1 NOVEMBER 2019 BELL ET AL. 7191

Western North Pacific Tropical Cyclone Tracks in CMIPS Models: Statistical
Assessment Using a Model-Independent Detection and Tracking Scheme

SAMUEL S. BELL AND SAVIN S. CHAND

Centre for Informatics and Applied Optimization, Federation University Australia, Ballarat, Australia

SUZANA J. CAMARGO

Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

KEVIN J. TORY

Research and Development Branch, Bureau of Meteorology, Melbourne, Australia

CHRIS TURVILLE

Centre for Informatics and Applied Optimization, Federation University Australia, Ballarat, Australia

HARVEY YE

Research and Development Branch, Bureau of Meteorology, Melbourne, Australia

(Manuscript received 21 November 2018, in final form 11 June 2019)

ABSTRACT

Past studies have shown that tropical cyclone (TC) projection results can be sensitive to different types of
TC tracking schemes, and that the relative adjustments of detection criteria to accommodate different models
may not necessarily provide a consistent platform for comparison of projection results. Here, future climate
projections of TC activity in the western North Pacific basin (WNP, defined from 0°-50°N and 100°E~180°) are
assessed with a model-independent detection and tracking scheme. This scheme is applied to models from
phase 5 of the Coupled Model Intercomparison Project (CMIPS) forced under the historical and represen-
tative concentration pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and independent
models are analyzed simultaneously with a curve-clustering algorithm, allowing observed and model tracks to
be projected onto the same set of clusters (k = 9). Four of the nine clusters were projected to undergo
significant changes in TC frequency. Straight-moving TCs in the South China Sea were projected to signifi-
cantly decrease. Projected increases in TC frequency were found poleward of 20°N and east of 160°E, con-
sistent with changes in ascending motion, as well as vertical wind shear and relative humidity respectively.
Projections of TC track exposure indicated significant reductions for southern China and the Philippines and
significant increases for the Korean peninsula and Japan, although very few model TCs reached the latter
subtropical regions in comparison to the observations. The use of a fundamentally different detection
methodology that overcomes the detector/tracker bias gives increased certainty to projections as best as low-
resolution simulations can offer.

1. Introduction utilize one of three methods to investigate TC behaviors
in climate models: 1) direct simulation, 2) downscaling,
or 3) use of large-scale genesis indices. An advantage of
direct simulation over the other two methods is that
other than limitations inherent in the models and de-
tection algorithm, no additional assumptions are re-
quired [see Emanuel (2013) for further reading]. Both
fine (~20-50km) and coarse (~100-300 km) resolution
Corresponding author: Samuel S. Bell, ss.bell@federation.edu.au  climate models have been used for direct simulation of

Numerous climate projection studies have been un-
dertaken on the highly active western North Pacific
(WNP) tropical cyclone (TC) basin leading toward a
growing consensus on TC frequency, genesis location,
and track projection results. Such studies generally
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TCs in the WNP (e.g., Bengtsson et al. 2007; Stowasser
et al. 2007; Sugi et al. 2009; Zhao et al. 2009; Held and
Zhao 2011; Murakami et al. 2011; Scoccimarro et al.
2011; Murakami et al. 2012a,b; Camargo 2013; Mori
et al. 2013; Strachan et al. 2013; Vecchi et al. 2013;
Vecchi et al. 2014; Walsh et al. 2013; Yokoi et al. 2013;
Knutson et al. 2015; Murakami et al. 2015; Camargo
et al. 2016; Jin et al. 2016; Kossin et al. 2016; Tsou et al.
2016; Nakamura et al. 2017). Although TC intensities
are poorly resolved in coarse-resolution models (e.g.,
Davis 2018), they can have relatively good representa-
tions of the large-scale processes that affect TC char-
acteristics such as genesis locations and tracks (e.g.,
Moise et al. 2015; Chand et al. 2017), which are the focus
of the present study; other projections such as TC rain-
fall and intensity were not made. We stress that such
models are an important tool for providing useful in-
formation on future projections of TC genesis and
tracks, especially considering the abundance of coarse-
resolution climate models that are readily available for
climate projection studies.

Experiments from phase 3 (CMIP3; Meehl et al. 2007)
and phase 5 (CMIPS; Taylor et al. 2012) of the Coupled
Model Intercomparison Project are two such sources of
coarse-resolution models for projection studies. Kossin
etal. (2016) and Nakamura et al. (2017) included in their
analyses CMIP5 TC-like storms obtained by direct
simulation to analyze WNP TC frequencies, genesis lo-
cations, and tracks, along with downscaled synthetic
TCs; in the case of Nakamura et al. (2017), TCs from
high-resolution simulations were also analyzed. For the
CMIP5 model TC-like storms, both these studies uti-
lized the same detection and tracking algorithm of
Camargo and Zebiak (2002). Since all detectors have
strengths and weaknesses, different detectors can pro-
duce very different results when applied to the same
model (Horn et al. 2014; Tory et al. 2014) and so we
argue that coarse-resolution simulations for the WNP
basin are worth revisiting with a fundamentally different
detection methodology.

The Camargo and Zebiak (2002) algorithm uses ob-
jectively determined thresholds developed within the
model under consideration, in which there can be some
compensation between model error and detector error
that could partly mask model errors (Tory et al. 2013a,b).
This is particularly problematic for low-resolution
models and weak storms (Horn et al. 2014), typical of
TCs directly simulated in CMIPS models. Therefore, to
test the veracity of the conclusions in the previous
studies, and to provide a thorough assessment of climate
model performance, and thus provide greater confidence
in projection results, a similar assessment of TC tracks
is undertaken here using the threshold-independent TC
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detection and tracking algorithm developed by Tory
et al. (2013a), called Okubo—Weiss—Zeta (OWZ). This
algorithm is fundamentally different in design from
those used in many other studies (e.g., Shaevitz et al.
2014; Horn et al. 2014) and has been used previously
for CMIP5 TC projection studies (e.g., Tory et al. 2013c;
Chand et al. 2017; Bell et al. 2019a,b)

The tuning of this detection algorithm in ERA-
Interim reanalysis data, though not exclusive to this al-
gorithm (e.g., TempestExtremes; Zarzycki and Ullrich
2017), and the use of only large-scale environmental
parameters allow a level of circumvention of detector-
related dependencies on model resolution (Walsh et al.
2007; Tory et al. 2013b; Wehner et al. 2015). Thus the
detector can be applied to, and objectively assess, dif-
ferent CMIPS models without requiring resolution- or
basin-specific adjustments. This enables the present
study to offer complementary results of CMIPS5 model
assessments and projections of WNP TCs to those pre-
sented in Camargo (2013), Nakamura et al. (2017), and
other studies. More broadly, projection results given by
the present study can also form a basis of comparison
with those of other studies involving fine-resolution di-
rect simulations, downscaling, or genesis indices.

In the present study, a multimodel mean of TC de-
tections is constructed to best match several observed
TC climatology features over the historical period 1970—
2000. TCs simulated under historical conditions are then
compared to TCs projected under high radiative forcing
conditions [representative concentration pathway 8.5
(RCP8.5)]. The detection and tracking scheme of Tory
et al. (2013a) is used to simulate TCs in each model. In
contrast to prior studies, we construct our multimodel
mean and cross-validate our results while taking due
consideration of the interdependencies that exist be-
tween certain CMIP5 models (e.g., Knutti et al. 2013;
Sanderson et al. 2015). An objective TC track cluster
analysis (Gaffney 2004; Gaffney et al. 2007) is also
performed in line with prior studies in the WNP (e.g.,
Camargo et al. 2007a,b; Nakamura et al. 2017) to pro-
vide quantitative regional-scale assessments of both
model and observed TC tracks. For consistency, we use
an objective definition of a “TC track” following Bell
et al. (2018) where a track begins at the TC declaration
location' and terminates if found to be located poleward
of a subtropical jet (Tory and Dare 2015).

Achieving a consensus on future TC characteristics
in the WNP basin becomes more important when

'The TC declaration location of OWZ detected tracks was
shown to be consistent with a TC first reaching a 10-min sustained
wind speed of 17ms ! in IBTrACS.
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considering the impacts of TC landfalls. Future landfall
rates are likely to depend on the relationship between
greenhouse warming and TC genesis location, fre-
quency, and track direction. Projection studies such as
this will therefore be of great societal value in coming
decades, in terms of best developing risk-mitigation
strategies and concentrating future preparation efforts
to the most high-risk areas. The WNP basin is home to
the most frequent TCs on the planet and is situated right
beside the densely populated coastal regions of eastern
Asia (e.g., Japan, the Korean peninsula, and China) and
southeastern Asia (e.g., the Philippines and Thailand;
see Fig. 1 for geographical locations of these countries).
Generally, these countries experience several TC land-
falls each year, owing to the mean westward and
northwestward steering flows during the active TC sea-
son (e.g., Harr and Elsberry 1995; Zhang et al. 2018). El
Nifilo-Southern Oscillation has also been shown to
modulate TC landfall rates (Wu et al. 2004), while a
recent study suggested that sea surface temperature
teleconnections from the North Atlantic can also affect
TC landfall rates over East Asia (Gao et al. 2018). In this
study, we also evaluate the exposure of these countries
to TC incidences as a result of greenhouse warming.
The outline of this paper is as follows. Section 2 con-
tains data, definitions, and methods used in this study.
Section 3 evaluates the performance of the OWZ
scheme in the WNP using selected CMIPS models, and
provides projection results between the late twentieth-
and twenty-first-century simulations. Finally, section 4
provides a summary and discussion of our results with
respect to previous studies undertaken in the WNP basin.

2. Data, definitions, and methods
a. Observational data

The Joint Typhoon Warning Center (JTWC) best
track dataset (JTWC 2017) is used in this study to give a
baseline of TC climatological characteristics over the
historical period 1970-2000. TC tracks were sampled
every 6h (at 0000, 0600, 1200 and 1800 UTC). To be
consistent with tracks detected in climate models, ob-
served TC tracks begin at the location a storm reaches a
10-min sustained wind speed of 17ms ™! [i.e., when a TC
reaches 35kt (1kt ~ 0.51ms™ ') in JTWC (1-min sus-
tained)] with those storms not reaching this intensity
excluded from the analyses. Much like the tracks de-
tected in the CMIP5 models (as discussed in section 2d),
observed tracks are terminated in two cases: 1) if a
forecast center no longer tracks them (i.e., track in-
formation ceases in the database) or 2) after 1979, if they
encounter an objectively diagnosed subtropical jet as
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they move poleward (Tory and Dare 2015); the sub-
tropical jet criterion also isolates TCs from those that
may form as nontropical systems in the subtropics.

b. CMIP5 model data

Twelve models from CMIPS5 (Taylor et al. 2012) are
used in this study (Table 1), as they were deemed to
simulate reasonable TC climatologies of TC frequency
and select ENSO features with the OWZ detection
scheme (Tory et al. 2013c; Chand et al. 2017). The cur-
rent generation of climate models produced by the
CMIP experiments provides a wide array of platforms to
assess current and future climate scenarios. The two
scenarios assessed in this work are 1) historical simula-
tions (1970-2000) to evaluate and assess the ability of
climate models to simulate observed TC climatology
and 2) RCP8.5 projections (2070-2100) to determine
projected changes as a result of global warming. Future
climate CMIPS5 simulations are often implemented with
one of several representative concentration pathways
(e.g., van Vuuren et al. 2011) to control the level of
carbon emissions in the atmosphere compared to pre-
industrial times. In this study, the RCP8.5 scenario that
represents a maximum 8.5 Wm ™ likely increase in ra-
diative forcing over preindustrial levels (Riahi et al.
2011) was chosen to best elucidate any changing TC
behavior in a warmer climate (e.g., Chand et al. 2017).

c. Detection and tracking

The Okubo-Weiss—Zeta TC detection and tracking
algorithm (Tory et al. 2013a) is used in this study to
detect and track TCs in all models without any adjust-
ment of thresholds to accommodate different model
resolutions. The OWZ algorithm has undergone scru-
pulous validation in reanalysis data in terms of annual
TC numbers and genesis positions (Tory et al. 2013b),
and more recently in terms of tracks (Bell et al. 2018).
Key details of the OWZ algorithm are provided in Tory
etal. (2013a) while a good summary of the algorithm can
be found in the appendix of this paper. Crucially, the
track validation study of Bell et al. (2018) identified a
limitation in the algorithm, suggesting that those TCs
lasting less than 2 days after declaration should be dis-
carded for best performance. This study implements this
suggestion by removing all such detected TCs.

d. TC track definition

The objective definition of a TC track established in
Bell et al. (2018) is also used in the present study. This
definition states that a TC track detected by the OWZ
algorithm commences from the TC declaration location
(as this location best matched the timing of a TC first
reaching the 10-min sustained wind speed of 17ms ™" in
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FIG. 1. Map of the WNP basin and TC tracks detected by the Tory et al. (2013a) scheme in 12 CMIP5 models’ historical simulations
(1970-2000). A random sample of 200 tracks is shown for each individual model.
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TABLE 1. Annual frequency of TCs over the historical climate period (1970-2000) in the WNP basin (genesis between 100°E and 180°)
and several genesis subregions. Annual TC counts during the peak 3-month seasonal period [ August-October (ASO)] are also included.
Models with an asterisk (*) combine to form a mean of six models (6-M). The models CNRM-CM5 and CCSM4, denoted by a plus sign
(+), are combined to form “1 model” in the 6-M. (Expansions of acronyms are available online at http://www.ametsoc.org/

PubsAcronymlList.)

Ratio
West East North Ratio  Ratio ASO/ Total Horizontal

(<140°E) (>140°E) (>20°N) W/E N/Total ASO Total (yr ') resolution Reference
Observed 15 10.3 52 1.45 0.21 13.6  0.54 253 — JTWC (2017)
GFDL CM3 7.9 6.7 2.6 1.18 0.18 59 040 14.6 2.5° Donner et al. (2011)
GFDL-ESM2G* 14.6 8.4 3.8 1.74 0.16 109 047 23.1 2.5° Donner et al. (2011)
GFDL-ESM2M 10.8 10.4 35 1.04 0.17 10.8 0.1 21.2 2.5° Donner et al. (2011)
ACCESS1.0 9.7 5.4 2.5 1.8 0.17 9.8  0.65 15.1 1.9° Bi et al. (2012)
ACCESS1.3* 14 7.9 34 1.77 0.16 11.8 054 21.9 1.9° Bi et al. (2012)
HadGEM2 11.1 9.1 4.8 1.22 0.24 127 0.63 20.2 1.9° Jones et al. (2011)
BCC_CSM1.1 8.2 8 3.6 1.03 0.22 9 0.56 16.2 2.8° Wu et al. (2014)
BCC_CSM1.1m* 8.7 10.3 3 0.84 0.16 9.7 051 18.9 1.1° Wau et al. (2014)
CSIRO Mk3.6.0%* 15.4 16.4 5.7 0.94 0.18 155 049 31.8 1.9° Collier et al. (2011)
CNRM-CM5* 43 43 2.1 1 0.25 37 044 8.5 1.4° Voldoire et al. (2013)
CCSM4* 8.8 4.6 31 1.91 0.23 69 051 134 1.2° Gent et al. (2011)
CNRM+CCSM* 13.1 8.9 52 1.47 0.24 10.6 048 22.0 —
MIROCS* 12.8 8 1.3 1.6 0.06 85 041 20.8 1.4° Watanabe et al.

(2010)

6-M 154 11.6 4.4 1.3 0.16 13.1 0.48 27 —

best track data) and terminates when a TC either dissi-
pates or encounters an objectively diagnosed sub-
tropical jet, identified in the reanalysis and model data
by a 200-hPa jet steam > 25ms ™' and zonal winds ex-
ceeding 15ms ™! [see Tory and Dare (2015) for details].

e. Cluster analysis

The probabilistic curve-clustering (CC) technique of
Gaffney (Gaffney 2004; Gaffney et al. 2007) is applied to
group together TC tracks of similar properties in the
WNP basin. The cluster analysis was first implemented
separately on the observed and historically simulated
track data, and later run with all track data combined
(denoted “all-in-one’’). At least 25 cluster runs were
performed on each set of data. In each run, the input
order of the tracks was randomized and 12 iterations of
the expected maximization (EM) algorithm were used.
For each set of data, the cluster run with the smallest
trained log-likelihood value was selected. Following
prior studies (e.g., Camargo et al. 2007a,b®) linear re-
gression mixture (Irm) models of second-order poly-
nomials were fitted to tracks with an objectively
determined number of clusters k. Camargo et al.

21t is important to note that Camargo et al. (2007a,b) used a
different period and basin definition than considered here, namely
the JTWC best track dataset over the period 1950-2002, and in-
cluded storms that formed outside the WNP basin that later en-
tered the region.
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(2007a,b) used seven (k = 7) clusters to describe the
observed WNP TC tracks and the same choice was used
when comparing with model tracks in Nakamura et al.
(2017) and Patricola et al. (2018). To be consistent with
those studies, the present study also initially used seven
clusters to describe WNP TC tracks. However, we ad-
ditionally introduced two more clusters to account for
discrepancies between observed and model data.

f- Detection comparison with Camargo (2013)

Altogether 12 CMIP5 models are used in this study
(Table 1). Six of these models were also assessed with
the TC detection and tracking scheme of Camargo and
Zebiak (2002), hereafter the C-Z scheme, in Camargo
(2013) under historical and RCP8.5 conditions. These
tracks were acquired and adjusted to match the OWZ
tracks in this study (e.g., terminated upon reaching a
subtropical jet, and aligned to the first track position of
OWZ systems; see appendix B herein). This enabled a
direct comparison between this detection scheme (C-Z)
and the OWZ in terms of simulating projected changes
in TC frequencies between the historical and RCP8.5
climate simulations (Table 2). The annual average
number of TCs detected by the C-Z scheme tends to be
less in historical conditions compared to those obtained
via the OWZ scheme. For example, CCSM4 produces
13.4 TCs per year using the OWZ scheme but only 0.7
TCs per year using the C-Z scheme. Similarly, GFDL-
ESM2M produces 21.2 TCs per year using the OWZ
scheme but 9.3 TCs with the C-Z scheme, with the
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TABLE 2. A comparison of annual CMIP5 model detections in the WNP between the Tory et al. (2013a) scheme (OWZ) and the
Camargo and Zebiak (2002) scheme (C-Z) under historical conditions (1970-2000) and the RCP8.5 condition (2070-2100). Agreement
between the detectors on the projected sign of change in TC frequency are in bold. A dash (—) indicates that TC frequencies between the

two climate simulations were not significantly different.

Model Historical (Refogps = 25.3) RCP8.5 Projection sign agreement

Detector owzZ c-Z owz C-Z owz C-Z
GFDL-ESM2M 21.2 9.3 21.5 133 — )
GFDL CM3 14.6 9.4 10.3 6.2 l l
HadGEM2-ES 20.2 4.7 20.2 3.1 — l
CSIRO-MK3.6.0 31.8 16.9 333 15.5 — |
CCSM4 13.4 0.7 13.6 1.6 — 1
MIROCS 20.8 46 13.6 1.8 l l

reference observed annual climatology being 25.3.
However, models generally project TC numbers to in-
crease or decrease in the same direction (except CSIRO
Mk3.6) between the two detection schemes, while small
differences in magnitude causes some model projections
to be statistically insignificant (Table 2).

These results highlight how consistently defined de-
tector thresholds are important for assessing and eval-
uating climate models, and consequently having a better
understanding of uncertainties associated with pro-
jection results. In the next section, we discuss in detail
how the OWZ-detected TCs in different climate models
compare with the observations, as well as make assess-
ments of future projections for the entire WNP basin
and individual countries using a select group of models.

3. Results
a. Preliminary assessment of model tracks

Historical TC tracks detected by the OWZ algorithm
in the 12 CMIP5 models over the years 1970-2000 are
shown in Fig. 1. Notably, some models produced by the
same institution (three GFDL models, two BCC and
ACCESS models), display similar track climatology
such as geographical TC genesis distribution and track
shape. It is here that we acknowledge the work of
Knutti et al. (2013) and Sanderson et al. (2015), who
constructed a ‘“family tree” of climate models high-
lighting the interdependencies that exist between some
CMIP5 models and how these can impact on the results
of multimodel experiments. We place each model into
one of four subgroups based on their analyses: the first
three subgroups comprise models that exhibit similar
control states and responses to the RCP8.5 scenario
(e.g., Knutti et al. 2013) and are either produced by the
same institution or based on the same model. The re-
maining “independent’ models are placed into a fourth
subgroup to simplify analyses. The model subgroups are
as follows:
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« GFDL: GFDL-ESM2M, GFDL CM3, and GFDL-
ESM2G.

« HAD-ACC: HadGEM2-ES, ACCESS1.0,
ACCESS1.3.

« BCC: BCC_CSM1.1 and BCC_CSM1.1m.

e CCC-M: CSIRO Mk3.6, CCSM4, CNRM-CMS5,
and MIROCS

and

Multimodel TC tracks from each ‘“‘subgroup” were
then compared to the observations by using measures of
their genesis density, mean track trajectory, and track
density (Fig. 2). Even though genesis densities between
models were reasonably well simulated overall, three
out of four subgroups (i.e., GFDL, BCC, and CCC-M)
showed evidence of an eastward bias in genesis locations
(Fig. 2, top panel). Notably, Zhang et al. (2017) also
found an eastward genesis bias using a variation of
GFDL CM3. In the Gulf of Thailand (see Fig. 1 for
geographical locations), all subgroups except BCC seem
to have overestimated the genesis density. See Tory
et al. (2018) for further reading.

Mean track trajectories in each model subgroup (as
indicated by a preliminary cluster analysis) showed
varied degrees of simulation of the observed trajectories
(Fig. 2, middle panel). For example, simulation of re-
curving tracks reaching high latitudes around Japan is
lacking in all subgroups, as also noted in prior works
(e.g., Zhao et al. 2009; Bell et al. 2018). The HAD-ACC
models appear to be the most consistent in simulating
these types of recurving tracks, while the GFDL models
show little or no recurvature in their mean track tra-
jectories. This contrasts with Camargo (2013) where
GFDL models show a complete recurvature of tracks
(her Fig. 1). This could be either due to the difference in
TC tracks definitions between the two studies, as
Camargo (2013) considered entire detected track length
and we terminated it as soon as a TC encountered a
subtropical jet, or the OWZ scheme is unable to capture
the recurving tracks in the GFDL models. Furthermore,
comparisons of track densities (Fig. 2; bottom panel)
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(middle) TC tracks (random sample of 400) and (bottom) mean track density (average annual number of individual TCs entering or
forming within a 2.5° X 2.5° grid box, smoothed). In the middle row, a preliminary cluster analysis (k = 7) was run on each set of data. Mean

track trajectories are shown in black.

further highlight some of these regional-scale de-
ficiencies between model subgroups, such as limitations
in tracking TCs at subtropical latitudes near Japan and
the Korean peninsula.

b. Selection of models for cluster analysis

A good way to reduce the biases that exist within in-
dividual CMIP5 models is to combine them into a mul-
timodel mean. The next question that follows is which of
our 12 models to include in such a mean. To avoid
autocorrelation-related errors, our first stipulation is
that only one model from each of the first three sub-
groups defined in the prior section may become be part
of the multimodel mean. This leaves us with seven po-
tential models to choose from. Our next stipulation is
that, combined, the models should realistically represent
the observed TC climatology. Table 1 details several
measures of TC climatology features for each model in
the WNP basin, mainly those of TC frequency and
geographical genesis location. Noticeably, some “‘in-
dependent” models underestimate the observed annual
TC climatology (Refons = 25.3). This can become
problematic when comparing observed TC frequen-
cies with model frequencies if they are to comprise
the multimodel mean. However, it was found that
combining CCSM4 and CNRM-CM5 (CNRM +CCSM;
Table 1) produced climatology measures (i.e., TC fre-
quency and genesis distribution) similar to those of the

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/04/22 07:56 PM UTC

observations. Treating the latter as one model, this was
combined with five other models (GFDL-ESM2G,
ACCESS1.3, BCC_CSMI1.1m, CSIRO Mk3.6, and
MIROCS) to form a six-model mean (6-M). TC clima-
tology measures of the 6-M were also very similar with
the observations (Table 1).

c. “All-in-one” cluster analysis

Next, a curve clustering analysis (Gaffney 2004;
Gaffney et al. 2007) is run to objectively compare the
historically observed and 6-M climate tracks. However,
as is indicated by the middle panel of Fig. 2, cluster an-
alyses run on separate data do not always produce the
same solutions (i.e., location of clusters). So it was not
surprising that a cluster analysis on the 6-M tracks using
seven clusters (k = 7) did not produce a solution where
all clusters were comparable to the observed clusters
(not shown). Through trial and error, using values of k
from 7 to 13 (not shown), it was found that nine clusters
(k = 9; not shown) enabled the best comparison with the
original seven observed clusters (see Fig. 2, and also
Camargo et al. 2007a,b; Nakamura et al. 2017).

To ensure the clusters are objectively comparable for
projections, the cluster analysis (k = 9) is performed
with observed tracks, historical 6-M tracks, and pro-
jected (RCP8.5) 6-M tracks all input to the clustering
algorithm simultaneously (i.e., all-in-one). This allows
projection of tracks onto the same set of clusters (Fig. 3).
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FIG. 3. Results of the ““all-in-one” cluster analysis, which includes observed and model tracks together. Mean track trajectories for each
cluster are displayed in black, with a sample of individual tracks in grayscale. See Tables 3 and 4 for the composition of each cluster.

Note that the locations of the all-in-one clusters were
very similar to the cluster analysis run solely on the
historical 6-M tracks. The composition breakdown of
each cluster is divided into two tables: Table 2 compares
observed and historically simulated TC frequencies,
while Table 3 compares historically simulated TC fre-
quencies with the projected TC frequencies under
RCP8.5. It is found that the historical 6-M overestimates
TCs in the Gulf of Thailand (cluster H) by 74% (or ~1.2
TCs per year), perhaps due to incorrect identification of
tropical depressions as TCs in some models. The his-
torical 6-M also underestimates higher-latitude TC
clusters (clusters F and A), and also TCs near the
equator in the far east of the basin (cluster G). Despite
these inconsistencies, as well as shortcomings in tracking
TCs recurving in westerlies at high latitude above Japan
(section 3a), the 6-M is generally doing well in simulating a
realistic historical TC climatology.

d. Future projections

In additional to regular “raw’ projections between
historical and projected climates, TC frequency detection
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biases may be factored into projection calculations as a
further measure of confidence. We apply a simple
climate-scale bias correction strategy (e.g., Ho et al.
2012; Hawkins et al. 2013) to correct the number of TCs
in the future climate projection using results from the
historical model simulations and observations (under

TABLE 3. Mean annual composition of TC frequencies in each
cluster. Simulated error is calculated by [(historical — observed)/
observed].

Observed Historical Simulated
Cluster (1970-2000) (1970-2000) error (%)
A 3.9 32 -19
B 4.0 33 -18
C 2.9 32 +11
D 33 2.8 -17
E 2.0 2.6 +31
F 3.7 2.2 —40
G 2.3 1.3 —40
H 1.6 2.8 +74
1 2.8 1.7 —42
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FIG. 4. Percentage change of TC frequencies in each cluster between the RCP8.5 and historical climate simulations for individual

models that comprise the 6-M. CS = CSIRO Mk3.6, CC = CCSM4 + CNRM-CMS5, Mi

ACCESS1.3, BC = BCC_CSM1.1m.

the assumption that the variability in models and ob-
servations are the same) such that

Fy

)

4= Foaw T (Ogr = Crep)
where Faq4; represents the adjusted future-climate TC
numbers, Fraw represents raw future-climate (RCP8.5)
TC numbers, Orgr denotes observed TC numbers,
and Cgrgr represents raw historical TC numbers.
Furthermore,

P

aav = (F

Adv OREF)/ OREF >

)

where P g represents an adjusted percentage projected
change in TC numbers.

MIROCS, GF = GFDL-ESM2G, AC =

Projections changes in TC frequency for individual
models within the 6-M for each cluster (Fig. 4) give an
indication of the significance of the changes in annual TC
frequencies under RCP8.5 (Table 4). This significance test
of sign is based on a binomial distribution under the as-
sumption that each model has an equal chance of more
or fewer TCs in the projected climate. These results
(Table 4; Fig. 4) indicate significantly decreased TC fre-
quency for the two straight-moving clusters in the South
China Sea (clusters B and D), and increased TC fre-
quency above 20°N (cluster F) and also east of 160°E
nearer the equator (cluster G). These results are generally
in line with the studies of Murakami et al. (2011), Kossin
et al. (2016), and Nakamura et al. (2017).

TABLE 4. Mean annual composition of TC frequencies in each cluster. Raw projected change is calculated by [(RCP8.5 — historical)/
historical]. See Eq. (1) for adjusted projection calculations. Confidence in the sign of the raw projections is based on results between
individual models in the 6-M (see Fig. 4); values above 90% are in bold.

Cluster Historical (1970-2000) RCP8.5 (2070-2100) Raw projection (%) Adjusted projection (%) Confidence
A 32 32 -1 -1 34%
B 33 2.1 =35 —-29 >95%
C 32 32 -2 -2 34%
D 2.8 2.0 =27 =22 90%
E 2.6 3.0 +13 +17 34%
F 2.2 2.7 +25 +15 90%
G 1.3 2.3 +70 +42 >95%
H 2.8 23 -17 -29 66%
I 1.7 1.5 -6 -4 66%
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FIG. 5. The top left panel shows the defined regions of the Korean peninsula, Japan, eastern China, southern
China, and the Philippines; arrows indicate the adjusted projected change of TC exposure between RCP8.5 and
historical conditions. Projected changes significant at 95% are in red (increase) or blue (decrease). The remaining
figures contain the projected change in annual TC activity (2.5° grid) between RCP8.5 and historical conditions,
where red shading indicates a projected increase in activity.

Comparing projected TC frequencies (Table 4) be-
tween geographically close clusters with quite distinct
trajectories [B (straight-westward) and A (recurving-
northwestward), and D (straight-westward) and C
(recurving-northwestward)] signals an increase in the
number of TCs taking a northwestward track (i.e., be-
longing to clusters A and E) rather than a westward
track (i.e., belonging to clusters B and D) under the
RCP8.5 scenario, consistent with the findings of earlier
studies (e.g., Colbert et al. 2015; Wang and Wu 2015).

e. Changes in landfall activity

The consequence of TC cluster frequency changes
discussed in the prior section (see also section 3f for

changes in large-scale environmental parameters) on
landfalling events (TC exposure) in different regions is
analyzed here. The following regions are defined
(Fig. 5): the Korean peninsula (34°-40°N, 124°-130°E),
Japan (32°-38°N, 130°-142°E), southern China (18°-
23°N, 104°-112°E), eastern China (22°-26°N, 113°-
123°E), and the Philippines (6°~19°N, 120°-126°E). We
define “TC exposure” as the number of individual TCs
that either enter or form within the bounds of a region.

Significant changes in TC exposure were found for
four out of the five regions, with results for eastern
China (E-China) somewhat varied between model sub-
groups (Table 5). For the two most equatorward regions,
southern China (S-China) and the Philippines, 17% and

TABLE 5. Projected change (both raw and adjusted, Py, and P,qj) in TC exposure for the 6-M and four subgroup multimodel means.
Model subgroup projection arrows represent the overall direction of change; arrows in bold indicate that each individual model member
agrees on the direction of change. Bolding in the 6-M column indicates both 95% significant agreement between models and a 95%

confidence interval either side of zero.

Model means

6-M
Region Py Praw HAD-ACC GFDL BCC CCC-M
Korean peninsula 19% (154%) 1 1 1 1
Japan 115% (167%) 1 i 1 1
E-China 14% (18%) 1 1 l l
S-China 117% (128%) ! l l l
Philippines 118% (125%) l ! l !
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TABLE 6. The cluster-specific contributions of TC exposure to the regions of the Korean peninsula, Japan, and the Philippines during
historical and RCP8.5 climate simulations, and the projected change in exposure (Pggposure)- Where appropriate, results that contribute
little to a region’s exposure were omitted. Calculations were made using a mean of six models (6-M). Raw projected TC frequencies for
each cluster (Pprequencies) are also displayed for comparison, with bolding representing at least 90% confidence in that change, extracted
from Table 4. Clusters are listed in order from most to least populous.

Korean peninsula Japan Philippines
Prrequency Historical ~ RCP8.5  Pgxposure ~ Historical ~ RCP8.5  Pgyposure  Historical ~ RCP8.5  Pgyposure

(%) Cluster  (yr ) Gr ) (%) Gr ) Gr ) (%) Gr ) Gr ) (%)
-1 A 0.2 0.2 +24 0.3 0.4 +35 0.5 0.5 —-10
-2 C 0.1 +44 0.2 0.3 +55 0.1 0.1 —46
-29 B 0.9 0.6 -30
+13 E 0.1 0.2 +52
+25 F 0.06 0.13 +127 0.4 0.8 +104
=17 H 11 0.7 =37
=27 D 1.8 1.3 —24
+70 G
-6 I 0.8 0.7 -12

Total 0.3 04 +54 1.0 1.6 +67 5.2 3.9 =25

18% reductions in TC exposure were found respectively.
For the subtropical regions, the Korean peninsula and
Japan, TC activity was projected to significantly increase
by 9% and 15% respectively. We note the adjusted
projections of TC exposure for Japan and the Korean
peninsula (Table 5) were heavily adjusted down due to
only a few model tracks reaching these regions in com-
parison to the observed climatology. This increases the
uncertainty of this result. The overall pattern of pro-
jected TC activity given by the 6-M mean (Fig. 5) is
generally supported by results from other model sub-
groups (also in Fig. 5), although we note the GFDL
models appear to project decreased exposure in the far
east of the basin.

The contribution of each cluster to changes in TC
exposure for each region was also considered (Tables 6
and 7). We note that projection results that were ad-
justed based on observed TC frequencies can complicate
interpretations when comparing the numbers of TCs in a
particular cluster that enter one of our five defined

regions. Hence, only raw values are used in the discus-
sions below. All values referred to can be found in
Tables 6 and 7.

For example, the Korean peninsula is modulated by
TCs from clusters A and F. In particular, we see that
even though the projected changes in the actual number
of TCs forming in clusters A and F are 1% and 25%,
respectively, the projected change in the number of TCs
reaching the Korean peninsula from these clusters are
27% and 50%, respectively (Table 6). Similarly, in-
creasing TC exposure over southern Japan in the pro-
jected climate is found to be primarily from clusters A
(+35%),F (+104%), and E (+52%), noting that the TC
frequency in cluster E was projected to increase by just
13%. These results indicate that more TCs are likely to
track farther poleward in the projected warming climate
as opposed to the historical climate. Further analysis
isolating tracks in cluster E (not shown) indicated that
TCs belonging to this cluster were more likely to
follow a curving path into Japan in the projected

TABLE 7. As in Table 6, but for the eastern and southern China regions.

Eastern China

Southern China

Prrequency (%) Cluster  Historical (yr™')  RCP8.5 (yr™')  Pegposure (%)  Historical (yr™')  RCP8.5 (yr™')  Pexposure (%)
-1 A 1.0 1.0 +7 0.1 0.1
-2 C 0.2 0.2 —6
-29 B 0.7 0.5 =35 1.8 12 -36
+13 E
+25 F
-17 H
-27 D 0.3 0.3 +8 0.3 0.3 -2
+70 G
-6 I 0.1 0.1 -9
Total 23 2.1 -8 23 1.7 —28
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climate, rather than missing Japan to the south or east.
Analysis of this finding is underway in a separate study
but is beyond the scope of this paper. For the Philip-
pines, we note that fewer straight moving TCs in the
projected climate (i.e., clusters B and D, and to some
extent H), compared to the historical climate, ac-
count for most of the reduced exposure (—25%) to
this region.

TCs impacting eastern China are strongly modulated
by clusters A and B (Table 7). We note a slight increase
(+7%) in the number of TCs reaching eastern China
from its dominant cluster (A) in the projected climate
as opposed to the historical climate. In contrast, there
is a substantial decrease of TC frequency in cluster B
(—29%) as well as a substantial decrease in the number
of TCs eventually reaching eastern China from this
cluster (—35%). TCs reaching eastern China from
cluster D are slightly increased (+8%) compared to
a reduction in this cluster’s TC frequency (—27%).
Altogether these changes account for only a slight
(insignificant) decrease in TC activity for the eastern
China region (Table 5). Southern China is most
strongly modulated by straight moving TCs in the
South China Sea (cluster B). Fewer straight moving
TCs (i.e., clusters B and D) under RCP8.5 substantially
reduce TCs reaching southern China in the projected
climate by ~28%.

f- Role of large-scale conditions

The relationship between TC genesis and certain large-
scale environmental parameters has been well docu-
mented since studies by Gray (1968, 1975). Here we
analyze four large-scale fields, some of which are utilized
by the OWZ TC detection scheme to identify TCs in
model data, to better understand projected changes in TC
genesis, and overall TC activity between the historical and
projected climate simulations. Dynamical parameters
evaluated were cyclonic relative vorticity at 850hPa, en-
vironmental vertical wind shear between 850 and 200 hPa
and the vertical velocity w at 500 hPa. We also examined
the changes in midlevel relative humidity at 700 hPa.
Values needed to compute these parameters (such as u
and v components of winds at respective levels) were
taken during the early to peak TC season in the WNP,
(i.e., July-September). Environmental parameters were
then composited over all seven models that form the 6-M,
for the historical and RCP8.5 simulations, and their dif-
ferences are displayed in Fig. 6. Regions where at least six
out of the seven models agreed on the sign of change are
marked with a crosshatch pattern.

In the South China Sea, we see significant increases
in relative humidity but no discernible changes to
vertical wind shear or omega. The differences in
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cyclonic vorticity? (anticyclonic vorticity values were
set to 0 before subtraction) between the projected and
historical climates were consistent with decreased
straight-moving TCs and more recurving TCs here,
although only the former were found to be significant
(Fig. 6a). Due to little indication of decreased favor-
ability from other TC genesis parameters, it is likely
that reductions in straight-moving TCs in the South
China Sea are due to more TCs taking a northwestward
track in the climate projection, as indicated by previous
studies (Colbert et al. 2015; Wang and Wu 2015).
North of 20°N, we see significant reductions in vertical
wind shear, as well as increases in omega and relative
humidity, supportive of enhanced TC genesis in cluster
F and poleward track movement in clusters F, A, E, and
C. East of 165°E near the equator we see significant in-
creases in relative humidity and ascending motion,
consistent with increased TC frequency in cluster G.

4. Discussion and summary

Many studies in the past have looked at WNP TCs in
the context of climate change using both fine-resolution
model experiments as well as coarse-resolution models
such as those from the CMIP experiments. However,
most of these studies have utilized a model-dependent
TC detection and tracking scheme proposed by Camargo
and Zebiak (2002) or similar. While we note that no de-
tector is perfect and that different detectors can produce
different results when applied to the same model (Horn
et al. 2014), use of a model- or resolution-dependent
detection and tracking scheme can artificially conceal the
true performance of a model by conflating model errors
with detection errors (Tory et al. 2013a,b).

To facilitate thorough assessments of climate model
performance over the WNP basin, and therefore enable
more confidence in projection results, we utilized a
model- and resolution-independent TC detection and
tracking algorithm developed by Tory et al. (2013a),
called Okubo-Weiss—Zeta (OWZ), that is fundamen-
tally different in design from that applied in the prior
studies. This scheme was applied to CMIP5 model sim-
ulations to determine projected changes in the WNP
TCs between historical climate simulations (1970-2000)
and projected climate simulations (2070-2100) under the
RCP8.5 warming condition. Results were then compared

3 It should also be noted that TCs themselves can be responsible
for elevated levels of cyclonic vorticity, and to lesser extent as-
cending motion (i.e., more TCs occurring in a specific region may
artificially inflate values over a 3-monthly mean like that seen in
Fig. 6a). However, this would be unlikely to have a large impact on
the results.
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FI1G. 6. Difference in the kernel densities of large-scale TC genesis parameters between RCP8.5 and historical
conditions during the early-to-peak season months of July-September, averaged over each model used in the 6-M.
Cross-hatching indicates at least 90% significance (agreement on sign between models). (a) Cyclonic relative
vorticity at 850 hPa, (b) environmental vertical wind shear between 250 and 800 hPa, (c) relative humidity at
700 hPa, and (d) vertical omega velocity at 500 hPa. Red shading represents more favorable conditions for TC

formation, noting (b) and (d) were multiplied by —1.

with several similar studies in order to draw a consensus
on WNP TC changes as a result of global warming. De-
spite often significant differences in the number of TCs
detected between the Camargo and Zebiak (2002)
scheme (the C-Z scheme) and OWZ detection scheme
used in this study, the projection conclusions drawn
are consistent with previous studies using the C-Z scheme.
This is a reassuring result that increases our confidence in
the general results of this and previous papers.

TC tracks in the observed and model data were sep-
arated into nine clusters. While accounting for potential
biases between historical and RCP8.5 climate simula-
tions, projected changes in overall TC frequencies for
each cluster were evaluated. Impacts of these cluster-
specific changes on various subregions, relating to TC
exposure in the WNP basin were also determined. The
main results of this study are summarized as follows.
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e In the future climate projection, TC frequencies of
straight-moving TCs in the South China Sea (clusters B
and D) were found to significantly decrease. There was
no evidence of reductions, significant or otherwise, in
the favorability of the large-scale TC genesis parame-
ters analyzed except for a decrease in cyclonic vorticity
close to the coastline. Therefore, these decreases are
likely due to more TCs taking a northwestward track in
the climate projection, as found by several other studies
(e.g., Colbert et al. 2015; Wang and Wu 2015).

o TC frequencies in the eastern and upper segments of
the basin, particularly those associated with clusters F
and G, were found to significantly increase. These
increases were consistent with increased favorability
of the large-scale TC genesis parameters of vertical
wind shear, relative humidity, and omega. These results
are in line with other previous studies (e.g., Murakami
et al. 2011; Kossin et al. 2016; Nakamura et al. 2017).
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TABLE Al. Parameter threshold values for the two sets of the OWZ-Detector’s detection criteria; subscripts refer to the pressure
level (hPa).

Parameter thresholds

Criterion OWZg50 OWZSOO RH950 RH700 VWS8507200 SpH950
Initial 50 X 1076571 40 X 1076571 70% 50% 25ms™! 10gkg™!
Core 60 X 10 ¢s7? 50 X 1076571 85% 70% 125ms™ ! 14gkg™!

« Significant changes in TC exposure were found in four
subregions. For the two most equatorward regions,
southern China and the Philippines, bias-corrected re-
ductions in TC activity of 17% and 18% were found
respectively. For the subtropical regions of the Korean
peninsula and Japan, TC activity was projected to sig-
nificantly increase by 9% and 15%, respectively. These
results are again consistent with earlier studies (e.g.,
Wang et al. 2011; Kossin et al. 2016; Park et al. 2017).

In closing, we do note that significant discrepancies be-
tween the low-resolution models used in this study
embed a degree of uncertainty in the projection results,
although these limitations were minimized by the methods
used and confining the analysis to only appropriate TC
characteristics. Furthermore, although findings in this
study were supportive of many results found in prior pa-
pers, there were of course some disagreements among
those existing studies [e.g., Colbert et al. (2015) found in-
creases to the Korean peninsula and Japan to not be re-
markable, in contrast to Kossin et al. (2016)], and therefore
projection results to some extent remain uncertain. How-
ever, this study has potentially removed some of that un-
certainty by supporting specific results without the caveats
of the detector/tracker bias and model autocorrelation.
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APPENDIX A

OWZ Detection and Tracking

The OWZ detection system consists of six parameters
(Table Al): minimum thresholds of OWZ at the 850- and
500-hPa levels, relative humidity (RH) at the 950- and 700-
hPa levels, specific humidity (SpH) at the 950-hPa level,
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and a maximum threshold of vertical wind shear (VWS)
between 850 and 200 hPa. The OWZ variable is a low de-
formation vorticity parameter used to identify regions fa-
vorable for TC formation at the center of a semiclosed
circulation (i.e., a “marsupial pouch”; Dunkerton et al. 2009),
within the lower to middle troposphere. More precisely, it is
the product of absolute vorticity and the Okubo-Weiss pa-
rameter (Okubo 1970; Weiss 1991) normalized by the ver-
tical components of relative vorticity squared such that

OWZ = sgn(f) X ({ + f) X max [w, },

(A1)

where fis the Coriolis parameter, { = (dv/dx) — (du/dy)
is the vertical component of relative vorticity, E =
(0u/dx) — (9v/dy) is the stretching deformation, and F =
(0v/dx) + (9u/dy) is the shearing deformation.

The OWZ detection and tracking scheme is concisely
summarized in five points below, with further details ac-
cessible in other studies (Tory et al. 2013a; Bell et al. 2018).

1) Each 1° X 1° grid point is assessed based on the initial
threshold values of each OWZ-Detector parameter
every 12h.

2) When at least two neighboring grid points satisfy the
initial thresholds of each OWZ-Detector parameter,
these points are considered to represent a single
circulation at that point in time.

3) The circulations from item 2 are linked through time
by estimating their position in relation to the circu-
lation’s expected position based on an averaged 4° X
4° steering wind at 700 hPa.

4) Tracks are terminated when no circulation match is
found in the next two time steps within a generous
(~350km) latitude-dependent radius.

5) The core thresholds are then applied to each storm
track, and if they are satisfied for 48 h, a TC is declared.

APPENDIX B

C-Z Track Alignment

To properly align the tracks for comparison in Table 2, a
similar track position as the TC declaration position (i.e.,
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FIG. B1. Distribution of the match between model tracks detected with the C-Z detector and the TC genesis
position of model tracks detected with the OWZ detector. HR 7 indicates the proportion of C-Z detected tracks
successfully matched to OWZ detected tracks for each model; n indicates the median number of days a C-Z track

took to reach the OWZ genesis position.

genesis position for OWZ tracks) must be found for the
C-Z tracks. The genesis position of OWZ detected tracks
were compared with matching C-Z detected tracks in each
model [the criteria for a track match or “hit” are the same
as used in Bell et al. (2018)]. Results (Fig. B1) show that for
the C-Z tracks, a median of around 7 days after initial
detection is the closest match to the TC genesis (or first)
position of the OWZ tracks. Further analysis (not shown)
found a positive relationship (r = 0.4) between the lifetime
of a C-Z TC and the time it takes to reach the OWZ
genesis position.

Therefore, it was decided to remove the median
number of days (7) identified by Fig. B1 for TCs with
lifetimes greater than 18 days. TCs with lifetimes of
18 days or less were trimmed according to a simple linear
regression equation:

Track removed = (0.32 X lifetime) + 5.1 (B1)
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where “Track removed’ and “lifetime” are in the units
of number of six-hourly time steps. For example, a TC
with a lifetime of 18 days has 72 six-hourly time steps,
and thus its “Track removed” would be 28 six-hourly
time steps (7 days).
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