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ABSTRACT

GAL: A 3-D Numerical Madel to Calculate
Currents with a Depth Varying Vertical Eddy Viscosity

A 3-D numerical model for simulating currents in coastal

regions and lakes is presented. The model uses the Galerkin

numerical method, allows for the vertical variation of the

vertical eddy viscosity, and can simulate complicated bathymetry,

density gradients and boundary conditions. The computer time

and storage requirements are quite reasonable. These features

make the model particularly attractive in the calculation of

wind-induced drift or oil slick trajectory analysis.

Emphasis in this report is placed an the theoretical

advantages of the model, the detailed formulation and comparisons

of the model to various analytic solutions.



ACKNOWLEDGMENTS

The research suaanarized in this paper wss supported primarily by

the Natioael Weather Servf,ce of the National Oceanic and

Atmospheric Administration. INTP7EP  Instituto Tecnol OgiCO del

Petroleo Veaezolaao! is also acknow].edged for its coatribution

to the research. Special thaaks is extended to Dr. Celso Sarrientos

of the NWS and Germen Pebres of INTEVEP.



CONTENTS

~Pa e

iAbstract

Acknowledgements

Table of Contents

List of Figures

Chapter l. Introductioa

iv

1.1 Justification for Development of a Three-Dimensional Model
1.2 Discussion of the Eddy Viscosity Concept
1.3 Previous Efforts in Circulation Modeling
1.4 Initial Formulation of the Galerkia Solutioa

1

2

8

2G

1.4. 1

1 ~ 4.2

1.4. 3

21

21

25

1.4.4 29

Chapter 2. Model Formulation 33

2.1 Governing Equations
2.2 Application of Galerkin Technique
2.3 Evaluation of the Galerkin Statement

33
39

46

2.4 Continuity
2.5 Model Discretizatioa Scheme
2.6 Special Considerations

59

61

65

Chapter 3. Model Verification 68

3.1 Test Case

3.2 Test Case

3.3 Test Case

3.4 Test Case

68

72

77
86

Chapter 4. Summary and Conclusions

References

Appendix A Detailed Integration of the Terms of the Residual Equation

Appendix B Continuity Equation

94

97

99

110

2.3.1

2 ~ 3.2

2.3.3

2.3 ' 4

2.3.5

2.3.5

One Dimensional, Infinitely Long Channel with Constant N
One Dimensional, Closed-Ended Channel with Constant N v

One Dimensional, Infinitely Long Channel with Linear
Variation in N

Fourier Series Aaalysis
v

Unsteady Term
Surface Slope Term
Horizontal Shear Stress Terms
Vertical Eddy Viscosity Term � Part One
Vertical Eddy Viscosity Term - Part Two
Coriolis Term

1: Flow in an Infiaite Channel

2: Flow in a Closed-Eaded Channel

3: 3-D Analytical Model Comparison
4: Flow in an Infinite Channel with a Mu1ti-Linear

Variation in the Eddy Viscosity.

46

48

48

53
56

57



LIST OF FIGURES AND TABLES

~Pa e

Table 1.1

Figure 1.4 12

Figure 1.5

Figure 1.6

16

22

Figure 1.7

Figure 1.8

23

Figure 1.9 26

Figure 1.10 Linear Vertical Eddy Viscosity Model

Figure 1.11 28

Figure 1.12 31

Figure 1.13 31

34

43

Figure 2.4 51

Figure 2.5 51

Figure 2.6 54

Figure 2.7a

Figure 2.7b

63

63

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Figure 2.2

Figure 2.3

Summary of Various Experiments Investigating the
Ef f ects of Wind on Sur f ace Drift

One-Dimensioaal Velocity Profile

Mixing Length Concept

Typical Velocity Profile for Case of Wind-Induced
Flow in a 1-D Channel of Finite Length

Vertical Structure of Pure Drift Current  Figure
from Neumana �968!

Hodograph Showing Development of a Pure Drift Current.

Physical Characteristics of the 1-D Channel Used
ia Model Verification

Grid Scheme Used for 1-D Channel

Comparison of Steady State Velocity Profile for the
Case of a l-D, Infinitely Long Channel with Constant N

Comparison of Ga].erkia Model to Analytic Solution for
1-D Closed-Ended Channel with a Constant Vertical
Eddy Viscosity

Comparison of V~locity Profiles for e � .04639 ft/sec
and 5~1.5246 ft /sec

Convergence of2Fourier Cosine Series for Case of
N 1.5246 ft /sec.

v

Convergence of Fourier Cosine Series for the Case of
u = .04648 aad 9 .Ol

Definition of Variables Used in the Model

Plot of Prescribed Functions, QI vs. Depth
The Functional Form for the Vertical Variation of
of N Used in the Model

v

Horizontal Velocity Profile  at z constant! Near
a Coastline

Circulation Induced in a Bay Due to a Tangential
Permanent Current

Discrete-Area Numerical Integration Scheme Used ia the
Model

Finite Dif ference Discretization Scheme

Location of Critical Parameters



69

69

73

Figure 3.4 75

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

87

91

Figure 3.10 92

Pigure 3.1

Figure 3.2

Figure 3.3

Pore of Eddy Viscosity Used in Test Cases 1, 2 and 3

Forces Acting on Fluid Section in 1-D Infinite Channel

Comparison of Steady State Velocity Profile from
Model and Anatytic Solution of 1-9 Channel of Infinite
Length with a 0.04648, 8 0.01, Bottom Friction
Coefficient 0.05 ft/sec.

Forces Acting on Section of Water in Closed Channel
at Steady State

Comparison of Steady State Velocity Profile from Model
and Analytic Sot.ution of t.-D Channel of Finite Length
with a 0.04648, g 0.01 and Bottom Friction
Coefficient 0.05.

Comparison of 3-9 Solution for Numerical and Analytical 84
Models for Variable Eddy Viscosity

Comparison of 3-D Solution for Numerical and Analytical 85
Models for Constant Eddy Viscosity

Variation of N used in Test Case 4
V

Comparison of the Model to the Analytic Solution for
the Case of a Bilinear Variation in N  N>/N'b=l!

V

Comparison of the Model to the Analytic Solution for
the Case of a Bilinear Variation in N  N</N'b=100!

V



1.1 Justification for Develo ment of a Three-Dimensional Nodal

A simple, efficient method to predict velocities which vary

laterally and vertically in a water body has important implications for

several areas of coastal engineering. In a practical sense, the model

can play a role in environmental assessment, particularly in the

development of offshore resources. Por example, a threeMimensional

velocity model could serve as the basis for predicting storm-induced

current forces on offshore structures. As the water depth in which

these structures are built increases  currently 250 meters but soon to

be 330 meters! costs mushroom, and enhanced accuracy in predicting

currents could mean substantial savings for even a single structure.

Another application of a three-dimensional circulation model

is in the area of pollution control, specifically in predicting the

tra!ectory of a surface pollutant such as oil. The state-of-the-art

for predicting the advection of oil slicks is the "fixed wind factor"

approach. This method consists of simply taking the center of mass

movement to be a fixed percentage of the wind speed. When the factor

is taken as 3X, as is commonly done, the procedure is known as the "3X

rule." The effect of the earth's rotation on fluid motion, known as

the Coriolis "force," is sometimes accounted for by deflecting the

surface current a constant angle to the right of the direction of the

*A "three-dimensional model" is defined here as a model which yieLds
the horizontal velocity variations in the vertical direction as well as
in the horizontal. Vertical velocity is neglected.



wind  to the left in the Southern Head. sphere!, This angle ia comnonly

termed the deflection angle,

Oil spill modelers usually !ustify the fixed wind factor

approach by referencing any number of previous field and laboratory

studies investigating the wind factor. Stolzenbach et al. �977! compiled

the results of the most often quoted experiments, included here in

Table 1.1. Note that the supposedly constant wind factor varies by a

factor of five depending upon which investigator one chooses to believe.

Even individual investigators found large variations in this wind factor

as evidenced by the significant standard deviations. This should come

as no surprise, as one would expect that the complex interaction of wind,

waves, bathymetry, etc., could not be modeled for all cases by a single,

constant parameter.

A three-dimensional modeling effort also has importance in a

scientific sense. Such a model may be used as a tool to acquire

greater understanding of the factors contributing to circulation in a

water body. By comparing results from the model with field data or

experimental results, it may be possible to determine some of the effects

of parameters such as shear, density, or bathymetry on circulation.

1.2 Discussion of the Kdd Viscosit Conce t

Since the eddy viscosity is considered. an important addition

to the formulation of this model, some discussion of the eddy viscosity

concept is warranted. Central to the concept of friction in fluid

motion is that shear stresses are produced when fluid layers slip.

For laminar flow, velocities near a solid boundary are smaller



T T
xx Bu xz Bu xv Bu~I a ~' ~ ~ R
p Bx' p Bz' p By

is the shear stress acting in the j-direction on a plane

normal to the i-direction,

p is the fluid density

v is the kinematic viscosity of the fluid

u is the velocity in the x direction

Por the case of turbulent flow, rapid velocity fluctuations

take place at all localities in the fluid. In this situation, the

velocity can be characterized as the sum of two velocity components:

v v + v'; w w + w'u ~ u + U

u,v,w are the velocities in the x,y, and z directions,

respectively

are the average velocities, taken over a long period of

time, in the x,y, and z directions

are the turbulent components of the velocity in the x,y,

and z directions. These turbulent components represent

the deviation from average velocity in the three directions.

uqvqw

U gv pw

Owing to the nature of turbulent motion, fluid masses are

than the velocities further from the boundary, This can be seen from

a typical velocity profile for oneMimensional fiow in an

infinitely long channel shown in Figure I.l. Shear occurs between the

layers moving at different velocities. The expressions for shear

stresses in the x-direction are:



Figure 1.1 One-Dimensional Velocity Profile



transported back and forth between fluid layers, Suppose that Figure l-2

represents the average velocity, u  v,w ~ 0; u',v',w' 9 0!, it can be

seen that a fluid particle at point A carried to point B by turbulent

velocities would gain momentum from the higher velocity of the surroundings,

~hereas a fluid particle moving from B to A loses momentum. Because of

this type of transport, fluid in a high velocity region will tend to be

retarded, and fluid in a low velocity region will tend to be accelerated.

Thus, the existence of a turbulent velocity gradient' leads to a transport

of momentum across surfaces normal to the gradient. The shear stress

exerted on a surface is equal to the rate of momentum transport across

that surface. In turbulent motion, the shear stresses in the x-direction

are:

T T
c}u i s. Xz Bu | |. xv &uu u j - ~ � u w j � = v � � u v �.3!

p Bx p Bz

in which the bar over the primed variables represents a time average

of the product of the two variables, and which is generally not equal to

zero  as is the case with the time average of a single primed variable!.

If momentum transfer into a volume differs from the momentum transfer

out of a volume, a frictional fozce pez unit volume results.

The turbulent components of shear stress are termed the Reynolds;

stresses, and for highly turbulent motion, these stresses are much more

important than the laminar stress components  except in the boundary

layer!, which may now be neglected. By assuming that the form ef the

turbulent shear stress is analagous to the laminar shear stress; we have:

T T T
XX Su xz Bu xv Bu~N �. =N
p xx Bx' p xz Bz' p xy By



Figure 1.2: Mixing Length Concept

Figure 1.3; Typical Velocity Profile for Case of Wind-
Induced Flow ia a 1-D Channel of Finite Length



in which N , N , and N are the eddy viscosity coefficients. NoteXX XZ

that for laminar flow, N is the kinematic viscosity of the fluid,

There is little theoretical justification for the use of

eddy viscosity coefficients. Yet this laminar analogy has been commonly

invoked ia the past, in part because it is a convenient simplification-

In addition, the method has yielded reasonable results for certain

applications.

Due to its unsteady nature and lack of strong theoretical

foundation, the eddy viscosity parameter has been difficult to quantify.

Direct measurement of the eddy viscosity requires instrumentation with

fairly rapid response time. The technical problems of obtaining such

measurements in an ocean environment are immense. If obtained, these

measurements would apply only to the particular point and time at which

the data were taken, since the parameter is generally a function of

space and time.

Some idea of the magnitude of the eddy viscosity may be obtained

using the mixing length hypothesis formulated by Prandtl  l925! .

Consider two layers of fluid moving in a turbulent environment as shown

in Figure 1.2  recall that the velocity profile represents the average

velocity!. Assume that at a certain distance from the bottom the average

excursion of a fluid particle in the z-direction is k. When a fluid mass

at point A travels to point B, it has a momentum deficit of -pk � .Bu

By

The rate of volume transfer from the lower to the upper layer is equal

to w', which is the time average of the w' values which are greater than

zero. The final result for the rate of transfer of  negative! momentum



to the upper layer is

2 Bu 3u
Te

Sz Bz  l. 5!

1.3 Previous Efforts in Circulation Modelin

Many two-dimensional models have been developed which predict

Comparing this expression to equations  I.4!, it is seen that the eddy

viscosity coefficients may be interpreted as being equal to the square

of the mixing length multiplied by the absolute value of the velocity

gradient.

The scale of the mixing length will be inhibited near a solid

boundary. The same situation exists at the surface where R will be

small, particularly if no waves are breaking. This implies that as

the mixing length approaches a value of zero, so does the eddy viscosity.

The mixing length and the eddy viscosity must reach a maximum some~here

between the surface and the bottom.

Equation  l.4! and its equivalent in the y-direction could now

be substituted into the momentum equations. However, this would

amount to replacing five unknowns  y ,z ,z ,T ,T ! with sixxx' xy' xz' yy' yz

parameters  N ~N ,N ,N ,N !. Given the uncertain nature of thexx xz' yy' yx' yz

eddy viscosity coefficients, these six parameters are usually reduced to

two: an eddy viscosity coefficient in the horizontal direction, N ; and
H

one in the vertical, N . Justification for this simplification can be
V

found in Cooper and Pearce �977!.



the horizontal variation of the mean flow. These models are typically

based on depth-averaged formulations which, although they require

reasonable computation time, by the nature af the formulation deliver

no information on the vertical velocity profile. Examples of such

numerical models include a finite difference model by Leendertse

 l967! and a finite element formulation by Wang and Connor �975!.

These models have proven useful in predicting such quantities

as mass transport, storm surge and general circulation movement. The

depth-averaged formulation will predict the velocities induced by

pressure gradients and tides in open waters. However, use of these models

to predict wind-induced surface currents is inappropriate. This is

clearly seen in the case of one-dimensional flow in a channel of

finite length. The velocity predicted by a depth-averaged model is zero.

Yet it is known Chat in such a situation a doubly logarithmic velocity

profile similar in form to that shown in Figure 1.3 can be expected.

Ekman �905! was one of the first to effectively address the

problem of modeling the vertical structure of the horizontal velocities.

One of his simplest models considers wind-induced drift only and is

derived by simplifying the Havier-Strokes equation to include only the

effect of the earth's rotation and the frictional force between water

layers. This is expressed as:

a
-pfv =  ~ !

dz Kz

pfu ~  T !
a

Bz yz

 l 6!



f is the Coriolis parameter, equal ta l,44+10 ain $ where
~4

is the latitude

u,v are the time averaged velocity components in the x- and y-

directions, respectively

are the horizontal shear stresses induced by the turbulent

component of the velocities

7 ~Txz' yz

Su 8v
~pN �; t' ~pN

xz v Bz' yz v 3z
 l. 7!

in which N is the vertical eddy viscosity coefficient and is considered.
v

to be a constant in this case. Equations 1.6 may now be re-written

2
fu ~ N

3 v

v 2
8z

2

-fv N
3 u

U 2
3z

The two boundary conditions necessary to evaluate the constants

of integration are:

du
=WN � l u~=0

sy v dz
z 0 z met

where ~ is the wind shear stress  assuming the wind is blowing in the
sy

y-direction only!. The solution to equations 1.8 is:

10

A left-handed coordinate system is assumed with z equal to zero

at the water surface and pointing positive downward.

Recall that the turbulent shear stresses can be related to

the turbulent velocity as discussed in Section 1.2. For the shear stresses

under consideration, this relationship is



u V e
- m/D! z

0
coa [- -  -!z]

4 D

�.10!
v ~ V

-  m/D! z .m m
o

sin [-' �   � !z]
4 D

.q~f 2Nv
f

to ~s and
T

pN a
v

D is the depth of frictional influence, equal to

V is the magnitude of the surface current, equal0

a is equal to f

N
v

11

At z D i.t is seen from the above expressions that the velocity has been

reduced to 1/23 of V . The result of plotting Equations 1.10 is the
0

classic Ekman "spiral" shown in Figure 1.4. Note that for infinitely

deep water the surface current is aligned at 45' to the right of the wind

 to the left in the Southern Hemisphere!.

For the case of finite depth, Ekman changed the second boundary

condition in Equation 1.9 to u~0 at the bottom, z H. All other assump-

tions in deriving Equations 1.8 are retained. The resulting solution

for the finite depth case is somewhat more complex and will not be shown

here. In general, the shallow water solution will yield surface

currents of both smaller magnitude and deflection than the infinitely

deep case. However, when the water depth is greater than one-half the

frictional depth, the surface current no longer feels the effect of the

bottom and behaves as if the water were deep.

This Ekman model is inadequate for most real world problems

since it does not include: 1! unsteady wind effects, 2! density gradients,

3! lateral boundaries, and 4! variable bathymetry. In part, these inadequacies

have since been removed. Neumann �968! included density effects.



Figure 1.4: Vertical Structure of Pure
Drift Current  Figure from
Neumann �968!!

12



Poristall �974! included unsteady effects and slope currents induced

by lateral boundaries by combining an Ekman-type model with a two-

dimensional vertically averaged model,

However, there are several characteristics of the Ekman approach

which are unrealistic, and are still retained in the improved versions.

Por example, the Ehnan-type solution predicts a deflection angle of 45'

in deep water. Yet surface drift experiments  Table 1.1! indicate

the deflection angle to be much smaller-mf the order 10'. It should

be noted that most of these experiments were performed in relatively

shallow water and hence one might argue that the surface deflection

would have been reduced due to the influence of the bottom. But this

does not appear to be the case. Consider the .field experiment performed

by Teeson et al. �970!. It is possible to establish the extent of

bottom influence for these experiments if some value for the vertical

eddy viscosity is specified. As was seen in Section 1.2, the value for

N is not well known. To avoid this problem, it will be assumed thatv

the 3X rule is roughly correct. This assumption allows an approximate

evaluation of the vertical eddy viscosity using the expression for

V in Equation l.10. Plugging this value for N into the expression
0 v

for the depth of frictional influence D yields a frictional depth of

approximately twenty meters for Teeson's experiments. Recall that for

~ater depths greater than half the frictional depth, the surface is no

longer affected by the bottom. Hence, for the bottom to have significantly

affected the surface current in Teeson's experiments, the water depth

would have had. to have been less than ten meters. In fact, Teeson's

experiments were performed in water depths well above that, in the range

13
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of twenty to thirty meters.

Another possible suspect for creating the deflection angle

discrepancy could be unsteady effects. Kkman investigated the length

of time necessary for his solution to reach steady state. Figure 1.5 is

a hodograph showing the development of the surface current for deep

water, The numbers on the spiral are in pendulum hours. Note that after

roughly four pendulum hours  five hours real time at 45' latitude! the

surface velocity deflection angle never drops below approximately 35'.

Most of the field experiments shown in Table 1.1 were performed in open

coastal areas where ma!or wind shifts would take place in relatively

large time spans.

It is reasonable to conclude that the rather large and consistent

discrepancy between the surface deflection angle predicted by Eknsn's

model and that observed in field experiments is not due to unsteady

or shallow water effects. Other factors could conceivably be the cause

of the discrepancy, such as currents of other origins  e.g., tidal!.

However, these other factors would be random in nature implying that

one would not expect them to consistently cause the observed deflection

angle to be less than that predicted by the Ekman model. Therefore, it

is logical to look more closely at the validity of the various assumptions

made by the Ekman model in order to find the possible cause for the

deflection angle discrepancy.

One of the assumptions made by the Eknan model was that the

vertical eddy viscosity was constant throughout the depth. Recall from

Section 1.2 that the vertical eddy viscosity arises from the turbulent

15



Figure 1.5: Hodograph Showing Development of a Pure Drift
Current. The time after wind started to blow
with constant speed is given in pendulum
hours.  Figure from Neumann �968!!
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frictional force between water layers, t aad x , Ekman used the
xz yz

laminar analogy to write these stresses aa a function of the turbulent

eddy viscosity coefficient, N , which can also be written ia terms of
V

the turbulent velocity components as:

~ -pe w pNt Bu

xz v Bz

�. 11!
t -pv w pNI Gv

yz v Sz

where u',v',w' are the turbuleat componeats of the velocity in the x-,

y-, and z-directions, respectively.

It is clear that w' will be zero near a solid boundary, and
Bu Bvsince B  or B ! will, in general, aot be zero near the boundary, then

N must be zero near that boundary in order to satisfy the right handv

side of the. equivalence in Equations �.11!. If waves are not breaking

at the surface, thea the above argument implies that N must be near
V

zero at the surface. Thus it is concluded that a realistic variation

for N w'ould be a shape with N near zero at the surface aad the bottom,v V

aad a maximum somewhere in between. We conclude that a constant vertical

eddy viscosity has ao real-world aaalog.

The above argumeat caa be partiaU.y substantiated when one

examines the effect of including a varying vertical eddy viscosity in

the Ekman-type formulation. Madsea �977! salved the unsteady form of

Equation 1.6 using the boundary conditions in Equations 1.9. He assumed

the vertical eddy viscosity to be zero at the surface and to increase

linearly with depth. For steady state, his results indicate a deflection

aagle of approximately 10' at the surface � a value consistent with the

field observations in Table 1.1. Other aspects of Madsen's model remain

17



comparatively similar to Ehman~s model including the magnitude of the

surface current and the total mass flux.

Another situation in which a vertical variation of the eddy

viscosity results in more realistic flow patterns is for the case of

flow in an infinitely long channel of finite depth with the wind blowing

in the axial direction  i.e., one dimensional flow!. For this situation,

an analytic solution assuming a constant vertical eddy viscosity

yields a linear velocity profile.

If instead, it is assumed that N varies parabolically  zero
v

at the surface and at the bottom! then the solution for the velocity is

a logarithmic profile near the surface and the bottom. Intuitively,

this latter solution seems much more correct, since one would expect

the velocity to exhibit a logarithmic profile near the surface and the

bottom. This intuition is substantiated in laboratory experiments

performed by Shemdin  l972!.

Thus it is finally concluded that in order to realistically

model the velocity profile, a vertical variation in the vertical eddy

viscosity should be incorporated into the model. In addition to Madsen,

several other modelers have included a vertical variation in N
V

Thomas  l975! developed an analytical solution for the problem

of steady wind-driven currents in a shallow homogeneous water body with

a variable vertical eddy viscosity. The functional form was assumed to

be linear, being zero at the bottom and reaching a maximum at the surface.

» previously mentioned, this formulation is physically realistic as

far as the eddy viscosity variation near the bottom is concerned. It does,

ho~ever, result in a finite eddy viscosity at the free surface. This



result is contrary to the result obtained by Reichardt �959! and does

aot produce the experimentally observed logarithmic velocity profile

 Shemdin, 1972! near the surface for the one-dimensional case, but

rather a linear relation. The deflection angle for the two-dimensional

case for this linearly varying eddy viscosity is found to be greater

than the value predicted based on a constant vertical eddy viscosity

assumption, although it approaches the 45' angle calculated by the

Ekman model in deep water.

Leeadertse �975! has developed a three-dimensioaal layered model

based on a finite difference formulation. The model includes density

effects and assumes the vertical eddy viscosity to be a constant over

each of nine horizontal layers. The overriding problem with this type of

formulation is the computational requirement. Even for relatively

small problems, the computer time requirement is of the order of hours

on the fastest machines available.

Heaps �972!, and Heaps �974! has recently developed numerical

models using the Galerkin, weighted residual technique. The outstanding

features of these models include: l! a relatively simple formulation,

2! reasonable computer-time requirements, and 3! a continuous functional

form for the velocity profile. However, the models still assume a constant

eddy viscosity.

Thus, the modeling approach taken in this report has been to

develop a three-dimensional model utilizing the Galerkin technique and

incorporating a varying vertical eddy viscosity.
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Enitial Formulation of the. Galerkin Solution

In the initial formulation of the model using a Galerkin

tion, the functions chosen to approximate the true solution for the

cities were:  see Cooper and Pearce �977!!

a z

+Z c>cos  H!
I l

-Ht

sin  - � !sx Ãz

q;p N H
V

 L. 12!
-Hv zt a z

sin  ~! + z d coo   !
mp N H H

are velocities in the x and y directions, respectively,

is the still water depth,

are surface stresses in the x and y directions,

respectively, due to wind shear,

is the water density,

is the vertical eddy viscosity,

are coefficients of the cosine terms, to be determined

in model solution process,

are prescribed constants,

is the vertical axis, z equals zero at the surface

and z equals H at the bottom,

is the number of terms needed to reach the required

degree of accuracy.

uiv

t,t
sx sy

N
v

al

zT
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The solutions obtained from the model using these expressions for the

velocities were checked against several simple problems for which

analytic solutions are available.



1.4.1 One-Dimenaional, Xnfinitely Long Channel with Constant N
V

The case of wind blowing over an infinitely long channel with

a constant N was examined first. Figure 1.6 showa the various physicalV

characteristics of the idealized channel which was used, The vertical

eddy viscosity was taken as 0.5 ft /sec., and the wind was applied as2

a step function at time t~O with a magnitude of 66 ft/sec. The effects

of the earth's rotation and the lateral shear stresses were neglected

and the water density was assumed homogeneous. Figure 1.7 shows the

grid network used by the model. Grids of zero depth are cross-hatched.

The dimension of each grid is 2000 feet by 2000 feet.

The model was run for two cases, one with three cosine terms

in the series expression for the velocities, and one with five cosine

terms. A comparison of the velocity profile from the model and the

analytic solution is shown in Figure 1.8. The analytic solution is

indicated by the solid line. Notice that the solution with three

cosine terms is virtually the same as that using five cosine terms.

The difference is not large enough to show up on the plot.

1.4.2 One-Dimensional, Closed-Ended Channel with Constant N

The model was next tested for a one-dimensional closed ended

channel. The physical characteristics were exactly the same as for

the channel in Figure 1.7 except that one end of the channel was

blocked off. Likewise, the model grid system remained the same as with the

previous case, except that the depth of element �,2! was set equal to

zero  i.e. H 0!.

Again, the model was run for the cases of three cosine terms
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Figure l.6: Physical Characteristics af the l-D Channel Used in Model
Verification



Figure 1.7: Grid Scheme Ueed for 1-D Channel

23



0iJ

C

a
I

W
0

IN 0

l4

kJ

0 tLI
4J

u g
4 4

U 0
W 0

4 4
kJ 4J

I&i
0 ~

C
0 0
4 4

4
c4

�»s! s~~m

24



and five cosine terms. Steady state results are compared to the analytic

solution in Figure 1.9. The upper plot shows setup q versus distance

from the end of the channel. A datum was arbitrarily established

at a distance of 9000 feet freya the end of the channel. Hence the reason

why q is zero at 9000 feet.

The lower plot shows the velocity profile. The model accurately

predicts the analytic solution for both surface elevation and the velocity

profile. It was found that three terms in the trial function approximated

the solution nearly as well as five, the difference being undetectable

on the scale used.

1.4.3 One-Dimensional, Infinitely Long Channel with Linear Variation in N
v

The model was next tested for a one-dimensional infinitely long

channel identical to that described in Section 1.4.1, except that N was
v

no longer considered to be s constant, but rather varied linearly as

shown in Figure 1.10.

Because three cosine terms produced accurate results for the

previous test cases, the model was run using that number of cosine terms.

Figure 1.11 is a comparison of the analytic velocity profile and that

predicted by the model. It is seen that the comparison is poor.

Since the analytic solution displays a very steep gradient near

the bottom, it was suspected that more cosine terms were needed in order

to approximate this steep gradient. Consequently, the number of cosine

terms included was increased to eight. Figure 1.11 also includes a

comparison of the analytic velocity profile and the velocity profile

produced by the model with eight terms in the summation. Though an
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Figure 1,10: Linear Vertical Eddy Viecosity Model
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improvement has been made by increasing the number of terms, that improve-
ment is small when compared to the discrepancy which remains between
the madel and the analytic solution.

Zf a function f z! is specified as

f z! Z f cos   ! u - u
i H t o �. 13!

fi are the coefficients of the cosine series, determined from
Pourier series ana1ysis,

u is the velocity determined by theory,

u is that part of the velocity trial function0

with the cosine series, from Equation 1.12,
not associated

-HT
sx 'gzu ~ � sin   � !

o 'AN 8
V

29

1.4 ~ 4 Fourier Series Analysis

Further testing of the model indicated that the discrepancy between
model and theory became progressively smaller as a was decreased  g held
constant! . This is not surprising since in the limit as e goes to zero,
the problem simply reduces to the constant N case. It was shown in

v

Sections 1.4.1 and 1.4.2 that the model yields very good results for this
latter case.

Close examination of the components of the velocity trial functions
0 and 0 suggested that the cosine series converged slowly in the case of
a linear variation in the vertical eddy viscosity. The truth of this
statement can be shown using a Fourier analysis, which is summarized
here. A more detailed discussion can be found in Section 3.6 of Cooper
and Pearce �977!.



then f z! represents that part of the velocity which must be accounted for

by the cosine terms. Figures 1.12 and 1.13 represent the convergence of

the cosine series for the velocity calculated at the surface z ~ .0

 i.e., f z! = f�!!, for the constant N and the linearly varying N cases,
v V

respectively. It is seen from Figure 1.12 that the cosine series converges

rapidly for the case of constant vertical eddy viscosity � including

only three terms in the cosine series yields very good accuracy. For the

case of varying vertical eddy viscosity, e 0.04648 and f3 0.01,

convergence is much slower. Even with twelve cosine terms, the sum of the

cosine series is only 90X of the value f�!.

In conclusion, the above analysis indicates that the reason why

the model compared so poorly with theory for the case of o ~ 0.04648

and 9 = 0.01 is simply because not enough cosine terms were taken. The

number of terms needed in the model to approximate this relatively

simple one-dimensional profile would be in excess of ten terms. This

has dire implications for the real world applicability of the model as

formulated. Even if we optimistically assume that the rather complex

profiles in a coastal environment could be simulated in the model using

only fifteen terms, then for a realistically sized problem with a 20 x 20

grid system, the computer time requirement would be on the order of

hours.

One possible solution to improving convergence of the model is

to choose a u term such that f z! can be more easily approximated by the
0

cosine series. Choosing a u term with this desirable characteristic
0

near the bottom is not generally possible since the velocity and its

gradient may be either positive or negative. For example, in the case of
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Figure 1.13: Convergence of Fourier Cosine Series for the Case of
oc ~ .04648 and/ .01



one-dimensional flow in a channel of finite length, the water velocity

near the bottom wi11 be in a negative direction and the velocity gradient

will be positive, On the other hand, for the case of one-dimensional

flow in a very long channel, the water velocity will be positive and

the. velocity gradient negative.

An optimal choice of u near the surface is much easier than near
0

the bottom since the velocity gradient and velocity direction will be

proportional to the wind velocity. For one-dimensional flow, u can be

assumed proportional to v and hence u will always aid in convergence
8X 0

regardless of whether the channel is open or closed, The choice of

u may also depend on the form chosen to represent the eddy viscosity.
0

Zn the following sections, the Galerkin model is re-formulated

for a revised choice of the velocity trial functions, and the results

of the model are again compared with simple, analytic solutions.
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CHAPTER 2

MDEL FOSKJLATION

2.1 Governin E uations

For constant density, the turbulent Navier Stokes or Namentum

Equations in a left-handed coordinate  z is positive down! system are:

B xz 1 a g BPBp
du s BTT f + B   xx! +  ~! +   !

Bx p By p Bz P P B P

�.1!

Bp
z

+ �   !+ �   !+ �  
B z 1 a g BP

p By p Bz p p By P By

where

u,v are the velocities in the x and y directions respectively

rt is the water depth relative to some datum  in this case,

will be taken relative to mean low water!

g is gravity

f is the Coriolis parameter = 2M sin $;4 = latitude

p is atmospheric pressure

ti~ is the shear stress acting in the i direction on a plane

which has a normal in the J-direction.

An examination of Figure 2.1 may clarify the defini.tions of the variables.

I n most sea and lake circulation problems of practical importance,

the vertical velocity component and its gradient are considerably smaller

than the horizontal velocities and gradients and are hence neglected.

With this assumption the z-momentum equation simply reduces to an

expression of the hydrostatic pressure distribution.
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The left-hand-side of Equations �,1! represent a combination

of the unsteady and convective terms as shown below'.

du Bu Bu Bu dv Bv Bv Bv� +u � +v �; � � +u � +v
dt Bt Bx By' dt Bt Bx By

�.2!

The first and second terms on the right-hand side of the equality in

Eqns. �.1! are the surface slope term and the Coriolis force term,

respectively. The last term on the right-hand side is the atmospheric

pressure gradient term.

Recall from Section 1.2 that shear stresses in turbulent flow can

be expressed in terms of the eddy vi.scosity coefficients. The shear

stresses in the x-direction are:

=pN �; ~ =pN
Bu Bu

xy H By' xz v Bz
Bu

pNxx H Bx'
�.3!

Substituting the expressions for shear stress into the momentum equations

yields:
z

Bp
du s BR
dt p Bx
� "--g � � +fv+ �  N � !+B  "HB!+B  " B! p Bx p WxB Bu B Bu B Bu 1

Bx H Bx By y z v z

�.i

B � av B Bv a av 1 a g 3PBp
� '-- � ' � '- f + �  . � !+ �  N � !+ �  N � � � ��dt p By Bx 'H Bx By 8 By B. v a. 7 B S

-n
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Note that if the unsteady, convective, surface slope, atmospheric density and

horizontal shear stress terms are neglected, Equations �.4! reduce to

Elaaan's formulation.

Conservation of mass yields an additional governing equation.

The appropriate form of the continuity equation for an incompressible



fluid is

8U Bv aYT
ax Sy at

�. 5!

where u and v are the mass fluxes per unit length in the x and y directions.

respectively, or

H H

u udz; v vdz

Surf ace Eounda Condition:

The surface boundary condition is:

Bv
T -p N

sy s v az
z -rl z~

cju
T ~-pN

sx s v 3z
z -n z~

�. 6!

is the density of water at the surface

are the surface shear stresses induced by the wind in
sx' sy

the x-and y-directions, respectively

The shear stress can be written as:

= p K cos 6 WIW; v - p K sin e~W~W
sx s sy s

�.7!

W is the wind velocity

e is the angle measured between W and the x-axis  positive

counterclockwise!

K is a drag coefficient which is a function of the wind speed.

This latter functional relationship has been the topic of many investiga-

tions. Van Dorn �953! published a classic work which included a functional

form for K based upon experiments on a small pond. Van Dorn's relationship



has more or less been the standard in the past for determining the

drag coefficient.

More recently, Wu �969! has compiled data from various

experiments measuring the wind shear stress including Van Dorn's

work, This data displays a large amount of scatter indicating among

other things, that the drag coefficient is not simply a function of

wind speed but is probably dependent on other factors such as wave

height, water and air temperature and fetch. Nevertheless, making

the best of available results, Wu suggested a relationship:

K 0.4* 10 W

K - 3.1+ 10

W<31 mph

W>31 mph
�. 8!

Bottom Boundar Condition

The shear stresses at the bottom boundary can be expressed as

 referring to Eqns. 2.3!:

BU N-pN � t ~-pN�
bx viz ' by v&z

z H z~H

�.9!
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The results of this expression can yield values for K which differ by

nearly a factor of two from values derived using Van Dorn's functional

farm. Despite this, Wu's relationship is used in the model because his

results are based upon data of a more general nature and because Wu

used a relatively large amount of data, which should tend to minimize

such factors as experimental error. In any case, it should be remembered

that, given the current state of knowledge concerning the drag coefficient,

calculation of the wind shear stress is only approximate at best.



where T ,7 denote the components of bottom friction tn the x and
bx' by

y directions, respectively. lf it is assumed that bottom friction

varies linearly with bottom current as follows:

�.10!bx b'Vb' by blab

where c is a constant, p is the density at the bottom, and u

and vb are the bottom velocities, a comparison of �.9! and �.10!
results in the expressions:

Bu Sv-pN � ~ c au.; -pN � = c pv

The bottom boundary condition is:

atzH
a* N ' S
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where N is the eddy viscosity coefficient at the bottom. This is the

bottom boundary condition formulated by Heaps �972!.

The effect of bottom roughness in the proposed model can be

included by varying N and. C . For the case
b

of an ideally smooth bottom, N will theoretically approach the value
V

of the kinematic viscosity near the bottom. As bottom roughness

increases, the value for N at the bottom can be expected to rise.
V

Thus, a set of governing differential equations �.4 and 2.5!

and boundary conditions in the vertical �.7 and 2.12! has been derived.

The horizontal boundary conditions about the perimeter of the water

body need not be introduced quite yet.

The momentum equations �.4! are second order, non-linear partial

differential equations and cannot be solved analytically. Therefore, a



numerical approach is taken. A variety af methods could be employed,

but for the reasons expressed in Chapter 1, the Galerkin method is

applied. Application of this technique will transform the two momentum

equations into a set of linear, first-order partial differential

equations, which can be easily salved using a variety of methods.

2.2 A lication of Galerkin Teehni ue

Application of a weighted residual technique begins by assuming

a generalized functional relationship to approximate the true solution,

or:
I'

6 ~ u + Z cIQ ;
0

I~1

I I 1

v + Z dl~l0
1~1

�. 13!
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where ii and 0 are the "trial functions," Q 's are prescribed functions,

cI and dI are coefficients of the prescribed functions which are

determined in the solution process, and I' and I" are the number of

terms needed to reach the required degree of accuracy.

In theory, the only restriction in choosing the 0 's is that

they must satisfy the vertical baundary conditions when combined with

the leading terms, u and v . In practice, however, they are chosen
0 0

80 as to approximate the true solution with as few terms as possible.

This implies that if it was known beforehand that the true solution

was for example logarithmic, then it would be reasonable to take the

prescribed functions to be logarithms.

The leading terms, u and v , are also somewhat arbitrary and
0 0

may not have the same functional form as that assumed for the prescribed

functions, These terms, however, when combined with the summation terms,

must meet the necessary vertical boundary conditions.



Heaps chose cosinea for the prescribed function, This function

has many desirable characteristics, includingl

1. it is well defined for all angles,

2. it is well-behaved when differentiated or integrated,

3. it is able to approximate complex functions when combined

together in a series, and

4. it is orthogonal with respect to other cosine terms.

Using cosines, the trial functions can be written;

1 t a z zlt a z
Q u + E c cos   !; 0 > v + Z d cos   !o 1 E H o I H

I~1
�. 14!

where a> are prescribed constants.

To evaluate u,v, and the a 's the boundary conditions at the0 0

surface and bottom are utilized. Using the surface boundary condition

 Equation 2.6! and taking the derivative of the trial function implies
that:

Bu T
0 sx

Bz p N
z~0 s v

3v T
0 s

Bz pN
zO sv
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The summation part of the trial function drops out since the derivative

of the cosine series is simply a sine series, which when evaluated at

z~O will be zero for any value of a

The surface boundary condition has been evaluated at z 0 instead

of z -rl. The necessity for this approximation will become evident later

when the Galerkin technique is applied, Note that this approximation is

good only when n is much smaller than the still water depth, H. This

restriction is easily verified by expanding the velocity gradient by



means of a Taylor series. For, simplicity, consider only the x-direction:

Bu Qu � 3 u
2

az az 2
q + higher order terms

z -q zW 3z zW
�. 16!

To ensure that the velocity gradient evaluated at q be well approximated

when evaluated at z O implies that:

Bu 8 u
2

naz !2zO az zW
�.17!

Introducing characteristic scales for the velocity, time and length

in this expression yields Tl<<H.

For a linear variation in vertical eddy viscosity, i.e.,

N = az + 8 one possible form of u is:
v 0

2
T Z Tsx  z-H! sx   b

u + ln   !
o H2N qp N

b
V

�. 18!

where N = a 8 + 9 is the eddy viscosity at the bottom,

Evaluating the surface boundary condition  in the x-direction!:

�.19!
I' cIaI aIz

sin   !
I 1 z~p

It is seen that the first, second, and fourth terms of the right-hand side

of Equation �.19! vanish. The remaining expression is:

T
Bu sx

3z p  az+P! �.20!

z=O

which is the boundary condition obtained in Equation �.15!.

At the bottom, z H, N ~ a 8+8 , and the velocity gradient at the

2T z z-H!
Sll sx

zW pH N

2
T Z T

SX SX

z p pH H z~p
2- p  hz+8!

z~p



bottom is expressed by Equation �.12!

2
T Z

sx

z~H pH N
2

2T z z-H!
9U sx

az 2
z~H pH N

T
SX

I p az+8!

�.21!I' cIa a z

- Z H sin   � !
I 1 z~H

At z~H, the first term of the right-hand side vanishes, the second and

third terms cancel, and applying equation �.12!

I I b-Z
H I N I I

sina - � Ec cosa �.22!

c H

aI tan aI
b

or
�. 23!

Thus, the coefficients a will be dependent on the slip velocity
I

coefficient, cb. The final form of the trial functions can be written
as:

N I' a z
ln  � ! + Z c cos  � !I

N I H

T 2
sx z  z-H!

U

pH N
2

s

T sx
pa
8

�.24!
T 2

pH N
2

s

N I"
~s b a z

+ ln  � ! +E d cos  !I

P N I 1 I Hs v
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where all variables are specified constants except for the undetermined

parameters cI and d

Figure 2.2 is a plot of the first three Q terms. This figure
I

indicates how the A terms can approximate very complex shapes when
I

weighted by the appropriate amplitude c or d
I I

Now that the trial functions have been specified, they can

be substituted into the momentum equations �,4!. In general,



Figure 2.2 Plot of Prescribed Functions,

vs. Depth.

Figure 2.3: The Functional Farm for the Vertical Variation

of N Used in the Model.
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there will be an error associ.ated with this substitution, since the
trial functions are not the exact solutions to the momentum equations.
This error is comionly referred to as the "residual". Performing this
substitution yields:

R + gdp Os an a aa a aa a ae N � ! � �  N�� ! - �  N � ! � fOdt p Bx Bx H Bx ay "H ay az v Sz
a z

+ � � +< ~deed 0
pa a

p &x p Bx
-n

�.25!

For the sake of brevity, only the residual in the x-direction is shown.
The error is minimized by specifying that the sum of the

residual over a region be zero. For the case of interest, it is
convenient to minimize the residual over a water column which yields:

H Rdz~0
� ~ 26!

The residual can also be multiplied by an arbitrary weighting function,
W, i.e.,

r HRWdz = 0
�.27!
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Various names are commonly associated with Equation �.27!, depending
on the form of the weighting function, W. For example, if W is taken
as R, then the technique is commonly called the Method of Least Squares.
Lf the weighting function W is specified as the prescribed function
0 , then the technique is labeled the Galerkin Method.

The use of a weighting factor can significantly simplify the
solution of Equation �.27! over that of Equation �.26!. A we11-chosen



r dQ Bn H H
RQ dz � Q dz+ g � Q dz �   �  N. � !

I dt I Bx Bx H Bx
0 0 0 0

+ �  N � !] Qdz �   � � ! Qdz- N Qdz
B Ba BNv Ba B u

By H By I Bz Bz I v 2 I
0 0

� f 0Q dz ~ 0
I �.28!

where the N term has been differentiated and conveniently separated.
V

There is an equivalent Galerkin statement for the y-direction.

Observe that the lower limit on the integration in Equation

�.28! has been moved from z = -rl to z 0. As discussed earlier, rl

must be much less than the still water depth H for this approximation

to be valid. The reason for neglecting the time variation of water

depth should now be evident, If this assumption was not made, then

the integrals in Equation �.28! would have to be continually re-

evaluated in time, since q is a function of time. This re-evaluation

would be computationally prohibitive.
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weighting function W can ease computational requirements. If W and R

form an orthogonal set of functions, then both the complexity of the

solution as well as the computational requirement will be reduced.

Noting this last characteristic and observing that the residual

R is composed primarily of sinusoidal functions, it is reasonable to

utilize the Gaierkia technique. W is set to be the prescribed functions 0
I

which consist of cosines. Substituting Q for W in Equation �.27!

and neglecting pressure and density gradient terms yields:



In order to evaluate. the integrals, a functional form for
the vertical variation of the vertical eddy viscosity must be specified.
This is done by approximating N with a series of linear segments as

v

shown in figure 2 .3. The slope u the intercept g and the number
kt

of segments k' must be supplied by the model user.*

This linear approximation scheme has several obvious advantages.
It is fairly simple to integrate, and it can approximate very
complex functional forms.

2.3 Evaluation of the Galerkin Statement
2.3.1 Unstead T

Term �! consists of an unsteady term and convective terms. Upon
substitution of the trial function and the prescribed function, the
~onstesd portion of the first term becomes:

2r ., z  z-H!sx sx bNb I ' a zdz   + ln   ! +1 cI cos   !!I

{! P PH Nb 1 1 I~1
a~z

cos  � � ! dz
H �.29!

where N ulz + 8
1

The time step used in the model wi11 be of the order 1 minute,
which is short compared to the anticipated time change of T p and

T ~ P

N . Hence it is reasonable to neglect the time derivative of the
u term.

0

As for the summation term, it is greatly simplified by using the
orthogonality property of cosines. The integral of the summation term
will be non-zero only when I 3 and in this case yields:

*Note that when more than one linear segment is used  i.e. k'>2! then
Nb in equations 2.23 6 2.24 should be replaced by N'=u ,H+9 , and N in
equations 2.24 should be replaced by N u z+8

1 1 1



a z
8cos  ~! dz ~�

H 2
0

�.30!

Thus, the unsteady portion of term 1 reduces to,

r H H
� A dt
Bt J 2 at

0

�.31!

The convective terms are not so easily dealt with. The terms

can be somewhat simplified if the wind and vertical eddy viscosity are

assumed to vary slowly with respect to the spatial discretization in

the horizontal. This assumptioa is reasonable for many situations

since the typical grid element is of the order one mile ia length

aad spatial gradieata of N aad ~ should be relatively small over
V 8

such leagth scales. With this approximatioa, the first convective

term becomes:

r H H ~ z  z-H! ~ N I' az
u � Qdz~ f

3x J
pH N

+ ln  � !+K c cos  !J
0 0 b

p A a z
�" cos  ~! dz
Bx H � ' 32!

3u
where > caa be a very comp1ex term, depending on the variables which

u U Bu*
f&V

L Sx* �. 34!

where u Uu* v Vve x Lx*

which implies that

�.35!U<fL
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are considered to be functions of x.

Cooper sad Pearce �977! show that the coavective terms may be neglected



2.3.2 Surface Slope Term

Substituting the prescribed function, term �! becomes

H
g~~ g dz- g ~~ "' dz

ax

0 0
�. 36!

For the purpose of the model formulation, it will be assumed that the

density is constant over the depth. Lntegrating Equation 2.36

H a z a z H
g ~ cos  ~! dz = g ~ � sin ~

ax H 8xa H
0 J z~0

�.37!

Bn H
g � sin a

Bx a J
J

2.3.3 Horizontal Shear Stress Terms

aFirst consider the � term which can be conveniently broken intoBx

two parts-'

r H H aN� H 
*
ax H ax�  N � ! g dz ~ � � 0 dz+ N 0 dz �.38!

ax ax H 2 J
0 0 0

Note that the second integral involves the second derivative of the

trial function. Recalling the form of the integral for the convective

terms, it is seen that this integral will be complicated and difficult.

48

This can be literally interpreted to imply that if the horizontal

grid length for a particular problem is I ad.le, for example, model
accuracy may become questionable in regions where the velocity

difference between adjacent grid nodes is greater than roughly 1 ft/sec.



at Bt
XZ ~

By Bz

Bt at
xx XZ

Bx Bz �,39!

Using the def inition of Reynolds stresses, Equation �.39! implies

 u'v ! «B ~uw ! B 
By " Bz ' ax " Bz �. 40!

Inserting the characteristic horizontal and vertical length scales, L
and H' respectively, and the characteristic horizontal and vertical
velocity fluctuations, u' and w', respectively, yields:

y2 I ~
U < u W

L H' �.41!

The time increment over which the turbulent fluctuations are

time averaged is the same order as the model time step in the case of
a numerical model. A typical time step will be of the order one minute

and for such short time scales it is reasonable to assume that the

characteristic velocity fluctuation in the vertical will be of the same

order as those in the horizontal. This assumption is substantiated by

As in the case of the convective terms, the problem is sometimes avoided
by arguing that the terms involving the horizontal eddy viscosity are
small relative to the other terms in the momentum equations, This

argument is best advanced by comparing the order of magnitude of the

lateral shear stresses  t and t ! from which the terms involving N
XX

originated, to the vertical shear stress  t ! from which the term
xz

involving N originated. It follows that terms involving NH can bev

neglected if



laboratory experiments performed by Schubauer �954! who found the

turbulent component of the velocities inside a pipe to be nearly

homogeneous except very near the wall. With this assumption of homo-

geneous turbulence, Equation 2.41 indicates that the lateral shear

stresses are smaller than the vertical since L is generally much larger
than H.

It is easier to see the implications of neglecting the lateral

stresses by considering several specific examples. First consider

the case of flow near a lateral boundary as pictured in Figure 2.4.

Clearly a model without lateral shear stresses cannot predict the boundary
layer that will occur in real world flow. Hence, velocity information

within the boundary layer which is derived from such a model would be

invalid. These regions could not generally be modeled anyway, simply

because the cost of running a model with sufficiently small enough grids
would be prohibitive.

Another example of the limitations imposed on a model by neglecting
the lateral shear stresses can be seen by considering an idealized case

of a permanent current passing by a bay. This situation is pictured

in Figure 2.5. For the sake of clarity, neglect other forcing mechanisms

such as tides, wind or Coriolis effect. In the real world the permanent

current would induce complex gyres and eddies in the bay which would

be characterized by a net counter-clockwise circulation.

Now assume that a model is applied with the discretization scheme

shown in the figure and that the current is entered as a tangential

flow at the boundary. If the model is based on a formulation which

neglects lateral shear stresses, then clearly the model will simply
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Figure 2.4: Horftontal Velocity Profile  at s constant!
Near a Coastline

kJ
4J g
C 4J
g

Figure 2 5: Circulation Induced in a Bay Due to a
Tangential Permanent Current.



indicate a stagnate bay. There would be no mechanism in the model to

transfer the shearing motion induced by the permanent current. Similar

inaccuracies can be anticipated in the modeling of circulation induced

by large river flows into a bay .

Heaps no doubt recognized the inadequacies of completely

ignoring the lateraL shear stresses. Re included the

lateral shear stress by assuming a linearized approximation of the form

�  N � ! + �  N ! = euB Bu B Bu
Bx H Bx By H By �. 42!

Using Equation 2.42, term 3 can be rewritten:

�  N � !Bu

Bx H Bx
0

0 dz � i �  N � !
 H

By H By
0

H

dz ~ -E uQ dz
J

�.43!

T Nb a zsx+ ln  ~!+E clcos H! cs H d
1 1 I 1

H ~ z  z H!
2

  sx
2

pH N

After integration, the horizontal eddy viscosity term can be expressed

as:

T T c

~H [ �-V!+ � r + � ]sx sx J

N p J J p J 2 � ' 44!

where

sin J 3 6 e
+

J a 2 J 2 Jcos a

a J a J
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The term t is sometimes referred to as the geostrophic coefficient. This

parameter is a complicated function of x and y and little is known about

the nature of that variation.



cos J+ sin Ja a

J 2 a 2
aJ J a

2 1 2
y � cos a +   � � � ! sin aJ 2 J aJ 3 J

J J

aJz
I sin H

H

J a N

0

The mechanics of integrating term 3 are included in Appendix A.

Note that I'J has no closed solution and must be integrated

numerically. A simple trapezoidal numerical integration scheme

was employed to obtain a value of I'J. This scheme approximates the

integrand of I'J with a series of rectangles of equal width, Ax, as

indicated in Figure 2.6. The height, of the rectangle is taken as the

value of the integrand at the middle of the element. The integral

I' is simply the sum of the areas of the rectangles.

The number of rectangles used to approximate I'J is specified

by the model user. Since the numerator of the integrand is periodic,

the number of terms needed for a given accuracy will increase as aJ

increases.

2.3.4 Vertical Eddy Viscosity Term - Part One

Inserting the trial function, the prescribed function QJ, and

the linear segment model for N , term 4 can be written;
v

I 2
3N z z-H! v z

az az

v3QQdz~-Zn I sx+s
K-1 " DH N PH N2

0 -l b b

c a

I I J
sin   !! cos dz

T
sx

P  +lz+Hl!

�. 45!



4x

Figure 2 ~ 6: Discrete-Area Numerical Zntegratf.on
Scheiae Used in the Model
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R'

J - N fZ H K 9YKJ-44K,! + 8K�4M 2S ! 1+ v vJ Nb F 1 K KJ KJ K KJ KJ J J

A similar expression may be derived for the ymomentum equation:
BdJ an 2'

=-28 � +cd � fc + � Z d 6o +~D' -2f E'Bt J By J J 8 I IJ p J p J
I~1

�-53!

specified except the unknowns c , d , and rl. Equations 2.52 and 2.53
1represent a set of 2*I equations with 2*/+1 unknowns. To solve for the

unknowns, one more equation linking the c 's snd d 's to 9 must be
J J

specified. This equation is the Continuity Equation.

2.4 Continuity

The continuity equation vas obtained in Section 2.1

Bu Bv Bq+ m
Bx By Bt �, 54!

The mass fluxes, represented by u 6 v, can be written in terms of the
undetermined parameters. This expression is, for the x-direction:
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The summation term in Equation 2.53 is taken from I=1 to I', not
III as indicated in the formula for the velocity trial functions, Equation

2.13. Since it vill not generally be known before model execution
whether more cosine terms will be needed to approximate the ve1ocity in
the y direction or in the x-direction, it is reasonable to simplify the
model by taking the same number of cosine terms in the x- and y-directions.

Equations 2.52 and 2.53 can be conveniently thought of as the
governing Momentum Equations for a water column. All, parameters are



H H T 2
u Qdx

0 0

+ ln  � !+Z ccos !dz
1 l I 1

�.55!

After performing the integrations and simplifying, Equation 2.55 can be

written as:

zl

u~F +HE c S
x I 1I lI �. 56!

where

H
2

T
F ~- � +Gsx sx

x 12Nbp p

G � [H ln N - �  N ln N -N ! + �  8 ln8 -8 !]1 1 1
a b al b b b a 1 1 1

1

aI

and in the y-direction:

Il

v F +HZ dS
y I lI �.57!

where

H t
2

T
F ~+G~

y 12N p
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Detailed derivation of this form of the continuity equation can be found

in Appendix A.

The result of this formulation is that the original second order,

non linear, momentum equations, together with the nonhomogeneous vertical

boundary conditions have been reduced to a set of 2*3 equations

 Equations 2.52 and 2.53! which are linear, first order partial differential



equations. These equations are coupled with the continuity equation

�.S4! and the boundary conditions about the horizontal perimeter of

the water body, thus yielding a set of equations with a unique solution

for the unknown variables cJ, dJ, and q, Once the c 's and d 's are
J J

determined, the velocities u and 0 are found using Equations 2.24.

2.5 Mode]. Discretization Scheme

The method chosen to solve the momentum and continuity equations

is the "split-time", finite difference scheme used by modelers such

as Pearce �972! and Raid et al. �968!. A detailed discussion of

finite difference models will not be included here, however, it is

important to be aware of the advantages and disadvantages of such a

scheme.

The split-time, finite difference scheme has several prominent

deficiencies. Because it is an explicit scheme, the method requires

a smaller time step to maintain stability than might an implicit scheme.

Additionally, it is impractical to use a grid system other than one

composed of squares of equal size, due to the nature of the finite

difference method. Such a grid system may produce unrealistic or time-

consuming results for water bodies which are long, narrow and contorted.

There are several advantages supporting the choice of a finite

difference scheme, including that the scheme;

1. has second order accuracy in both space and time,

2. yields an explicit solution for the "new" c 's, d 's and q's,
J

3. requires relatively simple computer programming logic to

imp lement,
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steps. So, for example, ul 2 3 would be the mass flux in the xMirection
7

associated with element 1,2 at time 3*At, where At is the time increment.

Applying the discretization scheme to the governing differential

equations �.52, 2.53, 2.54! yields:

c  g,m,n+1! c' L,m,n! ~ cj l,m,n! - BJ  l.,m,n! q  Z.,m,n+1/2! +
zl

c2 * dj Z,m,n! + c3�, ! I cl g,m,n! "Balj g,m,n! +
I~I

 g,m,n!
xJ �.58!

d  g,,m,n+1! c' g,m,n! + d  f,m,n! - B' f,m,n! * n  g,,m,n+1/2!
IT

c2*cJ k,m,n!+e3g,m!*EQJ l.,m,n!*WaI J g,m,n!+
I=1

 L,m,n!
yJ

�.59!

4. requires minimal computer storage requirements, and

5. was implemented by Heaps �972 and 1974! proving that the

scheme is stable and convergent for the constant N case.
v

It was felt that if the model formulation proved successful using a

simple finite difference scheme, then other, more sophisticated schemes

could be implemented later.

To apply the method, the water body is discretized in the manner

shown in Figure 2.7 where the variables cj,dj,n,H,u, and v are associated

with the. spatial points as indicated in Figure 2.7b. The subscripts 4

and m are spatial location counters associated with the x and y directions,

respectively. The time counter is n. There will be L' grids in the

x-direction,m' grids in the y-direction, and n' total number of time



no flov

U 0 Figure 2.7a: Finite Difference Discretizatian Scheme
Figure 2.7b: Location of

Critical Parameters
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in which

s' L,m,n! 1+ht'~e .4m,n!

c2 ~ 0.25fht

c3 Z.m! 2ht

cJ�,m,n!

dJ g,m,n!

c J  Xjl m n! + c J   Z+ 1, m, n ! + c   f,m- 1, n! + c J   g+l,m-l, n!
J

dJ g,m+1,n! + dJ f,m,n! + dJ g;l,m+1,n! + d  g-l,m,n!
J

B' ~ 2ht * B  g,m,n!

i  Z,m,n! D  Qm,n! � + E  L,m,n! ~

T T

 Qm,n! ~ D  Z,m,n! ~ � E  L,m,n!yJ ' J ' p J

D ~2ht D'; E 2htf EJ

n �,m,n+1/2! = z Qm,n+1/2! - n &l,m,n+1/2!

 .L,m,n+1/2! = rl l,m,n+1/2! - n gm-l,n+1/2!

q�,m,n+3/2! q Z,m,n+1/2! + �  u Z,m,n+1! � u Z+l,m,n+1! + v gm,n+1!-

v Z,m+1,n+1! ! �.60!

I'

u�,m,n+1! F  L,m,n! + H gm! * 1 c  Z,m,n+1! * S  Qm,n+1!
X I 1I

I 1

v X,m,n+1! 7  f m,n! + 8 'Qm! * E dI gm,n+1! ~ S  Z,m,n+3.!
I 1 I ' ll
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Equation 2.58 explicitly expresses the new c at time  n+1! in terms of
J

the old c 's at time n. The "old" q's are evaluated at time n+1/2 instead

of time n. This characteristic is the basis for the name "split-time"

scheme. Prom Figure 2.7, it can be seen that'the term d is simply an
J



average of the dJ's at the four locations nearest c  L,m!. Additionally,
Bg B$the spatial gradients �, �, Bu/Bx, and Bv/By are easily defined

using the proposed scheme.

The last segment of this section consists of a brief analysis
of the mode1, inc1uding its solution scheme, computer space and time
requirements, and stability criteria.

2.6 Special Considerations

Model Solution Strate . The model first calculates all variables
4 4

and arrays which are not time-dependent. At time t 0, all parameters
are specified, and initial values are supplied for the cJ's and dJ's .
Initial values for the q 's are supplied for time 1/2 At. The new
c 's and d 's are calculated at time At using Equations 2,58 and 2.59,
and these new values are incorporated into the continuity equation
�.60! to yield the updated values for p, now at time 3/2 At. The
new q's are substituted into 2.58 and 2.59 to solve for cJ's and dJ s
at 3At, and so on until the solution converges. If, at any time step,
the velocities are required, Equations 2.24 must be solved. However,
if the velocities are not desired for that particular time step,
the additional calculations needed to solve Equations 2.24 can be
avoided.

Com uter Time and Stars e Re uirements. As previously mentioned,
several numerical three-dimensional models developed in the past have
been severely limited in scope, simply because their computer time
and storage requirements were too large for problems of practical
interest. One of the major objectives of this research was to develop
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a three-dimeasional model which could be applied to real-world
problems. Therefore, it was essential to estimate the computer time
aad storage requirements of the Model before it was coded for computer
runs. If the time and storage requiremeats did not seem reasoaable,
the model would have to be reformulated.

Cooper and Pearce �977! have made aa analysis of computer
requirements of such a model, and concluded that a coastal area which
is modeled with a 20 x 20 grid with each grid 1 square mile and with
a minimum depth of fifty feet would require oae minute of cpu time
to rua one tidal cycle  on aa IBM 370/168 machiae!. Storage requirement
for the model is approximately 300K.

flow, it was found that the time increment must be the minimum of:

2dt
N2 va!

I 2
H max

�.61!

or

hL

�. 62!

where N is the geometric average of the vertical eddy viscosityva

distribution. In other words, if the vertical variation of N is
V

linear then N would be
va

~N-N
�, 63!

~dtahllit . The split-time finite difference scheme is an explicit
scheme and is usually conditionally stable. For the case af one-dimensional



where N is the value of the vertical eddy viscosity at the surface8

and Nb is the value of N at the bottom.
V

Equation 2.62 is the Courant Condition for stability. Note that

in this equation, the maximum water depth will determine the minimum

time step whereas in the case of Equation 2.61 the minimum water depth
will govern.

Also observe that as the number of terms in the trial function

increases,  i.e. I' increases!, the allowable time step indicated by

Equation 2.61 goes down in proportion to I' . If Equation 2.61 governs

then the computational requirements of the Model become proportional
,4

to I

Order of magnitude arguments can be used to determine whether

Equation 2.75 or 2.76 govern for mast real-world problems. Assume

that the minimum and maximum depth are of the order 5 feet and 500 feet,

respectively, and that N is of the order 1 ft /sec. A typical grid2
va

spacing will be of the order 10 ft. The Courant Condition  Equation3

2.62! indicates a permissible time step of about 10 seconds. This

implies that if a ! 5, then Equation 2.61 will govern.2!
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CBAPTZR 3
MODEL VERIFICATION

Model verification is perhaps the most important step in the

modeling process, In this section, model solutions for four cases

are compared against analytic solutions to check for model convergence
and accuracy. Cases 1, 2, and 4 use the grid layout and wind speed

described in Section 1.4.1.

3.1 Test Case 1. Plow in an Infinite Channel

The form of the vertical eddy viscosity is shown in Figure 3.1.

Values of a and 5 were chosen to be 0.04648 ftjsec. and 0.01 ft/sec., respectively
The following assumptions are made in the derivation of the analytic
solution for this test case:

�! flow is one-dimensional, steady, and uniform  i.e. v ~ 0

where v is velocity in the lateral direction in the channel!,

�! the Coriolis term does not contribute significantly,

�! atmospheric pressure does not vary spatially

�! density is constant throughout the fluid.

If these assumptions are applied to the equations of motion  Equation 2.1!,
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N
V

Figure 3.1: Form of Eddy Viscosity Used in Test Cases 1, 2 and 3.

r
sx

Figure 3.2: Forces Acting on Fluid Section in l-D Infinite Channel
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the governing equation becomes

�  N � ! MO3 8u
Bz v Sz �.1!

Surface Bounda Condition. Wind blowing over a water surface

T
sx 2

u
p

�. 2!

where T represents the shear stress at the surface and p is the fluidsx

density. Applying Equation 2.6, the surface boundary condition is,
2 BUu -N

* viz
z~O

Bottom Boundar Condition. At the bottom boundary, shear stress
is assumed to vary linearly with velocity, or:

�. 4!
'bx P"b'b

bottom shear stressbx

u fLuid velocity at bottom

cb constant of proportionality
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creates a transfer of momentum which, though the mechanism of momentum
transfer is not fully uaderstood, results in a shear stress, similar to
the stresses developed in a fluid as explaiaed in Section 1.2. The
shear str'ss acting at the water surface can be related to a shear
veIocity u , as in the following expression:



2
Up ubcb

or

u 2

b

To determine the analytic solution, the governing equation

� 6!

 Equation 3.1! is first integrated over the depth. The result is the

following expression:

BuN � ~ c
v az �.7!

where c is a constant. Invoking the surface boundary condition,

Equation 3. 3, implies

c ~ -u

Re-writing Equation 3.7 and integrating again over the depth;

� dz ~ � * dz
v

�.9!

-u~2
u+c * lnN;

0 V
c ~ constant

Applying the bottom boundary condition expressed in Equation 3.6>
u*2

u + c ln Nb �. 11!
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Examining the forces acting on the water column as shown in

Pigure 3.2, it is seen that only hydrostatic forces and shear forces

on the surface and bottom  assuming side sheaxs are negligible! exist.

Hydrostatic pressure forces are equal and opposite, implying that the

surface shear stress and the bottom shear stress must also be equal

and opposite, e.g., r t , Prom Equations 3.2 and 3.4,
s



and
2

u*
C ln N

e b

2
Up

ln Nb cb

or
�.12!

C

Thus the analytic solution for the velocity in an infinitely long channel
with one dimensional flow is

u
2 2

u ~ ln � +~
a N c

v
�,13!

A comparison of the model and analytic solutions is shown in

Figure 3.3 for a depth of 32.8 feet and bottom friction coefficient of

0.05. The model results were obtained using three terms of the cosine

series and running the model to steady state � approximately 6000

seconds � for the grid shown in Figure 1,7. As is seen in Figure 3.3,

the difference between the two solutions is indistinguishable on the

scale used.

3.2 Test Case 2. Flow in a Closed-Ended Channel

g � �  N � !Bq 3 Bu
3x 3z v &z �, 14!
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The grid used in this test case is exactly the same as that used

in Test Case 1 but with the channel closed off at one end. This is

accomplished by setting the depth in grid �,2! of Figure l.7

equal to zero and applying a no-flow boundary condition into that grid,

The assumptions made in this test case are similar to Test Case 1

except that 3n/3x no longer equals zero. The governing equation for flow
in a closed-ended channel is



0.2 0.4 0.6 0.8 1.0 1.2 1-4 1.6 1.8

Velocity  feet/second!
-0.2
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Figure 3.3- ComParison of Steady State Velocity Profile from Nodel and
Analytic Solution for 1-D Channel of Infinite Length with
a 0.04648, 8 0.01, Bottom Friction Coefficient = 0.05 ft/sec.





Figure 3.4 Forces Acting on Section of Water in Closed
Channel at Steady State



Bn R
ax �.21!pgH

Substituting values of t and Tb from the boundary condition expressions:s

8n 1 2
 u I1 c !Bx gH * b b � ~ 22!

which can be rearranged to obtain an expression for u
2

cb Bx c �.23!

Combining this equation with Equation 3.20 yields
2 2

u ~~ [z � H+~ ln � j ~~+ + ln-a Nb u* u+ Nb
a Bx a N c ax c a N

v b b V
�-24!

One other fact which is known about the steady state condition

for flow in a closed-ended channel is that the integral of the velocity

over the depth must be equal to zero. Integrating Equation 3.24 with

respect to depth and setting the result equal to zero yields a solution

for Bn/Bx:

H H b 8
-u+ c a b 2 b

2 [- � � � ln N + �  ln N -1! - �  ln 8-1! j
2Bn * b a a

�.25!Bx 2 9Nb 2
8 a 2

2 a b 2 b+ ~ ln N � �  ln N -1! + �  ln B-1! - � H
2 c

a a

The velocity profile is obtained by first solving Equation 3,25 for

Bn/ax, and substituting this result into Equation 3.24, which is

re-written here as:

s'tate conditions in a closed-ended channel, as shown in Figure 3.4. For

steady state to exist, the sum of the forces acting on the fluid section

must be equal to zero. Consideration of force balance in the x-direction

results in the following relation:



u ~ � [z -8+~in � � � ] + e [ � + � ln � j � 26!Bv "b H 2 1 1 b
n Bx 0 N c c a N

v b b V

The model was run for a channel depth of 32.8 feet, a linearly

varying eddy viscosity of a » 0.04648 ft/sec. and 9 = 0.01 ft/sec., and

with a bottom friction coefficient c 0.05 ftlsec. Model results are

compared with the analytic solution is Figure 3.5.

3.3 Test Case 3: 3-D Anal tical Model Co arison

-f v» �  N � !3 BU
Bz v Bz

3 Bv
fu  N !

Bz v Bz

2 BU ~ 2with u = -N �; v
v Bz'

Bv
= � N � 8 z 0

v Bz

N
b Bvv»v»- � � IB z»H

b cb Bz
"b Bu

and with u u
b cb Bz

Letting w u + iv, multiplying the y-momentum equation by i and adding

to the x-momentum equation yields:

f  iu - v! �  N �  u + iv]!3 3

Bz v Bz

or

fiw» �  N � !3 Bw

Bz v 3z

where N az + 8
V

This verification model is for a aea with an infinite lateral

extent, with a linearly varying N and with a slip velocity at the bottom.

For the governing equations we have as in the Khan formulation,



2 1.00.80.2 0.4 0.6

Velocity  feet/second!
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Figure 3.5. Comparison of Steady State Velocity Profile from Model and Analytic
Solution for 1-D Channel of Finite Length with a .0.04648,
8 ~ 0.01 and Bottom Friction Coefficient 0.05.



For the surface boundary condition:

2 2 3
u+ + i v -N �  u+ iv! 8 z~0

s 3z N ~ 8
s

or

3ww w ~ -N � 8 z~0
s 3z

For the bottom boundary condition:

Wb ~ u + i V

or
N

b av
w ~- � 8zH
b cb 3z

To summarize, the equations of motion and necessary boundary conditions
are:

2

 az + 8! � + a � - ifw 03w 3w

3z2 az �.27!

2 3w~ -N
8 3z �. 28!

z 0'

"b 3w
W

b c 3z
z H �. 29!

x y" + xy' - k x !y = 0

by making a dimensionless transformation

< = [4 �  az + g!]f I/2

a
2

or

3z 2cf at;
4f a

Introducing this transformation into equation �.27! produces:
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Equation �.27! can be placed into the following general form, Hildebrand
�.963!



Sw law
2

� + � � -iw~0
2

Sg � ' 30!

The surface boundary condition �.28! becomes:

2 Sw 2f Sw 1 Sww~ ~ -N ~ -N
s Sz s eZ SZ e SZ

s
s s

�.31!

s h~Q
where

or q - � Jm2

s 8 s
5~N

8

aQ
8

s 2fN

The bottom boundary condition becomes:

w
N

b 2f Bw 1 Bw

b c at;b SC cbeb Sb b Q~<b
�.32!

where

� ~fN2

a b

b ~fN
b

e
b

w ~ Z  i  !3/2
0

or

w cl ber g + c2 ker g +
0 2 0

if.cl bei t: + c kei g j
0 2 o

�.33!

To evaluate the constants it is necessary to find the derivative
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The solution to Equation �.30! is given by Hildebrand �963!, Section 4.11



in terms of modified Bessel functions or

Z l <! ~c J  i p!+c2K i <!3/2
2 0

Por the derivative, see Hildebrand �963!, Eq, 114,

aw 3/2 3/2i cl Jl  i <! i c2K1  'i P!

[i lJ1 i 4! + c2K]  i 0! jBw 1/2 3/2 1/2

Applying the surface boundary condition leads to:

-e w� -i  cliJ  i < ! + c2K  i $ !!2 1/2 3/2 1/2

e w�
2

c2kl  i < !1/2

c
s* 21 s

1 i3/2J  i3/2 ! iJ  i3/2 !~s l 's

~  il/2 ! il/2 2
�.34!C

l
Jl i g !

Applying the bottom boundary conditions leads to:

c J  i < ! + c2K  i g !  c iJl i 0b! + c2K1 i < !!3/2 1/2 i 3/2 1/2
0 0 cbeb

c J  i 0 ! � � c J  i 0 ! c [-K  i < ! + � !. >   !]3/2 i 3/2 I/2 i K .1/2
1 o b cbeb 1 1 b 2 o b cba b

1/2 .1/2i K  i qb!
K  i <b!]

cl c2 3/2   3/2 !
I 1 b

'b'b
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8"
This is most conveniently done by rewriting the Kelvin functionsBQ



[ I, / K  i1/ !]
s's

M c2 �. 35!
C
2  i3/2 !

1/2J  i3/2 ! 1 b

Equating equations �-34!- and �.35! yields:

ic2K1 i t; ! - i e w~1/2 1/2 2

* M c
J  i3/2 ! 2

therefore:

-i e w�1/2
s * 2 1ic2K1 i g !1/2

s* cN
 i3/2 ! 2 J  i3/2 !'s 's

or
.1/2 2 1/2

�.36!

Substituting �.36! into �.35! yields

3/2c1 -i e we N/ Jl i g !M � iK1 i t; !! �.37!

J i  !
cl " C2
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It is to be noted that M has two values depending upon which root of

i is taken. For simplicity we first looked at the case where
1/2

c ~~, as noted before this is equivalent to the condition of no slipb

or u~0 at z=0. Letting c ~ produces:
b



Substituting this value for M into equations 3.36 and 3.37 provides

for cl and c2.

1/2 2 3/2i ewe.J  i gb!
C

2

2g  i3/2g !
bC

Jl i 0 !K~ i Cb! + iKL i 0- ! Jo i q!3/2

Figure 3.6 shows a comparison between the numerical, Galerkin model

and the analytic model presented above for the case of linearly varying
eddy viscosity. The parameters of interest are:

Wind stress u+ 0.0135 ft /sec2 2 2

-4 -I
Coriolis f l0 sec

Bottom Friction Coefficient c 9000 ft/sec = ~
b

Slope of N ~ .02 ft/sec
V

Intercept of N ~ .Ol ft /sec2

v

The comparison between the analytic and numerical models is

quite good.

Figure 3.7 shows a comparison for the case of constant eddy

viscosity. The analytic model is the Ehnaa solution for a sea of

infiaite horizontal. extent aad finite depth. The comparison is

not as good as in the previous figure. The reason for this is because

in the case of constant N , the second term of the trial function  u !
V o

becomes linear, reaching a maximum at the surface. This term, when added

with the first term in the trial function forms a function which is quite

difficult to simulate with cosine terms.
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Figure 3.6�. Comparison of 3-D Solution for Neaerical and
Analytical Models for Variable Eddy Viscosity
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u u 9 z H
I 1 �. 38!

To derive the analytic solution, 3.1 is integrated twice using the
surface b.c.  equation 3.3! and interface b.c.  equation 3.38! to
evaluate the constants of integration. This yields:
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The comparison for the constant N case can no doubt be improved
V

by taking more cosine terms  only 3 cosine terms were used in the results
shown in Figure 3.7!. In any event, it must be remembered that the new
formulation does fit the varying N case, which is more physically realistic

V

than the constant N case.
V

3.4 Test Case 4: Flow in an Infinite Channel with a Multi-Linear
Var ation in the Kdd Viscosit

Section 1.2 indicated that a reasonable variation in the eddy
viscosity would be one where N was a minimum near an inter f ace

v

and reached a maximum somewhere in between.

Therefore, it follows that for real-world problems in well mixed water
bodies a bilinear variation such as that shown ia Figure 3.8 might be
plausible, To test the model coding and to gain insight into the response
of the model to such a variation in N , a simple ana1ytic solution was

v

derived for the infinite channel of constant depth.

The governing equation for this case and the surface and bottom
b.c.'s are the same as for Test Case 1  i.e. equations 3.1, 3.3 and 3.4!.
However, the problem must now be considered in two parts: 0<z<H and
H <zM. An additional b.c. is available at the interface  i.e. z H ! by
specifying the velocities to be equal or:



Figure 3.8: Variation of N used in Test Case 4.
V
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u�N
2

* ln  ~! + u OSz<~
a N I 1

1

�. 39!

81+Bi ~2H +B2 01 +Bl

Now, for the lower layer, equation 3.1 can be integrated once which yields

�.40!

where N2 ~2z + B2

To evaluate c requires use of the bottom b.c. which can be written as:

3u b
N

z~H

where N' = a H+B . Recall from Case 1 that equilibrium requires thatb 2 2'

implying that:
8

�. 41!

Equation 3.41 can be used to evaluate c and equation 3.40 becomes:

N 3u
*

Integrating this equation again and applying the b .c. at the interface

to evaluate the constant of integration gives:

2
U NI

u � ln   ! + u H  z H
'2 N "I

2
�.42!
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N2 3U
3Z

3u

Yz
z~H

T
S

pN

2
U*

N'b



Equations 3.39 and 3.42 give the velocity profile over the entire

depth. However, u still is undefined. This problem is solved by

first using the expression for the slip velocity, u , derived in Section 3.l
or equation 3.6.

�.6!

Mith u expressed in terms of known parameters, u can be

found by evaluating equation 3.42 8 z H or

u*
2

N

2 b �.43!

Finally, this expression for u can be substituted into equations

3.42 and 3.39 to get expressions for the velocity profile. After

some algebraic manipulations, the velocity profile can be written as:

2

U

�.44!

H 5z<H
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2
a u

cb

2
U~

Q2

2
N ua

ln  ~N +
1 b

2
NT u~

ln   ! +
N

ua
2

N

* ln  @~ !
2 b



Figure 3.9 shows a comparison between GAL and the analytic

solution for the 1-D Channel described in Section 3.1. The eddy

viscosity variation is bilinear with a moderate slope near the
N

bottom  i.e. = 1!. The important constants are:N'b

0.01 ft /sec.
2

1.0 ft /sec.
2

0.8 ft /sec.
2

N
s

N
I

b

H 16.4 ft.

H 32.8 ft.

~  no slip!
b

u� .0135 ft /sec-2 2 2J' ~ 3

The comparison between GAL and the analytic solution is excellent.

Another comparison was made with the same constants except
2that N" .03. ft /sec.,making the slope of the eddy viscosity near

N
the bottom much higher  i.e. ~ 100!. Figure 3.l0 shows the

results and indicates that the comparison is not particularly good

for the case of J' 3 and is only mariginally improved for the case

of J' = 5.

To understand the basis of the problem, first note that above

a depth of roughly 25 feet, the slope of the analytic solution

and numeric solution compares quite well. Second note that the

analytic solution displays the strong 3.ogrithmic profile near the

bottom which occurs whenever N . has a strong negative gradient near
V

the bottom. Recall that there is no logrithmic term in the trial

the logrithmic variation alone. In Section 1.4.4 it was shown

that cosine terms are extremely slow to converge in approximating

a logrithmic function. Hence, the reason GAL does not compare wel3.

function of the numeric solution near the bottom and therefore the
J' az

cosine terms  i.e. Z cos ! in the trial function must simulate
J-1 H
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PXgcre 3.9; Comparison of the Model to the Analytic Solution
for the Case of a Bilinear Variation in N  N /'H' =I!
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Figure 3.10: Comparison of the Model to the Analytic Solution for
the Case of a Bilinear Variation in N  N /N'b 100!
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to the analytic solution is simply because of the slow convergence

of the trial function near the bottom.

One solution to improve convergence would be to include a

u term which would contain a logrithmic component near the bottom.

A similar approach was taken near the surface to improve the initial

formulation of GAL. But as discussed in Section 1.4.4, this approach

is not generally possible near the bottom since the direction of

flow cannot usually be predetermined for most real-world problems.

Thus it is concluded that GAL will not yield exact results

in the case where N near the bottom has a strong negative slope.

This in turn means that velocity structure within the bottom

boundary layer cannot be modeled by GAL. However, as Cooper and

Pearce �977! pointed out, this aspect of GAL is not restrictive since

the thickness of the bottom boundary layer typically constitutes

a very small percentage of the total depth and its influence on

the waters lying above can be effectively simulated through the

use of the slip coefficient, c , which is included in the formulation

of GAL.
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CHAPTER 4

SQ'KVtY AND DESCRIPTION OF FURTHER WORK

The purpose of the research presented in this report has been

to develop a madel which will predict the variation of the horizontal

velocities in both the horizontal and vertical directions, following

the. basic solution procedure used by Heaps. Most -previous efforts

at three-dimensional circulation modeling have assumed a constant

vertical eddy viscosity term. These models essentially follow Ehnan's

solution for circulation in deep water, which predicts a surface

deflection angle of 45 between the flow direction and the wind direction.

This value does not compare well to values of the deflection angle

obtained in measurements of wind-generated currents. The reason

for this discrepancy has been traced to the assumption of constant

eddy viscosity. Measurement of this parameter has shown that it is

not constant with depth and thus use of a constant vertical eddy

viscosity has no real world analog.

The model developed here is similar to the Galerkin models

previously developed but incorporates a varying vertical eddy viscosity

which is represented by a series of linear segments over the depth.

The model is based an the horizontal momentum equations and the continuity

equation. The momentum equations are simplified by neglecting the

convective terms and the vertical velocities, linearizing the horizontal

shear stress terms, and by assuming constant density throughout the

fluid. The velocities are assumed to be approximated by a series of

cosines of undetermined amplitudes. These trial functions are substituted

into the momentum equations, and the error resulting from replacement
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of the unknown "true" solution for the velocity by the approximate

solution is minimized over the vertical domain using the Galerkin

Method. A set of 2I' linear partial differential equations is obtained

involving a set of 2I' undetermined amplitudes, where I' represents the

number of cosine terms which have been taken. This set of equations

applies to a water column. The water body is discretised in the

horizontal plane and in time using a split-time, finite difference

scheme. The water columns are linked to one another using the continuity

equation.

The initial model formulation was tested against several simple

cases for which analytic solutions were available. While the model

performed well in pr'edicting velocities for cases of constant vertical

eddy viscosity, it was found to compare very poorly with the analytic

solution utilizing a linearly varying vertical eddy viscosity. A

Pourier cosine series analysis was used to verify that the reason for

poor model performance was due to slow convergence of the trial function.

It was estimated that for reasonable values of the vertical eddy

viscosity, the number of cosine terms needed in the model to achieve

an acceptable approximation of the velocity profile would be an

unreasonable number of terms. It would be impossible to apply this

formulation to any field situation, since computer time and storage

requirements would be prohibitive.

One possible means of improving convergence is to choose a u
0

term in the velocity trial function which will allow the cosine series

to mor'e easily approximate the velocity over the depth. Since the

analytic solution for the velocity in a one-dimensionaL, infinitely long
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channel is known to be a logarithmic function, the model was reformulated

to include a logarithmic term in the u part of the velocity trial
0

function. This second formulation resulted in a good comparison between

the analytical and numerical solution for the l-D open and closed

ended case with 1inearly varying eddy viscosity. An acceptable comparison

was also found for the 3-D sea with an infinite horizontal extent with

linearly varying N but the comparison was not as good for the 3-D case
v

with constant N . The discrepsncy is not considered important because
V

the model compares well to the cases with linear variation which is

closer to reality than the constant eddy viscosity case.

The improvement gained in convergence by implementing the new

trial function appears to make the model very economical in terms

of computer costs. The most interesting and useful work can

begin now that an operational model has been obtained.
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Appendix A

Detailed Integration of the Terms of the Residual Equation

A.l. Unsteady Term

If the convective portion of the unsteady term is neglected,
integration of the unsteady term yieLds:

r H H a z aJz
u + ~c cos ! cos dzSt J 3t o

0 0
 A. 1!

H J� 0 dz~-
at J 2 at

0
 A. 2!

A.2. Sur f ace Slope Term

Integration of the surface slope term is straight forward and
appears below:

H

g � A dz
Bx J

0

H az
g � cos

3x H dz

0

aJz z H
g � � sin aH 0 Bx aJ J

aq H
g � � sin

Bx aJ  A,3!

A.3. Horizontal Shear Stress Term

After substitution of the linear form for the horizontal eddy
viscosity term in Equation 2.28:
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It is assumed that the time scale of variation in wind shear and vertical
eddy viscosity is much Larger than the scale of the time step. Due. to
the orthogonality property of cosines, the only non-zero term in the
summation will be when I ~ J. Performing the integration.



 H- 22 2H.u+ z  z-H! ue N. a<z a z
JuA dz -c [ + ln + Kc cos ]cos dzJ H zi0 0

 A. 4!

Wo parts:

H uq z  z-H!22

2
H Nb

2
cu H 3 aJz H a zQ dz � � [ z cos dz+ -z H cos dz]

H
b 0 0

 A. 5!

Considering the first term of Equation A.5:

z cos dz � z sin - � z sin dzl 3 J H 3 J 3H 2 J
H a H a H

0 z 0 0 J

4
H� sin a � � [- � z cos + � - z cos dz]3H H 2 J 28 J
J J J H a H

z~0 0

H
4

3H
4

6H H
2 2

H H
aJ J 2 J 2 2 J a� sin a + cos a � � [ cos a + � sin a � � ]

J 2
J J J J a

4 sing 3 6 4H [ J . + � cos a � �  I ] = H
a 2 J 2 J J

J J
 A. 6!

Taking a -H outside of the integral sign and integrating the second part:
'J' 2 2

a z a z H2z cos J
H +  � 2! sin2/IH2 H2 H

J z~0
a J/H3 3

2H 3- � ! sin a ~Hy
3 J J  A. 7!

aJ

r H J
z cos dz ~

0

2H H
cosa + �

2 J a
J

Finally, the first term of Equation A.4 becomes
2 2 2su* 4 3 EU* H

[    '~ -    H Y~! ] -   I � Y !J J N J J
b

 A. 8!
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Examining each term separately, and breaking the first term into



The integration of the second part of the horizontal shear stress
term is performed using integration by parts:

cu� H N a z
2

* ln  ! cos � dz
Ql Nl H

0

aJz
Let U - ln � and dV cos . This implies dU = � dz andN H N

H JV~ � sin   !.
a J H

aJz

a H a0 1

H Nb aJz Nb H aJz H Q1H H sin
ln  N ! cos dz - ln   ! � sin +

dz

.-0 ' 0
 A.9!

ajz
aH Hsin

a N
dz a Hl'

1 J
0

 A.lo!

and the second part of the horizontal shear stress term becomes:
CU»

N1HI ~ Cu» Hl J  A. 11!

The orthogonality property of cosines can be used to simplify
the integral for the third part of the horizontal shear stress term.

H a z a c
c cos � cos dz -cK�I H H .2

0
 A.12!

Combining Equations A.S, A.ll, and A.12 yields the horizontal
shear stress term:

101

The first term vanishes at both boundaries, and the second term must be
integrated numerically. This second term will be represented as follows:



2

cJZH f  ~J YJ! + u* rJ + J]
2  A,l3!

A.4. Vertical Eddy Viscosity Term � Part One

examined term by term:

K' H 3U z2 2

-Z n [
Kl HN

"X-1

2 2
* *

H 3N
� � A dz

Sz az J
0

HN alz+51

Cral alz aJZ
-Z � sin ] cos dz

I
 A.14!

Integrating the first term:

3U K' 2Z cos
2 J

* E
H N K-1 /H

b

2 2
3U* z a z

cos dz

H N

a
2

'-2!
H J K

+ 3 3 sin H ]
aJ /H

2
Z2 � � 2

J H 'J' %.
+   ! sin ]

J "K-1

a Jz
2 � cos

2
3U*

aKH
H N K 1

b

2
aJ

2, "K 'J"K
-3U�K' 2 � cos
2* ' KH

HN K 1 a

2
"K-1
� � 2

"K
2 � � 2

"x

J H
+   ! sin

a J

"K 2 "K
2

A-1 JCOS � -  a J 2
H aJ

3
aJ

'J"K-1
sin  A.15!
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The first pare of the vertical eddy viscosity term is also



As a result, Equation A.15 can

be rewritten:

22~K cos aJ  J ~K2 2
3 J K

J J

K-1 J K-1
 A.16!2

aJ

Looking at the second term on the right hand side of Equation
A.14:

2U K2
"K J* Z n z cos dz

b K~1
"X-1

K'U~ H2 aJZ "K
aK l � 2 cos + � z sin ]

 A.17!

1

KJ 2 J~K J~K sin aJ~K o J~K-I J~K-l sin aJ~K-1]
a J

l03

Equation A.15 can be

sionalized height g ~ H /H.

2-3u~ H K' a
K KJ

b K-1

2U* H K'
* Z e g
Nb K~1 K M

simplified by incorporating a nondimen-

22
J K-1

  ! sin a q
J



Here again the substitution 0; ~ � is incorporated.'K H

The third term of Equation A.14 has no closed solution, and

must be integrated numerically. This term is expressed as:
aJz

2 K H cos
u* Z oK dz ~ u+ vJ

K~1 1 1
0

 A.ls!

aIZ RJZ
sin cos dz

 A.19!

Performing the integration'-

cIaI H cos BIJOU ! cos 9IJJK 1! cos 8ZJJK cos 8 I JQK 1!
K H 2 9IJ

IJ

I K uk  A.20!

with 8IJ aI - aJ and 8'IJ aI + aJ.

The first term of A.20 will be singular when I J, and the integral
must be re-evaluated for this case:

2 K K I IK IK1
1 I o Zca 1 2 2

I

1 Eo Zca
K KI I IKII  A. 21!
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The last term on the right hand side of Equation A.14 is integrated
by first moving al1 terms not functions of z outside the intergral sign



Letting

a
I Z

IJ 2 KIK KIJ

this term becomes

 A. 22!I IJ
I

Combining Equations A.16, A.17, and A.22 yields the final form for the

first part of the vertical eddy viscosity term:
2

v 8u GJdz N I K ~KJ YKJ + u+ >J ~ IdIJ

 A.23!

A.5 . Vertical Eddy Viscosity Term � Part Two

2 2 2

N � 2AJdz ~ -Z  can+8 ! f ~ +v 2 J

"K-1

2
caI az

cos ] AJdz
I H

 A.24!

Considering the right hand side of Equation A.24 term by term, the
first term is split into two parts:

2 J H
z cos dz+ 8

aJZ
z cos dz]  A.25!
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2 1

H H K~1
b H�

2 K'
a J'z 6u~ H

 am&8 ! z cos dz � � [aK H 2N K 1 K



-6u~2

eKJ
b K K K KJ  A.26!

The second term on the right hand side of Equation A.24 is
integrated as follows:

22u* K aJz
Z  aKz+5K! cos dz

b K

2
* "K 'R Jz
N [E aK z cos dz + Z 8 cos J dzj
b K K H

"K-1 "K-1
2

*

[E aK H $KJ + Z ~K i ~KaJ - sin ~K-1 aJ! ]
b K K J

*
2

[HZa!+K8S~j
b K K

 A.27!

where

sin <Ka J! � sin <K la J!
KJ

The third term is similar to the third term of Equation A.14

and must be integrated numerically.

J
2 K K H

u+a Z dz

K H  a z+g !
K-1

This term is expressed as:

2 IIu 'v
J  A.28!
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The first term in brackets is very similar to the first term on the

right hand side of Equation A.14 and the second term in brackets is

very similar to the term integrated in Equation A.16. Equation A.25 can
be rewritten as



and that v " v for the case of K~2,J J

The fourth term in Equation A.'24 can be rearranged as-'
2H cIa aIz aJz

Z  n z+8K! 7 2 cos cos dz
K I H

"K-1

1 a z aJZ
~ � EZca [ a zcos cos � dzH2KI I I K H H

H a z aJz
+ g

K cos � cos dzf
H H

'K-1

1 2 IJR IJ K-12'''Il
2K I 'I J

cos 8IJ~K - cos 81JI:K 1!  K sin 8IJ~K ~K-1 sin 8IJ~K-1
+ +

EJ

K IJ K K-1 IJ K-1+ i+
8XJ

s in  8 I Jg! � sin  8 I J<K!
!]

SK sin  81 J~K! � sin �7 J~K-1
  +H

EJ

1 2 .K
2 I I K ~KIJ H *KIJ

K I  A.29!
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with 8» = aI-aJ and 87J a +aJ ~ For the case of I=J, this expression
will become singular. Re-evaluating the integral for the case of I J



� E Eca  hz+8! cos cos dz
H K I

2 I I K KIJ H KIJK I

in which

~2 2
K K-1 cos   I K! - coe   ! K-1!2a < 2a 4

1J 2 2

csin�aI~K! 1 K-1 s � I~K-l!
2'I

and

KIJ K K-1 Za
I

Defining:

2

I I K~*
IJ 2 KQCIJ H KIJ

K

The fourth term can be expressed in its final form:
2

cIa I aIz a Jz
Z  u z+B ! I cos cos dz = Z c o

Summing the parts of the second vertical eddy viscosity term
 Equations A.26, A.27, A.28, A.32!:

108



H 2� 6u~2

N 2QJdz~ * [EZay +p g y ]

2
2u~

2 1
K KJ K KJ~ "+ J + cT ZJ  A. 33!

A.6 Cariolis Term

The Coriolis term is

-f vQJdz  A. 34!

cJ becomes d

2 2u+ becomes v+

c becomes f

Performing the integration as in Section A.3:

2H vq H d-f ~Qdz -f H [  Q � y!+v+ I' + � !J Nb J J * J 2
0

 A.3S!

109

The form of this term is essentially identical to the horizontal

shear stress term if the following substitutions are made;



Appendix B

Continuity Equation

The continuity equation was given in Equation 2.5:

au av a~+ a
Bx 3y Bt �. 5!

It is possible to obtain expressions for u and v using the definition
of the mass fluxes  calculated here for the x-direction only!:

H H u» z  z-H! u+ Nb I'22 2
alau 6 dz 2 + * ln   ! + E cI H ] dz

p p H Nb 1 1 I=1  B 1!

Performing the integration for the first term:

2 2
u~ H

 B.2!12Nb
z~0

Integrating the second term on the right hand side of Equation B.l:

u~ H Nb
2

u H
2

oll 0
ln   ! dz  lnN - lnN ! dzN al b 1

0

2

* 1
CL [z lnN � �  N»N N !]b ul 1 1' 1

z=p
2

*

Nb � �  Nb ln Nb � Nb! +  8 » 81 � 8 !]- - * <1 1 2
1

 B.3!

The third term is integrated to yield:

H a z H aIz aZ c cos ' dz= E cI cos~<zHZ cII sin I
 B. 4!

110

2 2U�H u*
2 2HNb0r  z -z,H! dz ~

H Vb
.4 4 3



Combining B.2, B.3, and B.4:

Q*%
u~- +u+ G+HE c12Nb

l

Similarly, in the y-direction:

v 8
* sinv~ 12 +v+ G+HZ d

a 
 B. 6!

2.5 is discretized as in Equation 2.60 to be used in the model.
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These expressions are substituted into Equation 2.5, and Equation


