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Abstract. Monitoring select ecosystem variables across time and interpreting the collected data are
essential components of ecosystem assessment supporting management. Increasingly affordable sensors
and computational capacity have made very large dataset assembly more common. However, these data-
sets initiate analytical challenges by their size and theoretical challenges due to the scale of the processes
they encompass. Multiscale assessment of high temporal resolution water quality sensor data (tempera-
ture, in vivo chlorophyll a, colored dissolved organic matter) collected year-round was conducted for the
Upper St. Lawrence River. Using numerical methods that directly integrate the concept of scale, we show
that consideration of scale-dependent processes can lead to increased predictive power and a clearer
understanding of ecosystem function. These results suggest that multiscale methods are not only an alter-
native way of approaching long-term data assessment, but also a necessity in order to avoid spurious inter-
pretation. Consequently, the concept of scale as described here can be consistently integrated into long-
term data studies to assist in the interpretation of high-resolution data that help describe natural phenom-
ena in aquatic systems.
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INTRODUCTION

Large rivers are ecologically, economically, and
socially important ecosystems. Assessment and
management of priority resource issues such as
fish migration, detection of tributary and point-
source nutrient enrichment, fecal bacterial con-
tamination, contaminant transport and fate,
harmful cyanobacterial blooms, and climate
change impacts are issues that require attention.
Strong anthropogenic influence resulting from
the rivers flowing past the urban centers, agricul-
tural regions, and dam construction makes their
studies a complex matter. However, both short-
term periodicities and long-term trends and
changes in rivers require attention. To adequately

study both components, long-term ecosystem
research (LTER) represents an important tool. An
essential step to LTER is developing techniques
that capture data and interpret observations on
appropriate timescales so that processes that
impact river environments can be detected and
understood with the aim of informing ecosys-
tem-based management actions (Parr et al. 2003).
Advances in water quality instrumentation

and data management tools (data recording,
storage, analysis, and exchange) make it possible
to monitor aquatic ecosystems in a comprehen-
sive and cost-effective manner across a wide
range of timescales. The combination of record-
ing observations at high frequency over a long
(e.g., annual) time period relative to the periods
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over which biogeochemical changes in the eco-
logical system can be observed means that such
studies can study ecosystem processes that occur
over a wide range of temporal scales. Thus, the
issue of scale is a central point in the theoretical
and analytical approaches used to assess long-
term and highly temporally resolved datasets.
However, the concept and its measure of scale
remain difficult to define, as they have been
attached to various properties of systems (Wiens
1989, Levin 1992, He et al. 1996, Thrush 1997,
Dungan et al. 2002). Nonetheless, it remains a
central concept of ecological literature, as one
gains insights into ecosystem function by study-
ing time-series analysis with appropriate meth-
ods.

The capacity to collect highly resolved tempo-
ral data with automated water quality sensor
arrays can provide a rich database to investigate
relationships among measured parameters and
to generate insights into the factors that structure
the aquatic environment in the river. Using meth-
ods adapted to such data, various insights have
been obtained regarding watershed and ecosys-
tem behavior (Kirchner et al. 2000, 2001, Arora
et al. 2016, Schmidt and Sutton 2018). Within the
Great Lakes–St. Lawrence River system, there
are a limited number of sensor arrays capable of
supporting LTER with very few deployed in the
rivers that provide lake to lake drainage through-
out the Great Lakes–St. Lawrence River system.
The most commonly used buoy-based sensors
are restricted to ice-free periods, typically May–
December (Twiss and Stryszowska 2016). To
develop and assess the ability automated sensor
arrays to resolve large river ecosystem processes,
an observational platform of commercially avail-
able water quality sensors was installed inside of
a hydropower dam on the St. Lawrence River.
The location of the sensor array allows the pro-
ject to support water quality measurements year-
round.

The main goal of our study was to apply a con-
sistent pathway and methodology to analyze
high temporal resolution data while considering
the notion of scale. Furthermore, we show that a
theoretical and numerical integration of the con-
cept of temporal scale allows for the construction
of better interpretative models. Here, water qual-
ity sensor data are first analyzed using a wavelet
transform in order to detect temporal structures

not only across scales but also across time. Sec-
ond, temporal models using Moran’s eigenvector
maps (MEM) spatial filtering variables are con-
structed and used to assess the importance of
temporal structures in the data. Third, the possi-
bility of establishing linear models among water
quality and the measured variables is explored
by verifying their assumptions using direct mul-
tiscale ordination. Finally, the variables are
related to each other using spatial eigenvectors
as modulating variables in multiscale codepen-
dence analysis that describe the various scales
considered. The aim of this effort is to obtain
information that can help explain the variability
inherent in the observations of natural systems
so that mechanisms that cause system change
can be clearly identified.

METHODS

Study site and data acquisition
A multisensor array was installed in Unit 32

power turbine of the Moses-Saunders hydroelec-
tric dam, along the New York shoreline of the St.
Lawrence River (45°0.2530 N, 74°47.9450 W;
Fig. 1). The Moses-Saunders hydropower dam is
in the Upper St. Lawrence River, between the
state of New York (USA) and the province of
Ontario (Canada). The Upper St. Lawrence River,
defined by the water upstream of the Moses-
Saunders hydropower dam to Lake Ontario, is
characterized by little tributary input (~3% of its
average annual discharge of 6800 m3/s), and dis-
tinct nearshore and main channel regions (Ball
et al. 2018).
The multisensor array consisted of a Turner

Designs C6 multisensor platform equipped with
Cyclops-7 sondes. The array measured various
water quality parameters every minute, includ-
ing water temperature, colored dissolved organic
matter (CDOM; Suwannee River fulvic acid
equivalents), in vivo chlorophyll a, and in vivo
phycocyanin. Water from the penstock was
drawn via a 30 cm diameter pipe to cool the sta-
tor of the turbine-driven electric generator; this
water was effectively mixed surface and bottom
(~20 m depth) river water but is restricted to
water that flows along the southern shoreline of
the river owing to the location of the Unit 32 tur-
bine, which is nearest that shore. The C6 is
housed in a watertight flow-through cell and is
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connected to the cooling water pipe via a stain-
less-steel pipe (1 cm diameter) with a pressure
reduction gate valve. The array was equipped
with an anti-fouling brush, which performs one
revolution every minute prior to recording water
quality observations to prevent any fouling by
debris or organisms on the optical sensor sur-
faces. The entire system was visited at 1- to 3-
week intervals to download data, clean instru-
ments, and recalibrate.

Data were averaged into three-hour blocks to
avoid overly long computing times and memory
roadblocks during analyses. We found that this
was the best value that offered a trade-off between
computational efficiency using a desktop personal
computer and obtaining results within reasonable
amounts of time using the available conventional
computing power. The measured variables were
individually transformed to reduce skewness as
much as possible. Colored dissolved organic
matter was loge transformed, chlorophyll a was
fourth root transformed, phycocyanin was square
root transformed, and temperature was left
untransformed.

Consideration of scale
Due to the possibility that the data contain sev-

eral patterns of various types at different tempo-
ral scales, we chose to incorporate the notion of
scale into our analyses at several points. Another
term closely related to scale is structure (Borcard
and Legendre 2002, Legendre and Legendre
2012). Essentially, an assessment of the various
temporal scales over which a process may oper-
ate can be considered through the creation and
integration of various temporal structures into
analyses. To fully define these concepts in ecol-
ogy would be beyond the scope of this paper,
though we refer readers to references such as
Fortin and Dale (2007) or Legendre and Legendre
(2012). Nonetheless, we note that, to be useful in
modeling, a temporal structure should be well
defined in terms of location (i.e., when it occurs)
and in scale (i.e., over how much time does it
take place). Consideration of both aspects is nec-
essary to fully analyze temporal datasets.
From time-referenced data, two individual

components can be extracted: the environmental
data itself and the timestamps. From the

Fig. 1. Geographical location of the Unit 32 power turbine of the Moses-Saunders hydroelectric dam on the
Upper St. Lawrence River.
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timestamps alone, a wide variety of temporal
structures can be constructed and incorporated
into analyses. To make our goals and methods
clear as well as to allow readers to follow our
reasoning, we have provided a flowchart along
with the links between the types of temporal
structures used and the question that each anal-
ysis seeks to answer (Fig. 2). The data process-
ing flowchart is not exhaustive, as several
additional links could be added. For example,
variation partitioning (Borcard et al. 1992, Bor-
card and Legendre 1994) and multiscale code-
pendence analysis (Gu�enard et al. 2010) are
versatile methods that are not limited to their
use with MEM and could be used with wave-
lets. Likewise, MEMs can also be used in direct
multiscale ordination (DMSO; Borcard et al.
2016). Finally, there are also other methods that
consider scale, which were not considered here,
such as the method applied by Keitt and Urban
(2005) or Legendre et al. (2009). Nonetheless,
we note that the building blocks of these

methods are still MEMs and wavelets, so they
can be readily added to the flowchart.
We also note that such a data processing proto-

col is not absolute, as the question that DMSO
answers given here differs from that provided by
Gu�enard and Legendre (2017a). Likewise, Percival
et al. (2004) give at least four questions that can
be answered by wavelet analysis, which some-
what differ from the two used here. Additionally,
the interpretation of some structures revealed by
the different methods may vary (Wagner 2004,
Borcard et al. 2016). The figure can be made much
more complex than presented here. Nonetheless,
it serves to summarize the types of questions that
can be answered by these methods and why we
chose these tools over others.

Wavelet transform analysis
Wavelets are mathematical functions that are

capable of detecting patterns at different scales
or frequencies for temporal and spatial data
(Bradshaw and Spies 1992, Dale and Mah 1998,

Fig. 2. Flowchart of the scale-incorporating methods. Blocks at the end of each path show the main questions
that the method addresses. From timestamps, a variety of temporal structures can be obtained and integrated
into numerical methods; ignored means that timestamps were not directly incorporated into the model, but
rather serve only to decompose the variance across distance classes.
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Percival et al. 2004, Cazelles et al. 2008, James
et al. 2010). Their main feature is that they repre-
sent a local decomposition of a signal, as
opposed to other methods, which assume that
the signal retains its characteristics throughout
the sampling extent. Consequently, information
regarding the intensity of the studied process can
be obtained not only with regard to scale, but
location as well. A Morlet wavelet (Morlet et al.
1982a, b) was used as a template, whose mother
wavelet function is

w tð Þ ¼ 1ffiffiffi
p4

p eix0t � e�
x2
0
2

� �
e�

t2
2 ; (1)

where x0; is the dimensionless frequency param-
eter, which determines the number of oscillations
within the mother wavelet. We considered a
value of x0 ¼ 6, which is an appropriate parame-
ter value for feature extraction, as it considers a
general peak, along with four smaller ripples on
either side. Furthermore, we note that in this
case, the second term inside the parentheses can
be ignored, as it is only a correction factor, which
accounts for the nonzero mean of the complex
sinusoid (Addison et al. 2002).

Significant scales of variation for the data were
tested using surrogate data testing using simula-
tions. We considered random processes which
can be modeled by power-law noise model (Mar-
vin 1982). We refer to power-law noise as a pro-
cess where the power spectral density is
inversely proportional to a power of the fre-
quency, so that

S fð Þ / 1
f a

; (2)

In this case, four different values of the expo-
nent a were chosen, to represent different colors
of noise. The first null model was a white noise
model, where a ¼ 0. In this case, each new time-
series consisted of n points drawn from a stan-
dard Normal l ¼ 0;r2 ¼ 1

� �
distribution. This

model is a basic null model (it is the default in
the analyze.wavelet function), but it might be
somewhat too liberal, as it considers that the data
are completely independent and that there is
inherently no temporal structure to be expected
in the data. The second null model was a red
noise model, where a ¼ 2. The third null model
was a pink noise model, where a ¼ 1. The fourth
and final model first estimated the a coefficient

as the negative of the slope of a log-log regres-
sion between the spectrum of the data and the
harmonic frequencies. Missing values were esti-
mated by linear interpolation between available
data points. To generate data according to a par-
ticular power-law noise model, the algorithm of
Timmer and K€onig (1995) was used.

Moran eigenvector maps analysis
In order to detect and assess temporal struc-

tures, MEM (Dray et al. 2006) were considered.
They comprise a flexible family of eigen-based
spatial filtering method (Griffith and Peres-Neto
2006) which allow the modeling of spatial pro-
cesses at different scales. As has been raised,
these variables are also well-suited to model tem-
poral processes as well (De C�aceres et al. 2010,
Legendre and Legendre 2012, Legendre and
Gauthier 2014). Indeed, temporal studies can be
considered like a unidimensional transect in spa-
tial studies. Consequently, for the remainder of
the paper, we will use the term temporal even
though much of the literature considers their
application to spatial problems.
Moran eigenvector maps variables were con-

structed by considering the eigendecomposition
of the Hadamard product between a connectivity
matrix and a weighing matrix (Dray et al. 2006,
Legendre and Legendre 2012). If a significant lin-
ear trend was detected, the response variable
was regressed against a straight line representing
a linear temporal trend and the residuals com-
prised the detrended data to be used for the
MEM analysis. We considered only variables
modeling positive autocorrelation, whose corre-
sponding eigenvalue satisfied the criterion
kk � �Pn

i¼1
Pn

j¼1 wij=n n� 1ð Þ.
Two different connectivity scheme matrices

were considered, either based on the minimum-
spanning tree (MST) or based on a distance crite-
rion (DNN). In the case of time-series analysis,
MST connections are equivalent to considering
each observation connected only to the previous
and following observations as the minimum-
spanning tree is a straight line. However, despite
labeling this connection scheme MST, it could
actually be several types of connection schemes
such as relative neighborhood graph (Toussaint
1980), Gabriel graph (Gabriel and Sokal 1969), or
Delaunay triangulation (Delaunay 1934), as all
these methods will give the same straight line for
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a temporal series. In the case of DNN, an upper
threshold of 98.125 d was selected, as this repre-
sents the shortest distance that would keep all
points connected. In addition, four different
weighing schemes for the weighing matrix were
considered in order to seek out the best possible
model. These weights included no weights,
which would give a binary model (BIN) or a
weighing of the edges based on a linear (f1 ¼ 1�
dij=max dij

� �
), concave-up (f2 ¼ 1� dij=max

�
dij
� �Þa), or concave-down (f3 ¼ 1=dbij ) function of
the distance between sampling days. Values of the
exponent a were computed for all values between
2 and 10 (since a ¼ 1 would be the linear model)
and those of the exponent b between 1 and 10.
Principal coordinates of neighboring matrices
(PCNM; Borcard and Legendre 2002) eigenfunc-
tions were also considered.

A data-driven approach was taken (Getis and
Aldstadt 2004, Dray et al. 2006), wherein several
models were considered and the selected model
was the one that best fit the data at hand. Two
possible methods were considered to determine
the best model for individual variables: Akaike’s
information criterion value (AIC; Akaike 1974)
and forward selection of variables. Both of these
methods are facilitated by the orthogonal nature
of MEM, as they can simply be entered them into
the model according to the value trace YTuiuTi Y

� �
,

which is the value by which the total sum of
squares are decreased by the inclusion of MEM
variable ui in the model. We note that, in our case
where there is only a single response variable,
computing the trace is not necessary, as the pro-
duct YTuiuTi Y will give a 191 matrix.

Second-order AIC values were considered
(Sugiura 1978, Hurvich and Tsai 1989), which are
defined as

AICc ¼ �2 log Lð Þ þ 2kð Þ þ 2k kþ 1ð Þ
n� k� 1

; (3)

where n is the number of observations, k is the
number of variables in the model, and L is the
likelihood function. The correction is suggested
mostly for cases in which the number of vari-
ables is much higher than the number of points.
In MEM analysis, a large amount of temporal
variables can be considered, which can make this
consideration necessary. Furthermore, given that
AIC is the limit of AICc as sample size tends
to infinity, it should always be employed

(Burnham and Anderson 2002). In our case, we
considered a linear model, wherein the term
�2 log Lð Þ ¼ n log RSS=nð Þ (Burnham and Ander-
son 2002, God�ınez-Dom�ınguez and Freire 2003).
Forward selection of variables using a double-

stopping criterion (Blanchet et al. 2008) was also
considered. In this case, variables are entered
into the model as in classical forward selection,
but the process also stops if the subset of vari-
ables has an adjusted R2 value that is higher than
the entire set of candidate variables. We note that
the forward.sel function actually implements five
stopping criteria. The most relevant of these are
the previously mentioned two and the R2 more
criterion, wherein forward selection stops if the
candidate variable explains less than a certain
value of the variation. We used a value of 0.001,
meaning that forward selection stopped if the
candidate variable explained <0.1% of the varia-
tion in the response variable.
Variation partitioning (Borcard et al. 1992, Bor-

card and Legendre 1994) was used to compare
the fractions of variations explained by the envi-
ronmental model and the temporal model. Coef-
ficients of multiple determination values were
adjusted following Ezekiel’s formula (Ezekiel
1930, Peres-Neto et al. 2006). Even though the
linear trend is not an eigenfunction submodel,
the same rules as those of variation partitioning
involving orthogonal eigenfunction submodels
were applied (Legendre et al. 2012). The method
consists of transferring shared fractions of
explained variation to the spatial model of higher
scale. In our case, shared fractions of variation of
the temporal model with the trend were trans-
ferred over to the trend, as it is taken to be a pro-
cess occurring at a larger scale than considered
by the study.

Direct multiscale ordination analysis
Conventional multivariate linear models such

as those from redundancy analysis (RDA; Rao
1964) or canonical correspondence analysis
(CCA; ter Braak 1986) consider that the effects of
the constraining variables are the same at all
scales and that the residuals of such a model are
independent and identically distributed. Both
assumptions can affect results, leading to various
effects from tests being too liberal to regression
coefficients being inconsistent across scales. To
check whether these assumptions were met, we
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used Wagner’s method (2003, 2004) which
decomposes the covariance matrix of a multivari-
ate dataset (R ) into a series of distance-depen-
dent covariance matrices R dð Þ, whose elements
are computed as

rij dð Þ ¼ 1
2ndk

X
a;bjdab�dk

xai � xbið Þ xaj � xbj
� �

; (4)

or a pair of observations a and b that are sepa-
rated by distance dab. In this case, the covariance
matrix used in principal components is a
weighed sum (with weights equal to the propor-
tions of number of pairs in each distance class);
this partitioning between distance classes, com-
bined with the outputs of constrained multivari-
ate analyses, allows for the decomposition of
both matrices of fitted values and residuals into
scale-dependent classes. Accordingly, this
decomposition forms the basis of DMSO (Wag-
ner 2004) that allows testing of the previously
mentioned assumptions. Scale dependence of the
regression coefficients of a linear model predict-
ing CDOM and chlorophyll a were assessed by
verifying if the sum of scale-dependent vari-
ogram values for the fitted values and the resid-
ual values of the model fell outside of an
envelope around the variogram for the response
variable. The envelope for the response variable
variogram was computed as

cY hð Þ � za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var cY hð Þð Þ

nh

s
; (5)

where cY hð Þ is the total semi-variance for class h
and za is a critical value for a standard
Normal l ¼ 0;r2 ¼ 1

� �
distribution. Significant

temporal autocorrelation for the residuals was
tested by carrying out a Mantel test with 1000
permutations (Mantel 1967, Legendre and Legen-
dre 2012). To account for multiple testing, a Bon-
ferroni correction was applied by dividing the
significance level by the number of performed
tests.

Multiscale codependence analysis
The relationship between variables can be

decomposed and assessed across scales by con-
sidering covariables that represent the different
scales at which this relationship may express
itself. This is the central idea of multiscale code-
pendence analysis (MCA; Gu�enard et al. 2010).

In this analysis, codependence coefficient for two
variables x and y at the temporal scale described
by vector ui is defined as

Cy;xjui ¼
uTi yffiffiffiffiffiffiffiffi
yTy

p uTi xffiffiffiffiffiffiffiffi
xTx

p ; (6)

where ui is drawn from a set of orthonormal spa-
tial eigenvectors U. This is the product of two
Pearson product–moment correlations of the two
studied variables, each with ui, a temporal vari-
able which models the process at a certain scale.
The scale-dependent temporal variables were the
unit-normed eigenvectors of the best fitting tem-
poral model, as determined by AICc. In our case,
response variables were always univariate as
MCAs of CDOM or chlorophyll a against the
other variables were considered. Contrary to the
multivariate version of MCA (Gu�enard and
Legendre 2017a), the sign of this codependence
coefficient is meaningful and should be kept.
Tests of significance were carried out by per-

muting the observations of the variables under
the null hypothesis of temporal independence
between the two variables, as suggested by
Gu�enard et al. (2010). In order to maintain ade-
quate familywise error rate, a sequential �Sid�ak
correction was applied (�Sid�ak 1967, Wright
1992). The entire set of spatial eigenvariables
coding for positive autocorrelation for the best
model were used as spatial predictors. We used
an adaptive form of testing, where the number of
permutations or simulations to be carried for
each step was determined by the formula

nperm ¼ 1

1� 1� að Þ 1
pm�q

; (7)

for a situation where p is the number of explana-
tory variables, m is the number of temporal vari-
ables, q is the number of temporal variables
already in the model, and a is the desired signifi-
cance level. In order to ensure that the null
hypothesis could be adequately rejected, we con-
sidered 10 times the suggested number of per-
mutations.
We investigated the effect of the null model

and the surrogate data generating algorithm on
the significance of the codependence coefficients
by considering two additional methods of gener-
ating the surrogate dataset. The first procedure
consisted of creating a new set of explanatory
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variables under a power-law noise model (Eq. 2).
Surrogate variables were obtained using the gen-
erating algorithm of Timmer and K€onig (1995).
In our study, we assumed that the simulated
explanatory variables followed a power-law
noise model whose exponent a was determined
as the negative of the slope of a log–log relation-
ship between the spectrum and the harmonic fre-
quencies of the variable. The second procedure
consisted of bootstrapping the dataset, but
pseudo replicates were obtained by resampling
with replacement contiguous blocks of data,
rather than single observations. This approach is
essentially similar to block bootstrapping (Carl-
stein 1986, K€unsh 1989, Efron and Tibshirani
1993). Block size was considered fixed within an
iteration, but was also varied to assess its effect
on the estimate. A new MCA was conducted
using these variables as explanatory variables
and the distribution of the test statistic s was tab-
ulated. Given the sometimes uneven sampling
(i.e., presence of gaps), care was taken to gener-
ate temporal series with similar characteristics
(i.e., gaps of the same size and at the same loca-
tions). The advantage of this methodology is that
it does not assume complete randomness of
observations, thus allowing for a more realistic
null hypothesis. Using this method, the strongest
codependence was tested for both models.

The reasoning behind this statement is that the
three methods actually test three different null
hypotheses.

1. Random permutation: The codependence
between the two variables is similar to that
which would be seen for a pair of nonstruc-
tured variables that have identical values,
but are completely independent of the tem-
poral axis;

2. Block bootstrap: The codependence between
the two variables is similar to that which
would be seen for a pair of structured vari-
ables that are drawn from a population of
blocks similar to that of the observed vari-
ables, which show a similar autocorrelation
structures below block size, but whose struc-
ture above block size has been destroyed; and

3. Power-law noise: The codependence
between the two variables is similar to that
which would be seen for a pair of structured
variables following a stochastic random

process, where each variable shows a simi-
lar autocorrelation structure to the mea-
sured variable (i.e., a similar spectrum).

We note that this is not a trivial issue, as it has
been noted that some variants of randomization
tests might be ill-advised in spatial statistics,
where complete spatial randomness may prove
to be an absurd null hypothesis (Fortin and Jac-
quez 2000). Additionally, it would be wrong to
draw conclusions based on the rejection of a null
hypothesis that is not well-grounded theoreti-
cally. Consequently, the matter represents not
only a mathematical issue, but also an ecological
one, as ecologists should decide which null
hypothesis to test.
Within MCA, it is possible that the response

variable shows significant codependence with
more than one variable at a single scale. Such a sit-
uation was envisioned by the authors who sug-
gested retaining the largest absolute statistic in
order to preserve strictly exclusive sets of structur-
ing variables (Gu�enard et al. 2010, Gu�enard and
Legendre 2017a). However, the frequency of such
situations is somewhat unknown. Furthermore,
correlations between explanatory variables and
random variation due to sampling could cause
one variable to be selected on one occasion, but
another on the next. To further explore this ques-
tion, we introduce the notion of uncertainty coeffi-
cients. The uncertainty coefficient for explanatory
variable j and structuring variable i is defined as

UC j; ið Þ ¼ 1�max Cy;xjui
�� ��� �� Cy;xjui

�� ��
max Cy;xjui

�� ��� � : (8)

In other words, the uncertainty coefficient is
one minus the standardized difference between
the absolute codependence coefficient for vari-
able j and the highest absolute codependence
coefficient for structuring variable i. Only signifi-
cant codependence coefficients were considered.
This value will equal 1 if xj is the variable that
shows the maximum codependence coefficient
(in absolute value) and will decrease toward 0 as
the difference between the codependence coeffi-
cient and the maximum becomes larger. A vari-
able is included in the uncertainty set if its
uncertainty coefficient is equal to or higher than
some predefined threshold k. Viewed alterna-
tively, this is the same as stating that
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max Cy;xjui
�� ��� �� Cy;xjui

�� ��
max Cy;xjui

�� ��� � � k; (9)

so that the codependence coefficient for the con-
sidered variable is at most k standardized differ-
ence units away from the highest codependence
coefficient for structuring variable i. On one
extreme, setting k ¼ 0 leaves no room for uncer-
tainty, as only the variable with the highest abso-
lute codependence coefficient will be selected.
On the other extreme, setting k ¼ 1 leaves too
much room for uncertainty, as all significant vari-
ables are selected (i.e., even those that would
have very low absolute values of codependence
coefficients). Between these two extremes lies an
appropriate and adequate amount of uncertainty
for researchers. There is obviously some arbi-
trariness associated with this threshold parame-
ter k. However, we prefer to see it as a flexibility
that studies should include. For our study, we
considered a threshold value of k ¼ 0:10 meaning
that any variable whose uncertainty coefficient
was at most 0.10 standardized units away from
the highest standardized codependence coeffi-
cient could be included.

Computational tools
The majority of computations were done in R

3.4.1 (Ihaka and Gentleman 1996, R Core Team
2017). Various functions from the packages
vegan (Oksanen et al. 2012), WaveletComp
(R€osch and Schmidbauer 2014b) and codep
(Gu�enard and Legendre 2017b) were used in
order to carry out the analyses. In order to speed
up computations, the majority of analyses were
carried out by writing and integrating compiled
C++ code into R using the Rcpp (Eddelbuettel
and Francois 2011, Eddelbuettel 2014) package.
The Armadillo (Sanderson and Curtin 2016) C++
linear algebra library was used through the
RcppArmadillo (Eddelbuettel and Sanderson
2014) package. Parallel computing and use of

multiple computer cores was enabled using the
packages snow (Tierney et al. 2007, 2009) and
snowfall (Knaus et al. 2009) were used.

RESULTS

Study site environmental conditions
The data analyzed begins at 10:55 hours on 18

June 2014 and ends at 07:12 hours on 25 April
2016. Sensor maintenance and cleaning produced
occasional gaps of about two hours approxi-
mately every two weeks. Likewise, events such
as power outages, water shut off, and dam main-
tenance produced additional gaps of variable
size. Stating each of these gaps would be unnec-
essary as they were usually of short length (usu-
ally a couple of days). However, two gaps are of
noticeable length and worth pointing out. The
first of these was between 7 November 2014 and
13 February 2015, accounting for 98 d due to the
New York Power Authority repairing the gener-
ating unit. The second of these was between 24
April 2015 and 10 June 2015, and accounted for
48 d; this was due to sensor instrumentation
warranty repair.
Average environmental conditions were within

the range of values expected (Table 1). However,
individual variables showed different trends and
patterns across time. Colored dissolved organic
matter values were usually highest in spring and
lowest in fall. Chlorophyll a was highest in sum-
mer and lowest in winter. However, we note that
in 2016, two distinct peaks occurred, with one in
summer and one in fall. These two peaks were
much more pronounced than the peak seen in
2015. In vivo-based fluorescence of phycocyanin
showed a pattern similar to in vivo chlorophyll a
fluorescence and was highest in summer and fall
and lowest in winter, but without showing two
peaks in 2016. Temperature was highest in spring
and summer, and lowest in fall and winter
(�0.1°C), as expected.

Table 1. Summary results of the measured environmental variables.

Variables Mean Median Minimum Maximum Standard deviation

Colored dissolved organic matter (mg/L) 5.35 4.92 3.56 10.73 1.41
In vivo chlorophyll a (lg/L) 0.18 0.17 0.01 0.56 0.11
In vivo phycocyanin (mg/L) 0.01 0.01 0 0.07 0.01
Temperature (°C) 12.35 13.5 0.11 23.49 8.3
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Wavelet transform analysis
Contour plots of the wavelet transform coeffi-

cients showed that all variables showed various
levels of periodicities and at varying moments
(Fig. 3). Colored dissolved organic matter, phy-
cocyanin, and water temperature showed an
extremely pronounced peak of average wavelet
coefficient at a period of about 365 d, which
would indicate strong yearly patterns in the data.
For chlorophyll a, an additional distinct peak
with a period of about 128 d was detected, indi-
cating a quarterly pattern. However, inspection
of the contour plot revealed that this pattern was
not consistent throughout the study period and
started only around the beginning of 2015.
Chlorophyll a also showed a slight peak for daily
periodicity which was strongest in summer and
weakest in winter. The reason for this could be
due to the weakening of daily variations in win-
ter and the linear interpolation that was neces-
sary to account for missing values that occurred
primarily during winter months.

The four null models differed in the periods
they detected as significant (see Fig. 3). Indeed,
the white noise model was the most liberal and
showed the widest range for periods, often indi-
cating a large range of periods as being signifi-
cant. Significant periods were noted as being
between 16 and 1024 d. On the other hand, mod-
els that did not consider independence between
points (i.e., red noise, pink noise, and estimated
noise) were more reserved and only detected
smaller patches of periods as significant. It is
only for water temperature that the three latter
models agree and identified only the yearly per-
iod as being significant. For CDOM, chlorophyll
a and phycocyanin, null models with redder
noise tended to show smaller periods as being
significant, even though they showed lower aver-
age wavelet power than the larger periods. This
could be since high (close to or higher than
a ¼ 2) values of coefficients for the colored noise
produce an extremely smooth sine wave. There-
fore, the test might be more sensitive to small-
scale variation in the data. However, we note
that longer datasets might be necessary to test
for higher-scale patterns in the data for some
variables. Indeed, as can be seen for chlorophyll
a, the yearly patterns are significant under the
estimated noise model, but only within the cone
of influence.

Moran eigenvector maps analysis
Temporal structures were identified for all

three variables (CDOM, chlorophyll a, and phy-
cocyanin), as the null model showed the high
values of AICc that were very different than
those of models that incorporated temporal vari-
ables (Table 2). For CDOM, the best temporal
model based on AICc considered a DNN connec-
tivity matrix with a concave-down weighing
function and a parameter of b ¼ 1. However, for
chlorophyll a, the best temporal model consid-
ered a MST connectivity matrix with a linear
weighing function.
After the null model, the worst-fitting models

were usually those that considered a distance cri-
terion and a binary weighing matrix. This result
is understandable as, given the somewhat large
cutoff value (98.125 d, which is the size of the lar-
gest mentioned gap), not weighing these dis-
tances considers giving them all the same
importance or considering that the transfer of
organisms or matter is very easy. Therefore,
when considering connection schemes more con-
nected than MST, then links between observa-
tions should be properly weighed. Even though
there exists no objective scale of AICc interpreta-
tion, differences between AICc values were very
large between classes of models. Indeed, based
on suggested scales for DAIC (Burnham and
Anderson 2002), the differences in AICc were
indicative of no support for alternative models
other than the best model.
We note that the forward selection procedure

selected a lot fewer dbMEMs than the AICc

method, around 20 times less. However, this dif-
ference is not due to the two criteria discussed by
Blanchet et al. (2008). Rather, in these cases the
algorithm terminated due to the R2 more crite-
rion. Had this criterion not been enforced, the
forward selection procedure would have gone on
for quite a while, adding significant variables,
but which explain a very small amount of varia-
tion. Such a stopping criterion can easily be
coded into an AIC selection algorithm for
dbMEMs and doing so does make the two meth-
ods choose the same number of dbMEMs within
each model. However, there was no clear rela-
tionship between such a prematurely terminated
AICc and the conventional AICc.
When temporal models are not considered,

environmental models explained close to half of
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Fig. 3. Contour plots of the wavelet transform coefficients for colored dissolved organic matter (A), chloro-
phyll a (B), phycocyanin (C), and temperature (D). On the right of each contour plot, the wavelet power spectrum
of the variable is shown; with white bars correspond to significant periods under the white noise model, red bars
under the red noise model and pink bars under the pink noise model. The white-shaded area on the contour
plots corresponds to the cone of influence or regions of the map where coefficients should not be interpreted due
to margin effects.
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the response variables, as values of R2
a were equal

to 47.10% and 32.50% for the variables CDOM
and chlorophyll a, respectively. For CDOM, a
small, albeit significant linear trend was detected
and incorporated into models. Variation parti-
tioning showed that the variation explained by
the environmental model was, for both variables,
almost completely shared with the temporal
model and the linear trend (Fig. 4). The pure
environmental models had a negligible fraction
of individual explained variation, as the purely
environmental fractions were <1.00% for both
cases. In contrast to this, despite sharing a large
fraction of variation with the environmental
models, the purely temporal fraction of variation
was still substantial.

Direct multiscale ordination analysis
As stated earlier, both RDA models were sig-

nificant and explained at least half of the varia-
tion in the response variables. However, upon
carrying out DMSO analysis and computing the
variance profiles of both the canonical axes and

the residual axes (Fig. 5), several issues with all
three models were raised. Firstly, these vari-
ograms did not resemble any of the classical vari-
ogram models (e.g., Gaussian, exponential, or
spherical models), since they did not show a
clear sill at which the semi-variance function
levels off. Instead, the semi-variance function
decreases after reaching a peak value; this pat-
tern was especially pronounced for CDOM, but
less so for chlorophyll a. Such a periodic pattern
is most likely due to the inherent yearly periodic-
ity of the system.
The second result was that, even after correc-

tion for multiple tests, there was still some tem-
poral autocorrelation in the residuals; this
implies that the regression residuals of the linear
model are not independent, thus violating one of
the assumptions of the linear model. Likewise, it
also indicates that the temporal autocorrelation
in the considered variables was not enough to
fully explain the temporal autocorrelation in
these variables. In addition, it should be noted
that the distance classes with significant

Table 2. Results of the data-driven procedure specification of the spatial weighing matrix for the dbMEM analy-
sis of the water quality data.

Connection Weighing function Number of variables AICc

Colored dissolved organic matter
NULL NA 1 �9945.71
MST BIN 1141 �33,007.84

F1 1163 �33,262.85
F2 (a = 10) 1122 �33,288.65
F3 (b = 1) 1226 �30,177.62

DNN BIN 42 �16,582.38
F1 56 �22,894.45

F2 (a = 2) 27 �17,470.62
F3 (b = 1)† 826 �35,196.85

PCNM PCNM 69 �16,922.91
Chlorophyll a
NULL NA 1 �14,157.2
MST BIN 822 �31,648.4

F1† 802 �31,963.86
F2 (a = 2) 816 �31,928.9
F3 (b = 1) 922 �31,051.79

DNN BIN 37 �16,888.81
F1 58 �24,396.61

F2 (a = 2) 37 �16,628.78
F3 (b = 1) 623 �31,372.66

PCNM PCNM 68 �17,129.88

Notes: For models with variable parameter values (exponent a or b), only the best model values are reported. AICc, Akaike’s
information criterion, corrected for sample sizes; BIN, binary model; MST, minimum-spanning tree; PCNM, principal coordi-
nates of neighboring matrices.

† The best spatial weighing matrix for each variable.
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temporal autocorrelation were not limited to the
smallest classes. Finally, the residual variograms
were usually not flat and tended to show a cyclic
pattern like those of the response variable.

The third result was that the variogram of the
explained variation often stepped out of the
intervals derived from the variogram of total
variance itself, which implies that the estimated
coefficients were not consistent across scales.
Consequently, computed linear models cannot be
interpreted as global coefficients and that scale
needs to be considered in these models.

Multiscale codependence analysis
Multiscale codependence analysis was signifi-

cant and detected a different number of

significant codependent structures for the envi-
ronmental variables. Aside from the first few
MEM variables, which model broadscale struc-
tures, codependence coefficients were somewhat
low. To a certain extent, this was expected, as the
coefficient is a product of two Pearson product–
moment coefficients, which are bounded
between [�1,1]. Likewise, other studies using
MCA have also reported somewhat small values
of codependence coefficients (Gu�enard et al.
2010). Nonetheless, it could also be that relation-
ships between variables at scales other than the
yearly scale are low.
The two newly described testing procedures

(i.e., power-law noise simulation and block boot-
strapping) found that the same broadscale

Fig. 4. Venn diagrams of hierarchical partitioning of colored dissolved organic matter (A) and chlorophyll a
(B) between the environmental model, the temporal model based on Moran's eigenvector maps variables, and a
linear trend, if necessary. When present, priority was given to the linear trend over the temporal model. Reported
values are adjusted R2 values.
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codependence structures were significant. How-
ever, we found that both methods produced
P-values that, even though they were still signifi-
cant, were much higher than those by complete
randomization. If the sequential �Sid�ak correction
were to be applied, then no significant codepen-
dence would be left. We also note that the results
very similar to the complete randomization pro-
cedure were obtained under block bootstrapping
when block size is equal to 1 and under power-
law simulation when an exponent value of a ¼ 0
was considered (i.e., a white noise model). This
was to be expected, as generating data under
these models with these configurations creates
variables without any temporal autocorrelation,

which is close to the permutation procedure. The
effect of increasing the exponent value of the
power-law model was to make this distribution
flatter, thus reducing the P-value associated with
the test.
For CDOM, the strongest significant temporal

structures were those that modeled large-scale,
mostly yearly processes, such as MEM2 and
MEM3 (Fig. 6). These MEM variables, respec-
tively, accounted for 34.22% and 27.36% of the
variation in CDOM. Had the most important
structure been attributed to the variable with the
highest s -statistic, then it would have gone to
phycocyanin. However, the uncertainty coeffi-
cient (see Eqs. 8 and 9) revealed that chlorophyll

Fig. 5. Variance profiles for the residual (boxes) and the sum of the residual and explained (crosses) variances
of the multiple regression models for colored dissolved organic matter (A) and chlorophyll a (B). Straight lines
correspond to the point-wise envelope of the variogram of the total variance of the response variable. Significant
temporal autocorrelations are indicated by black boxes.
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a was only 0.06 standardized units away from
the value of phycocyanin. Therefore, it is not
unreasonable to believe that these patterns are
the result of either phycocyanin or chlorophyll a
patterns. In addition, several MEMs that mod-
eled smaller-scale structures were also noted as
being significant. For chlorophyll a, selected
MEMs were of higher order, but still represented
large-scale patterns. The three most important
structures were those associated with MEM9,
MEM6, and MEM20, which respectfully
accounted for 44.03%, 10.00%, and 8.31% of the

variation. Once again, MEM20 would have been
attributed to CDOM patterns, but temperature
was only 0.06 standardized units away from the
value.
When relating CDOM and chlorophyll a to the

set of MEMs related to each explanatory vari-
ables (Figs. 7, 8), differences between the
explanatory variables could be seen. For chloro-
phyll a, CDOM was mostly responsible for smal-
ler-scale patterns as the fitted values using the
MEMs associated with CDOM had a coarser
appearance and remained close to the mean,

Fig. 6. Line plots showing the coefficients of determination of each Moran's eigenvector maps (MEM) with
respect to the logarithm of the order of the MEM for a multiscale codependence analysis of colored dissolved
organic matter (CDOM, A) and chlorophyll a (B). The values of nonsignificant codependence coefficients have
been set to 0. Colored dots represent the variable to which the significant structure was attributed to and are
brown for CDOM, green for chlorophyll a, blue for phycocyanin, and red for temperature.
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accounting for a small portion of the variation.
On the other hand, temperature was mostly
responsible for large-scale patterns as the fitted
values using the MEMs associated with tempera-
ture had a smoother appearance and often
strayed far from the mean, accounting for a lar-
ger portion of the variation. Such a difference
between the fitted values for different sets of
MEMs related to explanatory variables was not
as pronounced for CDOM. Indeed, aside from
the fact that MEMs related to chlorophyll a did
not explain a lot of the variation; MEMs associ-
ated with phycocyanin and temperature showed
similar patterns.

DISCUSSION

With the advent of high-performance sensors
that autonomously record data, the capacity to
accumulate environmental data has increased
tremendously. In response, analytical tools that
can provide direct and efficient appreciations of
the dataset are invaluable. Wavelet analysis
detected strong yearly patterns for almost vari-
ables except chlorophyll a. This was expected as
these reflect seasonal changes in the environmen-
tal variables. However, in addition to this yearly
pattern, another important periodic component
with a period of about a quarter of a year was
detected for chlorophyll a, starting around 2015.
Such an observation seemingly contradicts classi-
cal limnological theory for temperate systems,
which predicts that the main periodic component
should be yearly. However, it is possible that this
periodic component represents more of a local-
ized event that occurred only within this time-
frame, giving the appearance of a periodic signal,
rather than hidden periodicity. Inspection of water
samples taken from that point confirmed that this
period was characterized by an important winter
population of diatoms. Additionally, daily pat-
terns were detected for chlorophyll a, even though
these were more local and not globally significant.

The capacity to detect localized events implies
that, as with its uses in epidemiological (Grenfell
et al. 2001, Cazelles et al. 2013) and biological
(James et al. 2010) cases, wavelet analysis could
be used to identify ecological outbreaks of water
quality variables such as chlorophyll a. Schmidt
and Sutton (2018) examined the potential of
wavelet coherence to show that certain

limnological variables could be used to explain
the dominant source of variability in observa-
tions. However, the mother wavelet should be
chosen with care, as it represents the type of pat-
tern over which the data are confronted and
could have been changed (Bradshaw and Spies
1992, Mi et al. 2005). When testing for significant
overall periods in the wavelet spectrum, null
models which have some autocorrelation in their
data (i.e., red noise, pink noise, and estimated
noise) were found to be better suited at identify-
ing peaks in the average wavelet power than
those with completely independent data (i.e.,
white noise). A similar result was noted by James
et al. (2010), who found that auto-correlated null
models showed better distinction between signif-
icant patches of spruce budworm outbreaks
across space. As time-series are inherently tem-
porally auto-correlated objects, null models that
do not disregard this aspect should be more
appropriate as they incorporate the temporal
non-independence of the data.
Chlorophyll a and CDOM fluorescence in the

St. Lawrence River system had practically the
entirety of the variation explained by the environ-
mental model shared with the temporal model.
Analogously to the interpretation of the shared
fraction in variation in spatial analyses (Borcard
et al. 1992, Borcard and Legendre 1994), this
shared fraction can be referred to as temporally
structured environment. Therefore, the conclusion
is not that environment variation has no effect,
but rather that this effect is extremely temporally
structured. Moran’s eigenvector maps variables
can be used as covariables in linear models so as
to give statistical tests with a correct type I error
(Peres-Neto and Legendre 2010), but such an
approach would be meaningless in this case, since
after accounting for the temporal model, the envi-
ronmental model accounts for virtually nothing.
Therefore, understanding the patterns of this tem-
porally structured environment should prove to
be much more interesting than simply partialling
out the effect of time.
Despite having appreciable R2

a values, environ-
mental models that ignored the temporal aspects
of the data (i.e., that did not include MEMs or
the linear trend) did not respect several of the
assumptions of linear models. Regression coeffi-
cients were not consistent across scales, implying
that a global model would be inadequate.
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Fig. 7. Line plot of centered and detrended colored dissolved organic matter values on a loge scale (A) and fit-
ted values according with respect to structuring variables associated with chlorophyll a (B), phycocyanin (C) and
water temperature (D).
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Fig. 8. Line plot of centered and detrended chlorophyll a values on a square-root scale (A) and fitted values
according with respect to structuring variables associated with colored dissolved organic matter (B), phyco-
cyanin (C) and water temperature (D).
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Therefore, the use of scale-dependent methods
becomes a necessity. The presence of temporal
autocorrelation in the residuals at various dis-
tance classes could indicate that our models are
missing a temporally auto-correlated variable,
which would be necessary to produce temporally
independent residuals. Possible candidates for
this missing variable include weather variables
or nutrient availability. We note that another
alternative might be to use a generalized least
squares model (Aitken 1934, Amemiya 1985) that
allows for the specification of how the data are
correlated. In this case, it might be worthwhile to
experiment with autoregressive or autoregres-
sive and moving average correlation structures
and seek to integrate those into a generalized
least squares framework. As with testing of frac-
tions, MEM variables can be used as covariables
to control for the spatial structure in the
response-explanatory variable relationship in
DMSO (Legendre and Legendre 2012, Borcard
et al. 2016). However, this approach was not
adopted since, as stated earlier, the resulting
model would explain almost nothing.

It appears that chlorophyll a values in the St.
Lawrence are the result of variables acting at sev-
eral scales. Large-scale patterns, such as those
over months and years, appear to be related to
changes in water temperature. Smaller-scale pat-
terns, such as those over weeks and days, appear
to be related to CDOM concentrations. However,
some events, such as the diatom bloom in late fall
2015, require further inspection, as at that point in
time, water temperature was quite low (around
3°C) and it is likely that this bloom was driven by
other factors such as nutrient availability.

It is possible that the response variables show
significant codependence with more than one
variable at a single scale. Such a situation was
envisioned by the authors of MCA who posit
retaining the largest absolute statistic in order to
preserve strictly exclusive sets of structuring
variables (Gu�enard et al. 2010, Gu�enard and
Legendre 2017a). We agree with this procedure,
but suggest that some form of uncertainty crite-
rion, such as the newly described uncertainty
coefficient should be considered in order to
assess whether the selected variable is truly the
only driving factor at said scale and can avoid
potentially misleading conclusions. For example,
the coefficient of determination for CDOM for

dbMEM3, which describes seasonal patterns,
indicates that this is driven by patterns of phyco-
cyanin, which showed the highest codependence
coefficient. However, this could be the result of a
positive association with either phycocyanin or
chlorophyll a, as both variables are significantly
associated with CDOM at this scale and show
codependence coefficient values separated by
~0.06 standardized units. Consequently, if MCA
is used as a tool to determine the identity of the
driving variables at various scales, then the pos-
sibility of several variables affecting the response
variable should be considered and assessed.
Changing the null testing method gave results

that were somewhat different that the complete
randomization method. Both alternative meth-
ods gave results showing that the first codepen-
dence was significant, just as the complete
randomization method. However, the P-values
reported were much higher, meaning that, had
the sequential �Sid�ak correction been applied,
then no significant codependence would be left.
The block bootstrap method showed intermedi-
ate results, due to the influence of block size. We
find that increasing block size leads to an
increase in the P-value. However, block size
should be determined by the question at hand, as
bootstrapping blocks below the scale of the struc-
ture would be too similar to bootstrapping indi-
vidual values; and bootstrapping blocks above
the scale of the structure would recreate too
many of the same structures. Such methods
require further study of their assumptions and
sensitivity but might prove to be helpful in cases
where complete randomization of data repre-
sents a poor null model, creating datasets which
are too poorly structured to provide a reasonable
background for time-series testing.
Despite the systematic and consistent record-

ing potential of electronic sensors, some data
gaps are unavoidable. Some of these gaps can be
planned, such as sensor maintenance, whereas
others, such as power outages or dam repairs,
cannot. To some extent, these gaps need to be
addressed for certain numerical methods to func-
tion adequately. In our case, missing values in
the wavelet analysis and for the block bootstrap
null model were obtained using linear interpola-
tion. Other approaches may be considered; for
example, Serdar (2011) filled gaps in water level
sensor data with a neural network algorithm.
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One of the strong points for methods that use
MEMs is that they do not require equally spaced
data which show no gaps. Consequently, MEMs
provide a toolbox to test various types of struc-
tures in the data. However, the null model gener-
ating methods discussed earlier require some
consideration of gaps for them to generate data
suitable to their use.

We identify two future directions that should
guide future work and research. First, much of
the methods considered here are mostly used to
predict rather than to forecast time-series (Legen-
dre and Legendre 2012). This means that we gain
an understanding of what caused previous val-
ues, but not necessarily adequate tools to predict
future values. As much of the aim of environ-
mental monitoring is to provide recommenda-
tions for future plans, this capacity should be
essential. Second, the manner of testing for sig-
nificance at various scales was approached in this
paper by considering different null hypotheses.
However, as with any procedure, it is only as
valid as its assumptions. Therefore, more
research should be directed toward how to make
a test’s assumptions as clear as possible so that
they can be modified in order to represent that
which the ecologist desires to verify.

A lot of effort has been put into the effects of
climate change and its effect on the management
of resources in the St. Lawrence River system
(Mortsch et al. 2000, Millerd 2005). However,
water quality in the St. Lawrence River system
appears to be the result of various variables oper-
ating at several scales. The main source of varia-
tion appears to be seasonal variations associated
with variations in water temperature and CDOM
values. At the same time, patterns of a smaller
scale are also significant and can appreciable in
terms of magnitude, implying that there is a need
to consider them as well. Therefore, forecast
models and action plans should be changed to
incorporate this scale dependence. In order to
confront forecasts with actual data, long-term
data collection programs in combination with
multiscale analysis methods will be crucial to
evaluate ecosystem changes.
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