

1
2 MS. JULIE ZURBUCHEN (Orcid ID : 0000-0002-5275-5494)
3 DR. ALEX SIMMS (Orcid ID : 0000-0001-5034-2189)
4
5
6 Article type : Original Manuscript
7
8
9 **A model for the growth and development of wave-dominated deltas fed by small**
10 **mountainous rivers: Insights from the Elwha River delta, Washington**
11 Julie Zurbuchen*, Alexander R. Simms*, Jonathan A. Warrick†, Ian M. Miller‡, and Andrew
12 Ritchie§,¹
13 * University of California Santa Barbara, 1006 Webb Hall, Santa Barbara, CA 93106, USA
14 (Email: jmzurbuchen@ucsb.edu)
15 †U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, CA 95060, USA
16 ‡Washington Sea Grant, Olympic Peninsula Field Office, 1502 E. Lauridsen Blvd. 82, Port
17 Angeles, WA 98362, USA
18 §National Park Service, Olympic National Park, Port Angeles, WA 98362, USA
19 ¹Present address: U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, CA 95060,
20 USA
21
22 *Short running title:* Development of small river wave-dominated deltas
23 *Keywords [up to 6]:* Elwha River delta, ground-penetrating radar, progradation, stratigraphy,
24 swash-bar
25
26

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1111/SED.12702](https://doi.org/10.1111/SED.12702)

This article is protected by copyright. All rights reserved

27 **ABSTRACT**

28 Observations from ground-penetrating radar, sediment cores, elevation surveys and aerial
29 imagery are used to understand the development of the Elwha River delta in north-western
30 Washington, USA, which prograded as a result of two dam removals in late 2011. Swash-bar,
31 foreshore and swale depositional elements are recognized within ground-penetrating radar
32 profiles and sediment cores. A model for the growth and development of small mountainous
33 river wave-dominated deltas is proposed based on observation of both the fluvial and deltaic
34 settings. If enough sediment is available in the fluvial system, mouth-bars form after higher than
35 average river discharge events, creating a large platform seaward of the subaqueous delta plain.
36 Swash-bars form concurrently or within a month of mouth-bar deposition as a result of wave
37 action. Fair-weather waves drive swash-bar migration landward and in the direction of littoral
38 drift. The signature of swash-bar welding to the shoreline is landward-dipping reflections, as a
39 result of overwash processes and slipface migration. However, most swash-bars are eroded by
40 the river mouth, as only 10 of the 37 swash-bars that formed between August 2011 and July 2016
41 survived within the Elwha River delta. The swash-bars that do survive either amalgamate onto
42 the shoreline or an earlier deposited swash-bar, forming a single larger barrier at the delta front.
43 In asymmetrical deltas, the signature of swash-bar welding is more likely to be preserved on the
44 downdrift side of the delta, where formation is more likely and accommodation behind newer
45 swash-bars preserves older deposits. On small mountainous river deltas, welded swash-bars may
46 be more indicative of a large sediment pulse to the system, rather than large hydrological events.

47

48

49 **INTRODUCTION**

50 Understanding modern delta morphology and stratigraphic architecture is important for
51 accurately interpreting the sedimentary record, and enhancing scientific understanding of past
52 depositional environments, facies heterogeneities and reservoir quality (Bhattacharya & Giosan,
53 2003; Ainsworth *et al.*, 2011). Wave-dominated deltas in particular typically deposit thick
54 accumulations of well-sorted sand as deltas prograde. One important aspect of their morphology
55 and stratigraphy is the amalgamation of swash-bars or spits onto their delta plain (Rodriguez *et*
56 *al.*, 2000; Giosan *et al.*, 2005; Giosan, 2007; Anthony, 2015; Preoteasa *et al.*, 2016;
57 Vespremeanu-Stroe *et al.*, 2016). This amalgamation is one process by which their subaerial

58 plains prograde and is a key diagnostic feature in distinguishing wave-dominated deltas from
59 fluvial-dominated and tidal-dominated deltas (Rodriguez *et al.*, 2000; Bhattacharya & Giosan,
60 2003). Once amalgamated to the shoreline, these swash-bars often form beach ridges and provide
61 an intriguing potential for reconstructing past sediment pulses, such as large flooding events,
62 within the evolution of the wave-dominated delta (Rodriguez *et al.*, 2000; Fraticelli, 2006).

63 Both mouth-bars and swash-bars are important distinguishing components of the delta
64 plain of wave-dominated deltas (Reading, 2009). While the formation and morphology of
65 subaerial swash-bars on modern wave-dominated deltas is well-documented in other studies
66 (Rodriguez *et al.*, 2000; Bhattacharya & Giosan, 2003; Fraticelli, 2006; Preoteasa *et al.*, 2016;
67 Vespremeanu-Stroe *et al.*, 2016; Nooren *et al.*, 2017), important questions remain regarding their
68 use as sedimentary archives, including their preservation potential in the rock record. Current
69 models are skewed toward large, near-continental scale river systems such as the Danube
70 (Preoteasa *et al.*, 2016; Vespremeanu-Stroe *et al.*, 2016) and São Francisco (Dominguez, 1996)
71 with bars and beach ridges that stretch alongshore at the kilometre scale. However, many active
72 margins are riddled with small mountainous rivers that develop wave-dominated deltas whose
73 morphology and development may be occurring at very different temporal scales.

74 Wave-dominated deltas are composed of a prodelta, delta front and delta plain (Reading,
75 2009). Depending on the depth of the receiving basin, the delta front and prodelta are the site of
76 the most voluminous sediment deposition, with the Elwha River delta in north-west Washington
77 being no exception (Gelfenbaum *et al.*, 2015; Ritchie *et al.*, 2018). However, the delta plain
78 provides the subaerial portion of the delta and contains some of the most diagnostic features for
79 distinguishing wave-dominated deltas from fluvial-dominated and tidal-dominated deltas
80 (Bhattacharya & Giosan, 2003).

81 Mouth-bars form on wave-dominated deltas as fluvial outflows undergo rapid
82 deceleration and deposit sediments (Wright, 1977). These mouth-bars are the site of the majority
83 of the bedload deposition from the river mouth and have a large impact on the development of
84 the tributary network within deltas (Edmonds & Slingerland, 2007). Mouth-bars often form after
85 high-magnitude river discharge events and are subsequently reworked by wave action
86 (Rodriguez *et al.*, 2000; Fielding *et al.*, 2005; Barnard & Warrick, 2010; Anthony, 2015). In
87 rivers with a single point source, crescentic mouth-bars are formed (Fig 1A; Wright, 1977).

88 When preserved in the rock record, mouth-bars tend to have basinward dipping strata, comprised
89 of coarsening-upward sands (Fielding *et al.*, 2005; Ainsworth *et al.*, 2016).

90 Another important component of the delta plains of wave-dominated deltas are swash-
91 bars. The shore parallel, elongate sand bodies are formed by wave uprush and isolate small
92 lagoons on their landward side (Hine, 1979; Jackson, 1997). Within the common wave-
93 dominated delta model proposed by Wright (1977), swash-bars are largely found on top of the
94 mouth-bar (Fig. 1B). Several studies have explored the formation of swash-bars in other
95 prograding coastal settings, including spits and clastic shorelines (Hayes & Boothroyd, 1969;
96 Hine, 1979; Bristow *et al.*, 2000; Lindhorst *et al.*, 2008). In these settings, storms erode sediment
97 from the shoreface and transport it to the nearshore, where fair-weather waves rework the
98 sediment into elongate swash-bars (Hayes & Boothroyd, 1969; Lindhorst *et al.*, 2008). The
99 resulting internal geometry of the swash-bars consists of shallowly landward-dipping strata
100 caused by overwash processes and slipface migration (Hine, 1979; Lindhorst *et al.*, 2008). The
101 Understanding of swash-bar development on wave-dominated deltas, with both fluvial and
102 littoral processes playing an integral role in sediment delivery and distribution, remains limited.

103 The removal of two dams beginning in September 2011 along the Elwha River in north-
104 west Washington introduced *ca* 8.2 million tonnes of sediment into the Elwha River over a two-
105 year period (Warrick *et al.*, 2015). This removal simulated a high-magnitude river discharge
106 event and the large increase in sediment discharge resulted in a historically unprecedented
107 progradation of the Elwha River's wave-dominated delta (Gelfenbaum *et al.*, 2015; Magirl *et al.*,
108 2015; Ritchie *et al.*, 2018; Warrick *et al.*, 2019). This progradation provides a natural laboratory
109 for recording the evolution and resulting stratigraphy of swash-bars within a small asymmetrical
110 wave-dominated delta. The progradation of the Elwha River delta during dam removal is used to
111 address four fundamental questions regarding the evolution of bars on wave-dominated deltas. (i)
112 how is mouth-bar deposition related to river discharge in small mountainous river settings; (ii)
113 does the deposition of a mouth-bar always result in the formation of a swash-bar; (iii) what is the
114 preservation potential of swash-bars in these systems; and (iv) what is the stratigraphic record of
115 swash-bar amalgamation on a wave-dominated delta?

116 In order to answer these questions, a ground-penetrating radar (GPR) survey was
117 conducted in July 2016 to capture the stratigraphy of sediment deposited after dam removal
118 across the modern Elwha River delta. Additionally, elevation surveys collected monthly and

119 repeated aerial photographs since 2011 captured the changing morphology of the delta and the
120 welding of swash-bars onto the delta plain.

121

122 **BACKGROUND AND REGIONAL SETTING**

123 **Elwha River delta**

124 The Elwha River flows north from the Olympic Mountains into the Strait of Juan de
125 Fuca, west of Port Angeles, Washington (Fig. 2). The Olympic Mountains are an accretionary
126 wedge formed by the convergence of the Juan de Fuca plate with the North American plate and
127 includes assemblages of metasedimentary, sedimentary and volcanic rocks. Glacial processes
128 shaped the landscape and deposited till and outwash that reach tens of metres thick (Downing,
129 1983; Warrick *et al.*, 2009). The Elwha River delta formed during a local highstand in sea level
130 *ca* 12.5 ka, caused by the retreat of the Late Wisconsin glaciators across northern Washington
131 State, leaving behind a depressed crust (Webster, 2014). Isostatic rebound of the glacially
132 depressed crust caused a rapid relative fall in sea-level during which the delta prograded into the
133 Strait of Juan de Fuca and subsequently was flooded as relative sea level in the region rose *ca* 50
134 m from *ca* 10 to 6 kyr before present (Downing, 1983; Mosher & Hewitt, 2004). The relict,
135 subaqueous lowstand delta extends 2 to 5 km into the Strait and dips *ca* 1° towards the slope
136 break (Eidam *et al.*, 2016).

137 The headwaters of the Elwha River reach an elevation of *ca* 1400 m and the river drops
138 to the ocean in *ca* 70 km. Steep slopes in the watershed contribute to landslides, rockfalls and
139 debris flows, supplying sediment to the river (Montgomery & Brandon, 2002). The Elwha River
140 watershed drains an area of 831 km² and has an average sediment yield of *ca* 340 000 tonnes a⁻¹
141 (Magirl *et al.*, 2015). The mean annual discharge of the river is 42 m³ s⁻¹ and the two-year
142 recurrence interval flood is 400 m³ s⁻¹, with higher flow occurring during the fall-winter storms
143 and the spring freshets (Duda *et al.*, 2011; Eidam *et al.*, 2016). Average significant wave heights
144 at the Elwha River delta are *ca* 0.4 m (Warrick *et al.*, 2009). Waves are dominated by north-
145 westerly swell originating in the Pacific Ocean, and winds drive waves from the west and north-
146 west (Warrick *et al.*, 2009). Tides near Port Angeles are mesotidal with a great diurnal tide range
147 of 2.15 m (Warrick & Stevens, 2011).

148 **Dam removal**

149 The Elwha Dam, completed in 1913 at river kilometre 8, and the Glines Canyon Dam,
150 completed in 1927 at river kilometre 22, were built on the Elwha River to supply hydroelectric
151 power to Port Angeles, Washington. The dams captured the upper watershed supply of sands and
152 gravels, and reduced bedload to the lower reaches of the Elwha River by *ca* 90%, starving the
153 delta of sediment (Warrick *et al.*, 2009). By 2010, the two dams had trapped *ca* 21 million m³ of
154 sediment; about half of the sediment was clay and silt and the other half was sand, cobbles and
155 boulders (Randle *et al.*, 2015). In 1992, the US Congress passed a resolution to restore the Elwha
156 River ecosystem and fisheries and the two dams were slated for removal as part of the largest
157 dam decommissioning in the USA to date (Duda *et al.*, 2011; Gelfenbaum *et al.*, 2015). The
158 phased removal process began on 17 September 2011, with the Elwha Dam taking just over
159 seven months to remove and the Glines Canyon Dam taking about three years. A full description
160 of the dam removal process is found in Randle *et al.* (2015).

161 In the two years following the initiation of dam removal, *ca* 8.2 million tonnes of
162 sediment, or 5.9 million m³, assuming an average bulk density of 1.4 tonnes m⁻³, was released
163 from the reservoirs behind the dams (Gelfenbaum *et al.*, 2015; Magirl *et al.*, 2015). An estimated
164 *ca* 6.3 million tonnes of this was suspended sediment load consisting of clay, silt and sand
165 (Magirl *et al.*, 2015). Although most of the fine-grained sediment escaped into the Strait of Juan
166 de Fuca, the majority of coarse-grained sediment (sand and gravel) was captured at the delta
167 mouth and extended the active delta by nearly 200 m to the north, through the welding of bars
168 (Gelfenbaum *et al.*, 2015; Warrick *et al.*, 2015, Warrick *et al.*, in press).

169

170 METHODOLOGY

171 Ground-penetrating radar

172 Over 10 km (91 lines) of ground-penetrating radar (GPR) profiles were collected on the
173 Elwha River delta on 17 to 20 July 2016 (Fig. 2). The GPR provides a useful tool for imaging
174 sediment layers and storm deposits in coastal areas (Van Heteren *et al.*, 1998; Buynevich *et al.*,
175 2004; Wang & Horwitz, 2007; Tamura, 2012; Hein *et al.*, 2014; Lindhorst & Schutter, 2014).
176 The GPR data were collected using a hand-towed Sensors & Software pulseEKKO PRO GPR
177 system (Sensors & Software Inc., Mississauga, Canada). Common-offset surveys were collected
178 using 100 MHz, 200 MHz and 500 MHz antennas. The frequencies obtain resolutions of 0.15 m,
179 0.10 m and 0.03 m and penetrated to depths of up to 7 m, 5 m and 2 m, respectively. The

180 groundwater table at the Elwha River delta is located about 1.8 m below mean sea level and
181 penetration of the GPR signal in some areas is limited by the presence of salt or brackish water,
182 whose high dielectric constants spread the signal. The GPR lines were collected primarily shore
183 normal to image maximum dip angles, with 21 shore parallel lines for correlation.

184 Common-midpoint (CMP) surveys were conducted at both the western and eastern
185 portions of the Elwha River delta to determine local radar velocities of the sediments. A radar
186 velocity of *ca* 0.107 m ns⁻¹ was obtained for both sides, within the range reported for previous
187 studies of sandy coastal areas (Switzer *et al.*, 2006; Wang & Horwitz, 2007).

188 The GPR data were processed using Sensors & Software EkkoView Deluxe by applying
189 dewow, automatic gain control (AGC), bandpass filter and a synthetic aperture image
190 reconstruction migration to focus scattered signals. Elevation data were collected simultaneously
191 using a HiPer Lite Plus RTK-GPS system (Topcon Positioning Systems Inc., Livermore, CA,
192 USA). After processing, GPR data were topographically corrected using a simple vertical shift of
193 traces to correct for terrain using elevations obtained from the GPS survey and the average
194 velocity of sediments obtained from the CMP surveys. The GPR profiles were interpreted in IHS
195 Kingdom® software using techniques discussed in Neal (2004) and Buynevich & Fitzgerald
196 (2001). The GPR data presented in this paper are from the 500 MHz transducers which provided
197 the highest resolution images of the delta stratigraphy.

198 **Sediment cores**

199 Seventeen vibracores, penetrating to depths of 0.5 to 2.4 m, were taken along the same
200 transects as GPR profiles to ground-truth GPR interpretations (Fig. 2). Cores were split,
201 photographed and described, noting grain size, bedding surfaces and any sedimentary structures.
202 Grain-size analysis was conducted on samples from cores EW02, EW05 and EW07 (Figs 2 and
203 3) at 10 cm intervals using sieves at six grain-size intervals, ranging from -1.25 to 4 ϕ (2.38 mm
204 to 62.5 μ m). Mean grain size was determined from cumulative weight percent graphs (Folk &
205 Ward, 1957). Cores were correlated to two-way travel time GPR profiles in Kingdom® using
206 velocities from the CMP surveys to obtain the correct time/depth relationships. When GPR
207 profiles were converted to depth, geophysically imaged stratigraphic boundaries appeared to
208 correlate with sedimentary contacts in cores, indicating a reasonable velocity was obtained from
209 the CMP surveys.

210 **Topographic data and maps**

211 The USGS collected bathymetric and topographic surveys of the Elwha River delta
212 before, during and after dam removal (Gelfenbaum *et al.*, 2015). During the project, these data
213 were collected biannually to capture seasonal aspects of the coastal morphodynamics as the delta
214 grew from new sediment inputs. Methods included bathymetric measurements from single-beam
215 sonar systems mounted to personal watercraft with differential Global Navigation Satellite
216 Systems (GNSS) in real-time kinematic (RTK) mode and topographic measurements from RTK
217 GNSS systems mounted on backpacks. Further details of data collection and processing are
218 provided in Gelfenbaum *et al.* (2015) and data are provided in USGS ScienceBase (Stevens *et*
219 *al.*, 2016). Additional monthly topographic surveys were collected along a single transect (164 in
220 the USGS surveys; Fig. 2) using a pole-mounted RTK-Differential Global Positioning System
221 (DGPS). Topographic survey data from July 2016 were used to calculate the modern slopes of
222 the delta landforms.

223 Aerial orthomosaics of the Elwha River mouth were derived from National Park Service
224 (NPS) photographic surveys conducted about every two to four weeks during the dam removal
225 project (Ritchie, 2014; East *et al.*, 2015; Randle *et al.*, 2015; Warrick *et al.*, 2015). The
226 ‘orthophotos’ were developed from ‘Structure from Motion’ analyses of thousands of aerial
227 photographs per survey using Agisoft Photoscan Pro georeferenced with more than 100 ground
228 control points around the lower 30 km of the river and 10 km of the shoreline. The ‘orthophotos’
229 taken in the study area (Fig. 2; red box) were used in combination with the topographic survey
230 data to estimate the timing of mouth-bar deposition and swash-bar formation by the first
231 appearance of bars.

232 **River and ocean conditions**

233 River discharge and turbidity data were examined to determine the influence of river
234 discharge and sediment load on mouth-bar deposition. River discharge data were acquired from
235 USGS gauge 12045500, located between the two removed dams (waterdata.usgs.gov last
236 accessed on 29 January 2017) (Figs 2 and 4A). Turbidity data from USGS gauge 12046260,
237 located below both dam sites, were used as a proxy for sediment load (waterdata.usgs.gov last
238 accessed on 24 March 2017) (Figs 2 and 4A). Average turbidity for the Elwha River throughout
239 the study period was *ca* 250 formazin nephelometric units (FNU) and ranged from 0 to 2850
240 FNU.

241 In addition, significant wave heights and wave direction were examined to determine the
242 effect of waves on both mouth-bar and swash-bar formation, migration and welding.
243 Oceanographic information was collected by two benthic tripods located east of the Elwha River
244 mouth from December 2010 to November 2017 (Ferreira & Warrick, 2017; Glover, 2018) (Figs
245 2 and 4B). A 1200 kHz RDI acoustic Doppler current profiler (ADCO; RD Instruments, Poway,
246 CA, USA) mounted to the top of the tripod recorded current and wave conditions (Foley &
247 Warrick, 2017). Tripod A was placed about 1 km east of the Elwha River mouth, but due to
248 exceptional sedimentation at its site in the winter of 2013, it was relocated further east and
249 renamed Tripod D (Ferreira & Warrick, 2017) (Fig. 2). Data from both tripods have been
250 compiled into one time series. In order to capture the full study period and storm surge, tidal data
251 from NOAA CO-OPS Station 9444090 offshore of Port Angeles, Washington, were examined
252 (tidesandcurrents.noaa.gov last accessed on 31 January 2017) (Figs 2, 4C and 4D). Water level
253 data were filtered to display only the maximum water level per 24 hour period. Additionally, the
254 predicted tide was subtracted from the observed tide to show periods of storm surge and its effect
255 on swash-bar migration and erosion. Storm surge is defined as occurring when the observed tide
256 is greater than the predicted tide. For the purposes of this study, significant storm surge is
257 defined as a period where the difference is equal to or above +0.5 m.

258 Mouth-bar deposition and swash-bar formation timing

259 The timing of mouth-bar deposition and swash-bar formation was estimated using aerial
260 photographs and elevation surveys. Mouth-bar deposition was recognized in aerial photographs
261 by the presence of radial sand bodies at the river mouth, which appeared subaerially in
262 photographs, but may be subaqueous during high tides (Fig. 1A). In elevation surveys, mouth-
263 bars were recognized again by a radial shape outward from the river mouth. In addition, the
264 mouth-bars gently slope seaward from the river mouth to the leading edge at about 0.3°, before
265 steeply sloping at 2° into deeper water.

266 Swash-bar formation was recognized in aerial photography as subaerial elongate features,
267 parallel to and at the leading edge of the delta (Fig. 1B). In elevation surveys, the swash-bars
268 appear similarly, and have higher slopes landward than seaward. Classification of swash-bars as
269 downdrift, updrift and centre, were based on the formation location of the swash-bar, and the
270 direction in relation to the river mouth in the aerial photographs and elevation surveys (i.e. centre
271 formed directly in front of the river mouth). The date of mouth-bar deposition and swash-bar

272 formation is noted as the date it is first seen in either aerial photographs or elevation surveys, and
273 therefore represents the latest possible date of formation (Tables 1 and 2). Mouth-bars and
274 swash-bars may have formed and eroded in the roughly two-week time frame between each
275 aerial photograph.

276

277 **RESULTS**

278 **Radar facies and depositional elements**

279 The GPR profiles contain five distinct radar facies distinguished by reflection
280 configuration and continuity (Fig. 5). Sediment cores contain four sedimentary facies
281 distinguished by grain size and sorting (Figs 3 and 6). Three different depositional elements were
282 identified using radar profiles, sediment cores, elevation surveys and aerial photographs. These
283 include foreshore, swash-bar and swale. Each of the depositional elements produces a distinct
284 radar facies or facies assemblage.

285 **Foreshore**

286 The first radar facies, f1-be, consists of planar, seaward-dipping, parallel, continuous
287 reflections (Fig. 5). Reflections from this facies have minimum seaward dip angles ranging from
288 *ca* 3° to 8° and are commonly found on the seaward side of swash-bars as well as proximal to the
289 pre-dam removal shoreline in both pre-and post-dam removal sediments (Figs 7, 8 and 9). Often
290 within this facies, reflections are truncated and then overlain by the same facies, creating a
291 seaward-dipping erosional contact, henceforth referred to as an erosional surface (Figs 7 and 9).
292 Sediment cores sampling this facies contain sedimentary facies sand 1 and sand 2. Sand 1 is a
293 poorly sorted, coarse-skewed sand with grain sizes ranging from -0.3 to 0.7 ϕ (0.6 to 1.2 mm)
294 (Figs 3 and 6). Sand 2 is a poorly sorted, fine-skewed to near-symmetrical sand with grain sizes
295 ranging from 0.3 to 1.7 ϕ (0.3 to 0.8 mm) (Figs 3 and 6). Cores also show possible imbricated
296 clasts within sand 1, as well as shallowly dipping laminations within sand 2. Similar to other
297 interpretations from coastal settings, facies f1-be is interpreted to be foreshore deposits,
298 representing beach progradation (Van Heteren *et al.*, 1998; Bristow *et al.*, 2000; Buynevich &
299 FitzGerald, 2001; Bristow & Pucillo, 2006; Switzer *et al.*, 2006). This interpretation is further
300 supported by the similarity of the reflection dip angles to the current foreshore dip angles at *ca* 4°
301 to 8°, calculated from the July 2016 topographic survey. Aerial photographs suggest that the
302 progradation is facilitated by longshore drift of swash-bar sediments initially deposited close to

303 the river mouth. The erosional surfaces are interpreted to be caused by wave erosion during large
304 storms (Buynevich & FitzGerald, 2001).

305 **Swale**

306 The second identified radar facies, f2-ch, is characterized by highly discontinuous chaotic
307 reflections (Fig. 5). Aerial photographs show that this facies is found in areas that are currently,
308 or were, in swales formed behind subaerial swash-bars as the Elwha River delta prograded into
309 the Strait of Juan de Fuca (Figs 8 and 9). Sediment cores sampling this radar facies contain a fine
310 sand facies composed of moderately well-sorted fine sands with a mean grain size of *ca* 2.2 φ
311 (200 μm), and an organic rich sedimentary facies containing large amounts of woody debris
312 (Figs 3 and 6). Based on both aerial photographs and sediment cores, radar facies f2-ch is
313 interpreted to represent swale deposits.

314 **Swash-bar**

315 Two additional radar facies appear on the modern swash-bars within the eastern side of
316 the delta, and interbedded within the progradational beach deposits, facies f1-be, on the western
317 side of the delta. The first of these is radar facies f3-ow which contains planar, steeply landward-
318 dipping, parallel, continuous reflections (Fig. 5). The reflections of this facies have dip angles of
319 *ca* 27° and appear on the landward side of swash-bars as well as within packages of GPR facies
320 f1-be, progradational beach deposits (Figs 7, 8 and 9). The second radar facies that appears on
321 swash-bars, f3a-dl, consists of shallowly landward-dipping, divergent reflections, with dip angles
322 ranging from 3° to 5° (Fig. 5). This radar facies is often found on the seaward side of preserved
323 swash-bars onlapping onto a bounding surface, as well as within the central portion of modern
324 swash-bars (Figs 7 and 9). Sediments corresponding to this radar facies consist of sedimentary
325 facies sand 1 and sand 2, composed of moderately to poorly sorted sands that generally coarsen
326 upward within the swash-bar from sand 2 to sand 1 (Fig. 6). Aerial photographs in locations
327 where these facies are found display evidence of overwash processes (Fig. 10) as well as
328 landward migration of swash-bars (Fig. 11). Both radar facies are interpreted to be caused by a
329 combination of overwash processes and slip-face migration on swash-bars (Psuty, 1965; Hine,
330 1979; Bristow *et al.*, 2000; Lindhorst *et al.*, 2008).

331 Several profiles contain reflection free areas that occur near the surface. These occur
332 most often within GPR transects close to the active shoreline (Figs 7 and 8). Reflection free areas
333 close to the surface are defined as radar facies, f4-hsc (Fig. 5). This facies is interpreted to

334 indicate locations with high salt water or brackish water concentrations. Salt has high
335 conductivity, which increases the attenuation of electromagnetic waves (Neal, 2004).

336 **Mouth-bar morphology and formation**

337 After dam removal, the Elwha River delta prograded seaward, facilitated by 19 episodes
338 of mouth-bar deposition at the delta front during the study period. These bars radiated laterally
339 out from the river mouth in a crescentic shape. The river mouth continued to migrate through the
340 newly formed delta plain, and often formed lozenge shaped mouth-bars, as well as triangular
341 plan-form mouth-bars, known to form from sediment pulses and wave action (Fielding *et al.*,
342 2005). While the exact timing of mouth-bar deposition was not captured, aerial photographs and
343 topographic surveys were used to bracket their timing. Therefore, discharge and turbidity (a
344 proxy for sediment load) were explored within the time frame of possible deposition. Preceding
345 deposition of 17 of the 19 mouth-bars between August 2011 to August 2016, discharge and/or
346 turbidity, as measured from river gauges, increased to levels above average with discharge
347 ranging from *ca* 60 to *ca* 280 m³ s⁻¹ and turbidity from *ca* 200 to *ca* 2850 FNU, for one to five
348 days (Fig. 4; Table 1).

349 **Swash-bar formation and migration**

350 A total of 37 swash-bars formed on the Elwha River delta between August 2011 and
351 August 2016 (Table 2). The formation of swash-bars was either concurrent with or within two
352 months mouth-bar deposition. All but three episodes of mouth-bar deposition and growth
353 resulted in the formation of one to five swash-bars. Wave action reworked the deposits creating a
354 wave-dominated delta morphology on the delta plain (Gelfenbaum *et al.*, 2015). Elevations of
355 the swash-bars ranged from *ca* 3.0 to 3.75 m (relative to NAVD88, NOAA CO-OPS Station
356 9444090, co-ops.nos.noaa.gov; Fig. 2). Fourteen swash-bars formed near the centre of the delta
357 and all were subsequently eroded or reworked into other deposits. Fifteen swash-bars formed on
358 the downdrift side of the delta. Eight of the 15 swash-bars were either eroded or reworked, and
359 seven remained preserved either in the GPR stratigraphy or morphologically as of July 2016. Of
360 the additional eight swash-bars that formed on the updrift side of the delta, five were eroded and
361 three remained preserved either in GPR stratigraphy or morphologically.

362 Of the 37 swash-bars formed during the study period, 23 formed when wave data were
363 available. Wave direction during the study period was predominately from the north-west with a
364 median significant wave height of 0.4 m (Fig. 12). The average significant wave heights during

365 possible swash-bar formation periods ranged from 0.66 m to 0.39 m (Fig. 4). Twelve of the 23
366 swash-bars formed when significant wave heights were above the median for the study period.
367 The average maximum daily water level in each potential formation period, derived from tidal
368 data, also ranged from 2.44 to 1.82 m with 23 out of 37 swash-bars formed when the maximum
369 daily water level was lower than average.

370 After formation, the swash-bars either remained stationary, migrated landward or were
371 subsequently eroded by channel migration. Only two of the swash-bars in the study were
372 completely eroded by wave action, one on the updrift side of the delta and one on the far
373 downdrift side. Twenty-six of the 37 swash-bars migrated, moving landward towards the
374 shoreline, with additional downdrift elongation to the east in the direction of littoral drift, often
375 slightly narrowing the swash-bar (Fig. 11). Migration lasted on average three months but ranged
376 from just under one month to over a year and stopped when the swash-bar amalgamated to the
377 shoreline or when another bar formed seaward of the initial bar. As the bars migrated, they left
378 behind a large subaqueous platform on top of the mouth-bars.

379 Sparse wave data captured all or part of 16 swash-bars' migration period (Fig. 4). Nine of
380 those swash-bars migrated over a period where average significant wave heights were greater
381 than average for the study period. Tidal data was available for the entire study period and
382 captured all 26 migration periods. The average maximum daily water levels during migration
383 periods ranged from 1.86 to 2.33 m and was lower than the study period average in 18 of the 26
384 periods. Significant storm surge occurred during ten migration periods and ranged from
385 occurring 0.06% to 5.0% of the total time. Migration of swash-bars occurred throughout most of
386 the study period, with notable exceptions from January to March 2014, October to February 2015
387 and January to March 2016.

388 **Downdrift versus updrift stratigraphy**

389 The updrift and downdrift sides of the Elwha River delta contain similar radar and
390 sediment facies, yet the morphology and GPR stratigraphy of the two sides differ. At the time of
391 the GPR survey in July 2016 the GPR stratigraphy of the updrift side of the delta was dominated
392 by facies f1-be, or seaward-dipping foreshore and upper shoreface deposits (Fig. 7). Small
393 packages of swash-bar facies could be distinguished within GPR profiles, as well as erosional
394 surfaces. The topography shows one swash-bar offshore of a steeply sloping beach (*ca* 10°). The
395 downdrift side of the delta contained a mix of foreshore, swash-bar and swale GPR facies (Figs 8

396 and 9), which are absent from the updrift side. Additionally, fine-grained sands and organic
397 material are absent from the updrift side but are found in the swales and as thin beds within the
398 swash-bars of the downdrift side. The downdrift side of the delta also has a more defined ridge
399 and swale topography, with three swash-bars captured in the elevation surveys (Figs 8, 9 and 11).

400

401 DISCUSSION

402 Mouth-bar deposition

403 Mouth-bars often form on wave-dominated deltas after high-magnitude river discharge
404 events, such as large floods (Fielding *et al.*, 2005; Barnard & Warrick, 2010; Anthony, 2015). At
405 the Elwha River delta, 17 out of 19 mouth-bars were deposited after short-term increases in river
406 discharge. However, these increases in river discharge were still lower than the two-year
407 recurrence flood interval of $400 \text{ m}^3 \text{ s}^{-1}$ and river discharge shows no significant changes before
408 and after dam removal, so another factor likely contributed to the formation of mouth-bars. From
409 September 2011 to July 2013 and probably beyond, the Elwha River experienced an increase in
410 sediment supply (Magirl *et al.*, 2015). The excess sediment supplied to the Elwha River from the
411 dam removal is comparable to the large sediment load delivered after wildfires, landslides,
412 volcanic eruptions and typhoons (Foley *et al.*, 2015). This two or more years of sustained
413 sediment supply from eroded sediment trapped behind the dams in the Elwha River system was
414 enough to form mouth-bars during lower discharge than normally required in other systems or
415 prior to dam removal. This contrasts with larger systems, such as the Danube, which are thought
416 to form barriers only after large river discharge events (Bhattacharya & Giosan, 2003).

417 Not all increases in discharge in the Elwha River, however, correlated with mouth-bar
418 deposition, including two peaks to over $200 \text{ m}^3 \text{ s}^{-1}$ at the beginning of the study period in
419 November 2011 and one in February 2015. One possible explanation for the discrepancy at the
420 beginning of the study period is that the river needed time to fill the existing accommodation
421 within the lower reaches of the river valley and on the subaqueous delta created after the dams
422 were built in the early 1900s, before mouth-bars could form. Significant wave heights during this
423 time also tend to be higher overall and recent modelling has shown that large waves can suppress
424 mouth-bar formation (Jerolmack & Swenson, 2007; Nardin & Fagherazzi, 2012). The second,
425 later period of high discharge not associated with mouth-bar formation may be a result of greater
426 storm energy, but the lack of wave data precludes testing of this hypothesis. Additionally,

427 mouth-bars may have been deposited subaqueously and at times during which the bathymetric
428 surveys were unable to capture their deposition.

429 **Swash-bar formation and depositional model**

430 Previous studies of swash-bars have focused on prograding shorelines and spits, where
431 swash-bars are thought to form after large storms reactivate sediment from the foreshore and
432 backshore dunes, and move it offshore, where it then nucleates into a bar (Hayes & Boothroyd,
433 1969; Lindhorst *et al.*, 2008). However, the genesis of the swash-bars at the Elwha River delta
434 differs in that the sediment source for the swash-bars has a direct fluvial origin. All but two
435 swash-bars form within a month of mouth-bar deposition, and the two that form later are initially
436 seen at lower tidal levels than their previous aerial photograph, indicating that they may have
437 simply been subaqueous following mouth-bar deposition. The clear association of swash-bars
438 with mouth-bar deposition in this wave-dominated delta suggests that the mouth-bars provide the
439 sediment that is immediately reworked by waves to form swash-bars. Additionally, while high
440 waves are known to hinder the formation of mouth-bars (Nardin & Fagherazzi, 2012), available
441 wave data suggest that wave heights at the Elwha River delta are not large enough to hinder
442 swash-bar formation.

443 After formation, the swash-bars migrate landward due to reworking of their sediments by
444 waves. As the swash-bar migrates, it tends to thin in the shore parallel direction as it elongates
445 downdrift. Overwash processes and slip-face migration both form the landward-dipping
446 stratification preserved in the sedimentary record (Figs 7, 8 and 9). Swash-bars prevent waves
447 from eroding the back-bar area, thereby preserving the bedsets that form as the swash-bar
448 migrates landward. Migration of swash-bars occurred throughout most of the study periods
449 except over three notable time periods. The migration did not occur during three of the winters
450 (i.e. January to March 2014, January to March 2016 and October 2014 to February 2015),
451 suggesting that stormier weather patterns, often more common during the winter, may inhibit
452 migration. Significant storm surge also accompanied these periods, although wave data do not
453 indicate higher than average significant wave heights. Migration stops when the swash-bar
454 amalgamates to the shoreline or another swash-bar, or a swash-bar forms seaward of it,
455 protecting it from wave action. Thus, multiple swash-bars representing multiple high discharge
456 events are preserved as a single amalgamated swash-bar.

457 Two erosional surfaces were imaged in ground-penetrating radar and formed during the
458 time period between elevation surveys taken in September 2014 and January 2015 (Figs 7 and 9).
459 Erosion surfaces can be caused by large storms (Buynevich *et al.*, 2004), but little work has
460 quantified how large waves must be to cause such erosion. During the time when erosion
461 surfaces formed, at least one wave event with wave heights >1.5 m struck the delta, although a
462 break in the wave data time series from October 2014 to December 2015 prevents further
463 analysis. The sedimentary characteristics of deposits formed during a later period of wave
464 activity with wave heights of >1.5 m in late 2015 was not captured in the GPR stratigraphy
465 because of high salt-water conductivity in the area.

466 A simple model for the formation of swash-bars on small wave-dominated deltas is
467 proposed (Fig. 13). After a high discharge event with enough sediment available in the system, a
468 large mouth-bar will be deposited on the delta front. Concurrently, wave action reworks the
469 mouth-bar sediments to form swash-bars at the leading edge of both the downdrift and updrift
470 sides of the delta. Fair-weather wave processes dominate, and lead to the swash-bar migrating
471 shoreward, and downdrift. As the swash-bar migrates, it leaves behind a platform created by the
472 remaining mouth-bar sediments on the delta plain, which continues to expand seaward with
473 subsequent discharge events. The swash-bar welds to the shoreline or stops migrating if another
474 bar forms seaward of it following the next discharge event. Swash-bars that do not weld to the
475 shoreline on the downdrift side of the delta continue migrating in the direction of longshore drift,
476 with their downdrift end eventually connecting to the shoreline. Local patches of finer sediment
477 may be preserved between the migrating swash-bar and subaqueous delta plain, such as the thin
478 bed (*ca* 2 cm) of organic material found in core EW04 (Fig. 8). The migration of swash-bars
479 downdrift results in beach progradation, as seen by facies f1-be. High waves may erode the
480 shoreface, or seaward side of the swash-bars at any time during the welding process.

481 **Swash-bar preservation potential**

482 The preservation of the landward-dipping stratification provides a stratigraphic signature
483 of swash-bar welding in the sediment and rock record. Elevation surveys overlain onto GPR
484 profiles provide evidence of swash-bar migration and welding to form composite swash-bars.
485 The stratigraphic signature of swash-bar welding within GPR can record how many bars have
486 welded onto an existing shoreline or swash-bar to produce better records of past wave and
487 discharge activity.

488 The potential for this signature to form and be preserved is dependent on the location
489 swash-bar formation on the delta. All swash-bars formed at the centre of the river mouth on the
490 delta were eroded by channel migration. Aerial photographs suggest that 15 swash-bars have
491 formed on the downdrift side of the delta since dam removal. In July 2016, only three of the
492 swash-bars were preserved or recognizable in elevation surveys and aerial photographs (Fig. 2).
493 Aerial photographs show the erosion of swash-bar j by channel avulsion; however, swash-bar
494 facies, f3-ow, interpreted to be from this bar are preserved in GPR (Table 2; Fig. 8).
495 Additionally, the GPR profile from transect 164 shows evidence that swash-bar k3 is the
496 composite of three different swash-bars welded together (Table 2, bars k3, m and v; Fig. 8).
497 Elevation surveys provide evidence for swash-bar y further offshore on transect 164; however,
498 GPR was unable to image sediments on this swash-bar due to salt water infiltration. Altogether,
499 the GPR profile from transect 164 and elevation surveys recorded seven of 15 swash-bars formed
500 on the downdrift side of the delta. Thus, due to potential erosion by the river channel or waves,
501 the number of preserved swash-bar signatures will be a minimum estimate of the number of
502 swash-bars that formed.

503 In July 2016, aerial photographs and elevation surveys show one subaerial swash-bar, bar
504 bb, on the updrift side of the delta (Fig. 2). The GPR profiles from the updrift side of the delta
505 contain evidence of two swash-bar welding events that occurred during the study period within
506 the stratigraphy of the shoreface (Table 2, bars k1 and x; Fig. 7). However, aerial photographs
507 and elevation surveys suggest that after the initiation of dam removal, at least eight subaerial
508 swash-bars formed on the updrift side of the delta; thus at least five swash-bars were not
509 captured in the stratigraphic record.

510 Two factors favoured formation and preservation of swash-bars on the downdrift side of
511 the delta. First, littoral drift increases the sediment supplied to the downdrift side of the delta,
512 increasing the likelihood of swash-bar formation. Second, the downdrift side of the delta
513 develops swales that persist over several years and provide accommodation for the deposition of
514 swash-bar overwash sediment, enhancing the preservation potential of the bar welding signature.
515 Although swales are formed on the updrift side of the delta behind swash-bars, these areas
516 usually disappear after several months. For the signature of swash-bar welding to be preserved,
517 there must be sufficient time and sediment deposition between swash-bar welding and significant
518 shoreface erosion by the prevailing wave-driven and tidally-driven currents (Warrick *et al.*,

519 2009; Eidam *et al.*, 2016). Additionally, channel avulsion may erode swash-bars and other
520 sediment deposited on the delta (Gelfenbaum *et al.*, 2015). The stratigraphic record does not
521 preserve every swash-bar that formed and may only be used to determine a minimum number of
522 bar welding events.

523 At the Elwha River delta, the sediment load of the river returned to pre-dam removal
524 levels by the end of 2016, and the delta no longer experienced periods of enhanced mouth-bar
525 formation or extension. The swash-bars that remained preserved in the delta all were welded
526 swash-bars that formed after earlier high discharge events. Satellite imagery reveals as of 2017,
527 that what had initially been six swash-bars (Table 2; k3, m, v, t, w1 and y) formed by different
528 river discharge events from October 2013 to April 2015, were all amalgamated into one large
529 barrier on the outer edge of the downdrift side of the delta (Fig. 14). This indicates that the
530 sediment that was added to the fluvial system by the removal of the two dams was not
531 remobilized during a single high discharge event, because no multiyear floods occurred during
532 the study period, or even over one season, but over several seasonally high discharge events over
533 at least four years. This contrasts with larger deltaic systems where individual swash-bars are
534 often thought to represent large floods and have been linked to climate cycles (Fraticelli, 2006;
535 Tamura, 2012).

536 The welding of several of the swash-bars into a large barrier suggests that in small
537 mountainous river wave-dominated deltas, the presence of several closely spaced swash-bar
538 welding signatures in a larger barrier could be more indicative of a large sediment pulse added to
539 the fluvial system as a result of landslides, volcanic eruptions or other sediment pulses. The new
540 barrier developed as a result of the dam removal has similar dimensions as a vegetated ridge on
541 the older Holocene delta plain, to the east of the current river delta (Fig. 14), suggesting that
542 large sediment pulses may have created similar features in the past.

543

544 CONCLUSION

545 The sustained sediment supply following dam removal on the Elwha River delta led to
546 the deposition of at least 19 mouth-bars following moderate increases in discharge and turbidity
547 along the river. Within one month of initial mouth-bar deposition between one and five swash-
548 bars formed from wave action at the leading edge of 16 of the 19 new mouth-bars. After
549 formation the swash-bars migrated landward and in the direction of littoral drift over a period of

550 two months to over a year, until they either welded to the shoreline or another swash-bar, or were
551 eroded by the river channel. Within ground-penetrating radar profiles, the landward migration of
552 these swash-bars produced landward-dipping reflections, which in the case of swash-bar welding
553 onlaps a seaward-dipping boundary surface which separates the landward-dipping reflections
554 from the older seaward-dipping reflections marking progradation of the older beach or swash-
555 bar. Although the preservation potential of the swash-bar welding signature was higher on the
556 downdrift side of the delta due to higher frequency of formation and accommodation created
557 behind younger swash-bars, not every swash-bar survived or left a record of welding within
558 ground-penetrating radar (GPR) profiles. Thus, this signature can only be used to infer a
559 minimum number of swash-bar welding events that occurred on the delta.

560 After the initial increase in sediment load due to dam removal decreased, the continued
561 amalgamation and wave reworking of the surviving swash-bars formed a larger barrier at the
562 front of the delta plain. The barrier is similar in scale to older vegetated ridges on the delta plain.
563 Although, the creation of individual new swash-bars correlates with higher than average
564 discharge, the formation of the large barrier was not triggered by a single flood or storm, but
565 sustained sediment supplied via normal seasonal high discharge over the course of several years.
566 Thus, in small mountainous river deltas the amalgamation of swash-bars into a large barrier may
567 be indicative of a large sediment pulse to the river system, rather than flooding on the river.

568

569 **ACKNOWLEDGEMENTS**

570 The authors would like to extend their sincere thanks to the USGS Coastal and Marine
571 Geology Program and Olympic National Park for funding and resources, and the Lower Elwha
572 Klallam Tribe for providing access and assistance during field work. Monthly shoreline survey
573 data was supported by Washington Sea Grant with resources from Peninsula College and the
574 USGS. We would also like to thank Dillon Osleger and Laura Reynolds for their assistance in
575 collecting the GPR and cores used in this study. The authors gratefully acknowledge the
576 generous educational grant from IHS for the academic use of the Kingdom® software, which
577 greatly improved the ability to visualize and interpret GPR data. The authors would also like to
578 thank Gary Hampson, Liviu Giosan and four anonymous reviewers for their feedback and
579 comments which greatly improved this manuscript.

580

581

582 **REFERENCES**

583 **Ainsworth, R.B., Vakarelov, B.K., MacEachern, J.A., Nanson, R.A., Lane, T.I., Rarity, F.**
584 **and Dashtgard, S.E.** (2016) Process-Driven Architectural Variability In Mouth-Bar Deposits: A
585 Case Study From A Mixed-Process Mouth-Bar Complex, Drumheller, Alberta, Canada. *Journal*
586 *of Sedimentary Research*, **86**, 512-541.

587 **Ainsworth, R.B., Vakarelov, B.K. and Nanson, R.A.** (2011) Dynamic spatial and temporal
588 prediction of changes in depositional processes on clastic shorelines: Toward improved
589 subsurface uncertainty reduction and management. *AAPG bulletin*, **95**, 267-297.

590 **Anthony, E.J.** (2015) Wave influence in the construction, shaping and destruction of river
591 deltas: A review. *Marine Geology*, **361**, 53-78.

592 **Barnard, P. and Warrick, J.** (2010) Dramatic beach and nearshore morphological changes due
593 to extreme flooding at a wave-dominated river mouth. *Marine Geology*, **271**, 131-148.

594 **Bhattacharya, J. and Giosan, L.** (2003) Wave-influenced deltas: geomorphological
595 implications for facies reconstruction. *Sedimentology*, **50**, 187-210.

596 **Bristow, C., Chroston, P. and Bailey, S.** (2000) The structure and development of foredunes on
597 a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK.
598 *Sedimentology*, **47**, 923-944.

599 **Bristow, C.S. and Pucillo, K.** (2006) Quantifying rates of coastal progradation from sediment
600 volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia.
601 *Sedimentology*, **53**, 769-788.

602 **Buynevich, I., FitzGerald, D. and van Heteren, S.** (2004) Sedimentary records of intense
603 storms in Holocene barrier sequences, Maine, USA. *Marine Geology*, **210**, 135-148.

604 **Buynevich, I. and FitzGerald, D.M.** (2001) Styles of Coastal Progradation Revealed in
605 Subsurface Records of Paraglacial Barriers: Duxbury, Massachusetts, USA. *Journal of Coastal*
606 *Research*, 194-208.

607 **Dominguez, J.** (1996) The Sao Francisco strandplain: a paradigm for wave-dominated deltas?
608 *Geological Society, London, Special Publications*, **117**, 217-231.

609 **Downing, J.** (1983) *The coast of Puget Sound: Its processes and development*. University of
610 Washington Press.

611 **Duda, J.J., Warrick, J.A. and Magirl, C.S.** (2011) Coastal and lower Elwha River,
 612 Washington, prior to dam removal—history, status, and defining characteristics. *Coastal
 613 Habitats of the Elwha River, Washington—Biological and Physical Patterns and Processes Prior
 614 to Dam Removal, US Geological Survey Scientific Investigations Report, 5120*, 1-26.

615 **East, A.E., Pess, G.R., Bountry, J.A., Magirl, C.S., Ritchie, A.C., Logan, J.B., Randle, T.J.,
 616 Mastin, M.C., Minear, J.T., Duda, J.J., Liermann, M.C., McHenry, M.L., Beechie, T.J. and
 617 Shafroth, P.B.** (2015) Large-scale dam removal on the Elwha River, Washington, USA: River
 618 channel and floodplain geomorphic change. *Geomorphology*, **228**, 765-786.

619 **Edmonds, D. and Slingerland, R.** (2007) Mechanics of river mouth bar formation: Implications
 620 for the morphodynamics of delta distributary networks. *Journal of Geophysical Research: Earth
 621 Surface*, **112**.

622 **Eidam, E., Ogston, A., Nittrouer, C. and Warrick, J.** (2016) Tidally dominated sediment
 623 dispersal offshore of a small mountainous river: Elwha River, Washington State. *Continental
 624 Shelf Research*, **116**, 136-148.

625 **Ferreira, J.C.T. and Warrick, J.** (2017) Oceanographic measurements obtained offshore of the
 626 Elwha River delta in coordination with the Elwha River Restoration Project, Washington, USA,
 627 2010-2014: U.S. Geological Survey data release, <https://doi.org/10.5066/F7CR5RW8>.

628 **Fielding, C.R., Trueman, J.D. and Alexander, J.** (2005) Sharp-based, flood-dominated mouth
 629 bar sands from the Burdekin River Delta of northeastern Australia: extending the spectrum of
 630 mouth-bar facies, geometry, and stacking patterns. *Journal of Sedimentary Research*, **75**, 55-66.

631 **Foley, M.M., Duda, J.J., Beirne, M.M., Paradis, R., Ritchie, A. and Warrick, J.A.** (2015)
 632 Rapid water quality change in the Elwha River estuary complex during dam removal. *Limnology
 633 and Oceanography*, **60**, 1719-1732.

634 **Foley, M.M. and Warrick, J.A.** (2017) Ephemeral seafloor sedimentation during dam removal:
 635 Elwha River, Washington. *Continental Shelf Research*, **150**, 36-47.

636 **Folk, R.L. and Ward, W.C.** (1957) Brazos River bar: a study in the significance of grain size
 637 parameters. *Journal of Sedimentary Research*, **27**.

638 **Fraticelli, C.M.** (2006) Climate forcing in a wave-dominated delta: the effects of drought–flood
 639 cycles on delta progradation. *Journal of Sedimentary Research*, **76**, 1067-1076.

640 **Gelfenbaum, G., Stevens, A.W., Miller, I., Warrick, J.A., Ogston, A.S. and Eidam, E.**
641 (2015) Large-scale dam removal on the Elwha River, Washington, USA: Coastal geomorphic
642 change. *Geomorphology*, **246**, 649-668.

643 **Giosan, L., E. Vespremeanu, J.P. Donnelly, J. Bhattacharya, and F. Buonaiuto** (2005) River
644 Delta Morphodynamics: Examples From the Danube Delta. In: *River Deltas: Concepts, Models,*
645 *Case Studies* (Eds L. Goisan and J. Bhattacharya), *SEPM Special Publication*, **83**, 391-410.

646 **Giosan, L.** (2007) Morphodynamic feedbacks on deltaic coasts: lessons from the wave-
647 dominated Danube delta. In: *Proceedings of coastal sediments*, pp. 828-841.

648 **Glover, H.** (2018) Wave, temperature, salinity, turbidity data collected on a benthic tripod near
649 the mouth of the Elwha River, WA in 2015-2017., Department of Oceanography Faculty Papers
650 and Research, <http://hdl.handle.net/1773/41649>.

651 **Hayes, M.O. and Boothroyd, J.C.** (1969) Storms as modifying agents in the coastal
652 environment. *Coastal Environments. NE Massachusetts, Department of Geology, University of*
653 *Massachusetts, Amherst*, 290-315.

654 **Hein, C.J., FitzGerald, D.M., de Menezes, J.T., Cleary, W.J., Klein, A.H. and Albernaz,**
655 **M.B.** (2014) Coastal response to late-stage transgression and sea-level highstand. *Geological*
656 *Society of America Bulletin*, **126**, 459-480.

657 **Hine, A.C.** (1979) Mechanisms of berm development and resulting beach growth along a barrier
658 spit complex. *Sedimentology*, **26**, 333-351.

659 **Jackson, J.A.** (1997) swash bars. In: *Glossary of Geology* 4th edn, pp. 643. American
660 Geological Institute, Alexandria, Virginia.

661 **Jerolmack, D.J. and Swenson, J.B.** (2007) Scaling relationships and evolution of distributary
662 networks on wave-influenced deltas. *Geophysical Research Letters*, **34**.

663 **Lindhorst, S., Betzler, C. and Hass, H.C.** (2008) The sedimentary architecture of a Holocene
664 barrier spit (Sylt, German Bight): Swash-bar accretion and storm erosion. *Sedimentary Geology*,
665 **206**, 1-16.

666 **Lindhorst, S. and Schutter, I.** (2014) Polar gravel beach-ridge systems: Sedimentary
667 architecture, genesis, and implications for climate reconstructions (South Shetland
668 Islands/Western Antarctic Peninsula). *Geomorphology*, **221**, 187-203.

669 **Magirl, C.S., Hilldale, R.C., Curran, C.A., Duda, J.J., Straub, T.D., Domanski, M. and**
670 **Foreman, J.R.** (2015) Large-scale dam removal on the Elwha River, Washington, USA: Fluvial
671 sediment load. *Geomorphology*, **246**, 669-686.

672 **Montgomery, D.R. and Brandon, M.T.** (2002) Topographic controls on erosion rates in
673 tectonically active mountain ranges. *Earth and Planetary Science Letters*, **201**, 481-489.

674 **Mosher, D.C. and Hewitt, A.T.** (2004) Late Quaternary deglaciation and sea-level history of
675 eastern Juan de Fuca Strait, Cascadia. *Quaternary International*, **121**, 23-39.

676 **Nardin, W. and Fagherazzi, S.** (2012) The effect of wind waves on the development of river
677 mouth bars. *Geophysical Research Letters*, **39**.

678 **Neal, A.** (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and
679 progress. *Earth-science reviews*, **66**, 261-330.

680 **Nooren, K., Hoek, W.Z., Winkels, T., Huizinga, A., Van der Plicht, H., Van Dam, R.L., Van**
681 **Heteren, S., Van Bergen, M.J., Prins, M.A. and Reimann, T.** (2017) The Usumacinta–
682 Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and
683 precipitation. *Earth Surface Dynamics*, **5**, 529.

684 **Preoteasa, L., Vespremeanu-Stroe, A., Tătui, F., Zăinescu, F., Timar-Gabor, A. and**
685 **Cîrdan, I.** (2016) The evolution of an asymmetric deltaic lobe (Sf. Gheorghe, Danube) in
686 association with cyclic development of the river-mouth bar: Long-term pattern and present
687 adaptations to human-induced sediment depletion. *Geomorphology*, **253**, 59-73.

688 **Psuty, N.P.** (1965) Beach-ridge development in Tabasco, Mexico 1. *Annals of the Association of*
689 *American Geographers*, **55**, 112-124.

690 **Randle, T.J., Bountry, J.A., Ritchie, A. and Wille, K.** (2015) Large-scale dam removal on the
691 Elwha River, Washington, USA: Erosion of reservoir sediment. *Geomorphology*, **246**, 709-728.

692 **Reading, H.G.** (2009) *Sedimentary environments: processes, facies and stratigraphy*. John
693 Wiley & Sons.

694 **Ritchie, A.** (2014) The Elwha PlaneCam: A novel and affordable aerial survey method tracking
695 river and shoreline evolution in high spatiotemporal resolution during the largest dam removal in
696 history. In: *Salish Sea Ecosystem Conference*, 206,
697 <https://cedar.wwu.edu/ssec/2014ssec/Day2/206>.

698 **Ritchie, A.C., Warrick, J.A., East, A.E., Magirl, C.S., Stevens, A.W., Bountry, J.A., Randle,**
 699 **T.J., Curran, C.A., Hilldale, R.C. and Duda, J.J.** (2018) Morphodynamic evolution following
 700 sediment release from the world's largest dam removal. *Scientific reports*, **8**, 1-13.

701 **Rodriguez, A., Hamilton, M. and Anderson, J.** (2000) Facies and evolution of the modern
 702 Brazos Delta, Texas: wave versus flood influence. *Journal of Sedimentary Research*, **70**, 283-
 703 295.

704 **Stevens, A., Gelfenbaum, G.R., Warrick, J., Miller, I.M. and Weiner, H.M.** (2016)
 705 Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington,
 706 July 2016. In: *U.S. Geological Survey data release*, <http://dx.doi.org/10.5066/F7GQ6VXX>.

707 **Switzer, A., Bristow, C. and Jones, B.** (2006) Investigation of large-scale washover of a small
 708 barrier system on the southeast Australian coast using ground penetrating radar. *Sedimentary
 709 Geology*, **183**, 145-156.

710 **Tamura, T.** (2012) Beach ridges and prograded beach deposits as palaeoenvironment records.
 711 *Earth-Science Reviews*, **114**, 279-297.

712 **Van Heteren, S., Fitzgerald, D., McKinlay, P. and Buynevich, I.** (1998) Radar facies of
 713 paraglacial barrier systems: coastal New England, USA. *Sedimentology*, **45**, 181-200.

714 **Vespremeanu-Stroe, A., Preoteasa, L., Zăinescu, F., Rotaru, S., Croitoru, L. and Timar-
 715 Gabor, A.** (2016) Formation of Danube delta beach ridge plains and signatures in morphology.
 716 *Quaternary International*, **415**, 268-285.

717 **Wang, P. and Horwitz, M.H.** (2007) Erosional and depositional characteristics of regional
 718 overwash deposits caused by multiple hurricanes. *Sedimentology*, **54**, 545-564.

719 **Warrick, J.A., Bountry, J.A., East, A.E., Magirl, C.S., Randle, T.J., Gelfenbaum, G.,
 720 Ritchie, A.C., Pess, G.R., Leung, V. and Duda, J.J.** (2015) Large-scale dam removal on the
 721 Elwha River, Washington, USA: source-to-sink sediment budget and synthesis. *Geomorphology*,
 722 **246**, 729-750.

723 **Warrick, J.A., George, D.A., Gelfenbaum, G., Ruggiero, P., Kaminsky, G.M. and Beirne,
 724 M.** (2009) Beach morphology and change along the mixed grain-size delta of the dammed Elwha
 725 River, Washington. *Geomorphology*, **111**, 136-148.

726 **Warrick, J.A. and Stevens, A.W.** (2011) A buoyant plume adjacent to a headland—
 727 Observations of the Elwha River plume. *Continental Shelf Research*, **31**, 85-97.

728 **Warrick J.A., Stevens, A.W., Miller, I.M., Harrison, S.R., Ritchie, A.C., Gelfenbaum, G.**
729 (2019) World's largest dam removal reverses coastal erosion, *Scientific Reports*, **9**, 1-12.
730 **Webster, K.L.** (2014) *Sediment dispersal and accumulation in an insular sea: deltas of Puget*
731 *Sound*, University of Washington, PhD Dissertation, 158 pp.
732 **Wright, L.** (1977) Sediment transport and deposition at river mouths: a synthesis. *Geological*
733 *Society of America Bulletin*, **88**, 857-868.

734

735

736 **FIGURE CAPTIONS:**

737 Figure 1. (A) Schematic of mouth-bar deposition, and aerial image showing how the authors
738 distinguished a mouth-bar. (B) Swash-bar schematic and aerial image showing how authors
739 distinguished swash-bars (schematic drawing by Scott Condon, and photographs by A. Ritchie).

740

741 Figure 2. Satellite photograph of the Elwha River delta from July 2016 displaying locations of
742 GPR transects as yellow lines and vibracore locations as black circles. Red GPR lines and white-
743 outlined vibracores are discussed in the text. Image modified from Google Earth™. Inset map
744 displays triangles at locations of USGS river gauges, diamonds at NOAA's National Data Buoy
745 Center station PTAW1 and benthic tripods 'A' and 'D', and locations of removed dams. The red
746 box refers to the location of the study area in the main image.

747

748 Figure 3. Vibracores EW_05 and EW_07 showing corresponding mean grain size, sorting and
749 skewness in phi. Grain-size statistics were calculated according to Folk & Ward (1957).

750

751 Figure 4. Time series of river and ocean data from August 2011 to August 2016. (A) Red lines
752 indicate the date of observed mouth-bar deposition, with numbers indicating the event name.
753 Blue lines indicate the date of observed swash-bar formation, with letters indicating event name.
754 Grey lines show the dates of aerial photographs and elevation surveys that were used to constrain
755 bar formation timing. (B) Elwha River discharge from USGS 12045500 and turbidity from
756 USGS 12046260. (C) Significant wave heights from benthic tripods 'A' and 'D' located east of
757 the Elwha River delta mouth. Pink asterisks indicate the weekly average. (D) Maximum daily

758 water level data from NOAA CO-OPS Station 9444090 offshore Port Angeles, WA. (E)
759 Difference in observed and predicted water levels from NOAA CO-OPS Station 9444090
760 offshore Port Angeles, Washington. (F) Horizontal position of mean high water along the Elwha
761 River delta shoreline at transect 164, with the 11 February 2011 shoreline as the zero-horizontal
762 position. Black dots indicate dates that swash-bars formed on transect 164.

763

764 Table 1. Comparison of different variables influencing mouth-bar deposition.

765

766 Table 2. Comparison of different variables influencing swash-bar formation. N/A indicates that
767 data was unavailable for that time period. Bold letters indicate swash-bars that are preserved in
768 the stratigraphic or geomorphic record.

769

770 Figure 5. Radar facies identified within GPR profiles and their interpreted depositional element.
771 All figures have vertical exaggeration of 6.5x.

772

773 Figure 6. Sedimentary facies identified within vibracores.

774

775 Figure 7. Ground-penetrating radar (GPR) profile from updrift side of Elwha River delta (see
776 Fig. 2 for location) with interpretation of same line below. (A) GPR profile with water table
777 marked by dashed blue line. (B) Interpreted GPR profile with depositional elements overlain,
778 sediments deposited before dam removal are shown landward of the dashed pink line and
779 sediments deposits after dam removal are seaward of the dashed pink line.

780

781 Figure 8. Ground-penetrating radar (GPR) profile from downdrift side of Elwha River delta (see
782 Fig. 2 for location) with interpretation of same line below. (A) Uninterpreted GPR profile. (B)
783 Interpreted GPR profile with depositional elements overlain. All data lie above the groundwater
784 table. Cores are shown with their corresponding sedimentary facies. Topographic profiles are
785 overlain showing the amalgamation of three different mouth-bars as interpreted from aerial
786 photographs, topographic profiles and radar facies f3-ow and f3a-dl. Each bar is numbered with
787 its corresponding number from Table 2.

788

789 Figure 9. Ground-penetrating radar (GPR) profile from downdrift side of Elwha River delta (see
790 Fig. 2 for location) with interpretation of same line below. All data lie above the groundwater
791 table. (A) Uninterpreted GPR profile. (B) Interpreted GPR profile with depositional elements
792 overlain. Cores are shown with their corresponding sedimentary facies.

793

794 Figure 10. (A) Aerial photograph showing overwash from storm waves occurring on the Elwha
795 Delta in December 2015. (B) Photograph from July 2016 showing landward dipping beds on the
796 landward side of a swash-bar (photographs by A. Ritchie and A. Simms).

797

798 Figure 11. (A) Aerial photographs showing the formation and landward migration of elongate
799 swash-bars on the Elwha River delta from March 2014 to August 2014. Solid red lines show the
800 location of the swash-bar in the current frame, red dashed lines show the swash-bar locations
801 from the previous frame. Black line shows the location of transect 164. (B) Topographic profiles
802 along transect 164 showing the landward migration of the same swash-bar from March 2014 to
803 August 2014 (photographs by A. Ritchie).

804

805 Figure 12. (A) Histogram of significant wave heights from benthic tripods 'A' and 'D' from
806 August 2011 to October 2014. (B) Rose diagram showing dominant wave direction at benthic
807 tripods 'A' and 'D'.

808

809 Figure 13. Schematic model for swash-bar welding on a delta. (A) The initial delta starved of
810 sediment. (B) A mouth-bar is deposited at the delta front. (C) Wave action on the mouth-bar
811 reworks sediments, forming swash-bars on both the updrift and downdrift edges of the delta, on
812 top of the mouth-bar. (D) Wave action continues to rework the sediments of the swash-bars,
813 causing migration landward and downdrift in the direction of littoral drift. Swash-bars have
814 landward-dipping bedding on their landward side. The platform created by the mouth-bar
815 remains intact. (E) The swash-bars become welded onto the shoreface, with landward-dipping
816 bedding preserved as evidence of their landward migration. (F) The cycle continues, with
817 another mouth-bar deposited on the delta, and swash-bars forming on top (schematic model
818 drawn by Scott Condon).

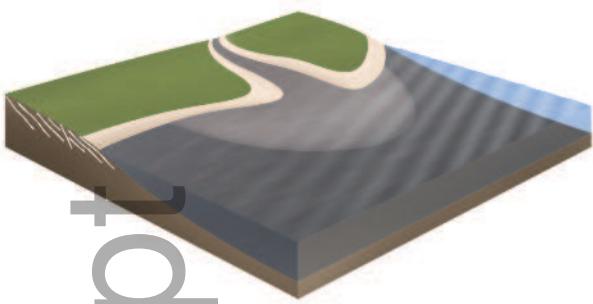
819

820 Figure 14. Satellite image from Google Earth™ showing delta morphology 30 July 2017,
821 displaying the amalgamation of bars k3, m, v, t, w1 and y into the outer barrier on the delta, as
822 well as a relict barrier on the older Holocene delta.

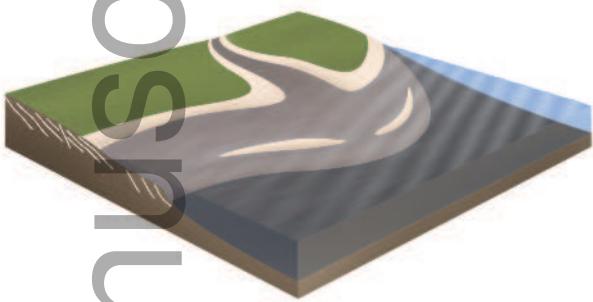
Author Manuscript

Table 1. Mouth-bar deposition variables (FNU = formazin nephelometric units)

Date	Mouth bar deposition	Discharge peak (m ³ /s)	Turbidity peak (FNU)	Average significant wave height (m)	Average maximum daily water level (m)
10.08.2012	1	156	1030	N.A	2.03
24.12.2012	2	213	1420	0.66	2.43
16.01.2013	2a	175	1330	0.51	2.17
13.02.2013	3	N.A	814	0.49	1.97
14.03.2013	4	N.A	1400	0.43	1.89
16.04.2013	5	115	1420	0.39	1.90
15.05.2013	6	152	1420	0.48	1.82
23.10.2013	7	282	2820	N.A	1.89
21.02.2014	8	232	2190	0.48	2.01
24.03.2014	9	278	2850	0.62	1.79
14.05.2014	10	111	790	0.46	2.07
16.07.2014	11	–	–	0.51	2.22
10.11.2014	12	211	1200	0.41	2.11
30.12.2014	13	282	1500	N.A	2.36
27.01.2015	14	167	687	N.A	2.05
09.04.2015	15	88	362	N.A	1.97
03.07.2015	16	–	–	N.A	2.05
19.12.2015	17	278	1490	0.55	2.44
02.02.2016	18	282	1490	0.31	2.32
04.07.2016	19	63	217	N.A	2.03



Table 2. Swash-bar formation variables

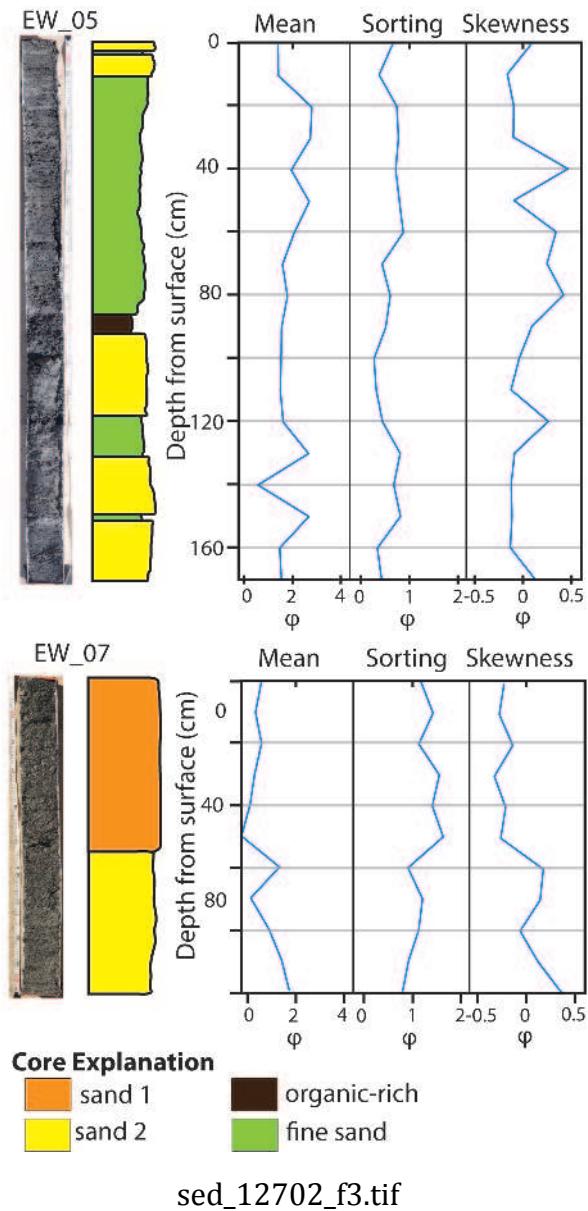
Date (formed between)	Swash bar name	Location	Average significant wave height (m)	Average maximum daily water level (m)	Migration length (months)	Average significant wave height during migration (m)	Average maximum daily water level during migration (m)	% of time migration time with significant storm surge	Current status
27.11.12 – 24.12.12	a	Centre	0.66	2.43	–	–	–	–	Eroded
24.12.12 – 16.01.13	b	Updrift	0.51	2.17	3 months	0.55	1.96	0.00	Welded to shoreline; later eroded by waves
24.12.12 – 16.01.13	b1	Downdrift	0.51	2.17	–	–	–	–	Welded to shoreline; later eroded by waves
16.01.13 – 13.02.13	c	Centre/updrift	0.49	1.97	2–3 months	0.55	1.89	0.00	Eroded
16.01.13 – 05.02.13	d	Downdrift	0.49	1.97	3–4 months	0.51	1.89	0.00	Welded to shoreline
27.03.13 – 16.04.13	e	Centre	0.39	1.90	1 month	0.43	1.86	0.00	Eroded
16.04.13 – 30.04.13	f	Centre	0.48	1.80	–	–	–	–	Eroded
30.04.13 – 15.05.13	g	Downdrift	0.48	1.82	4 months	0.45	1.98	0.00	Innermost bar on downdrift side
15.05.13 – 31.05.13	h	Centre	0.41	1.97	–	–	–	–	Eroded
28.06.13 – 26.08.13	i	Centre	0.46	2.00	3 months	0.42 (30.06–04.09)	1.97	0.00	Eroded
28.06.13 – 26.08.13	j	Downdrift	0.46	2.00	3 months	0.42 (30.06–04.09)	1.97	0.00	Eroded
19.09.13 – 23.10.13	k1	Updrift	N/A	1.89	18 months	N/A	2.03	0.66	Welded to shoreline
19.09.13 – 23.10.13	k2	Updrift	N/A	1.89	–	–	–	–	Eroded
19.09.13 – 23.10.13	k3	Downdrift	N/A	1.89	4 months	0.44 (12.12–01.02)	1.97	0.06	Middle bar on downdrift side
19.09.13 – 23.10.13	k4	Downdrift	N/A	1.89	2 months	N/A	1.94	0.09	Eroded
19.09.13 – 23.10.13	k5	Downdrift	N/A	1.89	2 months	N/A	1.94	0.09	Welded to shoreline
01.02.14 – 21.02.14	l	Downdrift	0.48	2.01	–	–	–	–	Eroded
24.03.14 – 10.04.14	m	Downdrift	0.37	2.00	8–9 months	0.41	2.03	1.03	Welded to k3


						(24.03–16.10)		
14.05.14 – 06.06.14	n	Center/updrift	0.40	1.98	1–2 months	0.42	1.99	0.00
14.05.14 – 06.06.14	o	Centre	0.40	1.98	3–4 months	0.40	1.98	0.00
09.07.14 – 16.07.14	p	Centre	0.51	2.22	1 month	0.44	2.01	0.00
30.09.14 – 10.11.14	q	Updrift	0.41 (30.09–16.10)	2.11	–	–	–	Eroded
30.09.14 – 10.11.14	r	Centre	0.41 (30.09–16.10)	2.11	–	–	–	Eroded
30.12.14 – 16.01.15	s	Centre	N/A	2.05	–	–	–	Overtaken by sediments from u
30.12.14 – 16.01.15	t	Downdrift	N/A	2.05	–	–	–	Overtaken by sediment from v
27.01.15 – 16.02.15	u	Centre	N/A	2.17	–	–	–	Eroded
27.01.15 – 16.02.15	v	Downdrift	N/A	2.17	–	–	–	Welded to k3
16.02.15 – 03.03.15	w	Centre	N/A	1.92	1 month	N/A	1.88	0.00
16.02.15 – 03.03.15	w1	Downdrift	N/A	1.92	1–2 months	N/A	1.91	0.00
09.04.15 – 16.04.15	x	Updrift	N/A	1.85	4 months	N/A	2.01	0.00
09.04.15 – 16.04.15	y	Downdrift	N/A	1.85	5 months	N/A	2.00	0.93
04.06.15 – 03.07.15	z	Downdrift	N/A	2.05	4–7 months	N/A	2.02	0.00
11.12.15 – 19.12.15	aa	Centre	0.55	2.44	1 month	0.50	2.33	4.44
16.03.16 – 01.04.16	bb	Updrift	0.42	1.89	2–3 months	0.40 (16.03–12.05)	1.91	0.00
16.03.16 – 01.04.16	cc	Downdrift	0.42	1.89	2–3 months	0.40 (16.03–12.05)	1.91	0.00
								Outer bar of near mouth

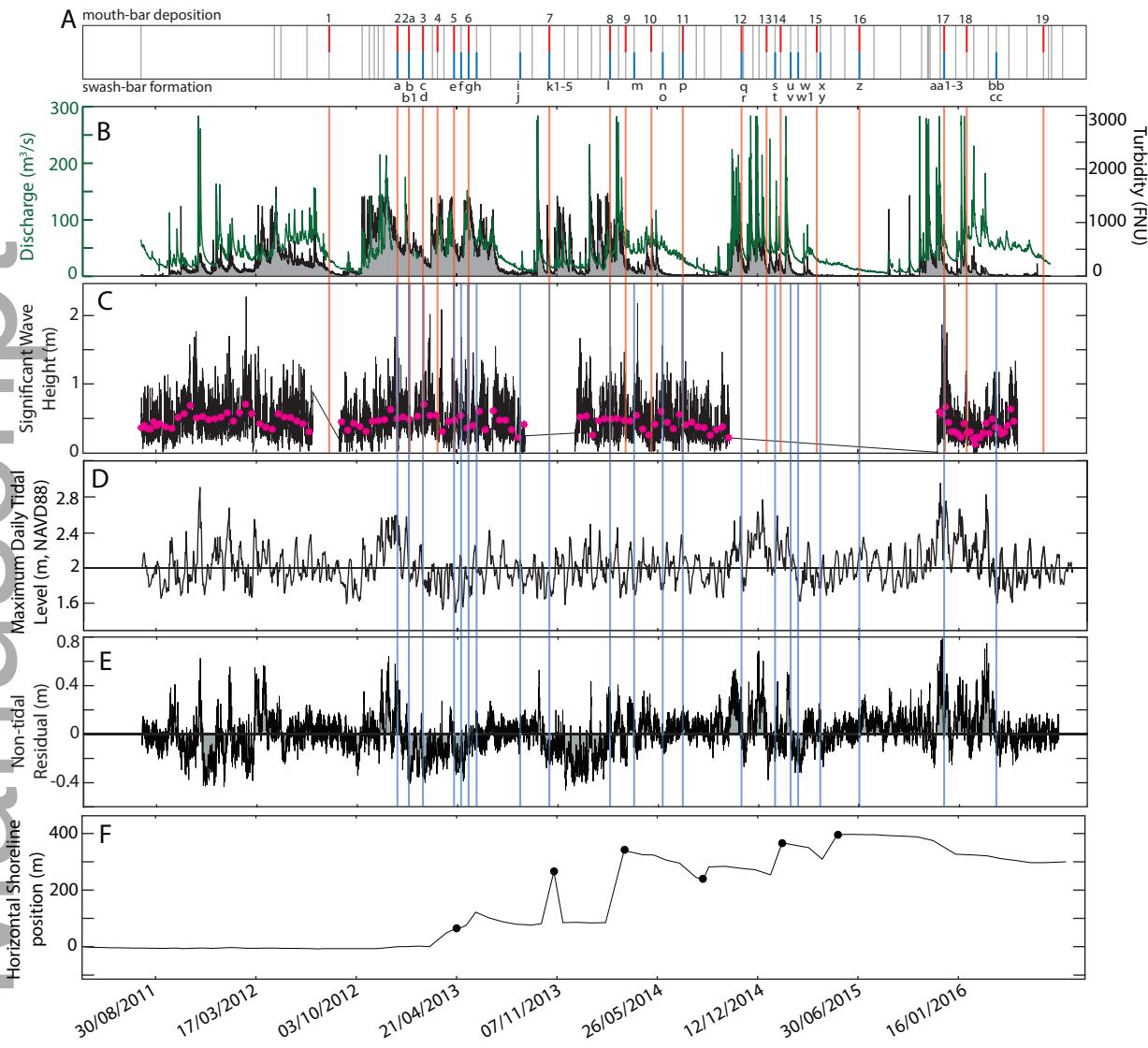
Author Manuscript

A) Mouth-bar deposition

B) Swash-bar formation

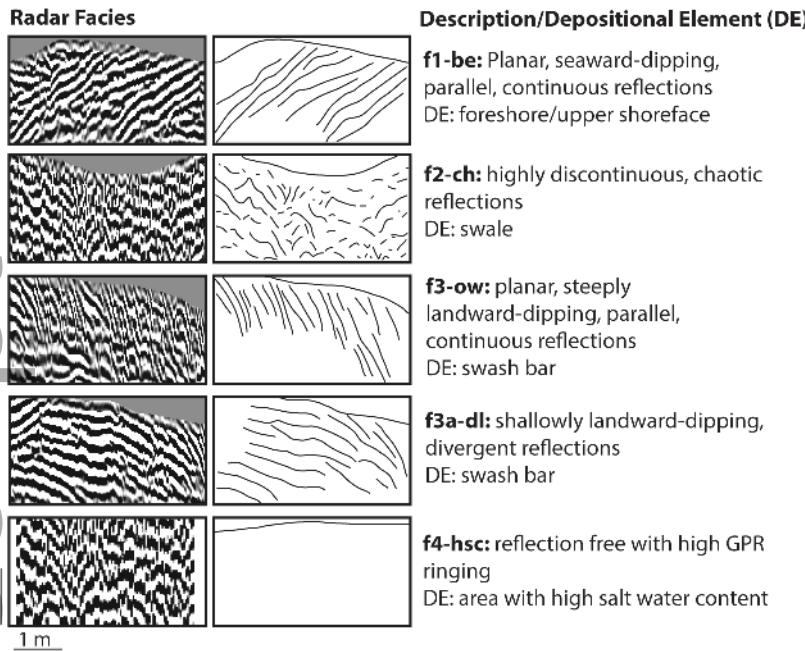

sed_12702_f1.tif

Author Manuscript

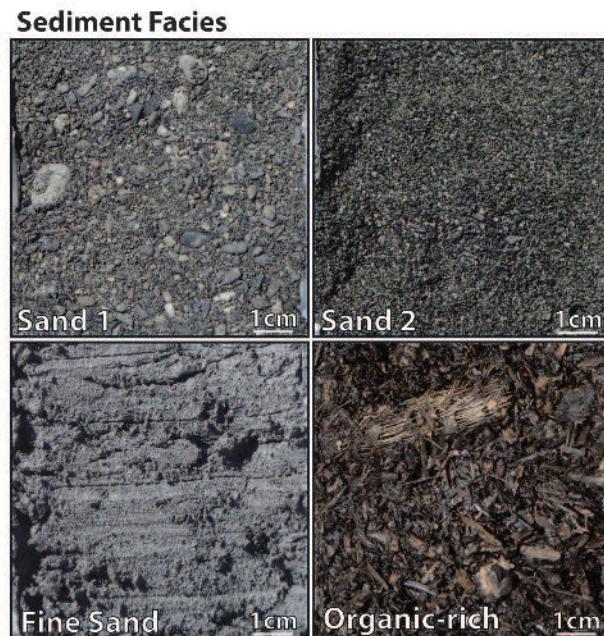


sed_12702_f2.tif

Author Manuscript



Author Manuscript

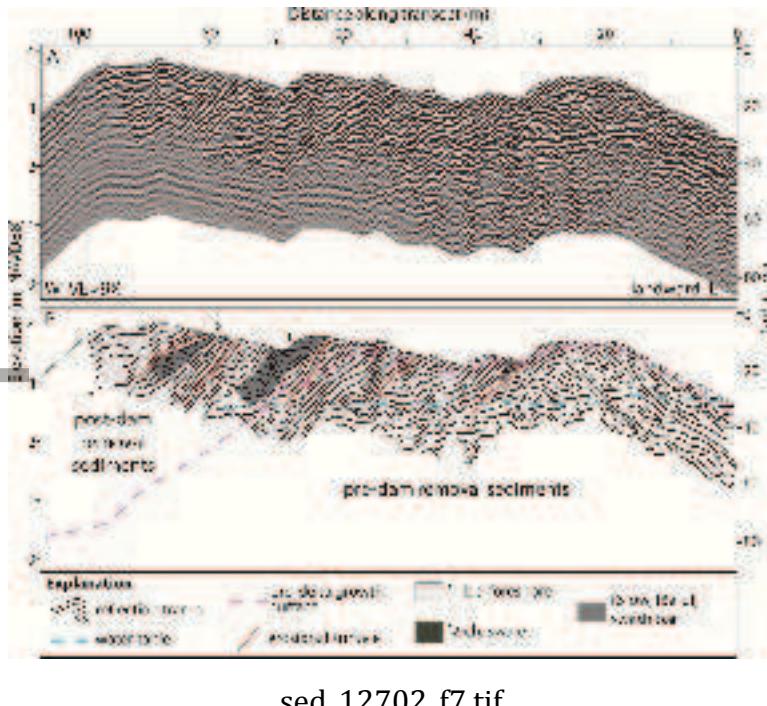

sed_12702_f4.eps

Author Manuscript

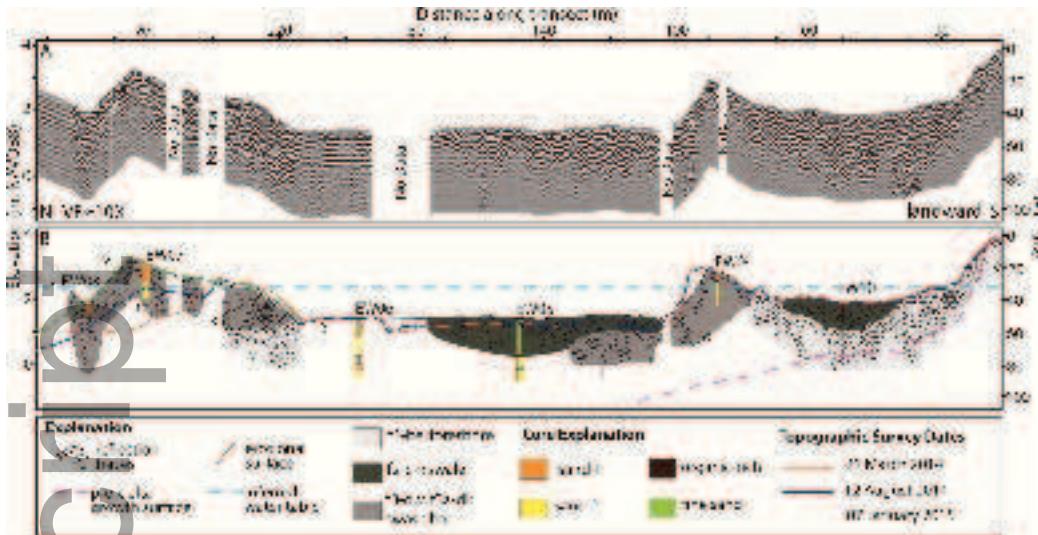
sed_12702_f5.tif

Author Manuscript

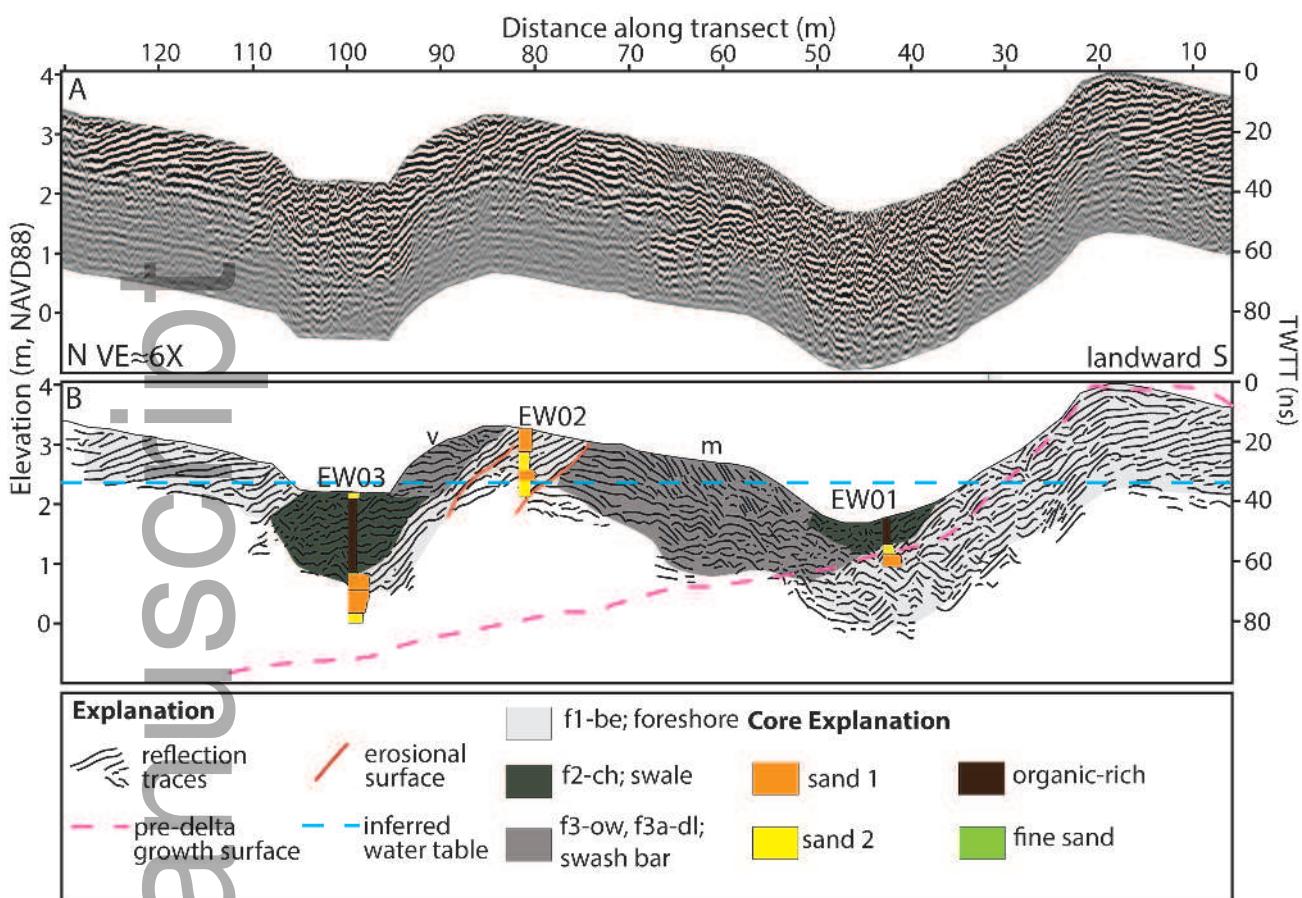
Sand 1: Poorly sorted sand, coarse skewed, with mean grain sizes ranging from -0.3 to 0.7 φ (0.6 to 1.2 mm), and clasts as large as -4.5 φ (2 cm);
Depositional element: foreshore, swash bars

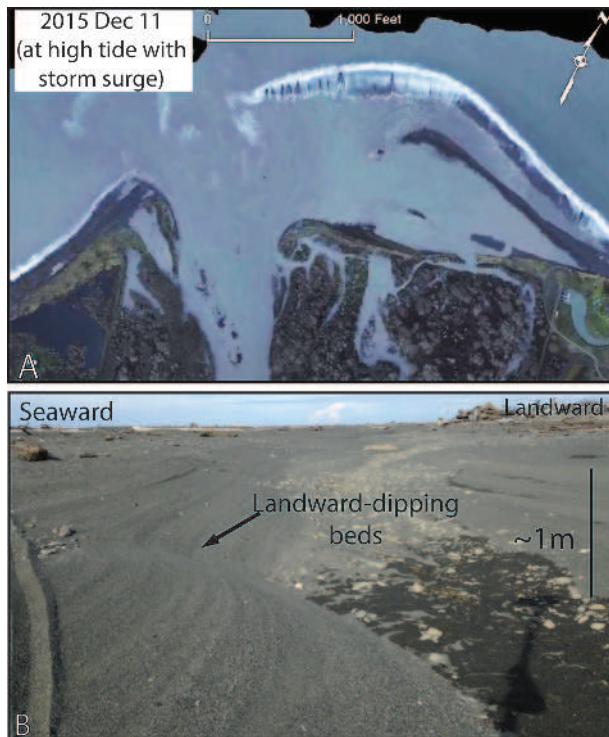

Sand 2: Moderately to poorly sorted sand, fine skewed to near symmetrical, with mean grain sizes ranging from 0.3 to 1.7 φ (0.3 to 0.8 mm);
Depositional element: foreshore, swash bars

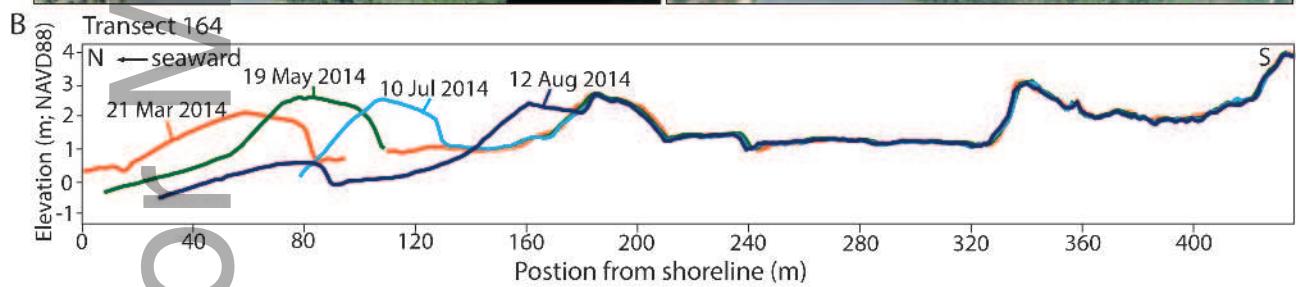
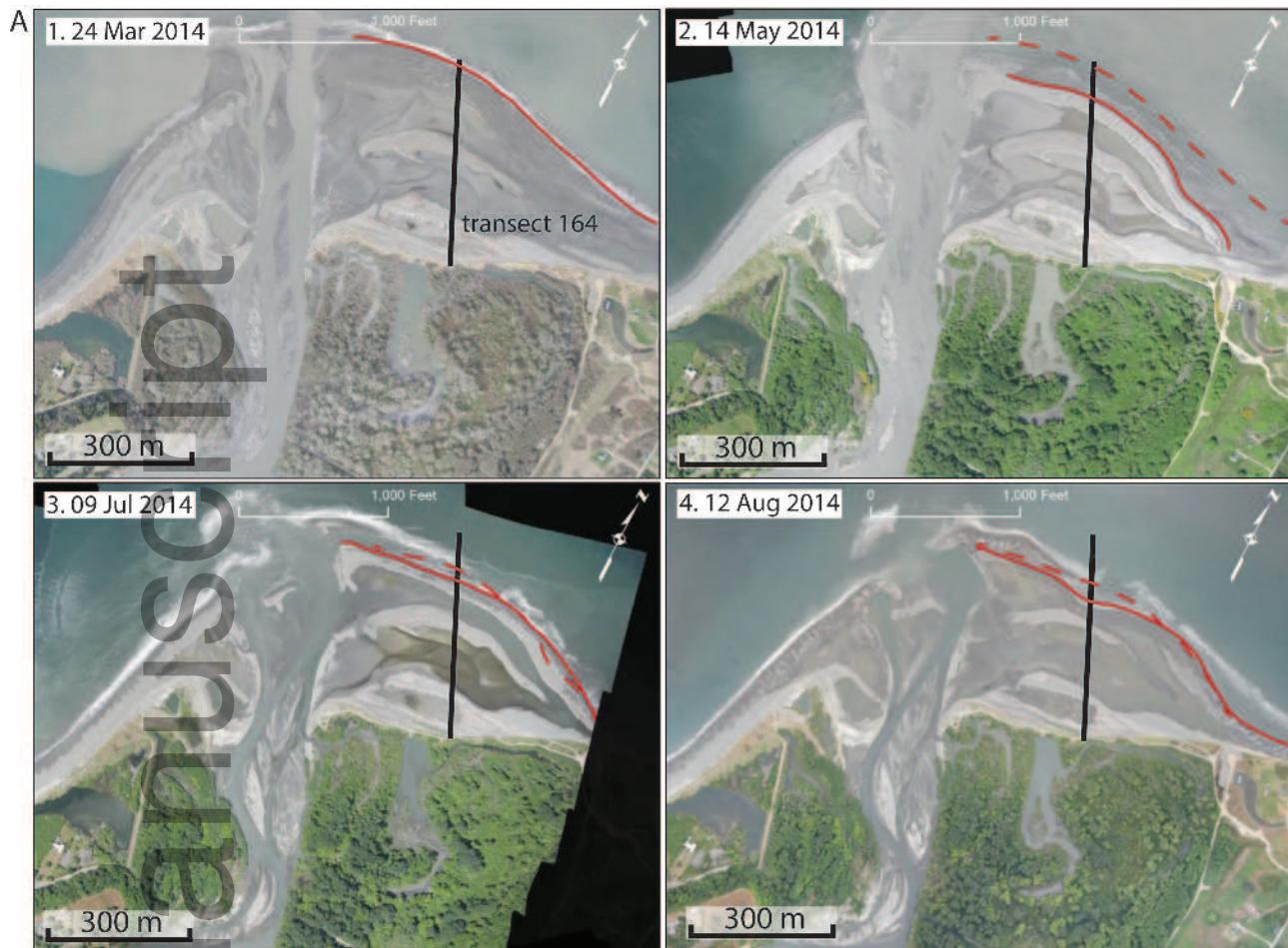
Fine sand: Moderately well sorted fine sands, near symmetrical, with mean grain size of 2.2 φ (200 μ m);
Depositional element: swale


Organic-rich: woody debris;
Depositional element: swale

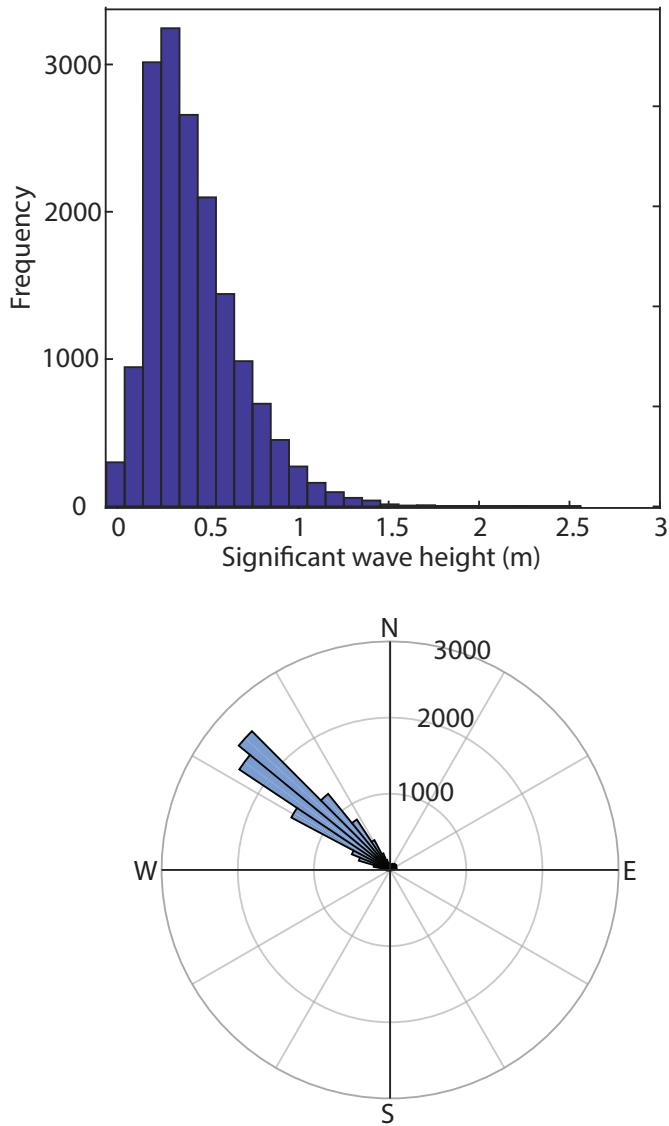
sed_12702_f6.tif


Author Manuscript

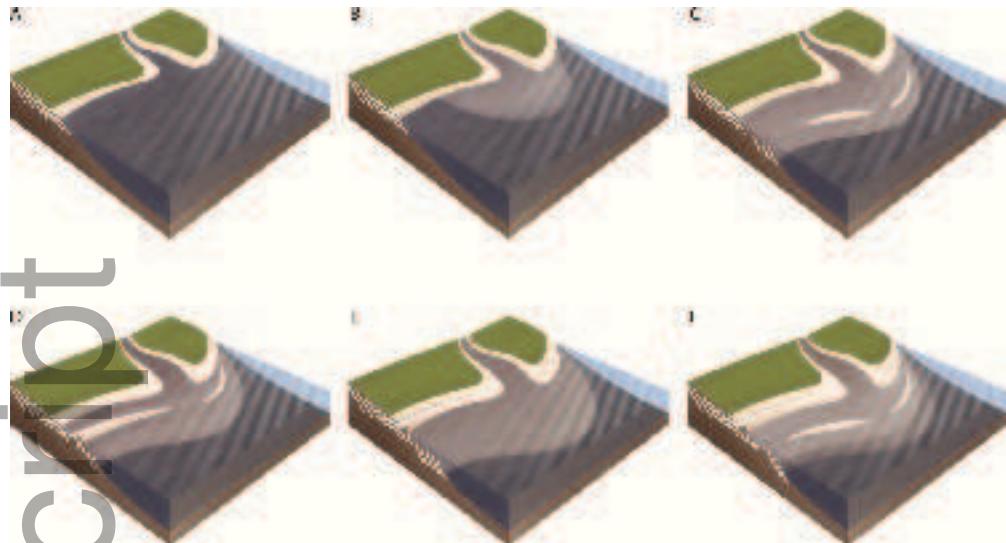

Author



sed_12702_f8.tif

Author Manuscript



sed_12702_f10.tif


sed_12702_f11.tif

Author Manuscript

sed_12702_f12.eps

Author Manuscript

sed_12702_f13.tif

Author Manuscript

sed_12702_f14.tif