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Conditional distribution functions and the inverse forms of five candidate copulas are given as 

following: 

 

1. Gaussian (Normal) Copula 

The bivariate Gaussian (Normal) copula has distribution function: 

𝐶(𝑢, 𝑣;  𝜃) =  Φ𝜃(Φ−1(𝑢), Φ−1(𝑣)) 

where 𝑢  and 𝑣 are the marginal distribution functions of the random variables 𝑋 and 𝑌 in the range 

[0, 1], Φ is the standard normal distribution 𝑁(0,1) with mean zero and unit variance, Φ−1 is its 

inverse, and Φ𝜃 is the bivariate standard normal distribution with correlation 𝜃. 

The corresponding density function is: 

𝑐(𝑢, 𝑣;  𝜃) =  
1

√1−𝜃2
exp [−

𝜃2(𝑢2+𝑣2)−2𝜃𝑢𝑣

2(1−𝜃2)
]. 

The ℎ and ℎ−1 functions for Gaussian (Normal) copulas are: 

ℎ(𝑢, 𝑣;  𝜃) =  Φ[
Φ−1(𝑢)−𝜃Φ−1(𝑣)

√1−𝜃2
], and  

ℎ−1(𝑢, 𝑣;  𝜃) =  Φ[Φ−1(𝑢)√1 − 𝜃2 + 𝜃Φ−1(𝑣)] 

The parameter space for the dependence parameter of Normal copulas is 𝜃 ∈ (−1,1). 

 

2. Student-𝒕 Copula 

The bivariate Student-𝑡 copula has distribution function: 

𝐶(𝑢, 𝑣;  𝜌, 𝛿) =  𝑡𝜌,𝛿[𝑡𝛿
−1(𝑢), 𝑡𝛿

−1(𝑣)] 

where 𝑡𝜌,𝛿 is the bivariate Student-𝑡 distribution function with correlation parameter 𝜌 and 𝛿 

degrees of freedom, and 𝑡−1 denotes the inverse univariate Student-𝑡 distribution function with 𝛿 

degrees of freedom.  

The corresponding density function is: 

𝑐(𝑢, 𝑣;  𝜌, 𝛿) =  
Γ(

𝛿 + 2
2 )Γ(

𝛿
2)

√1 − 𝜌2 [ Γ (
𝛿 + 1

2 )]2 
×

{[1 +
(𝑡𝛿

−1(𝑢))2

𝛿
][1 +

(𝑡𝛿
−1(𝑣))2

𝛿
]}

𝛿+1
2

{1 +
[𝑡𝛿

−1(𝑢)]
2

+ [𝑡𝛿
−1(𝑣)]

2
− 2𝜌𝑡𝛿

−1(𝑣)

𝛿(1 − 𝜌2)
}

𝛿+2
2

 

The ℎ and ℎ−1 functions for Student-𝑡 copulas are: 
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ℎ(𝑢, 𝑣;  𝜌, 𝛿) =  𝑡𝛿+1{
𝑡𝛿

−1(𝑢)−𝜌𝑡𝛿
−1(𝑣)

√[𝛿+(𝑡𝛿
−1(𝑣))

2
](1−𝜌2)

𝛿+1

}, and 

ℎ−1(𝑢, 𝑣;  𝜌, 𝛿) = 𝑡𝛿{𝑡𝛿+1
−1 (𝑢)√(𝛿+(𝑡𝛿

−1(𝑣))
2

(1−𝜌2)

𝛿+1
+ 𝜌𝑡𝛿

−1(𝑣)} 

The parameter space for the correlation parameter is 𝜌 ∈ (−1,1), and for degrees of freedom 

parameter is 𝛿 > 2.  

 

3. Frank Copula 

The bivariate Frank copula has distribution function: 

𝐶(𝑢, 𝑣;  𝜃) =  −𝜃−1 log([1 − 𝑒−𝜃 − (1 − 𝑒𝜃𝑢)(1 − 𝑒𝜃𝑣)]/( 1 − 𝑒−𝜃))  

The corresponding density function is: 

 𝑐(𝑢, 𝑣;  𝜃) =  
𝜃(1−𝑒−𝜃)𝑒−𝜃(𝑢+𝑣)

[(1−𝑒−𝜃)−(1−𝑒𝜃𝑢)(1−𝑒𝜃𝑣)]2. 

The ℎ and ℎ−1 functions for Frank copulas are: 

ℎ(𝑢, 𝑣;  𝜃) =  
𝑒−𝜃𝑣

1−𝑒−𝜃

1−𝑒−𝜃𝑢+𝑒−𝜃𝑣−1
, and 

ℎ−1(𝑢, 𝑣;  𝜃) =  − log {1 −
1 − 𝑒−𝜃

(𝑢−1 − 1)𝑒−𝜃𝑣 + 1
} /𝜃 

The parameter space for 𝜃 is 0 ≤ 𝜃 < ∞. 

 

4. Clayton Copula 

The bivariate Clayton copula has distribution function: 

𝐶(𝑢, 𝑣;  𝜃) = (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃 

The corresponding density function is: 

𝑐(𝑢, 𝑣;  𝜃) = (1 + 𝜃)(𝑢𝑣)−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)−2−1/𝜃. 

The ℎ and ℎ−1 functions for Clayton copulas are: 
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ℎ(𝑢, 𝑣;  𝜃) =  𝑣−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)−1−1/𝜃, and 

ℎ−1(𝑢, 𝑣;  𝜃) = [(𝑢𝑣𝜃+1)
−𝜃(1+𝜃)

+ 1 − 𝑣−𝜃]−1/𝜃 

The parameter space for 𝜃 is 0 ≤ 𝜃 < ∞. 

 

5. Gumbel Copula 

The bivariate Gumbel copula has distribution function: 

𝐶(𝑢, 𝑣;  𝜃) =  exp{−[(− log 𝑢)𝜃 + (− log 𝑣)𝜃]
1
𝜃} 

The corresponding density function is: 

𝑐(𝑢, 𝑣;  𝜃) =  𝐶(𝑢, 𝑣;  𝜃)(𝑢𝑣)−1 × 

[(log 𝑢) (log 𝑣)]𝜃−1

[(− log 𝑢)𝜃 + (− log 𝑣)𝜃]2−
1
𝜃

{[(− log 𝑢)𝜃 + (− log 𝑣)𝜃]
1
𝜃 + 𝜃 − 1} 

where the dependence is controlled by 𝜃 ≥ 1. Perfect dependence is obtained when 𝜃 → ∞, and 

𝜃 = 1 implies independence. 

The ℎ function for Gumbel copulas is: 

ℎ(𝑢, 𝑣;  𝜃) =  𝑣−1exp {−[(− log 𝑢)𝜃 + (− log 𝑣)𝜃]
1
𝜃} [1 + (

log 𝑢

log 𝑣
)

𝜃

]−1+1/𝜃 

There is no closed form of ℎ−1 function for Gumbel copulas. Therefore, a numerical routine, i.e. 

Newton-Raphson method, is used to invert it. 

 


