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INTRODUCTION
Background

In response to erosion and flooding problems encountered along the
south shore of long Island, the New York State Department of State,
pivision of Coastal Resources and Waterfront Revitalization and the
Long Island Regional Planning Board are developing a shoreline
development management plan that is cognizant of coastal erosion
conditions for this area. The preparation of the plan is to
include an examination and analysis of the environmental, economic,
1and use and regulatory factors affecting development and erosion
control decisions along the coast for the purpose of formulating a
comprehensive, coordinated response to chronic flooding and ercsion
conditions on the south shore.

In conjunction with these efforts a series of three workshops was
held to bring together experts in coastal processes and engineering
to examine erosion problems encountered along Long Island’s south
shore and possible means available for dealing with these problems
from a technical perspective. More specifically, the individual
workshops have been designed to focus on 1) identifying the generic
physical data and information needed to develop a sound coastal
erosion management program, 2) identifying the technical data
presently available for the south shore, and 3) if possible, using
these data to discriminate among the various available erosion
control strategies for regional reaches of the coast in terms of
their potential effectiveness and impacts.

The intent of these workshops is to provide technical information
that will assist government officials and other interested parties
in identifying, assessing, and selecting appropriate erosion
management strategies for a particular area. The findings of the
second workshop in this series are presented in this report.

gummary of First Workshop
The proceedings of the first meeting were summarized in a separate
report (Tanski and Bokuniewicz, 1990). Based on the findings of the
first workshop the information needed to develop a management plan
for Long Island’s ocean shoreline was grouped into eight
categories:

1. long-term and short-term trends in shoreline migration

2. magnitude of shoreline changes caused by storms

3. volumetric shoreline changes including longshore transport
rates

4. dune morphology and dynamics

5. effects of existing shore protective structures
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6. wave climate
7. relative sea level rise
8. storm surges.

The confidence with which this type of information can be applied
in the development of management programs depends not only on the
quality of the specific data available but also upon the current
gtate of our understanding of coastal processes in general and the
processes active on the south shore in particular. As a result,
there is a ninth category of information needed for management -
knowledge of the coastal or shoreline processes. This includes the
processes assocliated with inlets, longshore sediment transport,
cross-shore sediment transport, dune formation, overwash and bluff
erosion. Our understanding of all of these processes and their
interaction must continue to evolve even as management decisions
are being made based on the best data available at the time.

Workshop Objectives
The specific objectives of this meeting were to:

1. Identify the basic coastal processes data that are
presently available for the south shore of Long Island
based on the information needs identified in the first
workshop in this series.

2. Assess the quality and coverage of the available data in
terms of their utility for developing management strategies.

3. Identify critical gaps in the coastal processes data
base.

Procedura

To achieve these objectives, four coastal scientists who have
wvorked extensively on south shore erosion problems were invited to
participate in this workshop (Appendix 1). Prior to the meating,
the participants were provided with the proceedings of the first
workshop which defined the generic technical information required
to identify, develop and evaluate erosion management strategies for
coastal areas. At the meeting, the data requirements identified in
the first workshop were reviewed. The participants then discussed
the availability, coverage and quality of the coastal information
in the categories listed above that has been collected along the
south shore of Long Island.

The results of these deliberations are presented in this report.



GEOGRAPHIC BETTING

The area considered is a 106-mile stretch of the south shore of
long Island extending from East Rockaway Inlet to Montauk Point
(Figure 1). This area can be divided into two physiographic
provinces: a barrier island section extending from East Rockaway
Inlet to Southampton (73 miles) and a headlands section between
Southampton and Montauk Point (Taney, 1961). The barrier system is
composed of four islands (from west to east: Long Beach, Jones
Beach Island, Fire Island and Westhampton Beach) bounded by five
stabilized inlets (from west to east: East Rockaway Inlet, Jones
Inlet, Fire Island Inlet, Moriches Inlet, and Shinnecock Inlet).
Extensive marshland is found behind the two westernmost barrier
islands while the eastern two islands are separated from the
mainland by wide shallow bays (Wolff, 1982). The 33-mile headland
section is comprised primarily of beaches cut into glacial outwash
deposits and, in certain locations, shallow ponds which are
remnants of glacial drainage channels. The beaches along the

easternmost 10 miles of this section fringe bluffs of glacial till
40 to 60 feet high.

An analysis of the land use patterns along the south shore was
provided in the hurricane mitigation plan developed for each
section by the Long Island Regional Planning Board (Long Island
Regional Planning Board, 1984). In general, Long Beach is an urban
area with high density development along much of jts coast. Jones
Beach Island is publicly owned and used primarily for recreational
purposes. Over 10 million people a year visit its beaches. A
4-lane parkway built on a platform of about 40 million cubic yards
of fill dredged from the bay in the 1920’8 extends along the length
of the Island. There are also four small residential communities
on lands leased from the local governments. Three of these
communities are located on the landward side of the parkway. Fire
Island is largely undeveloped but there are 17 low-to-moderate
density seasonal residential communities along its length. Vehicle
traffic is restricted (there are no paved roads) and access is
primarily by ferry. Approximately 26 miles or 80 percent of the
total length of the island is part of the Fire Island National
Seashore and a portion of the 26 miles is managed by the National
pParks Service as a wilderness area. Westhampton Beach is
characterized by low density residential development, open space,
and recreational beaches. Fifteen groins built as part of federal
project between 1964 and 1370 are situated about 3 miles east of
Moriches Inlet. The headland coast contains a mixture of low
density residential development, recreation areas and open space.

SOUTH BHORE COASBTAL DATA BASE

General Nature of Available Data

Most of the data and information on coastal processes available for
the south shore of Long Island are largely the result of studies
done by or for the U.S. Army Corps of Engineers as part of their
hurricane protection, beach erosion, and navigation projects.
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Several regional studies of the geomorphology and sediments of the
south shore were performed by the coastal Engineering Research
Center (CERC) (Taney, 1961; Taney, 196la: williams, 1976). For the
purposes of their projects, the Corps has divided the study area
into three separate reaches: Fire Island Inlet to Montauk Point;
Fire Island Inlet to Jones Inlet; and Jones Inlet to East Rockaway
Inlet.

For the Fire Island Inlet to Montauk Point reach, over 20 reports
and general design memoranda have been developed for several
federal projects in the area including: the Fire Island Inlet to
Montauk Point beach erosion control and hurricane protection
project, inlet navigation stabilization projects at Shinnecock,
Moriches and Fire Island Inlets, and groin construction at
Westhampton and East Hampton. Quantitative data for the littoral
zone is skewed to those areas where projects have been undertaken.
Although surveys and maps are available for the entire shoreline,
90 percent of the available information covers only about 20
percent of the shoreline. The detailed studies that have been done
have been restricted to specific areas and limited time periods.
As a result, few data sets are available that can be used to
document the behavior of the beach at uniformly distributed
locations over long time periods. Two recent studies have been
done using the data sets that do meet this criteria. These studies
were a regional sediment budget (Research Planning Institute, Inc.,
1985) and a geomorphic analysis of shoreline conditions which
included a comparison of historic shoreline positions (Leatherman
and Allen, 1985). Both studies were done as part of a Corps’
reformulation of the erosion control and hurricane protection plan
authorized in 1960,

Survey data from 1933, 1940, 1955, a partial set in 1967, and 1979
were analyzed to construct the sediment budget (Research Planning
Institute, Inc., 1985). According to the investigators involved
in this project the most important data in terms of developing the
budget were those obtained from long ranges surveyed by the Corps
in 1955 at bench marks spaced approximately every mile along the
shore and another set of ranges surveyed by Strock, Inc. in 1979
(Research Planning Institute, Inc., 1985). Although the Strock
ranges did not necessarily correspond with the earlier Corps
ranges, these two data sets were cited by the Research Planning

Institute, Inc. as the most useful because they: 1) provided the most

uniformly distributed coverage of the study area (Fire Island Inlet
to Montauk Point) over a relatively long time interval:; 2)
represented survey data with good vertical control extending beyond
the surf zone; and 3) covered a time period when most of the
existing major coastal construction projects (inlet stabilization,
groins, etc.) were in place and, thus, represent current
conditions. Comparisons among a total of 135 profiles from the two
yeais were used in developing the sediment budget for the 1955-1979
pericd.

The geomorphic analysis focused on identifying and quantifying the
rates and modes of barrier island behavior over the past 500 years



(Leatherman and Allen, 1985). In addition to reviewing the
ljterature (including the sediment budget done by the Research
Planning Institute, Inc., 1985) Leatherman and Allen examined 139
vibracores, 80 miles of seismic reflection records, ground
penetrating radar records, historic maps and aerial photographs
from 1834 to 1979 (for the development of metric maps of the past
shoreline positions), as well as the results of an eolian sediment
transport study.

Data on coastal processes west of Fire Island are less
comprehensive, not as well documented, and, in many cases, not as
recent as that available for the eastern section of the study area.
As mentioned previously, most of the avallable studies relate to
the federal dredging project at Pire Island Inlet. A physical
model of this inlet was developed by the Waterways Experiment
Station (Bobb and Boland, 1969) and the 1971 general design
memorandum for the inlet was recently reviewed (Galvin, 1985).
Under the authorized Corps’ project, material dredged from the
inlet is supposed to be placed on a feeder beach on Jones Beach
Island (between Fire Island Inlet and Jones Inlet) as part of a
combined navigation and shore protection progranm. The erosion
protection plan and data on shore conditions for Jones Beach Island
are contained primarily in a 1964 beach erosion study (U.S. Army
Corps of Engineers, 1965). Researchers from the Corps’ Coastal
Engineering Research Center (CERC) have also analyzed data from
monthly subaerial beach profiles taken between 1962 and 1974
{Everts, 1973; Morton et al., 1986). Quantitative survey data in
this area have also been collected by the Corps in conjunction with
a recent inlet dredging and sand bypassing project but an analysis
of these data has not been published by the Corps at this time.

The only data available from the Corps for the shoreline between
Jones Inlet and East Rockaway Inlet was in the form of draft
hurricane and beach erosion protection study dated 1966 (U.S. Army
Corps of Engineers, 1966). The Corps is presently updating and
analyzing the available data for this area. The results of these
efforts, hovever, were not available at the time of this meeting.

In addition to the Corps-related work there have been a number of
studies and reports done on the south shore by other groups and
individuals. For the most part, these studies focus on specific
parts of the coast during different time periods. Many of the
published studies and available reports are cited in the
bibliography and references section of this report, but this
1listing is not necessarily complete.

Trends in Shoreline Migration

studies of the long-term trends in shoreline position have been
conducted by Taney (1961) for most of the south shore and by
Leatherman and Allen (1985) for the area east of Fire Island Inlet.
Taney compared the position of high-water shorelines for various
time periods using several sets of Coast and Geodetic Survey charts
and U.S. Army Corps of Engineers maps and ranges dating from 1834



to 1956. Leatherman and Allen developed maps of the shoreline at
mean high tide based on Coast and Geodetic Survey charts and aerial
photographs and compared the shoreline position for four time
periods (1834/1838, 1873/1892, 1933, and 1979) to calculate annual
recession/accretion rates. Because of the technique used in the
latter study, these are considered the most precise values
available on shoreline changes (Leatherman, 1983). The data from
Leatherman and Allen (1985) are plotted in Figures 2 and 3; data
collected by Taney (1961) are alsoc plotted for those areas that
were not investigated by Leatherman and Allen.

Additional information on long-term shoreline changes for some
subsections is also available. Zarillo and Zarillo (1589) have -
compiled information on the 20-mile stretch of shoreline between
Southampton and East Hampton. Rich (1975) studied the same area
using 10 sets of aerial photographs taken between 1938 and 1972 to
measure changes in the vegetation line, the dune base line and the

high water line. A graphic summary of the results of Rich’s study
is provided in Figure 4.

A number of problems in interpreting the data available on the

long-term shoreline position changes were noted. These problems
include:

1. The old maps and charts used for comparison often
represent surveys done over many months and it is not
always clear whether or not the shoreline mapped
represents the shoreline at mean sea level, the high-
water shoreline or some other indicator. As a result,
unless the shoreline indicator surveyed is clearly
defined, as it is on National Ocean Survey topographic
sheets (NOS T-Sheets), maps must be interpreted as
qualitative indicators of shoreline position.

2. If aerial photographs are used the position of the
color change on the beach representing the demarcation
between saturated and unsaturated sand is often
interpreted as the high water shoreline. Since the water
level is constantly changing, this point is likely to be
between mean sea level and high water. However, because
of storm surges and other non-tidal water level
variations, the wet-sand boundary may actually be below
mean sea level or above high water under certain
conditions.

3. Because of the differences in the exact indicator used
for the shoreline position, comparisons between some maps
and aerial photographs may be less reliable than
comparisons between two maps or between two aerial
photographs.

4. There are unavoidable measurement errors due to the
accuracy of maps, their scale, distortion and mismatching
overlays of two sequential shorelines. If the process is
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done carefully, however, these errors can be small.

5. There are large unpredictable interannual variations in
the shoreline position due to short-term changes in the
beach form caused by storma. 1In some cases, this short-
term variability may result in changes in the location of
the waterline that are of the same magnitude as the long-
term change in shoreline position. Because of these short-
term changes it is very difficult to establish reliable
estimates of the long-term trends in shoreline migrations
with the available data sets unless the trends are very
large (see Appendix 2).

Data on the short-term fluctuations of shoreline positions have
been developed for four locations where subaerial beach profiles
had been surveyed at least several times per year for periods up to
10 vyears. The studies were done at Jones Beach Island (Everts,
1973), Ocean Beach (Fire Island) (Tanski, 1983), Fire Island Pines
(Bokuniewicz, 1987) and East Hampton (Bokuniewicz et al., 1980).

An examination of the available profile data indicated that the
maximum annual horizontal variations in the shoreline position

for individual profiles ranged from 148 feet to 270 feet (Table 1).

The magnitude of the uncertainty introduced into the calculation of
long~-term shoreline trends by these short-term variations at the
four locations is illustrated in Figures 5 and 6. Both the maximum
and average range of the interannual (short-term) variations in
shoreline position were determined from the measured profiles and
were divided by the number of years in the different time periods
for which long-term rates shown in Figures 2 and 3 have been
calculated. These periods were 22 and 78 years for the shoreline
west of Fire Island Inlet (Taney, 1961) and 46 and 106 years for
the shoreline east of Fire Island Inlet (Leatherman and Allen,
1985). The resulting values in feet per year are plotted for the
different sites in Figures 5 and 6. As can be seen, for the
shorter time intervals (22 and 46 years), the average short-term
variations in the beach can account for uncertainties of between +2
and +7 feet per year in the calculated recession (or accretion)
rate depending upon the location (Figure 5). The uncertainty
decreases as the time period increases (Figure 6). With the data
presently available, long-ternm rates of shoreline change can only
be accurately established if they exceed the magnitude of the
uncertainty caused by these short-term fluctuations. Appendix 2
presents a discussion of how these interannual variations were

calculated and the effect they have in interpreting shoreline
change,

Several recommendations were made during the workshop for improving

the quality of information on long-term shoreline recession and
accretion rates:

1. Only aerial photographs and/or NOS T-sheets should be
used in the analysis. The photographs should be properly

11



Table 1. Short-Term (Interannual}, Horizontal Variations in
shoreline Position Based on Profile Data.

Maximum Average Years

Location Range, Ft. Range, Ft. of Data
Jones Beach 270 169 10
Ocean Beach 188 98 1l
Fire Island Pines 147 89 3
East Hampton 280 124 9

12
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rectified and superimposed on a well-surveyed, large
scale (1 inch = 200 feet) maps. Such maps are available
from the Suffolk County Department of Public Works at
Yaphank.

2. The period from 1940 (after the 1938 hurricane) to the
present is of most interest, since this period includes
most of the major structural alterations that have been
implemented along the shore and is, thus, most
representative of present conditions.

3. The comparisons could be redone using the position of a
particular contour related to some part of the dune
instead of the high water shoreline. The dune should
respond instantly to severe erosion but should only
change slowly during the interval between major storms,
reducing the uncertainties associated with the use of the
highly variable high water mark as an indicator of
shoreline position.

4, The uncertainties in long-term shoreline trends
associated with the use of the high water mark as an
indicator of shoreline position should not be calculated
from the extremes in the observed interannual ranges of
the position of the water line. Rather, a probability
distribution of widths around the average position should
be calculated and used as a measure of the uncertainty of
the long-term shoreline erosion and accretion rates.

shoreline Changes Due to Storms

Although the occurrence of storms on Long Island is well documented
(Table 2), quantitative data on the response of the shoreline to
storm events are extremely limited due to the lack of measurements
during periods of storm activity. Morton and others (1986)
analyzed beach volume changes on Jones Beach Island based on
comparisons of sequential, subaerial profiles for eight major
storms occurring between 1968 and 1971. Surveys were done between
1 and 3 days after the passage of the storms. Although the
shoreline response was variable along this stretch of the coast,
they found that winter storms consistently reduced the volume of
sand on the subaerial beaches with losses of sand ranging from 4 to
21 cubic yards per foot of beach. These volume losses were nearly
completely recovered within one month of the storm activity.

DeWall {1979) reported similar results for Westhampton Beach
indicating that the rapid storm recovery of the subaerial beach is
typical of the south shore beaches. This phenomena was primarily
attributed to natural onshore transport of sediment and the
relatively low frequency of occurrence of storm waves in the area
(Morton et al., 1986).

No quantitative information on storm-induced changes of the beach
below mean sea level is available due to the lack of sequential
surveys extending offshore.
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Table 2. Major storms of record. From: leatherman, 1989.
Date Type Date Type
1635 Aug. 15 Hurricane 1953 Nov. 6-7 Extratropical
1638 Aug. 3 Hurricane 1954 Aug. 31 Hurricane
1656 Dec. 28 Unknown 1954 Sept. 11 Hurricane
1667 Aug. 29 Unknown 1954 Oct. 15 Hurricane
1690-91 Winter Unknown 1955 Aug. 13 Hurricane
1720 May 22 Unknown 1955 Oct. 14-16 Extratropical
1723 July 29 Unknown 1958 Mar.20-21 Extratropical
1776 Aug. ? Unknown 1961 Sept. 22 Hurricane
1788 Aug. 19 Hurricane 1962 Mar. 6-8 Extratropical
1811 Dec. 23-24  Unknown 1963 Nov. 7 Extratropical
1815 Sept. 22 Hurricane 1963 Nov. 29-30 Extratropical
1821 Sept. 2 Hurricane 1966 Jan. 23 Extratropical
1851 Aug. 26 Tropical 1967 Jan. 26-28 Extratropical
1869 Sept. 8 Hurricane 1968 Nov. 10-13 Extratropical
1873 Aug. 13 Northeaster 1969 Mar. 2 Extratropical
1879 Aug. 18 Hurricane 1969 Dec. 12 Extratropical
1880 Feb. 3 Unknown 1969 Dec. 25 Extratropical
1888 Mar. 11-14 Extratropical 1970 Nov. 17 Extratropical
1893 Aug. 23-24 Hurricane 1970 Dec. 12 Extratropical
1894 oct. 10 Hurricane 1972 Feb. 19 Extratropical
1897 Oct. 24-25 Extratropical 1972 Dec. 15 Extratropical
1903 Sept. 16-17 Hurricane 1973 Mar. 21 Extratropical
1904 Sept. 14-15 Hurricane 1973 April 5 Extratropical
1931 Mar. 4 Extratropical 1980 . Jan. 22-23 Extratropical
1935 Nov. 17 Hurricane 1984  Mar. 29 Extratropical
1938 Sept. 21 Hurricane
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A number of recommendations for improving information on shoreline
changes during storms were suggested. These include:

1. The shift in the shoreline position after the 1962 storms
could be calculated. There was a set of aerial
photographs taken after this storm and this shoreline was
reported by Leatherman and Allen (1985). The comparison
should be made between the 1962 storm shoreline and the
next closest (in time) shorelines before and after 1962.
A particular contour related to the dune could be
used instead of the waterline as an indicator of
shoreline position change. It was suggested that the
six-foot contour might be used as an indicator of the
base of the dune in many areas.

2. Available beach surveys should be searched for sets
before and after storms and a detailed analysis of these
data performed.

3. Models of coastal flooding including dynamic changes in
the beach and the dune could be developed. The present
v-zone maps prepared by FEMA were not considered to be
adequate since they only consider relative elevations and
do not take into account beach changes due to erosion or
deposition.

volumetric Shoreline Changes/Sediment Budgets

The most complete long-term information on volumetric shoreline
changes is that developed in a sediment budget study by the
Research Planning Institute, Inc., (1985) for the area east of Fire
Island Inlet. The data on the net longshore transport and the
total net annual volume changes occurring along the shore from
Montauk Point to Fire Island Inlet are plotted in Figure 7. The
net annual volume changes for the portions of the gshoreline above
mean high water, in the intertidal zone and between mean low water
(MLW) and -24 feet MLW for the period 1955-1979 are shown in Figure
8. The results show, for example, that the large increase in the
longshore drift at Fire Island Inlet appears to be due to the
reworking of the old Fire Island Inlet ebb tidal delta to the east
of the inlet. Unfortunately, similar information for comparative
time periods has not been accumulated for the shoreline west of
Fire Island Inlet.

Although the sediment budget study represents the best available
data on long-term volumetric changes, four limitations associated
with this data set were noted:

1. Reliable comparative long ranges and bathymetry were
available only for limited areas and time periods. One
nundred and thirty-five profiles were available for a
g85-mile stretch of coast and in many cases sequential
profiles (in time) were not done at exactly the sane
location requiring the juxtaposition of data from
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adjacent ranges for comparisons.

2. some of the available ranges only extended to depths of 24
feet MLW, Although other ranges extended further seaward,
the lack of comparative data precluded an analysis of
changes below this depth for the entire study area.

3. The relatively stable geomorphic history of the south
shore shoreline over the past 50 years increases the
margin of error for comparative profile analysis compared
to areas that are experiencing rapid erosion or
accretion.

4. The study only covered the area east of Fire Island
Inlet.

To improve the long-term information at least two steps should be
taken:

1. The 1955 Corps profile lines and the 1979 Strock profile
lines should be reoccupied and the volume comparisons
updated to include the 1979-1989 peried.

2. More closely spaced ranges are needed, especially near
inlets. Additional profile l1ines should be established
and surveyed. A recommended spacing of 2000 feet along
the shoreline was suggested.

Information on seasonal and short-term volumetric changes is
1imited to those areas where regular beach monitoring programs have
been undertaken (Everts, 1973; Morton et al., 1986; Tanski, 1983;
Bokuniewicz, 1987; Bokuniewicz et al., 1980). Beach profiles
extending to mean sea level or low water have pbeen measured at the
four locations described in the previous section on shoreline
trends. The New York state Office of Parks and Recreation and the
pDepartment of Transportation have also been surveying the position
of the driftline along 2 15,000-foot section of Jones Beach Island
since 1987 in response to an emergency situation where erosion
threatened the parkway (Buttner, 1989). This particular section of
coast is within the area analyzed by Everts (1973) and Morton et
al. (1986). These studies only involved peasurements of the
gubaerial beach; they do not provide jnformation on changes
occurring below mean sea level where substantial sediment movement
takes place.

The short-term volumetric changes associated with the subaerial
peach are fairly constant along the shoreline (Bokuniewicz and
Schubel, 1987). Profiles taken at approximately monthly intervals
do not reveal a strong seasonal cycle but appear to be influenced
by storm events. As an example, Figure 8 jllustrates the subaerial
beach volume changes measured at a station in East Hampton over a
multi-year period. Average changes between successive surveys in
the areas where profiles were measured were 13 cubic yards per foot
of shoreline. Although the maximum change caused by a storm at any
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particular station may be 5 to 10 times the average change, the
average volumetric changes due to storms were not exceptionally
larger than 13 cubic yards per foot of shoreline (Bokuniewicz and
Schubel, 1987).

Dune Morphology and Dynamicsa

No systematic studies of dune morphology have been done for the
area even though the data needed to develop this information might
be obtained from available topographic maps. Changes in dune
morphology could also be obtained by digitizing contours on large-
scale topographic maps surveyed in 1955 and 1979 but the workshop
participants thought that the changes were likely to be very small
and extremely uncertain. »

A study of the eclian sediment budget for shores east of Fire
Island Inlet was done by investigators from Rutgers University for
the National Park Service (McCluskey et al., 1983). They
calculated the volume of sediment transported by eclian processes
for the entire area to be approximately 250,000 cubic yards per
year with over 90 percent of this transport occurring seaward of
the dune crest and in an easterly direction. Based on sand trap
data, they also estimated the amount of sand transported across the
crest of the dune from the seaward direction to be 0.08 cubic
yards per foot of dune per year. This volume comprised less than 1
percent of the bulk of the dune (the investigators defined a
nprototype” dune as having a volume of 37 cubilc yards per foot).
Using the findings of the eolian sediment budget study, McCluskey
et al. (1983) formulated a generalized model of the potential
effects of different conditions of development which is shown in
Figure 10. -

Rffects of Btructures

The distribution of groins and jetties in the study area are
plotted in Figure 11. There are 69 major groins and jetties in the
study area. The highest concentration of groins is on Long Beach
which has 48. The most persistent questions relating to the
impacts of structures concern the amount of sand trapped by the
structures, the amount of sand currently bypassing and the degree
of downdrift erosion caused by the structures. Although groins
are far more prevalent in the urbanized Long Beach section to the
west, the only detailed study of the effects of groins in the study
area was that done by DewWall (1979), who used subaerial beach
profiles measured between 1964 and 1973 to examine the impact of
the Westhampton groin field (15 groins constructed between 1965 and
1970). His findings in terms of the net volume changes of the
adjacent beach are summarized in Figure 12 which clearly shows
substantial accretion within and updrift of the groin field and
substantial losses downdrift. The effects of the groin field are
also evident in the data on long-term changes in shoreline
position (Figures 2 and 3) and the net volume changes (Figure 8).

The sediment budget data indicate the coastal compartment
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containing the groins gained an average of 190,000 cubic yards per
year (8 cubic yards/foot of shoreline/year) between 1955 and 1979
with a considerable portion of this increase (about 78,000 cubic
yards per year) occurring below MLW. Downdrift of these structures
there was an average loss of 4 cubic yards/foot of shoreline/year
during the same period. The amount of sand bypassing these
structures is not known. Estimates could probably be derived from
a more detailed analysis of the data used in the sediment budget
and from the Corps’ records and surveys. However, such calculations
may not reflect the current conditions since the efficiency of sand
trapping and the rate of bypassing would be expected to change as
sand accumulates updrift of the structures, thus altering sediment
transport patterns and rates in the vicinity of the groins.

Jetties have been constructed at each of the five major inlets in
the study area in an effort to stabilize them for navigational
purposes. Pairs of jetties were constructed between 1952 and 1954
at Shinnecock and Moriches inlets. Fire Island, Jones and East
Rockaway inlets each have single jetties on the east (updrift) side
of the respective inlets. These jetties were constructed in 1939-
1944 at Fire Island; 1953-1959 at Jones Inlet; and 1933-1934 at
East Rockaway Inlet (Panuzio, 1968). Evidence of the impacts of
these inlet stabilization efforts on the downdrift shoreline in the
form of increased erosion in the areas immediately west of each of
the inlets can also be seen in Figures 2, 7, and 8. The effects of
the inlets are discussed in more detail in the section "Shoreline
Processes”.

Few data on the impacts of shore parallel structures (e.g.
revetments or bulkheads) are available for the study area. 1In
fact, the location and extent of these structures along the
shoreline has not been documented. However, the effects of
structures on the overall sediment budget is probably small in the
reach east of Jones Inlet because they have been estimated to cover
an aggregate of only 3 to 5 miles or less than 5 percent of the
entire shoreline.

In the East Hampton area revetments are usually almost entirely
buried with sand and do not influence the short-term beach changes.
They are exposed during severe storms and have been effective in
preventing inland erosion (Bokuniewicz et al., 1980). Here and in
other places on the eastern part of the coast, old bulkheads have
occasionally been exposed during severe storms. These structures
were apparently built several or more decades agoe (presumably in
response to local erosion), subsequently buried with sand and
forgotten until uncovered by recent storm events.

As part of the sediment budget study, the Research Planning
Institute, Inc. (1985) examined federal, state and local records in
an effort to identify dredge and fill projects undertaken along the
shoreline east of Fire Island Inlet between 1955 and 1979.

Although 12 million cubic yards of £ill were added to the beach
over the 24-year period, much of the material was dredged from the
back barrier bays in conjunction with construction projects. 1In
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many casas, the primary objective of these activities was probabkly
dredged material disposal rather than beach renocurishment and the
dredged fill was not alwaya compatible with the native beach sand
in tearma of grain size. As a result, these fill activities are not
necessarily comparable or agquivalant to engineered heach
rencurishment projects. Precise information on the boundaries of
the dispcsal areas was often lacking. Figure 13 indicates the
volume added to the different compartments by these projects in
tcrmator cubic yards per foot of a beach per year for the period
1955 to 1979.

In conjunction with a combined inlet navigation and baach erosion
control project, approximately 7 million cubic yards of sand
dredged from Fire Island Inlet was placed on faeader beaches located
approximately 1 mile west of the inlet on Jones Beach in 8 separate
projects between 19859 and 1977 (Galvin, 1985). However, dredging
activities were suspended until the potential eftects of this
activity on ercsion on the north side of the inlet could be
studied, During this hiatus the downdrift beaches experienced

severe arosion. Two amergency dredging projects in 1985 and 1987

resulted in a total of about 1.2 million cubic yards of sand baing
placed offshore Jones Beach in waters 16 feet deap. 1In 1988/89
approximately 1 million cubic yards of sand was dredged from the
vicinity of the inlet and placed on downdrift beaches. Ths data
for this area plottaed in FPigurs 13 represent approximate volumes
and locations of the fill projects. ,

The Corps’ records (U.S. Army Corps of Engineers, 1966) show that
approximately 550,000 cubic yards of material dredged from the bay
was placed on Long Beach between 1959 and 1962. However, racent
information on the history of £ill projects along this segment has
not been compiled or summarized. These data may be contained in a
Corps’ report being prepared for this area that has not yet been

released.

Detailed monitoring information on dredge and f£ill cperations in
the study arsa is not available. Although permit and dredging
project records may contain information on various projects that
have been undertaken, a substantial effort would be required to
determine the quality and completeness of the data. It is often
not known for example, if a particular permitted projact was ever
actually completed. Additional effort would be naeded to
synthesite, if possible, a meaningful analysis of the psrformance
of the various f£ill projects.

Wave Climate

Direct measuremants of the wave climate are extremely aparse. In-
situ vave gauge data are either short in duration, unreported or
non-axistent (Morton et al.,, 1986). One non-directional gauge
operated intermittently between 1950 and 1954 at several locations
in the area of Jones Bsach indicated waves higher than 6 to 10 feet
occurred leass than 1 percent of the time and a maxinum wave height
of 13.4 feet (Panuzio, 1968). Another non-directional wave gauge
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located in 30 feet of water offshore of Southampton operated
between 1975 and 1976 as part of a CERC program. A data report was
never issued however.

The only directional, long-term nearshore wave measurements
available for the study area are visual observations collected at
several points along the shore including; Jones Beach, Fire Island,
Westhampton, and Southampton. Ssome of these observations were made
as part of CERC’S Littoral Environmental Observation (LEO) Program
in the 1970's. Unfortunately, a summary of these data has not been
done for the entire study area. A summary of surf observations
taken at a station near Jones Inlet is given in Table 3 (Morton et
al., 1986). The probability distribution curves for breaker height
derived from LEO measurements for stations in Southampton and Fire
1sland are given in Figure 14. Monthly mean heights and periods
for Southampton and Westhampton observations are shown in Figure
15. Since these are visual observations, the data reported are
subject to large uncertainties (Morton et al., 1986) .

Twenty-year hindcasts of the shallow water wave climate done as
part of CERC’s Wave Information Study are also available for 10
mile segments along the entire south shore (Jensen, 1983). The
average and largest significant wave heights from this data set are
plotted in Figure 16. it should be noted that the hindcast data do
not take into account waves associated with tropical storms. 1In
addition, values of the net longshore transport computed from wave
energy flux based on the hindcast data gave results inconpatible
with rates based on estimates of the accretion of sand updrift of
inlet jetties (Figure 17). These inconsistencies indicate that the
hindcasts may be adequate for some design needs or 2-dimensional
shore models, but their use in other applications may be limited.
The only way to improve this information would be to install at
least 2 arrays of directional wave sensors in the study area; one
in the east, near Montauk pPoint, and one in the west, perhaps near
Fire Island Inlet.

The Corps of Engineers uses deepwater wave statistics from a number
of sources for project design. These data include: Summary of
Synoptic Meteorological Observations (SSMO) offshore visual wave
data, swell height and direction observations from a station 260
miles south east of Fire island Inlet, and 2 sets of deepvater
hindcast data calculated for a station offshore of the entrance of
New York Harbor for the periods 1947 to 1949 (Nuemann and James,
1957) and 1948 to 1950 (Saville, 1954). Graphic summaries of these
data are provided in Appendix 3. Based on these data, a design
wave for hurricane conditions with a deep water wave height of 17
feet (20 foot breaking wave) and period of 13 seconds which has an
exceedance probability of 1 percent (SSMO data) was selected for
Westhampton Beach (U.S. Army corps of Engineers, 1980).

Sea Level Rise
Long-term tlde gauge records in both New York Harbor and New

London, Connecticut, indicate an average rise in sea level on the
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Table 3. Summary of Sur
Vvisual Observa

to December 1957. From: Morton et al.,

f Height and Wave Direction from
tions at Jones Beach, October 1954
1986.

Honth surt Heighe tn Feot (1], wave pirectign (1) 7
January 37 51 12 0 6 48 4 42
February 29 66 5 0 1 32 10 57
March 39 48 12 1 2 49 6 43
April 38 53 8 1 6 44 6 44
May 43 53 4 0 3 34 26 37
June 54 45 1 0 0 42 18 40
July 44 54 2 0 0 30 22 48
August 55 40 5. 0 0 44 16 40
September 37 59 4 o 0 S6 11 33
Octoberx 43 45 10 2 1 46 28 25
November 35 53 11 1 s 37 26 32
pecember a2 48 9 1 2 33 25 40
Total Period 4] 51 7 1 2 41 17 40

(a) All observed surf heights were less than 10 feet.

(b} No waves were observed approaching from any of the

other directions which are not listed.
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order of 0,01 feet per year with a good deal of temporal
variability (Figure 18). Since these gauges are on bedrock, it is
likely that the relative rise on Long Island may be somewhat higher
due to compaction and subsidence. However, the tide gauge at
Montauk has not been operating long enough to resolve long~-term
trends in sea level. As a result, there have been no accurate
measurements of relative sea level rise made in the study area.

According to McCormick (1873), sea level rise does not appear to
play a significant role in controlling erosion on the south shore.
As part of the sediment budget study (Research Planning Institute,
Inc., 1985), the Hands (1981) model was applied to estimate the
possible sediment loss resulting from profile readjustment in
response to a sea level rise of 0.01 feet per year. The results of
this analysis in terms of annualized volume losses per foot of
shoreline for the portion of the profile above and below MLW are
plotted in Figure 19. The changes related to the rise in sea level
are much smaller than the total measured net volume changes
reported in the study. In addition, there is evidence that

of fshore sources contribute sand to the nearshore sediment budget
(McCormick and Toscano, 1980; Research Planning Institute, Inc.,
1985; Niedoroda et al., 1985; and Willlams and Meisburger, 1987)
indicating that the Bruun Rule (upon which the Hands model is
based) may not be applicable in this area (Wolff, 1982). If this
{s the case, even the relatively small volume losses caused by sea
level rise shown in Figure 19 may be overestimates. In the absence
of profile readjustment, Morton et al. (1986) estimated that in the
Jones Beach area the present observed rate of sea level rise over a
period of ten years would result in a landward displacement of the
waterline of approximately one foot or 0.1 feet per year. A rise
in sea level will increase the vulnerability of the shoreline to
storm erosion, but the available data indicate that the percentage
of the total erosion occurring along the south shore attributable
to sea level rise is of secondary importance in comparison to other
processes operating in the area, especially when considered in the
context of the planning time frame of 30 to 50 years.

A number of studies indicate that global warming caused by the
ngreenhouse effect” could result in an accelerated rate of sea
level rise in the future, although the timing and magnitude of
future sea level rise are uncertain (National Research Council,
1987 and Schnieder, 1989). A study of the engineering implications
of sea level rise done by a committee of the National Research
council (NRC, 1987) examined three possible scenarios of sea level
rise to the year 2100; rises of 0.5 m, 1.0 m and 1.5 m. According
to most projections, the increase in the rate of sea level rise, if
{t occurs, will not occur in a linear fashion. Rather, the change
will start slowly and increase more rapidly in the distant future.
Based on the projections used by the KRC panel, accelerated sea
level rise could increase present water level elevations along the
south shore 4 to 5 cm (0.13 to 0.17 feet) by the year 2000 compared
to an increase of 2.5 cm (0.08 feet) if the present rate of sea
level rise continues. By the year 2025 the increase due to
atmospheric warming could be 13 to 24 cn (0.42 to 0.75 feet) while

35



1 \ . 1 1
A AR IR R e
M am e

[ ]
N
|
|
i
|
I

YEARLY MEAN SEA LEVEL 1892-1981

08 -

o4 -

o3 -

9t
MEAN SEA LEVEL IN FEET

A

o
N

-2 ansnRAAfRtAREAARR Rt RatEasaatsant i i ALLALIRAMIRARLLLLL) ST ARIARIANGRAZRESERRRRRRALA
1892 1900 191C 1920 1920 1940 1850 1960 1970 1882

YEAR

FIGURE 18. Sea level rise in the New York area between 1892 and 1982 based
on water-level records at Fort Hamilton, Brooklyn, New York.
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the expected increase if present conditions persist would be about
8 cm (0.25 feet). For 2050, an accelerated sea level rise could
result in water elevations 41 to 50 cm (1.3 to 1.8 feet) higher
than present compared toc an increase of 26 cm (0.5 feet) under
current conditions. While the rate of sea level rise may increase
more rapidly beyond 2050, the projections, already subject to a
great deal of uncertainty, become less reliable as they are
extended further into the future. Because of these uncertainties,
a rigorous assessument of the management implications of future sea
level rise is difficult.

To account for potential increases in the rate of sea level rise
over the next 15 to 40 years, it was suggested during the workshop
that the present rate could be doubled or tripled for erosion
management purposes. This rate is similar to the estimates used by
others (NRC, 1987) and is slightly higher than the rates calculated
by Hoffman et al. (1986) which were a revision of the Environmental
Protection Agency’s mid-range estimates (Hoffman et al., 1983) based
on updated information. However, even this increase would probably
have a relatively small impact on the observed rate of erosion
compared to the magnitude of shoreline changes caused by storms and
disruptions in the nearshore sediment transport systems resulting
from man’s activities. From a planning perspective, the
submergence of low lying areas around the south shore bays due to
possible increases in sea level rise is probably a more critical
problem than the potential for increased ocean front erosion.

gtorm Burges and Tides

Mean tide ranges and still water storm surge elevations for the 10,
50, and 100 year storms are plotted in Figure 20. For planning
purposes, models which incorporate wave run up, beach dynamics and
dune dynanmics, where appropriate, in determining storm surge
penetration may be of more value than the still-water storm-surge
elevations. While these types of models are available, they have
not been applied to the south shore.

shorslina Processes

Discussion and analysis of the informational needs related to all
the individual topics identified in the general category of
wShoreline Processes" was beyond the scope of this workshop.
However, the major issues and pertinent information assoclated with
these topical areas were discussed. The major points and
suggestions concerning future investigations related to the
individual topics are briefly summarized in the following sections.

Longshors Sediment : Estimates of the net rate of
longshore sediment transport are reported in the sediment budget
study (Research Planning Institute, Inc., 1985) and were discussed
previously. Reliable estimates of the gross longshore transport

' and relative volumes moving east and west are also extremely

important. Local deviations can be large in areas around inlets or
the direction of net drift can reverse due to changes in wave
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conditions. Although attempts to calculate these values based on
available wave statistics have been made, the results have not
agreed with the estimates obtained by using measurements of sand
impoundment at structures and/or inlet migrations. Czerniak (1976)
used offshore wave statistics (Nuewann and James, 1357) to
calculate longshore transport rates at Moriches Inlet. Based on
these calculations (Table 4), he estimated a net transport rate of
approximately 72,000 cubic yards per year to the west. This is
considerably less than the annual net transport rate of 300,000
cubic yards per year to the west reported in the sediment budget.
As mentioned previously, net transport rates calculated from the
twenty-year CERC hindcast data resulted in transport directions
opposite of those evidenced by impoundment at structures (Figure
17). Reliable, systematic estimates of the gross and

relative transport rates and directions along the shore would be
extremely useful in developing and evaluating proposed coastal
projects. However, development of such estimates would require
better wave information than is presently available.

Cross-shore Tramsport: Although previous studies (Vincent et al.,
1983; Niedoroda et al., 1985; and Williams and Meisburger, 1987)
jndicate sediment exchange between the shore face and inner
continental shelf does occur, the data available on this process
are not sufficient to quantify the transport.

cross-shore sediment grain size data are plotted in Figure 21. A
single offshore bar located about 500-1500 feet offshore with a
crest 10 to 15 feet below mean sea level is present along much of
the coast between Fire Island Inlet and Montauk Point (Leatherman
and Allen, 1985). Except for two short-term, site-specific studies
at East Hampton -(Shipp, 1980) and Fire Island (Allen and Psuty,
1987), the scale and variation in bar morphology and the effects of
bar geometry on the shoreline have not been documented.

Pre- and post-storm profiles along the coast may be especially
useful in defining the behavior of the offshore bar and sediment
transport patterns. After Hurricane Gloria in 1985, for example,
the bar, usually a stable feature, was absent temporarily along
much of the shoreline but the length of time this condition
persisted is uncertain (G. zarille, personal communication).

Processes: The five inlets in the study area exert a
dominant influence on the coastal changes occurring along the
shore. The largest long-term shoreline recession/accretion rates
(Figures 2 and 3) and some of the greatest volume changes (Figures
7 and B) are associated with inlets. With the exception of the
Westhampton groin field, the most severe erosion problems occur
immediately downdrift (west) of the five inlets and are the result
of the interruption of sand transport patterns and inadequate sand
management practices at the inlets. As an example, the effect of
the opening and subsequent stabilization of Shinnecock Inlet on the
downdrift shoreline is shown in Figure 22.

Table 5 developed by Panuzio (1968) provides historical information
related to the south shore inlets. (It should be noted that some
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Table 4. Longshore Sediment Transport Statistics at Moriches Inlet
calculated by Czerniak (1976) Based on Hindcast Wave Statistics
from Nuemann and James (19595). (Units are cubic yards)

Westward Eastward Ratle Net Groes
Perlod Traneport Transport {E/W) Traneport Transport
January 94,506 58,170 616 -36,.336 152,676
February -34,062 43,476 1.276 9,414 77,537
March -26,299 108,620 4,130 82,320 134,919
- April .28,985 14,981 2.587 45.996 103,966
May -24, 653 3,292 1.269 6,634 55,950
June -47,552 22,248 . 468 -25, 305 69,800
July 11,856 18, 544 1.564 6,688 30, 400
August =10, 142 13,922 1.346 3.580 24,26%
September =25, 840 28,19) 1,09} 2.353 54,031
Qctobar -40, 846 13,514 . 131 -27.30 54,360
Novembaer -97,.564 11,924 122 -85, 640 109, 488
Decamber 90,316 1% ,502 . 393 -54,814 128,817
Annual -532, 827 460, 186 . D64 «-72, 441 993,212
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of the data (i.e., net longshore transport rates) have been updated
since 1968, see Figure 7).

The amount of sand bypassing occurring at the inlets is of critical
importance in determining the effects of these features on
shoreline erosion. W¥While estimates of the bypassing taking place
at the various inlets have been made (Table 6), the accuracy of the
resultant figures is questionable due to the paucity of data
available for making these estimates. Although the sediment
budget study provides the best available information on volumetric
changes and has been used as a basis for some of the estimates
given in Table 6, the resolution of the data used in this study was

deemed inadequate for accurately quantifying sediment transport and
bypassing at inlets. -

Inlet dredging projects in the study area are most often done in
response to navigation needs rather than for erosion control
purposes. There is no program of regular artificial sand bypassing
and dredging is usually sporadic. At shinnecock and Moriches
Inlets most of the dredging work has focused on maintaining
channels through the flood tidal deltas bayward of the inlet
channels and much of the resultant dredged material has been placed
on the emergent portion of the flood delta (Kassner and Black,
1982). The only dredging in the channel or seaward of the channel
at Shinnecock Inlet since it was stabilized was the emergency
removal of 162,000 cubic yards of material in 1984 (U.S. Army Corps
of Engineers, 1987) and 83,000 cubic yards in 1988. This sand was
placed offshore at a depth of 10 feet below MLW downdrift of the
inlet. No dredging in the channel or seaward of the channel has
been done at Moriches Inlet since it was stabilized in the 1950’s.
As noted in the Coast Guard’s "Notice to Mariners" and on the
National Ocean Survey’s nautical charts, the inlet has been legally
closed to navigation for years due to severe shoaling conditions.

The recent dredging history of Fire Island Inlet was previously
described in the section on the effects of structures. Some 8
million cubic yards of material have been dredged from the inlet
and placed on the downdrift beaches in 6 separate projects
undertaken between 1954 and 1989. Recent quantitative summaries of
the federal dredging projects at Jones and East Rockaway Inlets
apparently are not available at this time although this information
could probably be obtained from an analysis of Corps’ dredging
records and surveys.

The inlets serve as large sinks of sand in the nearshore systen.
The ebb and flood tidal deltas associated with Moriches have
trapped scme 1 to 2 million cubic yards of sand with most of this
material stored in the ebb tidal delta (Research Planning
Institute, Inc., 1985). Similar large ebb-tidal deltas are also
associated with the other inlets in the area (Leatherman and Allen,
1985) .

The impacts and processes associated with the inlets are variable
with time. Because of their complexity and importance in the
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Table 6. Estimates of Natural Sand Bypassing at Inlets

Net Longshore Amount_Bypassing

Inlet Transport, (yd?/yr) vd /vr

E. Rockaway 400,000(a) 150,000 (b)
Jones 550,000 (a) 100,000 (b)
Fire Island 600,000 (c) ? (d)
Moriches 304,500(c) 250,000(c)
Shinnecock 300,000(e) 247,000(e)
Sources:

a: (Panuzio, 1968)

b: (U.S. Army Corps of Engineers, 1966) .
c: (Research Planning Institute, Inc., 1985)
d: (Galvin, 1985)

e: (U.S. Army Corps of Engineers, 1987)
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coastal sediment system, detajled sand budgets should be developed
for each of the inlets (e.g. Massa, 1981). The amount of sand
naturally bypassing the inlets and the volume of the flood and ebb
deltas and their rates of change should be documented. The data
available from dredging records, surveys and studies should be
reviewed and, to the extent possible, the results should be
reported in terms that facilitate comparisons among the inlets.
This information should be used to construct models of local inlet
behavior. For management purposes, "inlet impact zones" should be
established where information gained from models of local
situations could be incorporated into planning considerations.

The development of management policies regarding the potential
formation of new inlets is also needed. The locations of
historical inlets along the eastern section as determined by
Leatherman and Allen (1985) are shown in Figure 23. According to
their geomorphic analysis, sediment transport associated with inlet
creation is an important process in the migration of the eastern
section of the barrier system (between Southampton and a point
about 10 miles west of Moriches Inlet). The inlet formation and
sediment transport processes that drive barrier migration in this
section operate intermittently at 50 to 75-year intervals. The
central and western sections of Fire Island have been axially
stable for hundreds of years (Leatherman and Allen, 1985). From a
management standpoint, the relative stability of the barrier

island over long time periods indicates that concerns regarding
disruption of barrier island migration by inlet processes may be of
secondary importance compared to the other more immediate impacts
associated with the formation of inlets. New inlets could cause
substantial, rapid changes in the coastal environment and have more
jmmediate management implications especially in terms of the 30 to
50 year planning horizon considered here.

Site-specific information on the potential impacts of new inlets
along the south shore is largely limited to one modeling study
(Pritchard and Dilorenzo, 1985) which was done in response to a
breach that occurred in 1980 just west of Moriches Inlet. This
breach reached a width of 2900 feet before it was artificially
closed one year after it opened (Schmeltz et al., 1982). The
results of the modeling suggested that a large breach would
{ncrease normal tidal ranges in Moriches Bay by about 60 percent
and short-period (hurricane) storm-water level elevations by 35 to
40 percent. The modeling study also indicated that the tidal
exchange between Moriches Bay and the ocean is not great enough to
maintain two inlets indefinitely. The shoaling problems presently
occurring at Moriches and Shinnecock Inlet tend to support this
finding. Although reliable estimates of the potential lifetimes
and possible closure rates of new inlets are not avajilable at
present, the formation of new inlets could adversely affect
shoaling rates at the existing inlets due to changes in the tidal
flow.

No known studies have focused on the possible effects of major new
inlets on shoreline erosion in the study area. However, based on

47



8y

i
|
b
|
|
|
g |
B
|
I
|
I
|
|
L

Moniouk
Paint

Southgmpton

Werthomoton

I Shinnecock Inlet

Firy Iyord I Moriches Injet

Egsi Rockaway

Int
ntet Jones Beoch
l Lorg Beach
I Fire Isignd 1nied 10 rriles

| Jones iniet

1983 -1

1933 —

| | |

w5 - | ! ] _
i ! : i \
v7as o 7 ? ? N

1735

k } HISTORICAL INLET LOCATIONS

YEAR
@ a——

-
.

FIGURE 23. Locations of historical inlets based on data from Leatherman
and Allen {(1985) for the area east of Fire Island Inlet and
from Taney (1961) for the area west of Fire Island.

F



Y

]

)

3

3

1

]

Al

Y

3

)
ol SR W5 S5 S5 BN A S o aY an Ay Sy AD s o A An o

the information available for the existing inlets (i.e., Figure 22,
for example), it is reasonable to infer that these features could
have significant impacts in terms of accelerated downdrift erosion.
puring the 11 months the Moriches breach was open some 750,000
cubic yards of material from the longshore sediment system was
trapped on its flood tidal delta (Research Planning Institute,
Inc., 1985)}. Obviously the loss of such large volumes of waterial
from the nearshore sediment budget could result in significant
downdrift shoreline changes.

There is a body of knowledge concerning the stability of inlets in
general, the number that could be supported under different
conditions, the processes associated with these features, and
possible rates of closure based on hydrodynamics and historical
trends, but this information must be reviewed and specifically
applied to the conditions on Long Island in order to develop
effective strategies for the management of breaches and new inlets.
As an initial step, a search for locations where new inlets may
form could be undertaken. Important parameters may include: 1)
gites of historical inlets, 2) present dune elevation if dunes
exist, 3) barrier island width, and 4) bay and shoreface
bathymetry. Once potential locations are identified, more
intensive studies could be applied to determine possible site-
specific impacts of inlet formation.

overwash Rrocesses: Based on the sediment budget study (Research
Planning Institute, Inc., 1985), only about 35,000 cubic yards of
sediment per year are moved by overwash processes in the area east
of Fire Island Inlet indicating this mechanism is a minor agent in
terms of overall sediment transport. Annual overwash volumes in
terms of cubic yards per foot of shoreline for different sections
of the coast are shown in Figure 24 for the period between 1955 and
1979. The importance of overwash in maintaining a barrier system
depends on the migration rate of the barrier island. Since long
Island’s barriers are relatively stable, overwash processes are
probably not that important especially in terms of management time
scales of 30 to 50 years. A management plan might consider dune
building and overwash mitigation strategies to help maintain the
longshore transport system and enhance shore stability with minimum
adverse impacts.

pluff Erosion: The volume of material contributed to the longshore
sediment system by bluff erosion in the eastern headlands sections
is relatively low. Based on historic shoreline recession rates,
bluff elevations and subtidal volume changes; the sediment budget
study indicated that 133,000 cubic yards sediment per year is
derived from erosion along the bluffed section of the coast
(Research Planning Institute, Inc., 1985). However, not all of
this material is moved to the west in the longshore transport
system. Because of the varied composition of the bluffs only a
portion of the paterjal released by the erosion of these features
is of a suitable grain size to be transported by longshore littoral
processes. The larger fraction of the material would remain in
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place while the finer sediments would be dispersed offshore. 1In
addition, the differences in the composition of the bluff along the
coast also result in an irregular shoreline further conplicating
estimates of longshore transport. The geomorphic configuration of
the headland and orientation of pocket beaches in this area
{ndicate that longshore transport of material to the west is
probably significantly less than the volume derived from erosion
processes (Research Planning Institute, Inc., 1985). Although more
information on bluff composition and bluff recession rates (rather
than shoreline recession rates) are needed to provide accurate
estimates, the participants felt based on the available data that
the actual total contribution of the bluffed section of coast to
the longshore transport system is on the order of 20,000 to 40,000
cubic yards per year, or less than 10 percent of the transport
estimated for Fire Island Inlet.

CRITICAL MANAGEMENT DATA NEEDS

To help managers prioritize data collection, the group was also
asked to identify and briefly discuss the physical process and
coastal information needs that are most critical to developing
effective erosion management programs for Long Island’s south
shore. The following is a brief summary of the suggestions made
for improving the information required for management and planning
purposes:

1. The 1955 and 1979 profile lines should be reoccupied and
surveyed and additional lines, especially in the vicinity of
structures and inlets, should be established. Offshore the
surveys should extend to the depth of closure (deeper than 30
feet). This information could be used to update and refine
the sediment budget and in conjunction with a review of
available Corps’ data and surveys develop better inlet sediment
budgets. It would also provide the bathymetry needed for
shoreline response models.

2. Measurements of the interannual variability of shoreline
positions should be used to calculate the confidence limits on
long-term recession or accretion rates obtained from
comparisons of the high waterline on maps and aerial
photographs.

3. The presence or absence of dunes and elevation of the dune
crest and base should be mapped.

4. Average recession rates over periods of decades determined by
changes in dune position (based on contour movements) should
be calculated and the results compared with shoreline
migration rates based on changes in the position of the high
waterline.

5. Directional wave gauge arrays should be established at two
locations along the shore.
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6. An erosion "vulnerability index" could be devised for the
south shore. This index should include:

a. dune crest and base elevations, where dunes exist,

b. beach volumes seaward of a particular elevation
contour or, where appropriate, the toe of the
structure to be protected,

c. elevations of the storm surges with recurrence intervals
appropriate planning needs,

d. landward limits of storm wave penetration,

e. long-term recession rates.

Dr. Zarillo developed a preliminary vulnerability index based con
two parameters to illustrate this approach. He chose dune height
and the volume of sand on the beach per unit length of shore to
assign relative values of vulnerability along the shoreline. The
empirical index (I) was defined as:

00 - ),
I = 10,000

where: V = Volume of sand on the beach in cubic meters
H = Height of dune in meters

in order to obtain values between 1 and 10. This index was
calculated for over 70 locations on the south shore where profile
data was available. The value ranged from about 4 (low
vulnerability) to over 9 (high vulnerability) as shown in Figure
25. While such an approach needs much more work in terms of
identifying the most important variables and refining the index,
the development of such an index may provide a promising mechanism
for reducing the wide array of diverse data into a form that could
be more readily used for management and planning.
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FIGURE 25. Preliminary vulnerability index for south shore based on dune

height (A) and beach volume (B).
for seventy discrete points along the shore is shown in C.

The actual value of the index
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APPENDIX 2

Interannual Beach Changes

The range of beach changes in terms of horizontal variations in the
mean sea-level intercept were calculated at several locations along
the shoreline where profiling studies have been done. At each
location profiles were available at between 5 and 20 stations
surveyed at least several times per year for up to 11 years. At
each location, the range of changes in cbserved shoreline position
over every year were determined for each station and both the
average value of all the stations for the year and the maximum
value observed at any station for that year were found. Both the
average and the maximum for each year were then averaged over the
number of years of available record to obtain the mean interannual
range, R, and the maximum interannual range.

To calculate the average long-term recession rate in an interval of
duration, P, the annual average shoreline position at the beginning
of the period, S1, is subtracted from the average annual shoreline

position at the end of the period, S§2, and the difference divided by
P:

Recession rate = (S2- S1)/P

The observed shoreline on any particular map or aerial photograph
is unlikely to be at the annual average position but rather to
depart from it by some distance, E, so,

§1 = S1 + El
and

§2 = 52 + E2
On the average the maximum departure would be + R/2 and the maximum

difference between the unmeasured, mean shoreline over the period
would be:

[(s2 + R/2) - (51 ~ R/2)}/P
or [(S2 - S1) + R}/P.

Likewise, the minimum difference would be when each shoreline is at
the opposite end of the interannual range:
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[(S2 - R/2) - (S1 + R/2)]/P
or {(82 - s1) - R}/P.

So the maximum uncertainty in the recession rate calculated from
observed shorelines (rather than from the annual mean shoreline) is

+ R/P

For the available data sets this corresponds to a rate of about +2
feet/year to +3.5 feet/year for the period between 1933 and 1979.
The uncertainty is larger if we use the average maximum range
rather than the average range.

1t must be noted, however, that the chances of the error being as
large as iR/P is very small; it may be smaller perhaps 99 percent
of the time. As a result, a better estimate of the uncertainty
would be to recalculate E values at some reasonable level of
probability of occurrence, perhaps the E that is realized more than
80 percent of the time,
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APPENDIX 3

offshore Wave Data
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