A Survey and Experimental Study of Neural Network AUV Control

Jargen Lorentz and J. Yuh
Autonomous Systems Laboratory
Department of Mechanical Engineering
University of Hawaii
Honolulu, HI 96822, USA

Abstract

This paper presents a survey of neural network controllers
for AUVs. A direct adaptive neural net controller
incorporating integral action was designed for the heave
motion of the ODIN underwater vehicle. The neural net
controller is trained on-line by parallel recursive error
prediction method and the critic equation. The influence of
the various design parameters of the neural net controller
was investigated by computer simulation and the controller
was also experimentally tested using the ODIN. Results of
the computer simulation and experiment are discussed in
this paper.

1. Introduction

Due to a great increase in underwater activity, particularly
in conjunction with offshore petroleum exploration, a large
number of underwater vehicles have been designed and
built during the last few years. One great problem in the
design of autonomous underwater vehicles (AUVs) is the
control of these vehicles, which usually demonstrate highly
nonlinear and coupled system dynamics {1-3].

Recently, a new and active area of research within control
engineering has been that of neural network control {4-10].
Neural networks have a capability of estimating various
mathematical functions, including highly nonlinear
functions. Furthermore, such networks can in many cases
be trained to adapt to changing input-output relationships.
Due to this ability, neural networks may have a great
potential in control systems for nonlinear and unknown
systems, such as AUVs.

Unfortunately, the entrance of neural network technology
on the control engineering arena has been tainted by great
controversies as to the usefulness of these networks for
control purposes. Whereas several authors have portrayed
ncural networks as a control problem panacea, others are
very skeptical. One important reason for this may be the
lack of formalized methods and analyses of neural network
controller systems, especially regarding the stability of the
controllers.

The aim of this study is to investigate the possibilities of
using neural networks in the control of AUVs. Previously

0-7803-3185-0/96$5.00©1996 IEEE

109

proposed controllers are briefly reviewed. An on-line neural
net controller was investigated through computer
simulations and experiments using the ODIN underwater
vehicle.

1.1 Why Use Neural Networks for Control

There are several properties of neural networks which make
them suitable for control purposes:

Nonlinearity: The nonlinear nature of neural networks
make them particularly well suited for solving complex
nonlinear control problems.

Parallel structure: The parallel structure of neural
networks facilitates the construction of parallel
implementation of control systems. This can result in
robust and fast processing systems.

Hardware implementation: Neural networks can easily be
implemented in hardware. A number of integrated circuits
(IC) for artificial neural networks (ANN) purposes are
available for purchase.

Multivariable nature: Their potential ability to correctly
map functions with many inputs and outputs make neural
networks interesting for the control of multivariable
systems.

1.2 Off-line vs. On-line Training

A simple, but common way of implementing control
systems incorporating neural networks is using offline
learning. In this technique, the neural network controller is
first trained (which can be compared to the tuning of a
conventional controller) and then put to use. The primary
advantage of offline training of neural network controllers
is the speed of the resulting network. As no weight
adjustments take place during the running of the controller,
the response of the controller can be very rapid. The major
disadvantage of this control method is that the resulting
controller is not adaptive. Hence, inaccuracies in the
network weights or changes in system parameters are likely
to result in poor performance of the controller system.

An alternative to offline training of a neural network
controller is continuously updating the neural network
weights as the controller is in use. This is what takes place
in adaptive, or online trained, neural network controllers.
Usually, a measure of the system performance is set up, and

one attempts to adjust the controller weights in a manner
which improves this performance, for instance by
minimizing some output error. The main challenge in this
process is calculating the optimal weight changes from the
system input and output as well as the reference trajectory
for the system. Furthermore, ensuring the stability of such
controllers is a challenging area where substantial work
still remains to be done.

1.3 Neural Network Control Structures
Several different neural network controller schemes have
been suggested and implemented in the past:

Identification and modeling: Due to their ability to map
mathematical functions, neural networks have been used
for system identification in connection with control
problems. It is well known that a neural network with one
hidden layer and a sufficient number of neurons can
approximate any -continuous mathematical function [11-
13]. However, the convergence of learning rules to values
which represent these desired mappings have yet to be
proven for most of the learning algorithms which are in use
today. The applications of neural networks to system
identification and modeling can be divided into the
following approaches: (a) Forward Modeling; (b) Direct
Inverse Modeling; and (c) Indirect Inverse Modeling.

Direct control: Instead of using a neural network for
estimating the process behavior and using a conventional
controller, the complete controller can consist of, or
include, a neural network which controls the system by
minimizing some error criterion. This can be done in one
of several ways: (a) Supervised Control; (b) Direct Inverse
Control; (¢) Model Reference Control; (d) Critic Control;
(e) Internal Model Control; and (f) Predictive Control.
Presentations of various neural network controller
structures can be found in [4,5,14].

2. Neural Network AUV Control

A major challenge in the design of AUVs is the
construction of the control systems. AUVs generally
demonstrate highly nonlinear system dynamics.
Furthermore, the exact system of such vehicles are often
unknown, as the process of obtaining the hydrodynamic
coefficients of the vehicles may be tedious and expensive.
In spite of the increase in neural network applications in
control and robotics during recent years, the work that has
been done on neural network controllers for AUVs is quite
limited.

2.1 Previous Neural Network AUV Controllers
Almost all of the neural network controllers that have been
designed for AUVs are direct controllers where the NN

110

forms the main part of the controller. Compared to other
AUV control systems, the NN control schemes are in
general quite crude, many being SISO or offline trained
controllers. Offline trained, nonadaptive AUV controllers
have been designed by Porto and Fogel, and Sanner and
Akin. Online controllers have been proposed by Yuh et.
al., Venugopal, Sanner, and Ura et. al.

Porto and Fogel's AUV Controller

In 1992, Porto and Fogel, of ORINCON Corp, used several
primitive, offline trained neural network structures for
predicting the motion of an AUV [15]. They regarded
AUV motion in the X-Y plane, using position and velocity
in the X- and Y-directions as the four inputs to the neural
networks. Their neural networks had two outputs, the
desired change in the velocities in the X- and Y-directions.
Hence, the neural networks trained were not actually
controllers, as claimed by Porto and Fogel, but state
estimators.

Their training data consisted of scheduled way points on a
multidimensional grid, giving desired neuron outputs for
specified inputs. Both straight-line and circular AUV
motion way points were presented to the neural networks.
The training algorithms used were ordinary back-
propagation (BP) [16] and evolutionary programming. In
evolutionary programming, a parent weight vector is
changed randomly, giving several children weight vectors.
Of these vectors, the ones with the best performance, i.e.
the lowest square error, are chosen and the evolution is
continued in the same manner until sufficiently good
network performance is attained. Porto and Fogel
performed no actual AUV experiments, but they were able
to teach their neural networks their desired trajectories. The
paper written by Porto and Fogel does not state how they
intended to use their state estimator ncural networks for
actual vehicle control purposes.

Sanner and Akin's Pitch Attitude Regulator

Sanner and Akin, of the MIT Space Systems Laboratory,
implemented a pitch controller for an underwater telerobot
using a three-layer neural network in 1990 {17]. Their
network consisted of two linear input neurons (with inputs
pitch angle and velocity), three sigmoid hidden neurons,
and one linear output neuron, outputting the actuator input.

The NN was trained using a simulated model of the plant
using BP. The output error of the NN controller was
estimated using the critic equation:
e(t) = Mg(0, - 0) + M,u(t))

where 0, is the desired pitch angle; 6 is the actual pitch

angle; Mg is a weighting matrix; M is a multiple of the

identity matrix; u*(t) = _(u; (1))

Wy,

is a normalized control

vector; u,, ; is a normalizing factor, typically the actuator
saturation value; and n is an odd integer.

The controller was trained offline. After the training of the
NN controller network had been completed, the trained
controller was connected to the telerobot and tested
experimentally, with quite good results. Sanner and Akin
observed that the NN, after training, implemented a
switching layer controller.

Yuh's Gradient Descent Controllers

Yubh, of the Autonomous Systems Laboratory, University of
Hawaii at Manoa, has proposed several adaptive critic NN
AUV controllers using the backpropagation (BP) and
parallel recursive error prediction method (PRPEM)
learning algorithms [18-21].

The controllers suggested by Yuh are adaptive, online
trained critic controllers. The inputs to the controllers are
the position error vector, and the velocity error vector, as
well as a bias. The neural network output is the control
output (force vector).

Unlike most of the other earlier proposed NN controllers,
Yuh's NN controllers are not trained to mimic a
predetermined desired controller action. Instead, he
proposes training the controllers using one of two gradient
descent learning algorithms, BP or PRPEM, and using an
estimate of the neural network output error based on the
tracking error of the vehicle through a critic equation. The
estimate he suggests is of the form:

AU(t) = U*(1) - U(1) =C[ev(l)+klcx(t)])

where AU(t) is an estimate of the NN output error; C is

. . M . L
given by the equation C= T“‘~; T is the sampling time

for the controller; and X, is a cost weighting parameter.

(1) Yuh's BP Controller

In 1990, Yuh designed an adaptive BP controller without
momentum learning using this estimate of the output error
[18]. This resulted in the following weight update law:

Wa(t+1) = Wa(t) + POt 3

Here, W, (1) is the weight matrix between the (m-1)th and

111

m-th layer and q,, is the vector of neuron outputs from the
th layer. The vector &, is given by:

f{Pm)AU
fr.n(pm)wg‘ﬂsm-»l

for the output layer

§ = 4

" for the other layers

Here, f'(x) is the derivative of the neural network
activation function. For this controller, Yuh used the
hyperbolic tangent activation function.

(2) Yuh's PRPEM Controller

In 1993 and 1994, Yuh suggested a modification of the
controller by exchanging the BP training algorithm with
the PRPEM algorithm [22]. This gives the weight matrix
update law:

W, (t) = W (t - 1) + pF,(t)¥(t)e(t)

(5

where F, is the approximate inverse of the Hessian matrix

and it is computed by using a constant trace method. (see
eqs. 16 and 17 in sec. 3) If the inverse hessian matrix F, is

replaced by the identity matrix in eq. 5, the simpler BP
controller algorithm in eq. 3 results.

Venugopal's Gradient Descent Controller

Venugopal et al. [23] suggest an enhancement of Yuh's BP
controller. Rather than estimating the neural network
output errors by equation 4.2, Venugopal suggests
introducing a variable gain factor ‘g’ between the neural
network controller and the system dynamics. The gain
factor ‘g’ is adjusted and should, ideally, equal the inverse
of the system’s Jacobian. The algorithm which Venugopal
suggests for updating the gain factor is:

g(t)=g(t-1)-a —6—6:(% =g(t- l)+a[yd(t) -y(1)

?EY_(L) U(l)
a8u(t)

(6)
where g(1) is the gain factor; o is an updating rate constant;
y4(t) is the desired system output; y(t) is the actual system
output; u(t) is the system input; and v is the NN output.

The neural network is then updated by backpropagating the
system output error through the neural network. For
MIMO systems, Venugopal et. al. claim that the gain factor
‘g’ becomes a diagonal matrix. This, however, implies
disregarding the interconnections of the systems various
inputs and outputs in updating the NN weights, which may
be an oversimplification if the system dynamics contain
significant interactions between the various directions of
motion.

Venugopal et. al. further propose extending the AUV
controller to multiple-degrees-of-freedom by using a
separate neural network for each degree of freedom. The
paper written by Venugopal et. al. includes promising
simulation results for a MIMO controller.

Ura’s NN AUV Control Systems

Ura and his colleagues at the URA Lab, University of
Tokyo, have worked on several indirect inverse modeling
neural network AUV controllers which they have tested on
their Twin-Burger underwater vehicle.

(1) The SONCS Self-Organizing Control System

In 1990, Ura suggested SONCS (Self-Organizing Neural-
Net Control System), which is an indirect inverse modeling
controller consisting of a controller network and a forward
modeling network [24].

Ura trained the forward modeling network offline using
experimental data from the vehicle. The controller network
was then trained online using backpropagation. The output
errors of the controller network were estimated by
backpropagating the system output error through the
forward modeling network. Hence, the forward model
provides an estimate for the NN controller output error.

(2) SONCS With Imaginary Training

In 1994, Ura proposed an improvement to the SONCS
system which he labeled imaginary training. The new
control system consists of two parts, a real world part and
an imaginary world part [25, 26]. The real world part
consists of the actual controller network Cy and the AUV
system dynamics h(s), whereas the imaginary world part
consists of an imaginary controller network C; and the NN
forward model.

The imaginary controller network is trained with a high
weight updating frequency using backpropagation through
the feedforward and C; networks in simulation. At certain
intervals, the imaginary controller network is downloaded
to the actual real-world controller. Hence, the weights of
the real-world controller network are updated. If the
dynamics of the vehicle are significantly altered, the
weights of the feedforward network has to be updated
through further training.

Seube’s Viability Theory Controller

A different approach has been used by Seube, who has
simulated an adaptive, one-laver NN controller derived
from viability theory [27-30]. An introduction to viability
theory is given by Aubin in [31]. The main contribution of
Seube’s work is replacing the optimization criterion of the
gradient descent methods by a viability learning constraint.

Seube’s paper does not state clearly how the selection of the
viability constraint and control law should be undertaken.
Seube has, nonetheless, performed several computer
simulations with this controller and obtained quite
impressive results for the surge/sway/yaw control of an
AUV. For this control task, the viability controller
outperformed a BP controller. Unfortunately, the
description of the simulations which were completed is not
sufficiently detailed for repetition or further pursuit of these
simulations.

A comparison of the previously described neural network
controllers for AUVs is shown in Table 1.

Table 1. Comparison of NN AUV Controllers

Author System Training NN output error | Exp.
estimation
Porto MIMO off-line N/A no
estimator | BP
Sanner SISO off-line, BP | Critic eq. yes
Yuh SISO on-line Critic eq. no
MIMO recur. BP,
PRPEM
Venugopal || SISO on-line variable gain no
MIMO recur. BP factor
Ura MIMO SONCS BP thru forward | yes
BP NN
Seube MIMO on-line N/A no
Viability

112

2.2 Suggested Neural Network AUV Controllers

The majority of these proposed neural network controllers
for AUVs are of the gradient descent type. These
controllers scem to be the ones that are best understood,
and with the possible exception of Seube’s viability
controller, the ones which have given the most promising
results. Therefore, a more thorough investigation of such
controllers has been conducted by computer simulation and
experiment. The SISO controllers which have been
designed are closely based on the earlier work performed by
Yuh and Venugopal et. al.

Important properties of these controllers and networks

include:

o Direct controllers: The neural networks perform the
actual control of the vehicle.

o Online learning: All the controllers are designed to be
trained online. The motivation for this is that a
minimal amount of a priori system knowledge is
required and that the controllers should have an ability
to adapt to changes in the system dynamics.

s Feedforward networks: Only feedforward networks are
used. Feedback is introduced in the controller design
by using system outputs as the network inputs.

The neural network having three layers (an input layer, one
hidden layer, and an output laver) was considered. The
neural network inputs were:

o The velocity error e (t) = o,(t) - o(t)

e The position error e, (t) =z,(t) - z(t)

e The integral of the position error e(t)= J:e (t)dz

z

¢ Abias input, d

The introduction of the integral error as a NN controller
input was inspired by regular PID control system design.
The 3-layer network used for experiment can be described
by the following equation:

u=q; = f3(ps3) =, (W3 (WaetWoyd) + Wyyd) @)

where e = q is the error input vector

. T
{md(t)—m(t),zd(t)—z(t),J.o(zd (t)—z('c))d'c:I ; p2is the

activation vector of the neurons in layer 2; p; is the
activation of the neuron in layer 3; u is the network control
output; £, is the vector activation function of layer 2; f; is
the activation function of layer 3; W, is the N. x N;
dimensional weight matrix between layers 1 and 2; W; is
the N3 x | dim. weight matrix between layers 2 and 3.

The activation functions f; and f; are given by

1-¢™*

f(x)= - 3
l+e
F +F F -F l-e™*

£y (x) = Max FPvv | Fmax ~Pvin ©)

147

2 2
The vehicle model can be represented by the following
equation:

(m+Z5)0 + Zylolo + (V- mg =F, (10)

where mass, m=122.49 kg; added mass in heave, z,=21.87

kg, hydrodynamic damping, z i =48 kg/m; water density,

p=1025 kg/m’ wvehicle volume, V=0.1194 m® and
gravitational acceleration, g=9.81 m/s".

The actuators for the heave control of ODIN are four
vertical thrusters. The thrusters operate in the interval
+3000rpm. The force from an individual thruster is

113

assumed given by the equation:

FTcha)m (11)

where C; is a motor constant and ® is the motors

angular velocity in rad/s. The thruster has an asymmetric

characteristic, and the motor constant C is given by [32]:
- _ 2 .

o 1683510 5 N/(rad/s)" if 0,20 12)

~2339-107 N/(rad/s)’ if @y <0

3. Computer Simulations
In the simulations of the presented NN control system,
performed with the heave motion model of ODIN, the
following design issues of the neural network controller for
the vehicle were investigated:

Choice of Learning Algorithm

During the computer simulations of the SISO NN control
system for the heave motion of ODIN, two different
learning algorithms were tested: the backpropagation (BP)
algorithm; and the parallel recursive prediction error
method (PRPEM) summarized below:

BP: Oty = O(t- 1)+ A(t) (13)
PRPEM: O(t) =0(-1)+F1A() (14)
A =yA(t = D) + (1~ y)p¥(De(t) (15)

where © is a vector including all weight matrix elements
and the matrix W is the vector derivative of the output
error with respect to the weight vector;

F (t+1) = F (1) 16

~F ()W, (t+ 1)(M + 2T (t+ DF, (), t +1>)"\Pf(t +DF, ()
OLE(H- 1)

tmcc(ﬁ(t + 1)) an

F(t+1)=

Both the PRPEM and BP algorithms were able to give
acceptable controller performance for this system. It was
found that the PRPEM algorithm yielded the best result for
the tested reference trajectory when integral action was
used, whereas the BP algorithm could not be made stable
when the integral error was used as one of the controller
inputs. When th best BP and PRPEM controllers were
compared, it was found that the BP controller demonstrated
better tracking (smaller MSE) for the transient part of the
trajectory. For stationkeeping, the PRPEM controller was
superior, probably because of its integral action. It was also
found that the BP controilers were generally less stable than

the PRPEM controllers, which may be one reason why the
integral action could not be incorporated into the BP
controllers without causing instability.

Use of Integral Action

Earlier simulations [33] have shown that a serious direct

gradient descent NN controllers of the kind investigated

here can be steady-state errors in the tracking performance

of the controlled systems. In order to solve this problem,

several NN controller schemes which incorporate integral

action were tested. Computer simulation tested two

controllers: one uses the integral error as a NN input and a

term in the neural network output error estimate; the other

does not. Except for this, the controllers are identical. The

effects of incorporating integral action into the NN

controller can hence be summarized as:

e Significant reduction of steady-state errors.

e Better tracking of the desired position profile.

¢ Slightly poorer tracking of the desired velocity profile.
(It is for this testing case, because of the initial
oscillations of the A controller depth about the desired
depth value.)

e Slight increase in the computational requirements of
the controller network.

Influence of Controller Parameters
The performed simulations and experiments demonstrated
that it is possible to control the heave motion of the ODIN
vehicle using a SISO NN controller utilizing either the BP
or PRPEM learning algorithms. It was also found that the
performance of the tested controllers was highly dependent
on the choice of controller parameters:

o Learning constants p; and p;

e Network bias value d

e Momentum constant y

o Error function weighting parameters A, and A

Unfortunately, the selection and tuning of these parameters
has previously been a largely ad hoc trial and error process,
In order to increase the utility of this kind of controllers, it
is desirable to establish a set of rules for selecting the
various controller parameters and thus reducing or
eliminating on-site controller tuning requirements.

Learning Constants: The effects of changing the two

learning constants p, and p; were investigated through

computer simulations whose results are summarized below:

e Improved controller performance may be obtained by
using different learning constants for the different
network layers. In this case, the best performance
resulted when the learning constant p, was
approximately 10 times larger than p;

e In order to ensure convergence toward zero tracking
error, very small learning rates should be avoided. The

114

reason for this may be the existence of local minimum
of the error function.

o Higher values for the learning constants should be used
for a transient reference trajectory than for
stationkeeping.

Network Bias Value: In neural networks, it is customary to
add a bias value to the activation of each neuron. The
reason for this is that a neural network with bias inputs
generally has a potential for approximating a wider range
of different mathematical functions than one which does
not use a bias. This can be understood by considering the n
inputs to a neuron in a network as spanning an n-
dimensional space. The neuron will then define a
hyperplane through this space, with a zero output value on
the hyperplane, a positive output value on one side of the
hyperplane, and a negative output value on the side. If a
bias input is not used, this hyperplane will necessarily pass
through the origin of the n-dimensional space. If a bias
value is used, hyperplane can be shifted away from the
origin [34].

If the bias inputs d are all set equal to zero, the neural
network output u will be zero if e (i) =0, Vie L.N;
where N, is the number of neural network inputs.

For the controller network in question, this means that the
commanded force from the controller will be zero if the
position, velocity, and integral position errors are all zero,
which seems reasonable. However, this may be a problem
if a nonzero force is required to keep the controller moving
along its desired trajectory, for example, if gravitational
forces are present. In that case, it could be desirable to lift
the control hyperplane away form the origin of the 3-dim.
space spanned by the tracking errors ey, €, and e;.

The influence of the bias input value d on the performance
of the neural network controller was analyzed by simulating
controllers using different biases. No clear relationship
between the value of the bias input and the output errors
could be found, but the best results were generally obtained
for very small values of the bias input (0 or 0.005). A trend
which was found is that as the bias value was increased, the
setpoint position tracking performance improved whereas
the setpoint velocity tracking grew poorer.

Momentum Constant: In the recursive variants of the BP
algorithm the new search direction at time t, A(t) (eq. 15) is
a weighted vector sum of the previous search direction (t -
1) and the steepest descent direction.

In the PRPEM algorithm this search direction is multiplied
by the approximate inverse Lessian matrix F to obtain a
Gauss-Newton search direction.

The absolute weighting between the steepest descent

direction and the previous search direction depends on the

momentum constant y. The effect of this weighting

constant was investigated through simulations using

different values for y. These results can be summarized as

follows:

o The use of momentum learning improves the
performance of the gradient descent NN controllers.

e Values for the momentum constants in the interval y €
<0.25, 0.9 > yielded the best results.

Error Function Weighting Parameters: During the neural
network controller learning, the output error of the
controller network is estimated as:

e(t) = U™(t) - U(t)
- C[md(t) ~ () + 1 (za() -) + 1 | (2a(9) - z(t))dt:|

(18)

Obviously, different choices for the coefficients A, and A, ,
which determine the relative weighting of the position and
integral errors, respectively, to the velocity error, will result
in varying controlier performance. The way the choice of
these parameters affects the NN controller was investigated
through computer simulations. The results can be
summarized as:

o The best transient and stationkeeping response, and the
quickest adaptation of the controller, is obtained with
values of A; between 0.25 and 2.0, that is when the
weighting of the position error is of the same order of
magnitude as the weighting of the velocity error.

e Large values of A, lead to instability.

e Large values of &, result in a poorer transient response
without a distinguishable corresponding improvement
in the stationkeeping performance. It therefore appears
as if a small value can be used A.

4. Experiments
The computer stmulations which were performed with the
various SISO NN controllers for the heave motion of ODIN

gave quite promising results indicating that neural network
controllers of this kind may be well suited for control tasks
of this kind. In order to ensure that the neural network
controllers designed for the heave motion of ODIN really
were able to control the vehicle, some of the implemented
controllers were tested experimentally after completion of
the computer simulations.

The practical heave control experiments performed with
ODIN for testing the neural network controller schemes
took place in the diving pool at the University of Hawaii at
Manoa. The pool is 17 feet (5.18 meters) deep. ODIN’s
depth sensor is located in the upper part of the vehicle, and
the maximum depth for the vehicle in the pool is thus 15
feet (4.57 meters). Figure 1 shows one of the results
obtained in these experiments with PRPEM method for the
heave motion of the ODIN. Other results are not included
due to limited space.

Results of the experiment agree with those of the computer
simulation. The experimental testing of the NN heave
controllers for ODIN can be summarized:

e The gradient descent NN controllers were able to
control the vehicle.

e When no integral action was incorporated into the
controller design, a considerable steady-state position
error resulted.

e The introduction of the integral error as a neural
network input, or the introduction of an integral term
in parallel with the NN controller solved the steady-
state error problem.

Acknowledgments
Funding for this research was provided in part by the NSF
PYI Award Grant No. BES91-57896, in part by ONR
through Florida Atlantic University, in part by ERC-ACI,
Seoul National University, and in part by the NOAA Office
of Sea Grant, Dept. of Commerce (R/ES-1). This is Sea
Grant Publication UNIHI-SEAGRANT-CP-96-07.

200 300

Time [s]

T

3
T

400 500 600 700

Figure 1: Experimental testing of ODIN NN heave controller with PRPEM learning algorithm.
(oo actual depth, desired depth)

115

References

Yuh, J., Modeling and Control of Underwater Robotic

Vehicles, IEEE Trans. Sys., Man and Cyber., Vol. 20,

No. 6., 1990

H. Mahesh, J. Yuh and R. Lakshmi, A Coordinated

Control of an Underwater Vehicle and Robotic

Manipulator,” J. of Robotic Systems, 8(3), pp. 339-

370, 1991.

T.I. Fossen, Nonlinear Modeling and Control of

Underwater Vehicles." Dr. Ing Thesis, Norwegian

Institute of Technology,1991.

Bekey, G. A. & Gldberg, K. Y. (ed) Neural Networks

in Robotics. Boston: Kluwer, 1993.

K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J.

Gawthrop, Neural Networks for Control Systems-A

Survey," Automatica, V.28, No.6, pp.1083-1112, 1992.

W.T. Miller, R.S. Sutton, and P.J. Werbos, Neural

Networks for Control, MIT Press, 1990.

IEEE Control System Magazine, April,1988,89,90,92.

Hunt, K. J, Irwin, G. R., & Warwick, K. (eds) Neural

Network Engineering in Dynamic Control Systems.

London: Springer-Verlag London Ltd, 1995.

Narendra, K. S. & Mukhopadhyay, S. Intelligent

Control Using Neural Networks. IEEE Control

Systems Magazine, April 1992.

[10] Sanner, R. M. & Slotline, J. J. Gaussian Networks for
Direct Adaptive Control. IEEE Transactions on Neural
Networks, Vol. 3, No. 6, November 1992.

[11]Chen, S., Billings, S. A., & Grant, P. M. Non-linear
system identification using neural networks.
International Journal of Control, Vol. 51, No. 6, 1990.

[12]Cybenko, G. Approximations by Superpositions of a
Sigmoidal Function, Mathematics of Control, Signals,
and Systems, Vol. 2, pp. 303-314, 1989.

[13]Funahashi, K. On the Approximate Realization of
Continuous Mappings by Neural Networks, Neural
Networks, Vol. 2, pp. 183-192, 1989.

[14]Yuh, J. On Neural Net Controllers for Robotic
Manipulators, in Jamshidi, M., Lumia, R., Mullins, J.,
& Shahinpoor, M. (eds). Robotics and Manufacturing,
Vol. 4. New York: ASME Press, pp. 737-762.

{15]Porto, V. W. & Fogel, D. B. Neural Networks for AUV
Guidance Control. Initial Efforts Encouraging in
Design, Testing of a Two-Dimensional Controller for
Accurate Navigation. Sea Technology, February 1992.

[16]D.E. Rumelhart, et al., Parallel Distributed Processing,
MIT Press, 1986.

{17]Sanner, R. M. & Akin, D. L. Neuromorphic Pitch
Attitude Regulation of an Underwater Telerobot. |[EEE
Control Systems Magazine, April 1990.

[18]). Yuh, A Neural Net Controller for Underwater
Robotic Vehicles," IEEE J. Oceanic Engineering, Vol.
15, No. 3, pp. 161-166, 1990.

[19]}Yuh, J, Learning Control for Underwater Robotic
Vehicles, IEEE Control System Magazine, Vol 14,
No. 2, pp. 39-46, 1994

(1

(2]

(3]

[4]
(5]
(6]
(7]
(8]

[9

116

[20}J. Yuh and K.V. Gonugunta, Learning Control of
Underwater Robotic Vehicles," Proc. IEEE Int'l Conf.
on Robotics and Automation, pp. 106-111, 1993.

[211J. Yuh. and R. Lakshmi, An Intelligent Control
System for Remotely Operated Vehicles," J. of IEEE
Oceanic Engineering, V.18, No.1, pp.55-62, Jan. 1993.

[22]S. Chen, C. Cowan, S.A. Billings, and P.M. Grant,
Parallel Recursive Prediction Error Algorithm for
Training Layered Neural Networks," International
Journal of Control, V. 51, No. 6, pp.1215-1228, 1990.

[23] Venugopal, K. P., Sudhakar, R., & Pandya, A. S. On-
Line ‘Learning Control of Autonomous Underwater
Vehicles Using Feedforward Neural Networks. IEEE
Journal of Oceanic Engineering, V. 17, October 1992.

[24)Ura, T., Fujii, T, Nose, Y., & Kuroda, Y. Self-
Organizing Control System for Underwater Vehicles.
Conference Proceedings. OCEANS ‘90, Washington,
D.C., September 24-26, 1990, pp. 76-81.

[25]1shii, K., Fujii, T., & Ura, T. An On-Line Adaptation
Method in a Neural Network Based Control System of
AUV’s. IEEE Journal of Oceanic Engineering, Vol.
20, No. 3, July 1995.

[26]Ura, T. & Suto, T. Unsupervised Learning System For
Vehicle Guidance Constructed With Neural Network.
Proceedings of the 7th International Symposium on
Unmanned Untethered Submersible Technology,
September 23-25, 1991, pp. 203-212.

[27] Seube, N. Neural Network Learning Rules for Control:
Application to AUV Tracking Control. Proceedings of
the IEEE Conference on Neural Networks for Ocean
Engineering, Washington, D. C., August 15-17, 1991.

[28] Seube, N. A Neural Network Approach For
Autonomous Underwater Vehicle Control Based on
Viability Theory. Proceedings of the 7th International
Symposium on Unmanned Untethered Submersible
Technology, September 23-25, 1991, pp. 191-202.

[29] Seube, N. Neural Networks Learning Rules for
Control: Uniform Dynamic Backpropagation, Heavy
Adaptive Learning Rule. in ref. [4].

[30]Seube, N. Apprentissage de lois de controle regulant
des contraintes sur l'ctat par resaux de neurones.
Comptes Rendus de 1'Academie des Sciences de Paris,
Serie [, 1991, pp. 445-450.

[31]Aubin, J. P., Viability Theory. Boston: Birkhauser,
1991.

[32]Chot, S. K., Yuh, J., & Takashige, G. Y. Development
of the Omni-Directional Intelligent Navigator. IEEE
Robotics & Automation Magazine, March 1995, pp.
44-33,

{33]Lorentz, J. Design of a Neural Network AUV
Controller. Project work. Norwegian Iastitute of
Technology, May 1995.

[34]Prechelt, L. (maintainer) Frequently Asked Questions
(FAQ) on Neural Networks. FAQ for the Usenet
newsgroup comp.ai.neural-nets, URL:
http://wwwipd.ira.uka.de/~prechelt/F AQ/neural-net-
faq.html, April 28, 1995.

