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Abstract 
This paper presents a survey of neural network controllers 
for AUVs. A direct adaptive neural net controller 
incorporating integral action was designed for the heave 
motion of the ODIN underwater vehicle. The neural net 
controller is trained on-line by parallel recursive error 
prediction method and the critic equation. The influence of 
the various design parameters of the neural net controller 
was investigated by computer simulation and the controller 
was also experimentally tested using the ODIN. Results of 
the computer simulation and experiment are discussed in 
this paper. 

1. Introduction 
Due to a great increase in underwater activity, particularly 
in conjunction with offshore petroleum exploration, a large 
number of underwater vehicles have been designed and 
built during the last few years. One great problem in the 
design of autonomous underwater vehicles (AUVs) is the 
control of these vehicles, which usually demonstrate highly 
nonlinear and coupled system dynamics [1-3]. 

Recently, a new and active area of research within control 
engineering has been that of neural network control [4-10]. 
Neural net\"\iorks have a capability of estimating various 
mathematical functions, including highly nonlinear 
functions. Furthermore, such networks can in many cases 
be trained to adapt to changing input-output relationships. 
Due to this ability, neural networks may have a great 
potential in control systems for nonlinear and unknown 
systems, such as AUVs. 

Unfortunately, the entrance of neural network technology 
on the control engineering arena has been tainted by great 
controversies as to the usefulness of thcse net\\orks for 
control purposes. Whereas several authors have portrayed 
neural networks as a control problem panacea, others are 
very skeptical. One important reason for this may be the 
lack of formalized methods and analyses of neural network 
controller systems, especially regarding the stability of the 
controllers. 

The aim of this study is to investigate the possibilities of 
using neural networks in the control of AUVs. Previously 
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proposed controllers are briefly reviewed. An on-line neural 
net controller was investigated through computer 
simulations and e:>..-periments using the ODIN underwater 
vehicle. 

1.1 Why Use Neural Networks for Control 
There are several properties of neural networks which make 
them suitable for control purposes: 
Nonlinearity: The nonlinear nature of neural networks 
make them particularly well suited for solving complex 
nonlinear control problems. 
Parallel structure: The parallel structure of neural 
networks facilitates the construction of parallel 
implementation of control systems. This can result in 
robust and fast processing systems. 
Hardware implementation: Neural networks can easily be 
implemented in hardware. A number of integrated circuits 
(IC) for artificial neural networks (ANN) purposes are 
available for purchase. 
Multivariable nature: Their potential ability to correctly 
map functions with many inputs and outputs make neural 
networks interesting for the control of multivariable 
systems. 

1.2 Off-line vs. On-line Training 
A simple, but common way of implementing control 
systems incorporating neural networks is using offline 
learning. In this technique, the neural network controller is 
first trained (which can be compared to the tuning of a 
conventional controller) and then put to use. The primary 
advantage of offline training of neural network controllers 
is the speed of the resulting network. As no weight 
adjustments take place during the running of the controller, 
the response of the controller can be very rapid. The major 
disadvantage of this control method is that the resulting 
controller is not adaptive. Hence, inaccuracies in the 
network weights or changes in system parameters are likely 
to result in poor performance of the controller system. 

An alternative to offline training of a neural network 
controller is continuously updating the neural network 
weights as the controller is in use. This is what takes place 
in adaptive, or online trained, neural network controllers. 
Usually, a measure of the system performance is set up, and 



one attempts to adjust the controller weights in a manner 
which improves this performance, for instance by 
minimizing some output error. The main challenge in this 
process is calculating the optimal weight changes from the 
system input and output as well as the reference trajectory 
for the system. Furthermore, ensuring the stability of such 
controllers is a challenging area where substantial work 
still remains to be done. 

1.3 Neural Network Control Structures 
Several different neural network controller schemes have 
been suggested and implemented in the past: 

Identification and modeling: Due to their ability to map 
mathematical functions, neural networks have been used 
for system identification in connection with control 
problems. It is well known that a neural network with one 
hidden layer and a sufficient number of neurons can 
approximate any· continuous mathematical function [11-
13]. However, the convergence of learning rules to values 
which represent these desired mappings have yet to be 
proven for most of the learning algorithms which are in use 
today. The applications of neural networks to system 
identification and modeling can be divided into the 
following approaches: (a) Forward Modeling; (b) Direct 
Inverse Modeling; and (c) Indirect Inverse Modeling. 

Direct control: Instead of using a neural network for 
estimating the process behavior and using a conventional 
controller, the complete controller can consist of, or 
include, a neural network which controls the system by 
minimizing some error criterion. This can be done in one 
of several ways: (a) Supervised Control; (b) Direct Inverse 
Control; (c) Model Reference Control; (d) Critic Control; 
(e) Internal Model Control; and (f) Predictive Control. 

Presentations of various neural network controller 
structures can be found in [",5, 14]. 

2. Neural Network AUV Control 
A major challenge in the design of AUVs is the 
construction of the control systems. AUVs generally 
demonstrate highly nonlinear system dynamics. 
Furthermore, the exact system of such vehicles are often 
unknown, as the process of obtaining the hydrodynamic 
coefficients of the vehicles may be tedious and expensive. 
In spite of the increase in neural network applications in 
control and robotics during recent years, the work that has 
been done on neural network controllers for AUVs is quite 
limited. 

2.1 Previous Neural Network AUV Controllers 
Almost all of the neural network controllers that have been 
designed for AUVs are direct controllers where the NN 
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forms the main part of the controller. Compared to other 
AUV control systems, the NN control schemes are in 
general quite crude, many being SISO or offline trained 
controllers. Offline trained, nonadaptive AUV controllers 
have been designed by Porto and Fogel, and Sanner and 
Akin. Online controllers have been proposed by Yuh et. 
aI., Venugopal, Sanner, and Ura et. al. 

Porto and Fogel's A UV Controller 
In 1992, Porto and Fogel, of ORIN CON Corp, used several 
primitive, offline trained neural network structures for 
predicting the motion of an AUV [15]. They regarded 
AUV motion in the X-V plane, using position and velocity 
in the X- and Y -directions as the four inputs to the neural 
networks. Their neural networks had two outputs, the 
desired change in the velocities in the X- and Y -directions. 
Hence, the neural networks trained were not actually 
controllers, as claimed by Porto and Fogel, but state 
estimators. 

Their training data consisted of scheduled way points on a 
multidimensional grid, giving desired neuron outputs for 
specified inputs. Both straight-line and circular AUV 
motion way points were presented to the neural networks. 
The training algorithms used were ordinary back­
propagation (BP) [16] and evolutionary programming. In 
evolutionary programming, a parent weight vector is 
changed randomly, giving several children weight vectors. 
Of these vectors, the ones with the best performance, i.e. 
the lowest square error, are chosen and the evolution is 
continued in the same manner until sufficiently good 
network performance is attained. Porto and Fogel 
performed no actual AUV experiments, but they were able 
to teach their neural networks their desired trajectories. The 
paper written by Porto and Fogel does not state how they 
intended to use their state estimator neural networks for 
actual vehicle control purposes. 

Sanner and Akin's Pitch Attitude Regulator 
Sanner and Akin, of the MIT Space Systems Laboratory, 
implemented a pitch controller for an underwater telerobot 
using a three-layer neural network in 1990 [17]. Their 
network consisted of two linear input neurons (with inputs 
pitch angle and velocity), three sigmoid hidden neurons, 
and one linear output neuron, outputting the actuator input. 

The NN was trained using a simulated model of the plant 
using BP. The output error of the NN controller was 
estimated using the critic equation: 

(1) 

where 8 d is the desired pitch angle; 8 is the actual pitch 



angle; Me is a weighting matrix; Mu is a multiple of the 
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vector; uult,i is a normalizing factor, typically the actuator 

saturation value; and n is an odd integer. 

The controller was trained offline. After the training of the 
NN controller network had been completed, the trained 
controller was connected to the telerobot and tested 
experimentally, with quite good results. Sanner and Akin 
observed that the NN, after training, implemented a 
switching layer controller. 

Yuh's Gradient Descent Controllers 
Yuh, of the Autonomous Systems Laboratory, University of 
Hawaii at Manoa, has proposed several adaptive critic NN 
AUV controllers using the backpropagation (BP) and 
parallel recursive error prediction method (PRPEM) 
learning algorithms [18-21]. 

The controllers suggested by Yuh are adaptive, online 
trained critic controllers. The inputs to the controllers are 
the position error vector, and the velocity error vector as 
well as a bias. The neural network output is the co;trol 
output (force vector). 

Unlike most of the other earlier proposed NN controllers, 
Yuh's NN controllers are not trained to mimic a 
predetermined desired controller action. Instead, he 
proposes training the controllers using one of two gradient 
descent learning algorithms, BP or PRPEM, and using an 
estimate of the neural network output error based on the 
tracking error of the vehicle through a critic equation. The 
estimate he suggests is of the form: 

(2) 

where ~U(t) is an estimate of the NN output error; C is 
M 

given by the equation C = ~; T is the sampling time 
T 

for the controller; and A.I is a cost weighting parameter. 

(1) Yuh's BP Controller 
In 1990, Yuh designed an adaptive BP controller without 
momentum learning using this estimate of the output error 
[18]. This resulted in the following weight update law: 

(3) 

Here, wm(t) is the weight matrix between the (m-l)th and 
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moth layer and qm is the vector of neuron outputs from the 

th layer. The vector om is given by: 

for the output layer 

for the other layers 
(4) 

Here, f'(x) is the derivative of the neural network 

activation function. For this controller, Yuh used the 
hyperbolic tangent activation function. 

(2) Yuh's PRPEM Controller 
In 1993 and 1994, Yuh suggested a modification of the 
controller by exchanging the BP training algorithm with 
the PRPEM algorithm [22]. This gives the weight matrix 
update law: 

(5) 

where Fi is the approximate inverse of the Hessian matrix 

and it is computed by using a constant trace method. (see 
eqs. 16 and 17 in sec. 3) If the inverse hessian matrix Fi is 

replaced by the identity matrix in eq. 5, the simpler BP 
controller algorithm in eq. 3 results. 

Venugopal's Gradient Descent Controller 
Venugopal et al. [23] suggest an enhancement of Yuh's BP 
controller. Rather than estimating the neural network 
output errors by equation 4.2, Venugopal suggests 
introducing a variable gain factor 'g' between the neural 
network controller and the system dynamics. The gain 
factor 'g' is adjusted and should, ideally, equal the inverse 
of the system's Jacobian. The algorithm which Venugopal 
suggests for updating the gain factor is: 

g(t) = g(t -1) - u ~:~ = g(t -1) +u[Y d( t) - Y( t)]:~ :~ o(t) 

(6) 
where get) is the gain factor; U is an updating rate constant; 
yit) is the desired system output; yet) is the actual system 
output; u(t) is the system input; and v is the NN output. 

The neural network is then updated by backpropagating the 
system output error through the neural network. For 
MIMO systems, Venugopal et. a1. claim that the gain factor 
'g' becomes a diagonal matrix. This, however, implies 
disregarding the interconnections of the systems various 
inputs and outputs in updating the NN weights, which may 
be an oversimplification if the system dynamics contain 
significant interactions between the various directions of 
motion. 



Venugopal et. a1. further propose extending the AUV 
controller to multiple-degrees-of-freedom by using a 
separate neural network for each degree of freedom. The 
paper written by Venugopal et. al. includes promising 
simulation results for a MIMO controller. 

Ura's NN AUVControl Systems 
Ura and his colleagues at the URA Lab, University of 
Tokyo, have worked on several indirect inverse modeling 
neural network AUV controllers which they have tested on 
their Twin-Burger underwater vehicle. 

(1) The SONCS SeJf-Organizing Control System 
In 1990, Ura suggested SONCS (Self-Organizing Neural­
Net Control System), which is an indirect inverse modeling 
controller consisting of a controller network and a forward 
modeling network [24]. 

Ura trained the forward modeling network offline using 
experimental data from the vehicle. The controller network 
was then trained online using backpropagation. The output 
errors of the controller network were estimated by 
backpropagating the system output error through the 
forward modeling network. Hence, the forward model 
provides an estimate for the NN controller output error. 

(2) SONCS With Imaginary Training 
In 1994, Ura proposed an improvement to the SONCS 
system which he labeled imaginary training. The new 
control system consists of two parts, a real world part and 
an imaginary world part (25, 26]. The real world part 
consists of the actual controller network CR and the AUV 
system dynamics h(s), whereas the imaginary world part 
consists of an imaginary controller network C1 and the NN 
forward model. 

The imaginary controller network is trained with a high 
weight updating frequency using backpropagation through 
the feedforward and Cr networks in simulation. At certain 
intervals, the imaginary controller network is downloaded 
to the actual real-world controller. Hence, the weights of 
the real-world controller network are updated. If the 
dynamics of the vehicle are significantly altered. the 
weights of the feedforward network has to be updated 
through further training. 

Seuhe's Viahility Theory Controller 
A different approach has been used by Seube, who has 
simulated an adaptive, one-layer NN controller derived 
from viability theory [27-30]. An introduction to viability 
theory is given by Aubin in [31]. The main contribution ~f 
Seube's work is replacing the optimization criterion of the 
gradient descent methods by a viability learning constraint. 
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Seube's paper does not state clearly how the selection of the 
viability constraint and control law should be undertaken. 
Seube has, nonetheless, performed several computer 
simulations with this controller and obtained quite 
impressive results for the surge/sway/yaw control of an 
AUV. For this control task, the viability controller 
outperformed a BP controller. Unfortunately, the 
description of the simulations which were completed is not 
sufficiently detailed for repetition or further pursuit of these 
simulations. 

A comparison of the previously described neural network 
controllers for AUVs is shown in Table 1. 

Table 1: Comparison of NN AUV Controllers 

Author System Training NN output error Exp. 

estimation 

Porto MJMO ofT-line N/A no 

estimator BP 

Smmer SISO ofT-line, BP Critic eq. yes 

Yuh SISO on-line Critic eq. no 

MJMO recur. BP, 
PRPEM 

Venugopal SISO on-line variable gain no 

MJMO recur. BP factor 

Ura MJMO SONCS BP thru forward yes 

BP NN 

Seube MJMO on-line N/A no 

Viability 

2.2 Suggested Neural Network AUV Controllers 
The majority of these proposed neural network controllers 
for AUVs are of the gradient descent type. These 
controllers seem to be the ones that are best understood, 
and with the possible exception of Seube's viability 
controller, the ones which have given the most promising 
results. Therefore, a more thorough investigation of such 
controllers has been conducted by computer simulation and 
experiment. The SISO controllers which have been 
designed are closely based on the earlier work performed by 
Yuh and Venugopal et. al. 

Important properties of these controllers and networks 
include: 
• Direct controllers: The neural networks perform the 

actual control of the vehicle. 
• Online learning: All the controllers are designed to be 

trained online. The motivation for this is that a 
minimal amount of a priori system knowledge is 
required and that the controllers should have an ability 
to adapt to changes in the system dynamics. 



• Feedforward networks: Only feedforward networks are 
used. Feedback is introduced in the controller design 
by using system outputs as the network inputs. 

The neural network having three layers (an input layer, one 
hidden layer, and an output layer) was considered. The 
neural network inputs were: 
• The velocity error e",( t) = co d( t) - (O( t) 

• The position error ez
l t) =Zd( t) - z( t) 

• The integral of the position error e ( t) = l' e (, )d, 
I 0 z 

• A bias input, d 

The introduction of the integral error as a NN controller 
input was inspired by regular PID control system design. 
The 3-layer network used for experiment can be described 
by the following equation: 

where e q) is the error input vector 

[Wd(t)-W(t),Zd(O-Z(t),DZd(-t)-Z('t»)d'tr; Pc is the 

activation vector of the neurons in layer 2; P3 is the 
activation of the neuron in layer 3; u is the netw'ork control 
output; f2 is the vector activation function of layer 2; f3 is 
the activation function of layer 3; W2 is the N2 x NJ 
dimensional weight matrix between layers I and 2; W3 is 
the N3 x I dim. weight matrix between layers 2 and 3. 

The activation functions f2 and f3 are given by 

1- e-x 

f~(x)=--
• 1+ e-x 

f
3
(x)= FtvlAX +FMlN + FMAX -Ft-"IlN .I-e-

x 

2 2 I +e-x 

(8) 

(9) 

The vehicle model can be represented by the following 
equation: 

(10) 

where mass, m=I22.49 kg; added mass in heave, z ... =2l.87 
kg; hydrodynamic damping, Zot.1 =~8 kg/m; water density, 

p= 1025 kg/m3; vehicle volume, V=O.1l94 m3. and 
gravitational acceleration, g=9.81 m/s2

. 

The actuators for the heave control of ODIN are four 
vertical thrusters. The thrusters operate in the interval 
±3000rpm. The force from an indhidual thruster is 
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assumed given by the equation: 

(11) 

where C T is a motor constant and W m is the motors 

angular velocity in rad/s. The thruster has an asymmetric 
characteristic, and the motor constant C T is given by [32]: 

1
6.835, 10-5 N I (rad I s)2 if (0 m ~ 0 

CT = 
-2.339.10-5 N/(rad/s)2 if (Om <0 

3. Computer Simulations 

(12) 

In the simulations of the presented NN control system, 
performed with the heave motion model of ODIN, the 
following design issues of the neural network controller for 
the vehicle were investigated: 

Choice o(Learning Algorithm 
During the computer simulations of the SISO NN control 
system for the heave motion of ODIN, two different 
learning algorithms were tested: the backpropagation (BP) 
algorithm; and the parallel recursive prediction error 
method (PRPEM) summarized below: 

BP: 
PRPEM: 

e(t) = e(t -1)+ L'.(t) 

e(t)=e(t-l)+F(t)L'.(t) 

L'.(t) = yL'.(t - I) + (1- y)p'f'(t)e(t) 

(13) 

(14) 

(15) 

where e is a vector including all weight matrix elements 
and the matrix tp is the vector derivative of the output 
error with respect to the weight vector; 

aFi (t + I) 
(17) 

Both the PRPEM and BP algorithms were able to give 
acceptable controller performance for this system. It was 
found that the PRPEM algorithm yielded the best result for 
the tested reference trajectory when integral action was 
used, whereas the BP algorithm could not be made stable 
when the integral error was used as one of the controller 
inputs. When th best BP and PRPEM controllers were 
compared, it was found that the BP controller demonstrated 
better tracking (smaller MSE) for the transient part of the 
trajectory. For stationkeeping, the PRPEM controller was 
superior, probably because of its integral action. It was also 
found that the BP controllers were generally less stable than 



the PRPEM controllers, which may be one reason why the 
integral action could not be incorporated into the BP 
controllers without causing instability. 

Use o{/ntegrai Action 
Earlier simulations [33] have shown that a serious direct 
gradient descent NN controllers of the kind investigated 
here can be steady-state errors in the tracking performance 
of the controlled systems. In order to solve this problem, 
several NN controller schemes which incorporate integral 
action were tested. Computer simulation tested two 
controllers: one uses the integral error as a NN input and a 
term in the neural network output error estimate; the other 
does not. Except for this, the controllers are identical. The 
effects of incorporating integral action into the NN 
controller can hence be summarized as: 
• Significant reduction of steady-state errors. 
• Better tracking of the desired position profile. 
• Slightly poorer tracking of the desired velocity profile. 

(It is for this testing case, because of the initial 
oscillations of the IA controller depth about the desired 
depth value.) 

• Slight increase in the computational requirements of 
the controller network. 

Influence o(Controller Parameters 
The performed simulations and experiments demonstrated 
that it is possible to control the heave motion of the ODIN 
vehicle using a SISO NN controller utilizing either the BP 
or PRPEM learning algorithms. It was also found that the 
performance of the tested controllers was highly dependent 
on the choice of controller parameters: 

• Learning constants P2 and P3 
• Network bias value d 
• Momentum constant y 
• Error function weighting parameters 1..\ and 1..2 

Unfortunately, the selection and tuning of these parameters 
has previously been a largely ad hoc trial and error process, 
In order to increase the utility of this kind of controllers, it 
is desirable to establish a set of rules for selecting the 
various controller parameters and thus reducing or 
eliminating on-site controller tuning requirements. 

Learning Constants: The effects of changing the two 
learning constants P2 and P3 were investigated through 
computer simulations whose results are summarized below: 
• Improved controller performance may be obtained by 

using different learning constants for the different 
network layers. In this case, the best performance 
resulted when the learning constant P2 was 
approximately 10 times larger than P3 

• In order to ensure convergence toward zero tracking 
error, very small learning rates should be avoided. The 
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reason for this may be the existence of local minimum 
of the error function. 

• Higher values for the learning constants should be used 
for a transient reference trajectory than for 
stationkeeping. 

Network Bias Value: In neural networks, it is customary to 
add a bias value to the activation of each neuron. The 
reason for this is that a neural network with bias inputs 
generally has a potential for approximating a wider range 
of different mathematical functions than one which does 
not use a oias. This can be understood by considering the n 
inputs to a neuron in a network as spanning an n­
dimensional space. The neuron will then define a 
hyperplane through this space, with a zero output value on 
the hyperplane, a positive output value on one side of the 
hyperplane, and a negative output value on the side. If a 
bias input is not used, this hyperplane will necessarily pass 
through the origin of the n-dimensional space. If a bias 
value is used, hyperplane can be shifted away from the 
origin [34]. 

If the bias inputs d are all set equal to zero, the neural 
network output u will be zero if e (i) = 0, Vi E 1...Nk 
where Nk is the number of neural network inputs. 

For the controller network in question, this means that the 
commanded force from the controller will be zero if the 
position, velocity, and integral position errors are all zero, 
which seems reasonable. However, this may be a problem 
if a nonzero force is required to keep the controller moving 
along its desired trajectory, for example, if gravitational 
forces are present. In that case, it could be desirable to lift 
the control hyperplane away form the origin of the 3-dim. 
space spanned by the tracking errors Cv, ex, and ei· 

The influence of the bias input value d on the performance 
of the neural network controller was analyzed by simulating 
controllers using different biases. No clear relationship 
between the value of the bias input and the output errors 
could be found, but the best results were generally obtained 
for very small values of the bias input (0 or 0.005). A trend 
which was found is that as the bias value was increased, the 
setpoint position tracking performance improved whereas 
the setpoint velocity tracking grew poorer. 

Momentum Constant: In the recursive variants of the BP 
algorithm the new search direction at time t, ~(t) (eq. 15) is 
a weighted vector sum of the previous search direction (t -
1) and the steepest descent direction. 
In the PRPEM algorithm this search direction is multiplied 
by the approximate inverse Lessian matrix F to obtain a 
Gauss-Newton search direction. 



The absolute weighting between the steepest descent 
direction and the previous search direction depends on the 
momentum constant y. The effect of this weighting 
constant was investigated through simulations using 
different values for y . These results can be summarized as 
follows: 
• The use of momentum learning improves the 

performance of the gradient descent NN controllers. 
• Values for the momentum constants in the interval y E 

< 0.25, 0.9 > yielded the best results. 

Error Function Weighting Parameters: During the neural 
network controller learning, the output error of the 
controller network is estimated as: 

e(t) = u·(t) - U(t) 

= C [ ro d ( t) - ro ( t) + A I ( Z d ( t) - z( t )) + A 2 fat (z d ( t) - z( t ) )d t ] 

(18) 
Obviously, different choices for the coefficients Al and A2 , 
which determine the relative weighting of the position and 
integral errors, respectively, to the velocity error, will result 
in varying controller performance. The way the choice of 
these parameters affects the NN controller was investigated 
through computer simulations. The results can be 
summarized as: 
• The best transient and stationkeeping response, and the 

quickest adaptation of the controller, is obtained with 
values of Al between 0.25 and 2.0, that is when the 
weighting of the position error is of the same order of 
magnitude as the weighting of the velocity error. 

• Large values of A\ lead to instability. 
• Large values of A2 result in a poorer transient response 

without a distinguishable corresponding improvement 
in the stationkeeping performance. It therefore appears 
as if a small value can be used A. 

4. Experiments 
The computer simulations which were performed with the 
various SISO NN controllers for the heave motion of ODIN 

gave quite promising results indicating that neural network 
controllers of this kind may be well suited for control tasks 
of this kind. In order to ensure that the neural network 
controllers designed for the heave motion of ODIN really 
were able to control the vehicle, some of the implemented 
controllers were tested experimentally after completion of 
the computer simulations. 

The practical heave control experiments performed with 
ODIN for testing the neural network controller schemes 
took place in the diving pool at the University of Hawaii at 
Manoa. The pool is 17 feet (5.18 meters) deep. ODIN's 
depth sensor is located in the upper part of the vehicle, and 
the maximum depth for the vehicle in the pool is thus 15 
feet (4.57 meters). Figure 1 shows one of the results 
obtained in these experiments with PRPEM method for the 
heave motion of the ODIN. Other results are not included 
due to limited space. 

Results of the experiment agree with those of the computer 
simulation. The experimental testing of the NN heave 
controllers for ODIN can be summarized: 
• The gradient descent NN controllers were able to 

control the vehicle. 
• When no integral action was incorporated into the 

controller design, a considerable steady-state position 
error resulted. 

• The introduction of the integral error as a neural 
network input, or the introduction of an integral term 
in parallel with the NN controller solved the steady­
state error problem. 
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