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1. Derivation of the WTG divergence equation 
 
We begin with the vertically-integrated budget equations temperature ( ): 
 

,       

(S1) 
 

where the operator denotes vertical averaging  between pressure levels

and ;  and is the acceleration due to gravity.  and  are the vertical 

velocity and the horizontal velocity vector respectively. is the dry static energy and is the 

heat capacity of dry air.  is a constant that converts  and  from units of mm/hr to 
W/m2. is the horizontal gradient operator. We now assume that has the vertical structure 

, such that : 
 

,    (S2) 
 
here,  captures all the horizontal and temporal variations in , while  only 
captures the vertical structure—as in Neelin and Zeng, 2000 (NZ00). We now also invoke the 
WTG constraint to neglect temperature advection in (S1) to obtain: 
 

,    (S3) 

 

where we defined a ‘gross dry stability’: .   as defined here, with 

850 hPa, yields a value of  kJm-2, but it can be rescaled by dividing through by  

to yield in units of K (  3.6 K). Note that the use of the QTCM vertical structures (NZ00) to 

scale  results in an O(0.1) magnitude for the vertical structure associated low-level 

convergence  (Fig. S1).   
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Randomness is introduced through the temperature tendency term on the left hand side of (S3)
, which is split into a deterministic, domain-averaged component  (indicated by the overbar) 
and a stochastic component: 

 

 .  (S4) 

 
 
We now use (S4) in (S3) to obtain: 
 

 ,  (S5) 

 

which is (2) with the factor  contained within the first term of (S5).  

 
We now take the domain average of (S5), and impose the condition of domain-mean non-
divergence, such that . has spatial variations, due to its dependence on the amount 

of condensate; but for these variations are small. We can therefore assume . We 

also choose our  such that . The result of the domain-mean operation yields: 
 

 .  (S6) 

 
Subtracting (S6) from (S5) leads to (3). 
 
The water vapor ( ) and the condensate ( ) are also similarly truncated with structure 

functions  and  respectively. All the vertical structure functions are indicated in 

Fig. S1. Note that  is the layer average over the  depth  of the troposphere, even 
though the condensate is only assumed to occupy the upper troposphere (p< 400 hPa) with a 
vertically invariant structure function .  Similar to , we have definitions for  and 

: 

   (S7) 

  . (S8) 
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2. Construction and analysis of the rotational wind field 
 

Stochastic fields with spatial correlations are used to generate the rotational wind field. 
A white stochastic vorticity field is generated in a similar manner to stochastic flux convergence 
using  and  in lieu of  and   respecitlvey, in (6) of the main article. The only 
difference is that this white stochastic vorticity field has a characteristic time scale ( ) of 12 
hours, reflecting the persistent nature of the vorticity field. This white-in-space vorticity is 
transformed into a red-in-space vorticity field by manipulating its spectral coefficients; we first 
take the Fourier transform of the white vorticity field and then multiply its Fourier components 

by .  Here and  are the horizontal wavenumbers and  is the decorrelation 

wavenumber. A subsequent inverse Fourier transform ensures that the resulting vorticity field 
is red in space. For the red vorticity field, is chosen to be 1, such that the decorrelation scale 
of the vorticity field is  wavenumber 1. The red vorticity field is inverted using the Poisson 
solver with Dirichlet boundary conditions to ensure that is zero across the northern and 
southern boundaries. 

 
Fig. S3 shows a snapshot of the rotational wind field at the same time as the sample 

precipitation field shown in Fig. 1. The large-scale nature of the rotational wind is apparent with 
the vortex in the north-eastern corner of the domain. Fig. S4 shows the probability distribution 
functions of the rotational wind velocities averaged over the lower troposphere, from 100 days 
of the model run. The u and v velocities have rms velocity values close to 5 m/s.  
 
 
3. Sensitivity to the condensate amount 
 
In our standard case, cloud condensate (i.e., condensate in a size range small enough to rain 
out slowly and be significantly transported, governed by equation (5)) production only begins at 
saturation, which produces very little condensate rain. We can increase the fraction of 
condensate rain, relative to strong convective rain by changing the threshold value of 
condensate production ( ). We display our sensitivity results in Figs. S5 and S6 for three 
cases: no condensate, = 67.5 mm and =65 mm. Note that there is greater condensate 
production in the latter than in the former. Fig. S5 shows the snapshot on the same day as 
Fig.1. Also note that our noise is generated from the same pseudorandom generator, so the 
stochastic fields are identical in all the runs. Fig. S5 shows quantitative changes to the 
precipitation intensity when the condensate production rates are increased, but the qualitative 
nature of the precipitation clustering is unchanged. Fig. S6 shows the cluster pdfs for the same 
three cases. The slopes of the pdfs are not changed by differences in the condensate 
production amounts, but there are quantitative changes to the cutoffs. Both the cluster area 
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and power cutoffs reduce upon condensate production, but the changes to cluster area cutoff 
is smaller than the change to the cluster power cutoff. Overall, the effect of increased 
condensate in these experiments is to reduce the cluster rain intensity, because the range of 
high  with intense convective rain is reduced as is reduced. The rain associated with cloud 
condensate is commonly not large enough to meet the threshold to be included in the cluster 
diagnostics. More sophisticated parameterization of cloud processes, or consideration of 
clusters based on other criteria would affect this quantitatively. Overall, the results here are 
reasonably robust to the inclusion of condensate production, which mainly enters for 
parameters that tend to give excursions into the very high moisture range. 
 
 
4. Probability distribution of the branching process 
 

The derivation that leads to the form (16) is fairly well-known in the branching process 
literature and is reconstructed here with borrowed elements from Hawkins and Ulam (1944), 
Good (1949) and Wendel (1967). A branching process with identical and independent branching 
probability across generations is first considered. For analogies with precipitation clusters, 
certain precipitating pixels are identified as seeds, and pixels that subsequently emerge 
adjacent to this seed are termed branches. The first part of the derivation concerns the 
relationship between the branching probability and the probability distribution of the tree (or 
cloud cluster) size. A specific form for the branching probability—the Poisson distribution—is 
inserted into this expression, with suitable approximations to obtain (16). The robustness of 
(16) to small number of mergers between trees is also noted. 
 

Branches that arise within a specified time interval are assumed to belong to the same 
generation.  is the probability of spawning  branches from  initial seeds in one 
generation, where  and  are non-negative integers.  is the probability that the total 
number of branches after  generations is ; for our purposes, this is the probability 
distribution of the cluster size. For a branching process that commences from a single seed  the 
following expression can be written for (Good 1949): 
 
  . (S9) 

 
Fig. A4 provides a visual representation of the variables , , and . (S9) assumes that the 
branching process is Markovian: the number of branches in each generation is solely dependent 
on the number of seeds in the preceding generations.  refers to all combinations that satisfy 

the constraint . 
 

 is the target probability distribution that must be solved for in terms of . The 
concept of probability generating functions (pgfs) for discrete probability functions is useful in 
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this regard. If and  are random variables (rvs) with discrete probability distribution 
functions,  and respectively, then their pgfs are defined by: 

   (S10) 

 .  (S11) 

 
In (S10),  denotes the number of branches that arise in each generation from a single seed. In 
(S11),  denotes the total number of branches in the tree after  generations. A property of 
pgfs that will feature repeatedly in this derivation is that for independent rvs, the pgf of the 
sum of the rvs is the product of the pgfs. For example,  if  , then 

. If  are identical, then .  

 
(S9) and (S11) are combined to obtain an expression for : 

 .  (S12) 

 is the number of combinations of non-negative integer values of  satisfying the 
constraint .  
 
A fair amount of algebra  and Good (1949) confirm that (S12) can be rewritten as:  
 

  , (S13) 

 
where the terms involving  from (S12) have been factored out, and  is the 
combination such that .  
 

Now,  from the definition of the pgf in (S10) and the property linking 

the pgfs of independent identically distributed sums of rvs. This reduction procedure is 
repeated and is used to factor out successive terms involving ,  etc. The 
result is the iterated expression:  

   (S14) 
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 .  

 
For unchanging total number of branches in successive generations  . Upon 

dropping the subscripts indicating the rvs, the following concise expression for  is obtained 
(Hawkins and Ullam 1944, Good 1949):  
 
 .  (S15) 
 
The target expression  is contained with the pgf, .  as defined in (S9) is the 
probability that the total number of branches after  generations is of size , when starting 
from a seed of size 1.  is the pdf of a rv composed of a sum of  rvs, each with the identical 

pdf . In other words,  different seeds branch out independently of each other. 

When starting out with a seed of size  the corresponding pgf for will be , with the 
associated implicit function: 

 .  (S16) 

   
Lagrange’s inversion theorem for complex analytic functions (Wendel 1967) is used to 

solve(S16) , with the following power series solution for : 

 .  (S17) 

  
Since pgfs are complex analytic functions by definition, the property relating the pgfs of 
independent rvs  is used to rewrite (S17): 
 

 .  (S18) 

 
Expanding (S18) leads to: 

  . (S19) 

 is expanded as and then matched with the coefficients of  to get: 

  . (S20) 
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The probability distribution of the size of the tree is now related to the branching probability 
itself. Up until now, the branching probability  remained unspecified. We now assume 

the Poisson distribution for  , with the parameter: 
 

  , (S21) 

 
which is the probability that the Poisson distributed rv .  is the average number of 
branches in a single generation. The Poisson distribution of the sum of  independent and 
identical distributions leads to another Poisson distribution with the parameter . Therefore 

 . This expression is plugged into (S20), to finally obtain: 

 .  (S22) 

Stirling’s approximation,  is used in place of the factorial in the denominator of 

(S22):  

  . (S23) 

 
Stirling’s approximation is acceptable even for small integer values (error is ~4% for , and 
monotonically reduces with increases in ).  
 

For small  and large , , leading to:  

  . (S24) 
 
Where  and   is a parameter that depends on the mean number of 
branches  and the number of initial seeds . The cluster size generated from initial seeds is 
equivalent to cluster size generated by mergers between  clusters, each of which is generated 
from a single seed. 
 
 For the special case of  in (S22):  

  . (S25) 

p1
(1) (m)

p1
(1) (m)

p1
(1) (X = w,λ) = e

−λλ w

w!

X = w λ
s

sλ

p1
(s) (X = w,λ) =

e−sλ sλ( )w
w!

q(r ) (s) = r
s
e−sλ (sλ)(s−r )

(s− r)!

s!≈ 2πs s
e

⎛
⎝⎜

⎞
⎠⎟

s

q(r ) (s) = 1
2π

r
λ r
1

s
3
2

e−s(λ−1−lnλ )

er
1− r
s

⎛
⎝⎜

⎞
⎠⎟

− s−r+1
2

⎛
⎝⎜

⎞
⎠⎟

s = 2
s

r s 1− r
s

⎛
⎝⎜

⎞
⎠⎟

− s−r+1
2

⎛
⎝⎜

⎞
⎠⎟

≈ er

q(r ) (s) = C(λ,r)s−
3
2e

− s
sL

sL = 1− λ − lnλ C(λ,r)
λ r r

r

r = 1

q(s) = e
−sλ (sλ)(s−1)

s!



(S25) can also be reduced using Stirling’s approximation to yield  . Note that 
the pdfs described by  (S25) and (S22) have special names: the Borel distribution and the Borel-
Tanner distribution respectively. 
 
In conclusion, the probability distribution of the total size of a tree generated by the branching 

process with a Poisson branching probability, and the form of the distribution is 
robust to a small number of mergers between trees. Note that one could also substitute 
alternate forms of  in (S22) to test the effects of other functional forms for the 
branching probability.  
 
5. Exotic parameter regimes 
 

To highlight clusters driven by radiative instabilities in the non-stochastic model, we 
configured to run our model with diminished values of stochastic forcing (by a factor of 500) 
and surface evaporation (by a factor of 10).   and  in (14) and (15)  now have values of 5 
W/m2 per mm of CWV and 5 W/m2 per mm/h of precipitation respectively. To create 
homogeneous conditions, the mock Hadley cell was not imposed, and the impact of rotational 
wind advection is tested in one of the runs. Note that this model version without stochastic 
forcing is close to the coarsening model of Craig and Mack (2013). 

 
Four different model runs are shown in Fig. S9, three of which highlight the different 

aggregated features that can emerge under such quiescent conditions. The snapshots shown in 
Figs. S9a,b and d are at statistically steady-state: marked by unchanging cluster characteristics 
(and also only small variations in the visual appearance). Fig. S9a is a snapshot of the CWV field 
from the quiescent model simulation, in the presence of rotational wind advection. With 
reduced stochastic forcing in the divergence, CWV does not vary much beyond = 60 mm and 
shows no inclination to aggregate. Fig. S9b shows how the removal of rotational advection 
causes the model CWV field to aggregate into a column. Fig. S9c is a snapshot of the model run 
without diffusion or rotational advection that produces long, thin regions of enhanced CWV 
regions surrounded by dry regions. The CWV features in this run did not attain steady-state and 
continued to gradually change even when run up to 400 days (although the qualitative 
appearance remained the same). The aggregated features in Fig. S9c are reminiscent of the 
cellular appearance of some marine stratocumulus clouds (Stevens et al. 2005; Wang and 
Feingold 2009). There is also some resemblance to the wispy CWV features presented in the 
global RCE simulations of Reed and Chavas 2015 (see their Fig.1, ‘ne120’ configuration). When 
the model is initialized with an aggregated Gaussian blob but run without any form of 
advection, the CWV stays aggregated, as shown in Fig. S9d.  
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Figures 
 

 
 
Figure S1.  The vertical structures for the water vapor ( ), condensate ( ), the horizontal 

wind ( ) and the vertical velocity ( ) used in model derivation. 
 

 
Figure S2. The externally imposed latitudinally varying domain mean flux mimicking a Hadley 
Cell. This structure produces a divergence field that results in upper-level divergence in the 
middle of the domain and upper-level convergence near the northern and southern 
boundaries. 
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Figure S3. A snapshot of the rotational wind vector at the same instant as Figure 1 in the article. 
 

 
Figure S4. The probability distributions of the rotational wind velocities averaged over the 
lower troposphere for the x (blue) and y (red) directions, along with the root mean square 
values of the rotational wind velocities. 
 

 
 
Figure S5. Snapshots of the precipitation field at the same instant as Figure 1 in the main text 
for three runs with different amounts of condensate production (No condensate, weak 
condensate and strong condensate production). Note that the same set of pseudorandom 
numbers are used in each run, ensuring ease of comparison. 



 

 
 
Figure S6. The cluster pdfs of the cluster area (left column) and cluster power (right column) for 
three different cases of condensate production. Row 1: no condensate production, Row 2: 
moderate condensate production and Row 3: strong condensate production.  



 
Figure S7. The cluster pdfs (for 1 mm/h threshold) as a function of increasing evaporation rate. 
The standard case ( =.14 mm/h) is in black. The other curves are multiples of the reference 
case evaporation rate. The slopes are computed using a linear regression over the power-law 
portion of the curve. Note how the slope increases as the cutoff  gets closer to the domain 
size (percolation). Beyond percolation, a long scale-free range and a bump corresponding to the 
domain size is seen (blue). 
 
 

 
Figure S8. A visual depiction of the variables that appear in the derivation of the stochastic 
branching process. The branching process can commence from initial seeds and proceed 
across  generations. At each generation, there are number of branches. The total number 

of branches across all generations, . The evolution of the branching process up 

 generations is depicted. Note that the probability of branching from a single seed is 
governed by the same pdf, , across all generations. 
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Figure S9. Examples of radiatively driven self-aggregated regions of CWV in four different runs 

with near-zero stochastic forcing ( reduced by a factor of 500 from its reference value). These 

runs were also conducted with reduced  (by a factor of 10). The radiative effects of CWV and 

clouds were also modified (  Wm-2mm-1 ,  Wm-2mm-1hr) . a) model run including 

rotational wind. b) same run as a) but without rotational wind. c) same as a) but without 

rotational wind and diffusion. d) same as a) but without rotational wind and advection, and 

starting from aggregated initial condition.  The vertical color bar on the right is for CWV values 

(in mm) in panels b), c) and d). The horizontal color bar—with a narrow range—indicates CWV 

values (in mm) in panel a).   
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