosity of the fluid

u iz the velocity in the x direction

For the case of turbulent flow, rapid velocity fluctuations
take place at all localitdies in the fluid. In this situation, the

veloecity can be characterized as the sum of two velocity components:
u=utu'; vav+v': wew+y' (1.2)

u,v,w are the velocities in the x,y, and z directions,
respectively
u,v,w are the average velocities, taken over a long period of
time, in the x,y, and z directions
u',v',w' are the turbulent components of the velccity in‘the X,Y,
and z directions. These turbulent components represent
the deviation from average velocity in the three directioms.

Owing to the nature of turbulent motion, fluid masses are
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Figure 1.1 One-Dimensional Velocity Profile




transported back and forth between fluid layers, Suppose that Figure 1.2
represents the average velocity, u (v,w = 0; u',v',w! # 0), it can be

seen that a fluid particle at point A carried to point B by turbulent
velocities would gain momentum from the higher velocity of the surroundings,
whereas a fluid particle moving from B to A loses momentum. Because of
this type of tramsport, fluid in a high velocity region will tend to be
retarded, and fluid in a low velocity region will tend to be accelerated.
Thus, the existence of a turbulent velocity gradient leads to a tramsport
of momentum across surfaces normal to the gradient. The shea: stress
exerted on a surface is equal to the rate of momentum transpﬁrt across

that surface. In turbulent motion, the shear stresses in the x-direction

are:
Txx du "xz du T_xz du
XX - y'al. XZ _ R o 2 = T .
5 Ve — u'u'; 5 vag ~ vl o “5; u'v' (1.3)

in which the bar over the primed variables represents a time average

of the product of the two variables, and which is generally not equal to
zero (as is the case with the time average of a single primed variable).
If momentum transfer into a volume differs from the momentum transfer
out of a volume, a frictional force per unit volume results.

The turbulent components of shear stress are termed the Reynolds;
stresses, and for highly turbulent motion, these stresses are much more
important than the laminar stress components (except in the boundary
layer), which may now be neglected. By assuming that the form of the
turbulent shear stress is analagous to the laminar shear stress; we have:

T T T

XX 3u, _=xz 3u. _Xy _ 3u
P Nxx X’ Nxz 3z’ o ny 3y (1.4)
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in which N o Nxz’ and ny are the eddy viscosity coefficients., Note
that for laminar flow, N is the kinematic viscosity of the f£luid.

There is little theoretical justification for the use of
eddy viscosity coefficients. Yet this laminar analogy has been commonly
invoked in the past, in part because it is a convenient simplification.
In addition, the method has yielded reasonable results for certain
applications.

Due to 1ts unsteady ﬁature and lack of strong theoretical
foundation, the eddy viscosity parameter has been difficult to quantify.
Direct measurement of the eddy viscosity requires instrumentation with
fairly rapid respomse time. The technical problems of obtaining such
measurements in an ocean environment are immense. If obtained, these
measurements would apply only to the particular point and time at which
the data were taken, since the parameter is generally a function of
space and time.

Some idea of the magnitude of the eddy viscosity may be obtained
using the mixing length hypothesis formulated by Prandtl (1925).

Consider two layers of fluid moving in a turbulent enviromment as shown
in Figure 1.2 (recall that the velocity profile represents the average
velocity). Assume that at a certain distance from the bottom the average
excursion of a fluid particle in the z-direction is %£. When a fluid mass

at point A travels to point B, it has a momentum deficit of —pkgg.

9y
The rate of volume transfer from the lower to the upper layer is equal
to Gé, which is the time average of the w' values which are greater than

zero. The final result for the rate of transfer of (negative) momentum



to the upper layer is
. = -pﬂz u

du .
3;’ (1'5)
Comparing this expression to equations (1.4), it is seen that the eddy

oy
-}

viscosity coefficients may be interpreted as being equal to the square
of the mixing length multiplied by the absolute value of the velocity
gradient,

The scale of thg mixing length will be inhibited near a solid
boundary. The same situation exists at the surface where 2 will be
small, particularly if no waves are breaking. This implies that as
the mixing length approaches a value of zero, so does the eddy viscosity.
The mixing length and the eddy viscosity must reach a maximum somewhere
between the surface and the bottom.

Equation (1.4) and its equivalent in the y-direction could now
be substituted into the momentum equations. However, this would

amount to replacing five unknowns (Txx’T ' T 'Tyz) with six

» T
Xy xz'yy

oN_ N N ). Given the uncertain nature of the
xz' yy’ yx' yz

parameters (Nxx’N
eddy viscosity coefficients, these six parameters are usually reduced to
two: an eddy viscosity coefficient in the horizontal direction, NH; and
one in the vertical, Nv. Justification for this simplification can be

found in Cooper and Pearce (1977).

1.3 Previous Efforts in Circulation Modeling

Many two-dimensional models have been develbped which predict



the horizontal variation of the mean flow. These models are typically
based on depth-averaged formulatioms which, although they require
reasonable computation time, by the nature of the formulation deliver
no information on the vertical velocity profile. Examples of such
numerical models include a finite difference model by Leendertse
(1967) and & finite element formulation by Wang and Connor (1975).

These models have proven useful in predicting such quantities
48 mass transport, storm surge and general circulaticn movement. The
depth-averaged formulation will predict the velocities induced by
pressure gradients and tides in open waters. However, use of these models
to predict wind-induced surface currents is inappropriate. This is
clearly seen in the case of one-dimensional flow in a channel of
finite length. The velocity predicted by a depth-averaged model 1is zero.
Yet it is known that in such a situation a doubly logarithmic velocity
profile similar in form to that shown in Figure 1.3 can be expected.

Ekman (1905) was one of the first to effectively address the
problem of modeling the vertical structure of the horizontal velocities.
One of his simplest models considers wind-induced drift only and is
derived by simplifying the Navier—Strokes equation to include only the
effect of the earth's rotation and the frictional force between water
layers. This is expressed as:

—pfv = s (1)

ez z

)
pfu = — (Tyz)

(1.6)



f is the Coriolis parameter, equal tQ 1.44*10’4 gin ¢ where

¢ 1is the latitude
u,v are the time averaged velocity components in the x- and y-
directions, respectively
txz’Tyz are the horizontal shear stresses induced by the turbulent

component of the velocities

A left-handed coordinate system 1s assumed with z equal to zero
at the water surface and pointing positive downward.

Recall that the turbulent shear stresses can be related to
the turbulent velocity as discussed in Section 1.2. For the shear stresses
under consideration, this relationship is

oy, - v
Txz pNv 3z’ Tyz pNv az (1.7)

in which Nv is the vertical eddy viscosity coefficient and is considered

to be a constant in this case. Equations 1.6 may now be re-written

2
fu=N 2—%
3z
-fv - N —
2
iz

The two boundary conditions necessary to evaluate the constants

of integration are:

(1.9)

where TSY is the wind shear stress (assuming the wind is blowing in the

y-direction only). The solution to equations 1.8 is:

10



u= VD e-(ﬁmzcoa [-;-! - (%r)z]
o (1.10)
vu v, &g (T (D)

D is the depth of frictional influence, equal to #712%2

V, 1is the magnitude of the surface current, equal to Tsz and
PN _a
v

|

a 18 equal to)—-

d’Z

At z=D it is seen from the above expressions that the velocity has been
reduced to 1/23 of Vo. The result of plotting Equations 1.10 is the
classic Ekman "spiral" shown in Figure 1.4. Note that for infinitely
deep water the surface current is aligned at 45° to the right of the wind
{to the left in the Southern Hemispﬁére).

For the case of finite depth, Ekman changed the second boundary
condition in Equation 1.9 to u=v=0 at the bottom, z=H. All other assump-
tions in deriving Equations 1.8 are retained. The resulting solution
for the finite depth case is somewhat more complex and will not be shown
here. In general, the shallow water solution will vield surface
currents of both smaller magnitude and deflection than the infinitely
deep case. However, when the water depth is greater than one-half the
frictional depth, the surface current no longer feels the effect of the
bottom and behaves as if the water were deep.

This Ekman model is inadequate for most real world prqblems
since it does not include: 1) unsteady wind effects, 2) density gradients,
3) lateral boundaries, and 4) variable bathymetry. In part, these inadequacies

have since been removed. Neumann (1968) included density effects.

11



Vertical Structure of Pure

Figure 1.4:

Drifr Current (Figure from

Neumann (1968))
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Foristall (1974) included unsteady effects and slepe currents induced
by lat;ral boundaries by combining an Ekman-type model with a two-
dimensional vertically averaged model,

However, there are several characteristics of the Ekman approach
which are unrealistic, and are still retained in the improved wversions.
For example, the Ekman-type solution predicts a deflection angle of 45°
in deep water. Yet surface drift experiments (Table 1.1) indicate
the deflection angle to be much smaller--of the order 10°. It should
be noted that most of these experiments were performed in relatively
shallow water and hence one might argue that the surface deflection
would have been reduced due to the influence of the bottom. But this
does not appear to be the case. Consider the .field experiment performed
by Teeson et al. (1970). It is possible to establish the extent of
bottom influence for these experiments if some value for the vertical
eddy viscosity is specified. As was seen in Section 1.2, the value for
Nv is not well known. To avoid this problem, it will be assumed that
the 3% rule is roughly correct. This assumption allows an approximéte
evaluation of the vertical eddy viscosity using the expression for
Vo in Equation 1.10. Plugging this value for Nv into the expression
for the depth of frictional influence D yields a frictional depth of
approximately twenty meters for Teeson's experiments. Recall that for
water depths greater than half the frictional depth, the surface is no
longer affected by the bottom. Hence, for the bottom to have éignificantly
affected the surface current in Teeson's experiments, the water depth
would have had to have been less than ten meters. In fact, Teeson's

experiments were performed in water depths well above that, in the range

13
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of twenty to thirty meters,

Another possible suspect for creating the deflection angle
discrepancy could be unsteady effects., Ekman investigated the length
of time necessary for his solution to reach steady state. Figure 1.5 is
a hodograph showing the development of the gsurface current for deep
water. The numbers on the spiral are in pendulum hours. Note that after
roughly four pendulum hours (five hours real time at 45° latitude) the
surface velocity deflection angle never drops below approximately 35°.
Most of the field experiments shown in Table 1.1 were performed in open
coastal areas where major wind shifts would take place in relatively
large time spans.

It is reasonable to conclude that the rather large and consistent
discrepancy between the surface deflection angle predicted by Ekman's
model and that observed in field experiments is not due to unsteady
or shallow water effects. Other factors could conceivably be the cause
of the discrepancy, such as currents of other origins (e.g., tidal).
However, these other factors would be random in nature implying that
one would not expect them to consistently cause the observed deflection
angle to be less than that predicted by the Ekman model. Therefore, it
is logical to look more closely at the validity of the various assumptions
made by the Ekman model in order to find the possible cause for the
deflection angle discrepancy.

One of the assumptions made by the Ekman model was that the
vertical eddy viscosity was constant throughout the depth. Recall from

Section 1.2 that the vertical eddy viscosity arises from the turbulent

15



Figure 1.5:

— %

Hodograph Showing Development of a Pure Drift
Current. The time after wind atarted to blow
with constant speed is given in pendulum
hours. (Figure from Neumann (1968))
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frictional force between water layers, Tes and Tyz' Fkman used the
laminar analogy to write these stresses as a function of the turbulent

eddy viscosity coefficient, Nv’ which can also be written in terms of

the turbulent velocity components as:

B - t t - ﬂ

T 2 pu’'w .pN 9z
(1.11)

- —pu'y' = av

tyz oV w PrN a2

where u',v',w' are the turbulent components of the velocity in the x-,
y-, and z-directions, respectively.

It is clear that w' will be zero near a solid boundary, and
since %%-(or gf) will, in general, not be zero near the boundary, then
Nv must be zero near that boundary in order to satisfy the right hand
side of the equivalence in Equations (1.11). If waves are not breaking
at the surface, then the above argument implies that Nv mist be near
zero at the surface. Thus it is concluded that a realistic variation
for Nv would be a shape with Nv near zero at the surface and the bottom,
and a maximum somewhere in between. We conclude that a constant vertical
eddy viscosity has no real-world analog.

The above argument can be partially substantiated when one
examines the effect of including a varying vertical eddy viscosity in
the Ekman-type formulation. Madsen (1977) solved the uneteady form of
Equation 1.6 using the boundary conditions in Equations 1.9. He assumed
the vertical eddy viscosity to be zero at the surface and to increase
linearly with depth. For steady state, his results indicate a deflection
angle of approximately 10° at the surface-—a value consistent with the

field observations in Table 1l.1. Other aspects of Madsen's model remain

17
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comparatively similar to Ekman's model including the magnitude of the
surface current and the total mass flux.

Another situation in which a vertical variation of the eddy
viscosity results in more realistic flow patterns is for the case of
flow in an infinitely long channel of finite depth with the wind blowiné
in the axial direction (i.e., one dimensional flow). For this situation,
an analytic solution assuming a constant vertical eddy viscosity
yields a linear velocity profile.

If insatead, it is assumed that Nv varies parabolically {(zero
at the surface and at the bottom) then the solution for the velocity 1is
8 logarithmic profile near the surface and the bottom. Intuitively,
this latter solution seems much more correct, since one would expect
the velocity to exhibit a logarithmic profile near the surface and the
bottom. This intuition is substantiated in laboratory experiments
performed by Shemdin (1972).

Thus it is finally concluded that in order to realistically
model the velocity profile, a vertical variation in the vertical eddy
viscosity should be incorporated into the model. 1In ﬁddition to Madsen,
several other modelers have included a vertical variation in Nv.

Thomas (1975) devéloped an analytical solution for the problem
of steady wind~driven currents in a shallow homogeneous water body with
a variable vertical eddy viscosity. The functional form was assumed to
be linear, being zero at the bottom and reaching a maximum at the surface.
As previously mentioned, this formulation is physically realistic as
far as the eddy viscosity variation near the bottom is concernmed. It does,

however, result in a finite eddy viscosity at the free surface. This

18



result 1s contrary to the result obtained by Reichardt (1959) and does
not produce the experimentally observed logarithmic velocity profile

(Shemdin, 1972) near the surface for the one-dimensiomal case, but

1 ° TSy o

rather a linear relation. The deflection angle for the two-dimensional
case for this linearly varying eddy viscosity is found to be greater
than the value predicted based on a constant vertical eddy viscosity
agsumption, although it approaches the 45° angle calculated by the
Ekman model in deep water.

Leendertse (1975) has developed a three-dimensional layered model
based on a finite difference formulation. The model includes density
effects and assumes the vertical eddy viscosity to be a constant over
each of nine horizontal layers. The overriding problem with this type of
formulation 1s the computational requirement. Even for relatively
small problems, the computer time requirement is of the order of hours
on the fastest machines available.

Heaps (1972), and Heaps (1974) has recently developed numerical
models using the Gaierkin, weighted residual technique. The outstanding
features of these models include: 1) a relatively simple formulation,

2) reasonable computer-time requirements, and 3) a continuous functional
form for the velocity profile. However, the models still assume a constant
eddy viscosity.

Thus, the modeling approach taken in this report has been to
develop a three-dimensional model utilizing the Galerkin technique and

incorporating a varying vertical eddy viscosity.

19




a : -
solution, the functions chosen to approximate the true solution for the

velocities were:
-Ht

-Ht

& = 5 Nz
v “p-Nv sin ( H) + I d

[=4]
-
<

T _,T
8x* gy

I'l

8xX
w0 N

‘dii.A Initial Formulation of the Galerkin Solution

In the initial formulation of the model using a Galerkin

(see Cooper and Pearce (1977))

It a_z

- 8in CEE) +z c, COS f—l—)
- H I=1 I H
(1.12)

¢ z

1 ©o8 (fﬁh)
I=1
are veloclties in the x and y directions, respectively,
is the still water depth,

are surface stresses in the x and y idirections,
respectively, due to wind shear,

is the water density,

is the vertical eddy viscosity,

are coefficients of the cogine terms, te be determined
in model solution process,

are prescribed constants,

is the vertical axis, z equals zero at the surface

and z equals H at the bottom,

is the number of terms needed to reach the required

degree of accuracy.

The solutions obtained from the model using these expressions for the

velocities were checked against several simple problems for which

analytic solutions are available,
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1.4.1 One-Dimensional, Infinitely Long Channel with Constant Nv

The case of wind blowing over an infinitely long channel with
a constant Nv was examined first. Figure 1.6 shows the various physical
characteristics of the idealized channel which was used. The vertical
eddy viscosity was taken as 0.5 ftzfsec., and the wind was applied as
a step function at time t=0 with a magnitude of 66 ft/sec. The effects
of the earth's rotation and the lateral shear stresses were neglected
and the water density was assumed homogeneous. Figure 1.7 shows the
grid network used by the model. Grids of zero depth are cross-hatched.
The dimension of each grid is 2000 feet by 2000 feet.

The model was run for two cases, one with three cosine terms
in the serles expression for the velocities, and oﬁe with five cosine
terms. A compariscn of the velocity profile from the model and the
analytic solution is shown in Figure 1.8. The analytic solution is
indicated by the solid line. Notice that the sclution with three
cosine terms is virtually the same as that using five cosine terms.

The difference is not large enough to show up on the plot.

1.4.2 One-Dimensional, Closed-Ended Channel with Constant Nv

The model was next tested for a one~dimensiocnal closed ended
channel. The physical characteristics were exactly the same as for
the channel in Figure 1.7 except that one end of the channel was
blocked off. Likewise, the model grid system remained the same as with the
previous case, except that the depth of element (6,2) was set equal to

zero (i.e. H6,2=0)'

Again, the model was run for the cases of three cosine terms




Ty

Figure 1.6:

Physical Characteristics
Verification
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and five cosine terms., Steady state results are compared to the analytic
solution in Figure 1.9. The upper plot shows set-up n versus distance
from the end of the channel. A datum was arbitrarily established

at a distance of 9000 feet from the end of the channel. Hence the reason
why n 1s zeroc at 9000 feet.

The lower plot shows the velocity profile. The model accurately
predicts the analytic solution for both surface elevation and the velocity
profile. It was found that three terms in the trial function approximated
the solution nearly as well as five, the difference being undetectable

on the scale used.

1.4.3 One-Dimensional, Infinitely Long Channel with Linear Variation in Nv

The model was next tested for a one-dimensional infinitely long
channel identical to that described in Section 1.4.1, except that Nv was
no longer considered to be a constant, but rather varied linearly as
shown in Figure 1.10.

Because three cosine terms produced accurate results for the
previous test cases, the model was run using that number of cosine terms.
Figure 1.1l is a comparison of the analytic velocity profile and that
predicted by the model. It is seen that the comparison is poor.

Since the analytic solution displays a very steep gradient near
the bottom, it was suspected that more cosine terms were needed in order
to approximate this steep gradient. Consequently, the number of cosine
terms included was increased to eight. Figure 1.11 also includes a
comparison of the analytic velocity profile and the velocity profile

produced by the model with eight terms in the summation. Though an
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Figure 1.10: Linear Vertical Eddy Viscosity Model
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improvement has been made by increasing the number of terms, that improve~
ment is small when compared to the discrepancy which remains between

the model and the analytic solution.

1.4.4 PFourier Series Analysis

Further testing of the model indicated that the discrepancy between
model and theory became Progressively smaller as a was decreased (B held
constant)., This is not Surprising since in the limit as a goes to zero,
the problem simply reduces to the constant Nv case. It was shown in
Sections 1.4.1 and 1.4.2 that the model yields very good results for this
latter case.

Close examination of the components of the velocity trial functions
0 and ¢ suggested that the cosine series converged slowly in the case of
a2 linear variation in the vertical eddy viscosity, The truth of this
Statement can be shown using a Fourier analysis, which is summarized
here. A more detailed discussion can be found in Section 3.6 of Cooper
and Pearce (1977).
If a function £(z) is gspecified as

8.z

f(z) = ¢ £, cos C—%—) =u - (1.13)
i

fi are the coefficients of the cosine series, determined from
Fourier series analysis,

g, 1is the velocity determined by theory,

u_ is that part of the velocity trial function not associated

-Ht

. sX Tz
with the cosine series, from Equation 1.12, u, TN, sin ( 2
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then f(z) represents that part of the velocity which must be accounted for
by the cosine terms. Figures 1.12 and 1.13 represent the convergence of
the cosine series for the velocity calculated at the surface z = 0
(i.e., £(z) = £(0}), for the constant Nv and the linearly varying Nv cases,
respectively. It is seen from Figure 1.12 that the cosine series converges
rapidly for the case of constant vertical eddy viscosity =- including
only three terms in the cosine series yields very good accuracy. For the
case of varying vertical eddy wviscosity, d = (0.04648 and B = 0,01,
convergence is much slower. Even with twelve cosine terms, the sum of the
cosine series is only 90%Z of the value £(0).

In conclusion, the above analysis indicates that the reason why
the model compared so poorly with theory for the case of a = 0.04648
and g = 0,01 is simply because not enough cosine terms were taken. The
number of terms needed in the model to approximate this relatively
simple one-dimensional profile would be in excess of ten terms. This
has dire implications for the real world applicability of the model as
formulated. Even if we optimistically assume that the rather complex
profiles in a coastal environment could be simulated in the model using
only fifteen terms, then for a realistically sized problem with a 20 x 20
grid system, the computer time requirement would be on the order of
hours.

One possible solution to improving convergence of the model is
to choose a u, term such that f(z) can be more easily approximated by the
cosine series. Choosing a u, term with this desirable characteristic
near the bottom is not generally possible since the velocity and its

gradient may be either positive or negative. For example, in the case of
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one-dimensional flow in a channel of finite length, the water velocity
near the bottom will be in a negative direction and the velocity gradienmt
will be positive. On the other hand, for the case of one-dimensional
flow in a very long chamnnel, the water velocity will be positive and

the velocity gradient negative.

An optimal choice of u, near the surface is much easier than near
the bottom since the velocity gradient and velocity direction will be
propertional to the wind wvelocity. For one-dimensional flow, u, can be
assumed proportional to Tox and hence u, will alwayg ald in convergence
regardless of whether the channel is open or closed. The choice of
u, may also depend on the form chosen to represent the eddy viscosity.

In the following sections, the Galerkin model 1s re-formulated
for a revised choice of the velocity trial functions, and the results

of the model are again compared with simple, analytic solutions.
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CHAPTER 2
MODEL FORMULATION

2.1 Governing Equations

For constant density, the turbulent Navier Stokes or Momentum

Equations in a left-handed coordinate {(z is positive @own)uﬁyqtem atf?

PR,

T T ap 30
e 3 Txx 9 3 . xzv _ 1 _"a_ g dr
d s 9N 9 XXy O XYy o =2 20
ae” B m TR ) vy )ty ) To T, o )
(2.1)
ap “
T 30
v _Ffa ! 3 ¥y 3-_ﬂ-i_§._&£_d;
d s 3n 9 (¥Ey 4 92 RIS ;
dza_gp 5Y-fu+3x(p)+3y(p) 3z * p p dy o_nay

where

u,v are the velocities in the x and y directions respectively

n is the water depth relative to some datum (in this case,
will be taken relative to mean low water)

g is gravity

f is the Coriolis parameter = 2w sin $;¢ = latitude

P is atmospheric pressure

Tij is the shear stress acting in the 4 direction on a plane

which has a normal in the J-direction.

An examination of Figure 2,1 may clarify the definitions of the variables.
In most sea and lake circulation problems of practical importance,

the vertical velocity component and its gradient are considerably smaller

than the horizontal velocities and gradients and are hence neglected.

With this assumption the z-momentum equation simply reduces to an

expression of the hydrostatic pressure distribution.
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The left-hand-side of Equations (2,1) represent a combination

of the unsteady and convective terms as shown below:

du 3w, du_ du dv_dv. dv. 3y

dt "t T Ut Ve a& T UtV 2.2)
The first and second terms on the right-hand side of the equality in
Eqns. (2.1) are the surface slope term and the Coriolis force term,
respectively. The last term on the right-hand side is the atmospheric
pressure gradient term.

Recall from Section 1.2 that shear stresses in turbulent flow can

be expressed in terms of the eddy viscosity coefficients. The shear
stresses in the x-direction are:
u, = 2u, = du
Txx = PNy 3% Txy PNy ay’ ‘xz Py, 3z (2.3

Substituting the expressions for shear stress into the momentum equations

yields:

dp
o) 3 du 1 ""a ap
an I R CHE - It el a
BT + fv + 51 (NH Bx + Ay N ay) T 5% N 2z p ex p Jox :
-n
(2.1
4

op

3 v _17a_8 (3 4
B L —_— — 4+ — (N — - — - z
3t €0 Wy fo+ 50 Tx ay Ny By) Bz vaz @ 3y P oy
Note that if the unsteady, convective, surface slope, atmospheric density and
horizontal shear stress terms are neglected, Equations (2.4) reduce to
Ekman's formulation.

Conservation of mass ylelds an additional governing equation.

The appropriate form of the continuity equation for an incompressible
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fluld 1is

Ju 3y _ 3n
ax | 3y  at - (2.5
where u and v are the mass fluxes per unit length in the x and y directions.

respectively, or

H 4
= I udz; v = f vdz

! -n

Surface Boundary Condition:

The surface boundary condition is:

Tox = -pSNv'SE b Tay = -psHv 3z (2.6)
os is the density of water at the surface
sx’Tsy are the surface shear stresses induced by the wind in

the x~and y-directions, respectively

The shear stress can be written as:

Tox = PgK oS o |wiw; Tay = p K sin §|W|W 2.7

W is the wind velocity
6 4is the angle measured between W and the x-axis (positive
counterclockwise)

K is a drag coefficient which is a function of the wind speed.

This latter functional relationship has been the topic of many investiga-
tions. Van Dorn (1953) published a classic work which included a functional

form for K based upon experiments on a small pond. Van Dorn's relationship

e ¥ =4



has more or less been the standard in the past for determining the
drag coeffictent.

More recently, Wu (1969) has compiled data from various
experiments measuring the wind shear stress including Van Dorn's
work. This data displays a large amount of scatter indicating among
other things, that the drag coefficient is not simply a function of
wind speed but is probably dependent on other factors such as wave
height, water and air temperature and fetch. Nevertheless, making
the best of available results, Wu suggested a relationship:

K = 0.4% 107 91/2 W<31 mph

. =6 (2.8
K= 3.1* 10 W>31 mph

The results of this expression can yield values for K which differ by
nearly a factor of twoe from values derived using Van Dorn's functional
form. Despite this, Wu's relationship 1s used in the model because his
results are based upon data of a more general nature and because Wu

used a relatively large amount of data, which should tend to minimize
such factors as experimental erroer. In any case, it should be remembered
that given the current state of knowledge concerning the drag coefficient,

calculation of the wind shear stress is only approximate at best.

Bottom Boundary Condition

The shear stregses at the bottom boundary can be expressed as

{referring to Eqns. 2.3):

du v
T =™ ON —— H T = - DNV.——.- (2_9)
bx vaz 2=l by oz 2=H

37



where T
bx’

y directions, respectively. If it is assumed that bottom friction

?by denote the compbneuts of bottom friction in the x and

varies linearly with bottom current as follows:
Tz T o’ Thy T SbBD (2.10)

where N is a comstant, P, is the density at the bottom, and u
and v, are the bottom velocities, a comparison of (2.9) and (2.10)

results 1n the expressions:

3u . g BV -
N5z e T “b°%b (2.11)
2=H {z=H

The bottom boundary condition is:

- U -V
du bb aw_ bbb -
5z Nb I vl Nb at z=H {(2.12)

where Nb is the eddy viscosity coefficient at the bottom. This is the
bottom boundary condition formulated by Heaps (1972).

The effect of bottom roughness in the proposed model can be
included by varying Nb and Cb. Far the case
of an ideally smooth bottom, Nv will theoretically approach the value
of the kinematic viscosity near the bottom. As bottom roughness
increases, the value for Nv at the bottom can be expected to rise.

Thus, a set of governing differential equations (2.4 and 2.5)
and boundary conditions in the vertical (2.7 and 2.12) has been derived.
The horizontal boundary conditions about the perimeter of the water
body need mot be introduced quite yet.

The momentum equations (2.4) are second order, non-linear partial

differential equations and cammot be solved analytically. Therefore, a
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numerical approach is taken. A variety of methods could be employed,
but for the reasons expressed in Chapter 1, the Galerkin method is
applied. Application of this technique will transform the two momentum
equations into a set of linear, first—order partial differential

equations, which can be easily solved using a variety of methods.

2.2 Application of Galerkin Technigue

Application of a weighted residual technique begins by assuming

a generalized functional relationship to approximate the true solution,

or:
It Iu
i=su +I c0; t=v +I 4.0 (2.13)
o I=1 It o I=1 I"1

where §i and ¢ are the "trial functionsJ'QI'é are prescribed functiomns,
CI and dI are coefficients of the prescribed functions which are
determined in the solution process, and I' and 1" are the number of
terms needed to reach the required degree of accuracy.

In theory, the only restriction in choosing the QI's is that
they must satisfy the vertical boundary conditions when combined with
the leading terms, u, and V- In practice, however, they are chosen
80 as to approximate the true solution with as few terms as possible.
This implies that if it was known beforehand that the true solutiom
was for example logarithmic, then it would be reasonable to take the
prescribed functions to be logarithms.

The leading terms, u, and v, are also somewhat arbitrar§ and
may not have the same functional form as that assumed for the prescribed
functions., These terms, however, when combined with the summation terms,

must meet the necessary vertical boundary conditions.
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Heaps chose cosinea for the prescribed function, Tbis function
hag many desirable characteristics, including:

1. 1t is well defined for all angles,

2, 1t is well-behaved when differentiated or integrated,

3. it is able to approkimate complex functions when combined

together in a series, and

4. 1t is orthogonal with respect to other cosine terms,

Using cosines, the trial functions can be written:

1! a,z 1" a;z
2 =u + §=1 cgeos () ¢ = v 4 ial dreos (=) (2.14)

where a; are prescribed constants.

To evaluate UysVys and the aI's the boundary conditions at the
surface and bottom are utilized. Using the surface boundary condition
(Equation 2.6) and taking the derivative of the trial function implies
that:

Ju -1 av -7
o] - SX o - BY
3
3z z=() pst 8z z=0 pst

(2.15)

The summation part of the trial function drops out since the derivative
of the cosine series is simply a sine series, which when evaluated at
z=0 will be zero for any value of a;.
The surface boundary condition has been evaluated at z=0 instead
of z=-n. The necessity for this approximation will become evident later
when the Galerkin technique is applied, Note that this approximation is

good only when n is much smaller than the still water depth, H. This

restriction is easily verified by expanding the velocity gradient by
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means of a Taylor series. For simplicity, comsider only the x-direction:

Bu
oz

.o
9z

- 8u

z={) 3z

ﬁ + higher order terms (2.16)
z=(

z=-n

To ensure that the velocity gradienrt evaluated at n be well approximated

when evaluated at z=0) implies that:

2
%E 55 3_‘2‘ (2.17)
z z= 3z | z=)

" Introducing characteristic scales for the velocity, time and length
in this expression yields n<<H,

For a linear variation in vertical eddy viscosity, i.e.,

Nv = az + § one possible form of u is:

T Z T
u = sx2 (z-H) + _SX in (N:.) (2.18)
oH“N A v .
s b
where va = o R+ 8 1s the eddy viscosity at the bottom,

Evaluating the surface boundary condition (in the x-direction):

2
du _ 2Tsxz(z H) . T 2 Tex }
2 L. S _Sx_ - — 5%

lao om’N,  |2m0 o®n lgeg PO |,ug
(2.19)
I' c.a a.z
-z IHI sin (—-}II—)
I=1 ' z=()

It 1s seen that the first, second, and fourth terms of the right-hand side

of Equation (2.19) vanish. The remaining expression is:

du “Tex
Lu = — 59X | (2.20)
Y z=0 o (az+P)

z=0; .

which is the boundary condition obtained in Equation (2.15).

At the bottom, 2z=H, Nb==a H+8 , and the velocity gradient at the



bottom is expressed by Equation (2.12)

o2
u ) erxz(z—ﬂ) 4 T o ) Tsx
L pHZNb z=H szNb gag  P(az¥B)| o
I' c¢c.a a_z (2.21)
I"L 1
-z T sin ( T )
I=1 z=H

At z=H, the first term of the right-hand side vanishes, the second and

third terms cancel, and applying equation (2.12)

c.a
1 y
~I 7 sin ap = = E;_ px cp €os a (2.22)
B
or a, tan a =l {(2.23)
I I Nb

Thus, the coefficients a; will be dependent on the slip velocity

coefficient, cb. The final form of the trial functions can be written

as:
T 2 T N L 312
a 5X ; (z=H) + 5% 1n(ﬁ2) - T ey COS(“%_a
PHN, s v I=1
s (2.24)
T 2 T N I ayz
o = sy ; {z=-H) + Sz lnfﬁk) + I dI COS(—%—)
;e s v I=1

where all variables are specified constants except for the undetermined
parameters €1 and dI.

Figure 2.2 is a plot of the first three QI terms. This figure
indicates how the QI terms can approximate very complex shapes when
weighted by the appropriate amplitude, ¢ or dI'

Now that the trial functions have been specified, they can

be substituted into the momentum equations (2.4). 1In general,
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Figure 2.2 Plot of Prescribed Functions,
A, vs. Depth.
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Figure 2.3: The Functional Form for the Vertical Variation
of N, Used in the Model.
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there will be an error associated with this substitution, since the
trial functions are not the exact solutions to the momentum equationsg.

This error is commonly referred to as the "residual', Performing this

substitution yilelds:

46 Ps an 5 g 3 . 308 _ 3 o a8,
AT 5x Mg 7%  Maay ~5z O, 3 - £0
z
ap
1 "a, g3 (2.25)
+ ax+pJax“"‘°
=N

For the sake of brevity, only the residual in the x-direction is shown.
The error is minimized by specifying that the sum of the
residual over 3 region be zero. For the case of interest, it is
convenient to minimize the residual over a water column which yields:
H
j Rdz = 0 (2.26)
=N
The residual can also be multiplied by an arbitrary weighting function,

W, i.e.,
H
J RWdz = 0 (2.27)
=n
Various names are commenly associated with Equation (2.27), depending
on the form of the weighting function, W. For example, if W is taken
as R, then the technique is commonly called the Method of Least Squares.
If the weighting function W is specified as the prescribed function
QI’ then the technique is labeled the Galerkin Method.
The use of a weighting factor can significantly simplify the

solution of Equation (2.27) over that of Equation (2.26). A well-chosen
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weighting function W can ease computational requirements. If W and R
form an orthogonal set of functions, then both the complexity of the
solution as well as the computatfonal requirement will be reduced.

Noting this last characteristic and observing that the residual
R 18 composed primarily of sinusoidal functions, it is reasonable to
utilize the Galerkin technique.,- W is set to be the prescribed functions QI
which consist of cosines. Substituting 2r for W in Equation (2.27)

and neglecting pressure and density gradient terms yields:

B H H B

I B en f° 3 a0
[ Rupdz J ac 42t s f Q, dz - J x Ny 3
0 0

0 0
H aN B 2
3 30 v 3 5%y
3y 28 b o—x 2t - 2ug
t oy By oy} 8pde J =z 3 Hydz J N, —3fydz
oz
0 0
H

_f J 99,dz = 0 (2.28)

0

where the Nv term has been differentiated and conveniently separated.
There is an equivalent Galerkin statement for the y-direction.
Observe that the lower limit on the integration in Equation
(2.28) has been moved from z = -n to z = 0. As discussed earlier, n
must be much less than the still water depth H for this approximation
to be valid. The reason for neglecting the time variation of water
depth should now be evident, If this assumption was not made, then
the integrals in Equation (2.28) would have to be continually re-
evaluated in time, since n is a function of time, This re-evaluation

would be computationally prohibitive.
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In order to evaluate the integrals, a functional form for
the vertical variation of the vertical eddy viscbsity must be specified,.
This is done by approximating Nv with a serles of linear segments as
shown in Figure 2,3, The slope ﬁk, the intercept Bk’ and the number
of segments k' must be supplied by the model user.*

This linear approximation scheme has several obvious advantages.
It is fairly simple to integrate, and it can approximate very

complex functional forms.

2.3 Evaluation of the Galerkin Statement

2.3.1 Unsteady Term

Term (1) consists of an unsteady term and convective terms, Upon
substitution of the tria] function and the Prescribed function, the

unsteady portion of the first term becomes:

2
H TooZ (z-H) ¢ N I 412
L 0 oH'N, Pay 1 I=1
an
cos(—ﬁ—) dz {(2.29)

where Nl =0,z + 81

The time step used in the model will be of the order 1 minute,
which is short compared to the anticipated time change of Tgs ¢ and
Nv' Hence it is reasonable to neglect the time derivative of the

u_ term.
Q

As for the summation term, it is greatly simplified by using the
orthogonality property of cosines. The integral of the summation term

will be non-zero only when I = J and in this case yields:

*Note that when more than one linear segment is used (i.e. k'>2) then
Nb in equations 2.23 & 2.24 should be replaced by N£=ak'H+Bk' and Nv in
equations 2.24 should be replaced by N1=a1z+81.




H a.z
I c032 Q—%—O dz --% (2.30)
0 .

Thus, the unsteady portion of term 1 reduces to:

H . ac
3u -B_J
J 3t Qsz 2 "ot (2.31)

0

The convective terms are not so easily dealt with. The terms
can be somewhat simplified if the wind and vertical eddy viscosity are
asgumed to vary slowly with respect to the spatial discretization in
the hﬁrizontal. This assumption is reasonable for many situations
since the typical grid element is of the order one mile in length
and spatial gradients of Nv and g should be relatively small over
such length scales. With this approximation, the first convective

term becomes:

2
H ~ H 1 _z"(z-H) T N 1’ a.z
J ﬁ,%§ R dz = J ! 3% ZN + s: 1n (ﬁh Y+ c; cos (—%—)]
0 0 pH b 1 1 I=]
3% 008 { o ) dz (2.32)

A

where %% can be a very complex term, depending on the variables which

are considered to be functions of x.

Cooper and Pearce (1977) show that the convective terms may be neglected

if

u UT%:%‘ < fyry (2.34)

where ualiyx vywYy: x=xk -
which implies that

U<fL (2.35)
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This can be literally interpreted to imply that if the horizontal
grid length for a particular problem is 1 mile, for example, model

accuracy may become questionable in regions where the velocity

difference between adjacent grid nodes is greater than roughly 1 ft/sec.
2.3.2 Surface Slope Term

H H a.z
an - oy [ cos _J
g ax j QJ dz & ax J
0

-5 dz
(4]

Substituting the prescribed function, term (2) becomes

(2.36)
For the purpose of the model formulation, it will be assumed that the
density is constant over the depth,

Integrating Equation 2.36
H a8z az H
3n R =g in_H
g o f cos ¥ ) dz B 3x 3 cin M (2.37)
0 J z=Q
= g _ﬂ.__ 8in a
2.3.3 Horizontal Shear Stress Terms
First consider the 3§-term which can be conveniently broken into
two parts:
H H 3 - H 2
] o Nl-Iau 974
[ELE R U L PP
0 0] 0
Note that the
trial function.

second integral involves the second derivative of the
terms,

Recalling the form of the integral for the convective

it is.seen that this integral will be complicated and difficult
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As in the case of the convective terms, the probiem is sometimes avoided
by arguing that the terms involving the horizontal eddy viscogsity are
small relative to the other terms in the momentum equations., This
argument is best advanced by comparing the order of magnitude of the
lateral shear stresses (Txx and Txy) from which the terms involving NH
originated, to the vertical shear stress (rxz) from which the term

involving Nv originated. It follows that terms involving NH can be

neglected 1if

T 3T oT T
Xy XZ XX X2
ay " Tz 3 . dz (2.39)

Using the definition of Reynolds stresses, Equation (2.39) implies

I(u'v') e d(u'w') 3{u'u’) << 2lu'w")
Iy 9z * x az

(2.40)

Inserting the characteristic horizontal and vertical length scales, I
and H' respectively, and the characteristic horizontal and vertical

velocity fluctuations, u' and w', respectively, yields:

—32 T, 1
B-L— << “H‘f (2.41)

The time increment over which the turbulent fluyctuations are
time averaged is the same order as the model time step in the case of
28 numerical model. A typical time step will be of the order one minute
and for such short time scales it is reasonable to assume that the
characteristic velocity fluctuation in the vertical will be of the same

order as those in the horizontal. This assumption is substantiated by
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laboratory experiments performed by Schubauer (1954) who found the
turbulént component of the velocities inside a pipe to be nearly
homogeneous except very near the wall. With this assumption of homo-
geneous turbulence, Equatfion 2.41 indicates that the lateral shear
Stresses are smaller than the vertical since L is generally much larger
than H.

It is easier to see the implications of neglecting the lateral
stresses by considering several specific examples., First consider
the case of flow near a lateral boundary as pictured in Figure 2.4,
Clearly a model without lateral shear stresses cannot predict the boundary
layer tﬁat will occur in real world flow. Hence, velocity information
within the boundary layer which is derived from such a model would be
invalid. These regions could not generally be modeled anyway, simply
because the cost of running a model with sufficiently small enough grids
would be prohibitive.

Another example of the limitations imposed on a model by neglecting
the lateral shear stresses can be seen by considering an idealized case
of a permanent current passing by a bay. This situation is pictured
in Figure 2.5. For the sake of clarity, neglect other forcing mechanisms
such as tides, wind or Coriolis effect. In the real world the permanent
current would " induce complex gyres and eddies in the bay which would
be characterized by a net counter-clockwise circulation.

Now assume that a model is applied with the discretization scheme
shown in the figure and that the current is entered as a tangential
flow at the boundary. If the model is based on a formulation which

neglects lateral shear Stresses, then clearly the model will simply

S0




Figure 2,4: Horizontal Velocity Profile (at z = constant)
Near a Coaatline

current

Permanent

Figure 2.5: Circulation Induced in a Bay Due to a

Tangential Permanent Current.
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indicate a stagnate bay. There would be no mechanism in the model to
transfer the shearing motion induced by the permanent current, Similar
inaccuracies can be anticipated in the modeling of circulation induced
by large river flows into a bay.

Heaps no doubt recognized the inadequacies of completely

ignoring the laterél shear stresses. . He included the

lateral shear stress by assuming a linearized approximation of the form

3

E'E(Hax)'l'_(ﬂay) = eu (2.42)

The term e is sometimes referred to as the geostrophic.coefficient. This
parameter is a complicated function of x and y and little is knowm about
the nature of that variation.

Using Equation 2.42, term 3 can be re-written:

L ah fH 3 24 H
'-f x (NH a_x) Q;dz Iy (NH_ g) dz = -c J 0 ydz
0 0 0

{2.43)
2
H t__z (z-H) T N I’ 2.2 a.z
""QJ (sxz + == 1n(n)+2 cIcos%) cos—ﬂ-dz
0 pH Nb 1 1 I=l

After integration, the horizontal eddy viscosity term can be expressed

as:
Tsx X CJ
N — rJ+T] (2.44)
1
where
by = =+ g cos aJ""26'¢J
J .aJ aJ
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1
¢y 3 a )
8y

2 1 2
Yy 3 cos aJ + (a - ——3) sin aJ.
aJ J a

The mechanics of integrating term 3 are included in Appendix A.

Note that rJ has no closed solution and must be integrated
numerically. A simple trapezoidal numerical integration scheme
was employed to obtain a value of FJ. This scheme approximates the
integrand of TJ with a series of rectangles of equal width, Ax, as
indicated in Figure 2.6. The height of the rectangle is taken as the
value of the integrand at the middle of the element. The integral
TJ is simply the sum of the areas of the rectangles.

The number of rectangles used to approximate FJ is specified
by the model user. Since the numerator of the integrand is periodic,

the number of terms needed for a given accuracy will increase as ay

increases.

2.3.4 Vertical Eddy Viscosity Term ~ Part Ome
Inserting the trial function, the prescribed function QJ, and

the linear segment model for Nv’ term 4 can be written:
2

Kl
2t __z(z-H) 1 __2 T
9z 3z K=1 pH"N ou‘N_ Ple1%THy
0 He 1 b b
c.a
e o S Ay (2.45)
H B H

! _




pueidajuy

dx

Discrete-Area Numerical Integration

Scheme Used in the Model
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Integrating and simplifying Equation 2.45 yields:

t H K
8X. : - X -
pr [ I}izl o (2¢K_.-I 3YKJ)] + o V1 %cI‘SIJ (2.46)
in which ¢'KJ = a—z- [cos aJCK + B‘JCK sin an,'K ~ ¢os aJclé;-l - aJcK—l
o
sin aJ;K]; z;K "
2L cos.a.l azc2-2 2z Ccos a.Z
IS S 1°K _ “tg-1 I°g-1
YRJ 2 + ¢ 3 ) sin agz, 2
J J J
2 2
(a -2)
Jog-1"%7
T3 Sk
J
a.z
K' cos — dz
I gel o248
Be1
I’ I' K'
a
L c_ 8 = T Ic, I o
=1 LT L5 T k’x13
where AKIJ can be expressed as:
' _ 1
AK . [cos (BIJCK} - cos (GIJCK—I) +- cos (BIJ;K) cos (eIJ;K—l)
1
L 8 ®1s
if I # 7J,
O17 = 21 - a;
? -
%17 = 31 *tap
or
=—!‘—[cosz (a?;)—co::s2 (a.z, )] if I = J,
AKIJ aI I°K I°K-1
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The integral Vi does not have a closed form solution, and must also be

evaluated numerically using the trapezoidal scheme described in

Section 2.3.3.

2.3.5 Verticsl Eddy Viscosity Term=-Part Two

Substlituting the trial function, the prescribed function, and the

linear segment model for 1\1"P into term 5 yilelds:

H 2 X' H 61z 2¢ T o
'J Ny %E% fydz = -I I < (agz+Be) (—5m =~ + —=% : 2
: K=1 oHAN,  PEN, ¢y 2tg))

0 -1 b 17 *1
. az {(2.47)
11 apz

- —= 3 N
I H2 cos (_H ) ﬂsz

Simplifying results in the following expression for term 5:

-6T ' k' 2Tsx X' k'
—[BZI oY, .+ Bo,.] +———=[HTE ¢ .+ I ]
T & S AT & T A & & K=lﬁKSKJ

v (2.48)

+ I
I=1

€913

where ¢KJ and Ygy are defined as in Section 2.3.4, and

a.z
K'HK cos ——
G.Eg_(a z48 ) ——————r dz

J 11( K™ 'K (alz+81)2

<
]

Hg-1
sin(CKaJ) - sin (I

KJ a‘.J

g-127)

! 8

2

a
1 K *

RS St S 3

[o]
|

1J

Falac Bt
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If I ¢ J,

1 _ t
. cos(GIJcK) - cos (eIJCKrl) . cos (BIJCK) cos (8 IJ;K—I)

Skrg ) 7,
11 17
o xsin (Bpgf) - tpgsin (Op 20 o)
811
v - '
, xS (Orsfx) = tg_g8in Oy 10 y)
T
®1s
- - 1 —_ 1
" ) sin (BIJ;K) sin (BIJ;K_I) sin(eIJ;K) sin (BIJCK-I)
R1J 8 + 8]
1] 1J
and when I = J

2 2
CK_CK-I . cos (ZaICK) - cos (ZaIcK_l)

11 = 2 p)

4a1

. cKsin(ZaI;K) - Zg_qsin (ZaI;K_l)

zaI
M mopap 4 sin (P21%g) - sin Qayg )

KIT = %"%K-1 2a; g
B

Note that vs must be integrated numerically in addition to Iy and v .

Section 2.3.6 Coriolis Term

Term 6 can be expressed as: i
H B z{z-H) < N r z a.z |
~f Pl dz = -f [—SY + 5Y In ¢ b } + L d- cos (iI_) ] cos 3 _ dz ;.
J 2 oo N - 91 g T :
0 pH Nb 1 1 I=1 [
0 (2.49) {

R o o
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or, performing the integrations and simplifying

T H T d
- - oy . -8y 3
- -fR N, Ghy=vy) + = T; + 5] (2.50)

where Vys PJ and Yy are the same as in term 3.

Substituting all the terms back into the original Galerkin

statement (Equation 2.27) yields for the x-direction:

H ac ' T _H T c
H_J i 8n _ > S _8x o
I Rpdz = 5 ¢ + 5, sinay 55 - e [~ (Wymvp) + = T + =3
0 J b
Tst K' L 1’
+ (2 a,(2¢,. =3y, )] +— v =1 ¢ 8
N, ‘e K RITTRI o ¥ ,TL
GTsx X' K' ZTsx K' '
- (HIZ o,Y,.+ 2 $p.] + [H E ¢,. + L B.5..]
T Y 8 K-]_BKKJ TR & % L &S
T 1! T H T
_ _5% -5 g - _8y al, _
v! + T €193 -fH[pN (pr YJ)-!- > r,+ 2] 0
I=} b
(2.51)
which can be organized more compactly as:
de It T T 1
J 3an 2 - - 8% 5Y
—ie P — .+ ey +
Y™ 2B, 3x+e°J+fdJ+Hi,1°16°IJ+2 5 D3 2f 5 E;
(2.52)
where E' = —E-(w ~y,) +7T
J TN ‘YTYg J

b

[=-)
[
* ko
]
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K'
1 ]
AJ = E;.[Enl HaK(QYKJ—4¢KJ) + BK(6¢KJ—ZSKJ) ] + ViV

A similar expression may be derived for the Yy-momentum equation:

ad It : 2T T
—J _ g 8n - 2 Py ~—8Y pr _ 9p _SX _,
3t ZBJ 5y + edJ ch + i i-ldIGUIJ + > DJ 2f 5 EJ

(2.53)

The summation term in Equation 2.53 1s taken from I=1 to I', not
1" as indicated in the formula for the velocity trial functions, Equation
2.13. Since it will not generally be known before model execution
whether more cosine terms will be needed to approximate the velocity in
the y direction or in the x-direction, it is reasonable to simplify the
model by taking the same number of cosine terms in the x- and y-directions.

Equations 2.52 and 2.53 can be conveniently thought of as the
governing Momentum Equations for a water columm. All parameters are
specified except the unknowns < dJ, and n. Equations 2.52 and 2.53
represent a set of 2*I'equations with 2*T+] unknowns. To solve for the
unknowns, one more equation linking the cJ's and dJ's to N must be

specified. This equation is the Continuity Equation.

2.4 Continuity

The continuity equation was obtained in Seection 2.1

2u % 9n
Y + 3y St (2,54)

The mass fluxes, represented by u & ;, can be written in terms of the

undetermined parameters. This expression is, for the x~direction:
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Nb It az

H H =< 2, T
u= [ 4 dz = I (2% Z (2-R) +-2% 10 G )+ I c.cos——} dz
0

) pHZNb pay TN T T LT TR

(2.55)

After performing the integratioms and simplifying, Equation 2.55 can be

written as:

I'
u-Fx+HZ ¢St (2.56)
I=1
where Hz
TBX TS'X
F = - + G
x lZNbp o]
G-l[HlnN -—1( 1nN—N)+-:-L—(BlnB-B)]
a b ", (Npln Np-N) + o= (8, 1a8,-8,
1 1 1
g = Sin 41y
lI aI

and in the y-direction:

II

v o= Fy + H i-ldlsll (2.57)

where
2
_H Tsy Tsy
+ G

y 12Nbp P

F

Detailed derivation of this form of the continuity equation can be found
in Appendix A.

The result of this formulation is that the original second order,
non linear, momentum equations, together with the nonhomogeneous vertical
boundary conditions have been reduced to a set of 2%J] equations

(Equations 2.52 and 2.53) which are linear, first order partial differential
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equationa. These equations are coupled with the continuity equation _
(2.54) and the boundary conditions about the horizontal perimeter of
the water body, thus yielding a set of equations with a unique solution
for the unknown variables Cys dJ, and n, Once the cJ's and dJ's are

determined, the velocities fi and ¢ are found using Equations 2.24,

2.5 Model Discretization Scheme

The method chosen to solve the momentum and continuity equations
is the "split-time", finite difference scheme used by modelers such
as Pearce (1972) and Reid et al. (1968). A detailed discussion of
finite difference models will not be included here, however, it is
important to be aware of the advantages and disadvantages of such a
scheme.

The split-time, finite difference scheme has several prominent
deficiencies. Because it is an explicit scheme, the method requires
a smaller time step to maintain stability than might an implicit scheme.
Additionally, it is impractical to use a grid system other than one
composed of squares of equal size, due to the nature of the finite
difference method. Such a grid system may produce unrealistic or time-
consuming results for water bodies which are long, narrow and contorted.

There are several advantages supporting the choice of a finite
difference scheme, including that the scheme:

1. has second order accuracy in both space and time,

2. yields an explicit solutiom for the "new" cJ‘s, dJ‘s and n's,

3. requires relatively simple computer programming logic to

implement,
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4. vrequires minimal computer storage requirements, and
5. was implemented. by Heaps (1972 and 1974) proving that the
scheme Is stable and convergeunt for the constant Nv case.
It was felt that if the model formulation proved successful using a
simple finite difference scheme, then other, more sophisticated schemes
could be implemented later.

To apply the method, the water body is discretized in the manner
shown in Figure 2,7 where the variables cJ,dJ,n,H,G, and v are assoclated
with the spatial points as indicated in Figure 2.7b. The subscripts £
and m are spatial location counters asscclated with the x and y directions,
respectively. The time counter is n. There will be £' grida in the
x-direction,m' grids in the y-direction, and n' total number of time
steps. So, for example, 61’2’3 would be the mass flux in the x-direction
assoclated with element 1,2 at time 3*At, where At is the time increment.

Applying the discretization scheme to the governing differential

equations (2.52, 2.53, 2.54) yields:

¢ (&m,atl) = ¢'(£,m,n) *c (L,m,n) - B} (£,m,n) * Ex(ﬂ,m,n+1/2) +

I’
C.2 * aJ(ﬂ.m,n) + C3(£,m) * i'lCI(‘Kam’n)*G_&IJ('ﬁsm)n) +
?XJ(,K,M.D) ! (2-58)

dJ(lE»msn"'l) = 5'(£,m,n) + dJ(f—!mvn) - Bj-(te.’m’n) * Hy(i.m,n+1/2) -

I T . .
cz*EJ(E,m,n) + ey (8m) * i=ldJ(£,m,n)'* EEEJ(z.m,n) +

%yJ(z,m,n) (2.59)




no flow
u=0

U river
Figure 2.7a: Finite Difference Discretization Scheme

ay,s,
71'. /- v X,

Gl Blm TV s

Figure 2,7b: Location of
Critical Parameters
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in which
€' (£,m,n) = l+At*e({,m,n)
cp) = 0.25fAt
B(Lm) - _Zﬁ
EJ(;E,m,n) - cJ(:E,m,n) + cJ(:E+1,m,n) + cJ('.C,m-l,n) + cJ(Z-l-l,m—l,n)
EJ(LE,B) = d (.f,m-l-l,n) +d (-E.m.n) + dJ(;e-l’nﬂ'lsn) + dJ(lﬂ"l,m.n)

J-ZAt*B (£,m,n)
AL

oy (Bmm) = D (L, n) %+ E,(£m,n0) _z

T T
TYJ(Z,m,n) = D;(4m,n) —Ey- - E;(4Lm,n) —-:-5

' - T
Dy =2At Dl; E; = 2Atf E}

ﬁx(l,m,n+l/2)

n{fm,n+1/2) - n(f-1,m,n+l/2)

It

ﬁy(.,ﬁ,m,n+1/2) n(£,m,n+1/2) - n(Lm-1,n+1/2)

n{f{m,n+3/2) = n(& m,n+1/2) + -i-% {u(L,m,n+1) - u( 81, m,n+1) + v(&,m,n+l)-

v{ £, m+1,n+1) } (2.60)
I'
u(4m,ntl) = F (bmn) + H(Lm) * ¢ er(Lm,ntl) * §y7(6m,n+l)
I=1
I'l
v(fm,ntl) = F (4m,n) + H(Lm) * L g (f,m nt+l) * SlI(f,m,n+l)
I=1 I

Equation 2.58 explicitly expresses the new ¢y at time (o+l) in terms of
the old cJ's at time n, The "old" n's are evaluated at time n+l/2 instead
of time n. This characteristic is the basis for the name "split—time"

scheme. From Figure 2.7, it can be seen that the term EJ is simply an
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average of the dJ's at the four locations nearest cJ(I;m). Additionally,
the spatial gradients g& ;‘%ﬁ » 3u/3x, and 3%/3y are easily defined
using the proposed scheme.

Thé ;aat segment of this section consists of a brief analysis
of the model, including its solution'scheme, computer space and time

requirements, and stability criteria.

2.6 Special Considerations

Model Solution Strategy. The model first calculates all variables

-t

and arrays which are not timendependenﬁ. At time t=0, all parameters
are spe;ified, and initial values are supplied for the cJ's and dJ's.
Initial values for the n 's are supplied for time 1/2 At. The new
cJ's and dJ's are calculated at time At using Equations 2,58 and 2,59,
and these new values are incorporated into the continuity equation
(2.60) to yield the updated values for n, now at time 3/2 At, The
new n's are substituted into 2.58 and 2.59 to solve for cJ's and dJ's
at 3At, and so on until the solution converges. If, at any time step,
the velocities are required, Equations 2.24 must be solved. However,
if the velocities are not desired for that particular time step,

the additional calculations needed to solve Equations 2.24 can be

avoided.

Computer Time and Storage Requirements. As previously mentioned,

several numerical three-dimensional models developed in the past have
been severely limited in scope, simply because their computer time
and storage requirements were too large for problems of practical

interest. One of the major objectives of this research was to develop
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4 three-dimensional model which could be applied to real-world
Problems. Therefore, it was essentlal to estimate the computer time
and storage requirements of the Model before it was coded for computer
runs. If the time and storage requirements did not seem reasonable,
the model would have to be reformulated.
Cooper and Pearce (1977) have made an analysis of computer
requirements of such a model, and concluded that a coastal area which
is modeled with a 20 x 20 grid with each grid 1 gquare mile and with
a minimm depth of fifty feet would require one minute of cpu time
to run one tidal cyele (on an IBM 370/168 wmachine). Storage . requirement

for the model is approximately 300K.

Stability. The split-time finite difference scheme is an explicit
scheme and is usually conditionally stable. For the case of one-dimensional

flow, it was found that the time increment must be the minimum of:

At < ——2 (2.61)
2
[a —‘%]
B~ max
or
st < J—A—_L (2.62)
gH

where Nva is the geometric average of the vertical eddy viscosity
distribution. In other words, 1f the vertical variation of Nv is

linear then N would be
va

¥ =N
= b (2.63)
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vhere N, 1s the value of the vertical eddy viscosity at the surface
and Ny is the value of Nv at the bottom.

Equation 2.62 is the Courant Condition for stability. Note that
in this equation, the maximum water depth will determine the minimum
time step whereas in the case of Equation 2.61 the minimum water depth
will govern.

Also observe that as the number of terms in the trial function
increases, (i.e. I' increases), the allowable time step indicated by
Equation 2.61 goes down in proportion to I'Z. If Equation 2.61 governs
then the computational requirements of the Model become proportional
to 1'%,

Order of magnitude arguments can be used to determine whether
Equation 2.75 or 2.76 govern for most real-world problems. Assume
that the minimum and maximum depth are of the order 5 feet and 500 feet,
respectively, and that Nva is of the order 1 ftzfsec. A typical grid
spacing will be of the order 103 ft. The Courant Condition (Equation

2,62) indicates a permissiblé time step of about 10 seconds. This

implies that if aI2 > 5, then Equation 2.61 will govern.
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CHAPTER 3
MODEL VERIFICATION

Model verification is perhaps the most important step in the
modeling process, In this section, model solutions for four cases
are compared against analytic solutions to check for model convergence

and accuracy. Cases 1, 2, and 4 use the grid layout and wind speed

described in Section 1.4.1.

3.1 Test Case 1. Flow in an Infinite Channel

The form of the vertical eddy viscosity is shown in Figure 3.1.
Values of a and 8 were chosen to be 0.04648 ft/sec. and 0.0l ft/sec., resPectivelyQ€
The following assumptions are made Iin the derivation of the analytic
solution for this test case:

(1} flow is one-dimensional, steady, and uniform (i.e, v = Q

where v is velocity in the lateral direction in the channel), @

(2) the Coriolis term does not contribute significantly,

(3) atmospheric pressure does not vary spatially

(4) density is constant throughout the fluid.

If these assumptions are applied to the equations of motion (Equatiom 2.1),

T - -




Figure 3.1: TForm of Eddy Viscosity Used in Test Cases 1, 2 and 3.

N

Figure 3.2: Forces Acting on Fluid Section in 1-D Infinite Channel
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the governing equation becomes

] Jdu
Eztch 3;) =0 (3.1)

Surface Boundary Conditiom. Wind blowing over a water surface
creates a transfer of momentum which, though the mechanism of momen tum
transfer is not fully understood, results in a shear stress, similar to
the stresses developed in a fluid as explained in Section 1.2. The
shear gtraoss acting at the water surface can be related to a shear
velocity U,, as in the following expression:

T

AL
o)

2
(3.2)

where Tg TSPresents the shear stress at the surface and p 1s the fiuid
density, Applying Equation 2.6, the surface boundary condition is,

Bu

2
u, -Nv 5z (3.3
z=0

Bottom Boundary Condition. At the bottom boundary, shear stress

is assumed to vary linearly with velocity, or:
Thx™ puy cp (3.4)

Tbx= bottom shear stress
Uy, = fluid velocity at bottom

€p = constant of proportionality
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Examining the forces acting on the water columm as shown in
Figure 3.2, it is seen that only hydrostatic forces and shear forces
on the surface and bottom (assuming side shears are negligible) exist,
Hydrostatic pressure forces are equal and opposite, implying that the
surface shear stress and the bottom shear stress must also be equal
and opposite, e.p., TB = Tb‘ From Equatiocns 3.2 and 3.4,

u 2. e

* "%

or

u = u*2 (3.6)

“b

To determine the analytic solution, the governing egquation

(Equation 3.1) is first integrated over the depth. The result is the

following expression:
du o (3.7)

where ¢ is a constant. Invoking the surface boundary ceondition,

Equation 3.3, implies
2

c = -u* (3'8)
Re~writing Equation 3.7 and integrating again over the depth:
2
du et

J a2 dz —J 5 dz (3.9

v
~u,2
u+tec=— In N ¢ = constant (3.10)

Applying the bottom boundary condition expressed in Equation 3.6,

+ Tue? 3.11)
vy c - In Nb (3.
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and

2
Uy
c = In Nb -
ot u,’ u,? (3.12)
c = In Nb - —"c:

Thus the analytic solution for the velocity in an infinitely long channel

with one dimensional flow is

u 2 Nb u 2
uw—HE Jp oy A (3.13)
o N c
v b
A comparison of the model and analytic solutions is shown in
Figure 3.3 for a depth of 32.8 feet and bottom friction coefficient of
0.05. The model results were obtained using three terms of the cosine
series and running the model to steady state —- approximately 6000
seconds — for the grid shown in Figure 1.7. As is seen in Figure 3.3,
the difference between the two solutions is indistinguishable on the

scale used.

3.2 Test Case 2. Flow in a Closed-Ended Channel

The grid used in this test case is exactly the same as that used
In Test Case 1 but with the channel closed off at one end. This is
accomplished by setting the depth in grid (6,2) of Figure 1.7
equal to zero and applying a no-flow boundary condition into that grid,
The assumptions made in this test case are similar to Test Case 1

except that 3n/3x no longer equals zero. The governing equation for flow

in a closed-ended chanmnel is

M 3y du | ‘
& ax 3z (Nv 32 (3,14)
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a = 0.04648, B = 0.01, Bottom Friction Coefficient = 0.05 fr/sec.
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The surface and bottom boundary conditions are given by Equations 3.2
and 3.4 respectively, Following the solution Process outlined in Section
3.1, the governing equation is first integrated with respect to depth.

Performing the integration vields:

g ?—3: z = NV -g-:,_u-_+ c (3.15)

The constant ¢ is determined using the surface boundary condition, which
is applied at z = Q:

2
0=-u, +¢

or (3.16)
2

c=u*

which results in:

g3z - nv%;i+u*2 (3.17)

Dividing both sides of Equation 3.17 by Nv and integrating again over

the depth:

2

8n 2 _ B - U
g % ' az in Nv] =q +--a— 1n Nv + c (3.18)

Combining Equations 3.4 and 3.18

2
u
Sn (B _ 8 - i
g x [a <3 1o Nb] w, * . In N +c
or u 2 (3.19)
=gdn/H_ g o -
c=g e [ 5 1n Nb] w 1n Nb

Thus, the governing equation becomes:
2

N L, N.
u-s--a-n-[z-l-l+—ﬁln-b-]+ub+-——ln—b— " (3.20)
a 9xX o Hv o Nv

Some information about the surface slope can be obtained from

an examination of forces acting on a section of fluid under steady
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state conditions in a closed-ended channel, as shown in Pigure 3.4. For
steady state to exist, the sum of the forces acting on the fluid section
must be equal to zero. Consideration of force balance in the x-direction

results in the following relation:

T T
en _ (s - _b) (3.21)

x pgH

Substituting values of Ty and T from the boundary condition expressions:

2
‘ngl‘g—é (4 - wc,) (3.22)
which can be rearranged to obtain an expression for Uy
2
143
= 8H 8n  “* (3.23)
ub cb ax cb
Combining this equation with Equation 3.20 yields
N u 2 u 2 N
u--g-ﬂ‘-[z-—-H+-ﬁln—b]--Sﬁ—a—rl+—*---+L].n—'b (3.24)
o 39X a Nv y ax Cy a Nv

One other fact which is known about the steady state conditiom
for flow in a closed-ended channel is that the integral of the velcecity
over the depth must be equal to 2ero. Integrating Equation 3.24 with

respect to depth and setting the result equal to zero yields a soclution

for In/Ix:
H H N, 8
¢, 2 [-3--21nN +-— (la N -1) - B (1n g-1)]
- u, c o b 2 b 2
m_g b a g (3.25)
ax HZ H BNb 32 o 2 .
5+ cl1:11.~1b—?(1n1~1b-1)+;--2-(1nf3-1)---C;EI

The velocity profile is obtained by first solving Equation 3.25 for
3n/3x, and substituting this result inte Equation 3.24, which is

re~-written here as:
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&g L8 ™ B 211 N
u & 3x [z H + p 1n Nv cb] + [cb + p 1n N§1 (3.26)

The model was run for a channel depth of 32.8 feet, a linearly
varying eddy viscosity of o = 0.04648 ft/sec. and 8 = 0.01 ft/sec., and
with a bottom friction coefficient ¢ = 0.05 ftisec. Model results are

compared with the analytic solution 1is Figure 3.5,

3.3 Test Case 3: 3-D Analytical Model Comparison

This verification model is for a sea with an infinite lateral
extent, with a linearly varying Nv and with a slip velacity at the bottom.
For the governing equations we have as in the Ekman formulation,

) 3u
~-fv 32 (Nv az)

3 av
fu” 5y Nv-a_z-

2 3 3
with u,” = -N 2 2 4

andwithu=ub=-—— Ve Yy @e—= @dz=H

Letting w = u + 1iv, multiplying the y-momentum equation by i and adding

to the x-momentum equation yields:

£ (iu-v)'a—:(Nv—a':-{U'Fiv})

or
3 aw
fiw a—z- {Nv a—z-}

where Nv = g2 + 8
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Figure 3.5. Comparison of Steady State Velocity Profile from Model and Analytic
Solution for 1-D Channel of Finite Length with o = 0.04648,
f = 0.01 and Bottom Friction Coefficient = 0.05.
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» - ——

For the surface boundary condition:

o+ 1V, -—Na?g—(u+iv) @ z=Q N =8

or

¥ = -y ¥ -
wiﬁw Ns 3z @ z=0

For the bottom boundary condition:

Wb-u.b‘l-ivb'

or N
w =L @ z=H
b cy 3z

To summarize, the equations of motion and necessary boundary conditions

are:
32w ow
(Gz+ﬂ)'—2-+u.-a-;-ifw-0 (3.27)
az
2 ow
w* = —NS E— (3.28)
z=0 -
Nb ow
w, = - — ¥ (3.29)
b Cp 9% z=H

Equation (3.27) can be placed into the following general form, Hildebrand

(1963)

xzy" + xy' -(kzxz)y =0

by making a dimensionless transformation

5= [4 —%—(az + 8)11/2

a 3

or
9z £ .ot

2 , 20 | ot

2
at” B, N ar 3
4f  a C 4f  2f

Introducing this transformation into equation (3.27) produces:




azw + 1
=+
.14

L
-iw =0

ara
nlﬂ

(3.30)

The surface boundary condition (3.28) becomes:

2 ow 2f dw . _ 1 ow
s 3z -Ns el I e 3T (3.3
C'Cs 8 ﬂ'CS

The bottom boundary condition becomes:

- (3:32)

The solution to Equation (3.30) is given by Hildebrand {1963), Section 4.11

as
w =z (137

or
W= cl beroc + o keroc +

{3.33)

i[c1 beioc + ¢ keioq ]

2

To evaluate the constants it 1is necessary to find the derivative
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%%. This is most conveniently done by rewriting the Kelvin functions
in terms of modified Bessel functions or

w= zo(13/2c) - c1J0(13/2r;) + c 1{0(1.]‘/2

) 3)

For the derivative, see Hildebrand (1963), Eq. 114,

gg _i3/2 132y - 11/2 (ilfz )
a2 [1c1J1(13’2c) + cletil’zc)l

Applying the surface boundary condition leads to:

1/2
+ cZKl(i
2

1/2
e Vs 2k (1

3/2 ) 3/2
5

1/2 3/2

e w2 =12 g 13,
g

tg)
8g)

1 43/2; Xe! 13, (1

1/2 1/2 2

=i e w, (3.34)

ic Kl(i

J (i

| 3/2
8)

Applying the bottom boundary conditions leads to:
1/2

c1J0(13/2c ) + ek al/2; ) = ?beb {cliJ1(13f2cb) + cle(ilfzcb)}
3/2 1/2
32,y _ 4 3/2 1/2 1 172
J (1 ) - — 1775 ) = ¢, [-R (17" °g,) + 1( Z.)]
% ecer 11 p) = Sk, vt e b
/2, ,.1/2
[i R, (i b) - 1/2.
- - (1M
= b%b
1™ % 372 73
i e, J, (1 g.)
, (1372, ‘) - 171 b

“%b
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1/2
¢ Sy
[1K1 b _ L 1/2 (il/zcb)]
11/2Jo(13/2‘b) N Iy cbebe

Equating equations (3.34).and (3.35) yields:

1/2 1/2 2

s) -1 ew

fe,K (4 A
372,

=M c,

J (i a)

therefore:

_11/2esw*2 ic2Kl(il/2
M= 372
3/2
3,3 3,33

cs)

or
-ilfze w z iK (i

c, = M -
2 (13/2c J1(13/2

lf2

s)]-l
g

L Ls1/2 2 3/2 1/2
e = =1 e w13, (5w - ax (1l y) (3.36)

Substituting (3.36) into (3.35) yields

1/2 3/2

ey = 1% B3, (13 yu -k % ) (3.37)

It is to be noted that M has two values depending upon which root of

1/2

i is taken. For simplicity we first looked at the case where

¢, =, as noted before this is equivalent to the condition of ne slip

or u=v=0 at z=0. Letting ¢, ™= produces:

1/2
K (i )
W S

=M ¢
3 (i3/2 b)

© 2
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Substituting this value for M into equations 3,36 and 3.37 provides

for ¢y and Cy'

1/2 2 3/2
i esw*.Jo(i Cb)

Ch ™ . .
fn e (1) v (Mg @3

Cb)
1/2 2 3/2
-1 e v, Ko(i z

1" 372 7
3 (1

b

Cc
2 1
cb) - 1K1(1

1 /2 3/2
g K (1 83,7 )

-

Figure 3.6 shows a comparison between the numerical, Galerkin model
and the analytic model presented above for the case of linearly varying
eddy viscosity. The parameters of interest are:

Wind stress ui = 0.0135 ftzfsecz

Coriolis f= 10-4 sec-l

Bottom Friction Coefficient €y = 9000 ft/sec = =

Slope of Nv = ,02 ft/sec

Intercept of Nv = .01 ftZ/sec

The comparison between the analytic and numerical models is
quite good.

Figure 3.7 shows a comparison for the case of constant eddy
viscosity. The analytic model is the Ekman solution for a sea of
infinite horizontal extent and finite depth. The comparison 1is
not as good as in the previous figure. The reason for this is because
in the case of constant Nv’ the second term of the trial function (uo)
becomes linear, reaching 2 maximm at the surface. This term, when added
with the first term in the trial function forms a function which is quite

difficult to simulate with cosine rerms.
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The comparison for the constaut Nv case can no doubt be improved
by taking more cosine terms (only 3 cosine terms were used in the results
shown in Figure 3.7). 1In any event, it must be remembered that the new

formulation does fit the varying Nv case, which is more physically realistic

than the constant Nv case.

3.4 Test Case 4: Flow in an Infinite Channel with a Multi-Linear
Variation in the Eddy Viscosity

Section 1.2 indicated that a reasonable variation in the eddy

viscosity would be one where Nv was a minimum near an interface

and reached a maximum somewhere in between.
Therefore, it follows that for real-world problems in well mixed water
bodies a bilinear variation such as that shown in Figure 3,8 might be
plausible. To test the model coding and to gain insight into the response
of the model to such 3 variation in NV, a simple analytic solution was
derived for the infinite chanrel of constant depth,

The governing equation for this case and the surface and bottom
b.c.’s are the same as for Test Case 1 (i.e. equations 3.1, 3.3 and 3.4),.
However, the problem must now be considered in two parts: szng and
HISzSH. An additional b.c. is available at the interface (i.e. z=Hl) by
specifying the velocities to be equal or: ‘

u = uI@z=H1 (3.38)

To derive the analytic solution, 3.1 is integrated twice using the
surface b.c. (equation 3.3) and interface b.c. (equation 3.38) to

evaluate the constants of integration. This yields:
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2
u, N

= — -+ < .
u=—1In (—T-N) u  Osz<H) (3.39)

1 1
where NI = qu1+Bl = a2H1+82 and Ni = alz+81

Now, for the lower layer, equation 3.1 can be integrated once which yields

2 Fr (3.40)

where N2 = a,2 + 82
To evaluate ¢ requires use of the bottom b.c. which can be written as:

Ju [ -Tb

——

= 1
9z PN b

z=H

where N' = o H+8,. Recall from Case 1 that equilibrium requires that
b 2 2

‘r;‘rb implying that:

Ju -Ts _u*2
= = - (3.41)
Bz pN"y N'b

z=H

Equation 3.41 can be used to evaluate ¢ and equation 3.40 becomes:

du _ 2
N, 8 a

Integrating this equation again and applying the b.c. at the interface

to evaluate the constant of integration gives:

Uy Ny
u=— In (=) + 4 H_ <z<H (3.42)
a2 N2 1 1
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Equations 3.39 and 3.42 give the veloéity profile over the entire

depth., However, uy still is undefined. This problem is solved by

- *

first using the expression for the slip velocity, U derived in Section 3.1

or equation 3.6,

u, (3.6)

With Uy expressed in terms of known parameters, uI can be

found by evaluating equation 3.42 @ z=H or

2

u NI
Y1 5% T '&2_ In (F;) (3.43)

Finally, this expression for u; can be substituted into equations
3.42 and 3.39 to get expressions for the velocity profile. After

some algebraic manipulations, the velocity profile can be written as:

u 2 N u 2 u 2 N
x .1
OzgH, u=_% 4 (EI_) t — - -— In (*I-N.)
% 1 % 2 b
(3.44)
2 , 2
u, N u,
H,$z<H u=— 1p ('_'h) +
1 az Nz Cb
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Figure 3.9 shows a comparison between GAL and the analytic
solution for the 1-D Channel described in Section 3.1. The eddy
viscosity variation 1s bilinear with a moderate slope near the

bottom (i.e. E#an 1). The important constants are:

b
N = 0.01 ft’/sec. H = 16.4 fe.
N, = 1.0 fe¥/sec. H = 32.8 ft.
Nlb = 0.8 ft2/sec. g = ® (no slip)
J' o= 3 u*2 = ,0135 fl:Z/sec'2

The comparison between GAL and the analytic solution is excellent,
Another comparison was made with the same constants except
that N' = .01 ftzlsec.,making the slope of the eddy viscosity near

N
the bottom much higher (i.e.._%_ = 100). Figure 3.10 shows the
N .

b
results and indicates that the comparison is not particularly good

for the case of J' = 3 and is only mariginally improved for the case h
of J' = 35, ‘r
To understand the basis of the problem, first note that above {
a depth of roughly 25 feet, the slope of the analytic solution i
and numeric solution compares quite well. Second note that the
analytic solution displays the strong logrithmic profile near the
bottom which occurs whenever N* has a strong negative gradient near

the bottom. Recall that there is no logrithmic term in the trial

function of the numeric solution near the bottom and therefore the

J! a .z
cosine terms (i.e. I cos ~— ) in the trial function nust simulate
J=1 H

the logrithmic variation alone. In Section 1.4.4 it was shown
that cosine terms are extremely slow to converge in approximating

@ logrithmic function. Hence, the reason GAL does not compare well

a0 4
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to the analytic solution is simply because of the slow convergence
of the trial function near the bottom.
One solution to improve convergence would be to include a
u, term which would contain a logrithmie component near the bottom,
A similar approach was taken near the surface to improve the initial
formulation of GAL., But as discussed in Section 1.4.4, this approach
is not generally possible near the bottom since the direction of
flow cannot usually be predetermined for most real-world problems,
Thus it is concluded that GAL will not yield exact results
in the case where NV near the bottom has a strong negative slope.
This in turn means that velocity structure within the bottom
boundary layer cannot be modeled by GAL. However, as Cooper and
Pearce (1977) pointed out, this aspect of GAL is not restrictive since
the thickness of the bottom boundary layer typically constitutes
a very small percentage of the total depth and its influence on
the waters lying above can be effectively simulated through the
use of the slip coefficient, Cp s which is included in the formulation

of GAL.
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CHAPTER &4 . ‘
SUMMARY AND DESCRIPTION OF FURTHER WQRK

The purpose of the research presented in thisg report has been
to develop a model which will predict the variation of the horizontal
velocities in both the horizontal and vertical directions, following
the basic solution procedure used by Heaps. Most -previous efforts
at three-dimensional circulation modeling have assumed a constant
verticﬁl eddy viscosity term. These models esgentlially follow Ekman's
solution for circulation in deep water, which predicts a surface
deflection angle of 45° between the flow direction and the wind direction.
This value does not compare well to values of the deflection aungle
obtained in measurements of wind-generated currents. The reason
for this discrepancy has been traced to the assumption of constant
eddy viscosity. Measurement of this parvameter has shown that it is
not constant with depth. and thus use of 2 constant vertical aeddy
viscosity has no real world analog.

The model developed here is similar to the Galerkin models
previously developed but incorporates a varying vertical eddy viscosity
which is represented by a series of linear segments over the depth.

The model is based on the horizontal momentum equations and the continuity
equation. The momentum equations are simplified by neglecting the
convective terms and the vertical velocities, linearizing the horizontal
shear stress terms, and by assuming constant density throughouf the

fluid. The velocities are assumed to be approximated by a series of
cosines of undetermined amplitudes. These trial functions are substituted

into the momentum equations, and the error resulting from replacement
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of the unknown "true" solution for the velocity by the approximate
solution is minimized over the vertical domain using the Galerkin

Method. A set of 2I' linear partial differential equations is obtained
involving a set of 2I' undetermined amplitudes, where I' represents the
number of cosine terms which have been taken. This set of equations
applies to a water column. The water body is discretized in the
horizontal plane and in time using a split-time, finite difference
scheme. The water columms are linked to one another using the continuity
equation.

The initial model formulation was tested against several simple
cases for which analytic solutions were available. While the model
performed well in predicﬁing velocities for cases of constant vertical
eddy viscosity, it was found to compare very poorly with the analytic
solution utilizing a linearly varying vertical eddy viscosity. 4
Fourier cosine series analysis was used to verify that the reason for
poor model performance was due to slow convergence of the trial function.
It was estimated that for reasonable values of the vertical eddy
viscosity, the number of cosine terms needed in the model to achieve
an acceptable approximation of the velocity profile would be an
unreasonable number of terms. It would be impossible to apply this
formulation to any field situation, since computer time and storage
requirements would be prohibitive.

One possible means of improving convergence is to choase a u,
term in the velocity trial function which will allow the cosine series
to more easily approximate the velocity over the depth. Since the

analytic solution for the velocity inm a one-dimensional, infinitely long
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channel is known to be a logarithmic function, the model was reformulated
to include a logarithmic term in the u part of the velocity trial
funetion. This second formulation resulted in a good comparison between
the analytical and numerical solution for the 1-D open and closed
ended case with linearly varying eddy viscosity. An acceptable comparison
was also found for the 3-D sea with an infinite horizontal extent with
linearly varying Nv but the comparison was not as good for the 3-D case
with constant Nv. The discrepancy is not considered important because
the model compares well to the cases with linear variation which is
closer to reality than the constant eddy viscosity case.

The improvement gained in convergence by implementing the new
trial function appears to make the model very economical in terms
of computer costs. The most interesting and useful work can

begin now that an operational model has been obtained.
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Appendix A

Detailed Integration of the Terms of the Residual Equation

A.l. Unsteady Term

If the convective portion of the unsteady term is neglected,

integration of the unsteady term yields:

Haﬁ H 3 aIz an
J'éT ﬂJ dz = J-B—t- (uo + i:cI cos _[-f") cos —r— dz (A.1)
0 0

It is assumed that the time scale of variation in wind shear and vertical
eddy viscosity is much larger than the scale of the time step. Due to
the oerthogonality property of cosines, the only non-zero term in the

summation will be when I = J, Performing the integration:

H. . dc

a4 H J
J 3¢ 0y dz = "BETS (A.2)
0

A.2., Surface Slope Ternm

Integration of the surface slope term is straight forward and

appears below:

J X
0 0
a.z jzwH
n H J in H
= g —~— — gin = g ——s8in a (A03)
% ag H 2=0 x ar J

A.3. Horizontal Shear Stress Term

After substitytion of the linear form for the horizontal eddy

viscosity term in Equation 2.28:
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rH g H .utzz?(z-.-ﬂ) u, arz a;z
J [ + In + lc. cos ——)cos — dz
qub 4 N T " H

(A.4)

Examining each term Separately, and breaking the first term into

two parts: 292 2
H u,”z"(z=H) Eu H a.z H a.z
* . 3 J 2 J
- 7 Q;dz = - {[| 2z cos~=—dz + ~2"H cos dz)
H'N H i H
Q b b 0 0
(A.5)
Considering the first term of Equation A.S:
a.z a.z (H H a_z
23 cos 5 dz = H 23 sin —J- -3 zzsin = dz
H aJ H aJ H
0 z2=() 0
4 a.z H H a.z
-E—sina ll'-I-[----Iizzcoﬁ;—‘r-—‘ +-2—Hf zcos—{—dz]
aJ J :e),‘J aJ H | a‘.T ) H
z=() 0
4 4 2 .2 2 2
- B 3H_ . 68 (BT H R
aJsinaJ+azcosaJ a2 2cos:a,_T-!-aJsinaJ 32]
J J J
=H4 {ijﬁ-aJ:-l--a—cosa --—6—¢]=H4w (A.B)
a 2 J 27 J
J aJ .*:1‘Jr

Taking a -H outside of the integral sign and integrating the second part:

CB.Z 2 2
H 2 442 2z cos - 2y 2 8,2z |H
2" cos — gz = H +( 57— = 2) sin -
H 2/H2 H H
0 iy — T z=0
3.,.3
: a J/H
2 o B 37 8in a; Y3 Ak
aJ J aJ
Finally, the first term of Equation A.4 becomes
2 2.2
euy 4 3 eu, H
-—— [H ¥; - H(H Ypl = - N (th—"rJ) (A.8)
H Nb b
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The .integration of the second part of the horizontal shear stress

term is performed using integration by parts:

Eu, 2 rl Nb a 7%

< ln(N ) cos T 4z
1 1
0
& a;z @,
Let U = 1n N and 4V = gos 5 This implies dU = = ——= dz and
N
1 H
8.z
v =t sin Gﬁ%ﬂ.
2y
az
" a;z a_z H a.H (H sin ——
J ln (ﬁ-Ni) cos L dz - 1n (—E _..§. Sin __J__ + 1 H dz
B N aJ H aJ N
0 1 1 L 5 1
| (4.9)

The first term vanishes at both boundaries, and the second term must be

integrated numerically. This second term will be represented as follows:

a.z

J
GIH JH sin H

" R dz = a]_HI'J (A.10)

J 0 u1

and the second part of the horizontal shear stress term becomes:

Eu*

o - ~eu, AT (a.11)

The orthogonality property of cosines can be used to simplify

the integral for the third part of the horizontal shear stress term.

H aIz an cy
-c [ i cpcos HoCos dz = —¢H —2— (A.12)

0

Combining Equations A.8, A.1l, and A.12 yields the horizonmtal

shear stress term:
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u*ZH 2

[
- _ - J
ef [ N, Wy = vgd +u Ty + =) (A.13)
A.4. Vertical Eddy Viscosity Term - Part One

The first part of the vertical eddy viscosity term is also

examined term by term:

i 22 2 2
H 3N K' 3u,z 2u,”z u,
-J AL PR S IHK [

! 3z 3z J K= K HZNb HN.b alz+81
A1
c.a a.z a.z
11 T J
—§ 1 sin T] cos —— dz (A.14)
Integrating the first term:
a.z
K' Hy 31.:*222 a;z E)u,‘:2 K' 2z cos i-ll
-Ea[ cos — dz = — z (———
Kel © a’y H Wiy k=1 B o 22
By ; b b J
2
a
g, J 2 a.z
( z°=2) _a, 2 z -
HZ a;z H.K _ 3u,” k' 3 2 0 cos g
+ in =] = I a, [
3,.3 H 2 K ]
a, /o H°N, K=1 a
J By b J
2
2 2. - 2 2yt
ay HZ a;2 Hk =3u,” k' 3 2 " °% —j
+ ¢ ) sin —— = I A0
3 H 2 K 2
aJ H N.b K=1 ay
Hg1
2
H'Kz H'l( H'K—l
2 o - 2 K1 22 2
3y g2 , He 2 By ayg-1 2y Hy
+ ( } sin a, — - cos - (
3 J . 2 HK ‘ 3
aJ aJ 53
a
in JZK L (A.15)
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Equation A.15 can be gimplified hy incorporating a nondimen-

sionalized height ™ I{K/H.

As a result, Equation A.15 can
be rewritten:

-3u*2H K’ a 7

I K KT
b K=l

(A.16)

Looking at the second term on the right hand side of Equation

A.14: 2 . _
2u, K H.K a;2
I J z2 cos — dz
N o % H
g1

Zu*z K' 2 an u ayz H'K
= z &, [—5 cos — + — 7 gin ]‘

HNb K 2 H a H

K=1 a.J J
Hee1

2\1*211 K'

= I a,¢ (A.17)
Nb K=1 K'RJ ,

-1 : -
where by = ;—-—5 [cos ajbg * 3;Lp sin 8y = cos aig_1 ~ 338y Sin aJCK-ll

J
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Here again, the Substitutioﬁ -C._‘K i-—ﬁ- is incorporated. .

The third term of Equation A.14 has no closed solution, and

must be integrated numerically, This term is expressed as:

, an
2 K H cos = 2
u, i-l K J -_'_ulz+81 dz = u, vJ (A.18)

0

The last term on the right hand side of Equation A.14 is integrated

by first moving all terms not functions of = outside the intergral sién..

t
g a HK it sin aIz cos i dz = z ——-—cIaI HK
K ) ) H B %% %k H
K=1 K I
Bea B
a:z a_z
sin g~ Cos dz (A.19)
Performing the integration:
- t - t
. a.K f Cray H [cos(BIJl;K) cos(BIJcK_l) N cos(BIJcK cos B IJ;K-I).
— [} .
K H 2 813 8 1g
=-Lrca :an (A.20)
2 1 1% g *kk1g
with BIJ aI ay and 6 17 aI + aJ.

The first term of A.20 will be singular when I = J, and the integral

must be re~evaluated for this case:

_ i Ia Zec.a 1 2 - 2 =

2 K kK 1 I1 2 {ecos™ (apze) = cos™ (apg, ;)]

1 54 T .2
=2 K % T °ririxrr (a.21)
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Letting K

a
4 -—I;za-’f
13" ) etk KL

this term becomes

-z CIGIJ (A.22)

Combining Equations A.16, A.17, and A.22 yields the final form for the

first part of the vertical eddy viscosity term:

2
3 on H 2
- I v 3d Qsz il [Z e (2¢KJ - BYKJ)] + 0 \2 e z CIGIJ
0 dz 3z b K I
(A.23)
A5, Vertical Eddy Viscosity Term - Part Two
2 2 2
- JH N 332 Q.dz = -%t IHK (GK?+B ) {ﬁu* i - . + il
5 Va2 Y R=1 K H2Nb L (a1z+a1)2
-1
2
c.a a;z
-1 cos ——] Q.dz (A.24)
T H2 H J

Considering the right hand side of Equation A.24 term by term, the

first term is split into two parts:

t K’

6u,” K ayz bu, . HK
- = z (aK;+BK) zZ cos N dz = - 3 [aK

BN, R=1 BN R=1 .

-1 HK-l
22 cos iﬂi dz + 8 ? z cos-iii dz] (A.25)
H K H
Fg-1
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The first term in brackets is very similar to the first term on the
right hand side of Equation A.l4 and the second term in brackets is
very similar to the term integrated in Equation A.16. Equation A.25 can

be rewritten as

_au*z

HEay +28 ¢ 1}
N, K“KKJ LS (A.26)

The second term on the right hand side of Equation A.24 is

integrated as follows:

Zu*z

H

I
N g

f Hy 352

(aKz+8K) cos ~=— dz

H
g1

2u*2

:-———-[E
HN, K“K

a.z
zcos—g—dz-i-zs HK ar%
H KX K

J
Hy-1 g1

H
N [é . H ¢KJ + E BK ;} (sin tgay - sin EK-l aJ)}

a.27)

where
o - sin(cKaJ) - Sin(cK—laJ

KJ aJ

The third term is similar to the third term of Equation A.l4

and must be integrated numerically. This term is expressed as:
a.z

2 H.K(aKz+B) cos —;—

Uy alé{

5= dz = —uy v (A.28)
§ (alz+8 )
N 1

-
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and that vJ' = vy for the case of K‘-Z.

The fourth term in Equation A.24 can be rearranged as:
2
Ux °1'1
I (az+B8.) £ ¢cos
K* 'K I H2

. g1

- _% LI °1312 [
B x

JHK a,z a,z

uK Z CO8 —— Cco8 ~— dz
Hea1

B H
a.z
JHK cos ——- cos —— dz}
He-1

[

+ 8

K H

2 cos(BIJ;K) .::.‘.)3(61J - l)

1
2 ﬁ % cjay log { o 2
1J

+

' - ' . -
cos(BIJCK) cos(BIJ;K_l) . CK snx(BIJr;K) CK-l ain(BIJ;K_l)

6'2 8

1J J

L]
sin(GIJc sin(B

g) = g 1J%-1’

eiJ

z
LK

1+

- 1
3 {sin(GIJcK) - sm(eIJcK_l) N sin(BLTcR) - sin(6

IJCK)}]
" 8 A

K
k 5x17 T TF Mgri! (A.29)

with BIJ = a,I—a.J and BI = aI+aJ For the case of I=J, this expression

will become singular. Re-evaluating the integral for the case of I=J

107



- .- a.z
1 2 HK : 1 J
5 LTI cIaI I (aKz+BK).cos - cos u dz
H K I
Heoa
=1 2 I« + 2K N
2.1 1t k&1 T TH M ru
in which
2 2
R~ "R-1, cos (*21%K) - cos (P21%k-1)
= +
EKIJ 2 432
1
. Z sin(ZaI x) cK—l 81n(2aI R-1)
ZaI
and
4 15
* - (IK)—sin( I°K-1)
Moy T gt G-y + sin Za;
Defining:
2
a 8
1 K %
1T 2 f( (Cgmrs + 5 * geg]

I"1J

K I H
M1

Summing the parts of the second vertical eddy viscosity term

(Equations A.26, A,27, A 28, A.32):
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H azﬁ -Gu*z ' X
[ o T o
o 2, K K

2u*2

2 .
+ Nb [ i GK¢KJ+ EBKSKJ] = u v+ i %15 (A.33)

A.6 Coriolis Term

The Corielis term is

H
0

The form of this term is essentially identical to the horizontal
shear stress term if the following substitutions are made:

cy becomes dJ

2

u, becomes Vy
€ becomes f

Performing the integration as in Section A.3:

H 9 v*2H 9 dJ
-f J Qsz = ~-f 4 | Nb (wJ - YJ) + v, TJ +--EJ (A.35)
0
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Appendix B

Continuity Equation

The continuity equation was given In Equation 2.5:

u v o

9x 3y ot (2.5)

It is possible to obtain expressions for u and v using the definition

of the mass fluxes (calculated here for the x~direction only):

- H H u*zzz(z-ﬂ) u*z Nb I' a. .z
u= J idz = f [ 2 + In ¢( ) + L ¢, cos —=—] dz
BN al Nl I=1I H
o 0 b - (B.1)
Performing the integration for the first term:
2 2.2
u, H 3 > u, 4 3 u,H
3 J (z” -2°H) dz = [-z-z-z—;i H == T (B.2)
HNb 0 HNb z=() b

Integrating the second term on the right hand side of Equation B.1:

u*'2 H N'b u*2 H
——— n {(—— = - d
> f in (N _) dz 3y f {1n Nb In Nl) z
0 I 0
2
* 1 H
= —_— -—_ _ |
N [z In N a (N 1n N N )] |
z=0
u 2
-ﬁ-*—[H.lnN ——];(N 1nN-N)+~—l(B 1n3-8)]==u2G
a; b @y b b b oy 1 1 17+ *
(BDB)
The third term is integrated to yield:
H a_z H a.z a
I ) ¢  cos T c f cos —E—dz-H po B I (B.4)
1 H T I R I I aI
0 0
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Combining B.2, B.3, and B.&:
2 -
;-_f_.,.u? + stn 1
12Nb « GHFBE cI ”
I T
Similarly, in the y=direction:
vm-——+v, c+HIq 1
128 % I 1 & (B.6)

These expressions are substituted into Equation 2.5, and Equation

2.5 is discretized as in Equation 2.60 to be used in the model.
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