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l. Introduction

In the theoretical study of the sound field produced by a source in an

ocean, the model of a point source in an ocean of constant depth has been

investigated very thoroughly  cf.[lj!. Probably the reason for this is that

it approximates a real sound source in a real ocean. In the past, this has

been a reasonable assumption because the real sources considered were

often small. However, it is anticipated that in the future the attention will

be turned to quieter and dispersed sources of sound in the ocean. This

means that one must be closer to the sources in order to be able to detect

them.

In the past, observations were made, moreover, so far away that one

could assume that the sound source was simply a point source. In the

future, one must assess the effects of distributed sources of sound, that is,

one must consider the shapes of the sound sources.
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This motivates us to investigate the two kinds of problems:

�! The div'ect pv'opagation problem, i.e., if we know the shape of an

object, how is the sound field produced or scattered by it? What can

we expect to detect in a reasonable distance? This problem is to find an

operator T mapping the boundary of the obstacle and the incident field

onto the far field patterns.

�! The inverse scattering problem, i.e. if we have detected the scattered,

data at a distance, can we say anything about the shape of the obstacle, that

is, can we invert the operator T to reconstruct the shape of the scattering

obstacle?

Recently, much progress has been made on the inverse scat tering problen

for time-harmonic acoustic waves in the whole space  cf. I3I,[4]!. However,

in a finite depth ocean, the interaction of the surface and bottom of the

ocean on the sound waves causes a pronounced efFect in the far field pat-

tern. These surfaces, for example, permit only a finite number of modes to

propagate, the other waves being evanescent.

For the direct problem, much investigation has been made. However,

for the three dimensional wave propagation in an ocean, "the exact theory

of wave scattering from rough surfaces has not yet been developed." [5],

also [2I! !n particular, when using integral equation method, there may be

real values of k. at which uniqueness fails.

In this paper, we will discuss problem �!. The main contribution of

this paper is to prove that for any real value of k, our problem is uniquely

solvable. We will obtain a representation in terms of single and double



2 The Representation of Propagating Solu-
tions

Let R> � �   x, z! g R; x =  zq, zq! C R, 0 < z < h!, where h is a positive

constant; moreover, let Q be a bounded domain with a C~ boundary having

an outward unit normal v, such that 6 C Rst,, The direct propagation

problem in a homogeneous ocean, of constant depth, with a pressure release

surface, and a rigid bottom may be modeled as  cf.[1]!:

Dsu+k u=0, ill,Rb!A �.1!

� 2!B=0, a4 z = 0,

Bu
� =0
Bz

� 3!at =h,

Bu
lim r2  �" � ika�u'�! = 0, r =[ x [, n =0,1,...,oo.

Br
�,4!

u = g x,z!, for  x, z! q BO. �.~!

Here Zq is the three dimensional Laplace operator, k a real number, g a

given function, and u� the n'" normal propagation mode. i.e. if

�~ + 1!'~'
4k~h2 �.6!

layer potentials for the solutions, establish an eziatence theorem, and fur-

thermore, find a representation for the far field pattern. Based on these

results, we can characterize the far-{ield pattern and discuss the inverse

scattering problem.  cf. [6],[7],[8],[13]!



then u may have a norinal mode representation

u' = Q P� z!u'� x!,
n=p

�,8!

OQ

G z,, ! = � g y� z!y�  p!Hp"  ka�!
2h �

{2.9!

where H~'! {r! is Hankel function of Srst kind of order n,

If u is a solution of �.1! �.4! in C  R~ $ G! A C R~ $ 0! such that

the normal derivative on the boundary exists in the sense that the limit

Btl
�  x, z! = l" v x, z!, grad u  x, z! � hv x, z!!!,  x, z! g 80

exists uniformly on BQ. Then by Green's formula,

 G z  -I x- I! ' � �  =  , x-  l!u    !!«f au g, C! aG
Ov Ov

f « -.� , ,I * �  I! ' �  ', , I * � < l!~  , !!~~au  , q! aG
an Ov 8v

0 if x,z! CQ
�. 10!

fr, G z,  , ~ x �   I!~a a~c z |... ~ x �   I!u  , |,!!«
if  x,.! eR',!n

where

u� x! is the n'" normal mode.[1j

Let G z, zp, r! be the Green's function in R> satisfying the radiating

condition �,4!. Then G z, zp, T! can be written as [1j.



and e, R are positive numbers such that 0, C R> $ 9, 5 C AR.

Since G z,t,', I x �   I! can. be written as [1]

eik
G z, , I x �   I! =

where

l

@i z  , I » �   I! =- =--,.~o I » �   I' + z �   � 2«!'
ik ik

G do «0,
f', BV

and

f BGu � do -+ u x,z!, as e «0,
I', Bv

From �.10! we have

f Bu BG I Ou BG G u!do � j  G � � � u!da
r�Bv Bv sn Bv Bv

0 if x,z! CQ,
u x,z! if  x,z! e R, �, � ]2!

Let

G »,zp,~! = � Pa~4~ z�~ zp!Ho  ka�T!,
e=G

and denote

G z, zp, >! = Q + Q =: Gz+ G',,
n! jV

it may be seen that 4~ z,  , I x �   I! is bounded and continuous at z =

C,x =  . Therefore











For n > N + 1, u�= 0 e ~'"~ !, as R -+ oo; hence.

2n g~
lirn 2kIm P u�" Rd8 = 0

R~oo ~ ! Q

�.2! becomes

2~
lim Q � " + k'a'�!u�~' RdH = 0.

R~aa a�ov=O r=R

�.3!

In view of the a�being positive for n = 0, 1...., N, �.3! implies that as

R ~ oo we must have

2 ll

Iu�~ RdH = o l!, n = 0, 1, ..., N.
0

u x,z! = Py� z!u� x! = g P C�,H,'  ka�r!e" y� z!,
n~O a=0 '=co

from �,4!,

f 2 ll' OO

un Ri 8! ~ RAH = g !CmJ'   HJ   ka�R!  2rR = o�!.
J � OO

XVe must have

/CnJ / IHJ  kanR!l 2vrR = o�! as R ~ oo,

n = 0, 1,...,N; j = 0,+1,+2,

However,

H,  ka�R! = 0  ~�! as R ~ oo, n = 0,1,...,14'.

So
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Since far sufficient, Large R, any solution of �.1! �.5! can be written in

the form of



that is

u�= 0 f or n = 0, 1, ..., rV.

Hence,

u x, -! = Q P� z!u� x! = Q Q C�,HI'~ ka�r!e'ge p  
n= N+1 m=X+1 j=oo

e -kspp+~r

=0  !, ns ~ -~.
rl/2

B B
[ug �  uP! � up �  up!]der

snub > Bv Bv
�.6!

If g = g r!, then the left-hand side of �.6! becomes

f  ill' " < " � » ~! + !~l'� < 4 � 0 < 0!
nz>n

Bu B@ Bu � Bg
-+2  u � g � � u � g !]dX.

BT Br OT BT

Since k is real, and u~an � � 0, u~, p = 0, u,~z � q � � 0, 0, = 0, it follows that

[ u~' y ~ e � y Z y! + ~ u � 0 � � �.� y !]aXf �86' Bg Bu BQ
np!n Br Br Br Br

B B
[u@ �  uy! � uy �  uy!]~~.

I'R Bv Bv �.7 j

Let us introduce the following notation:

11

Now let 4 be a function in C  R~ '!!, F! 3 C' R> '!!, 0!; then by the second

Green's formula,

f [up 6  urp! � ug B  up!]dX
OR!Q



then f iu~'dX = f d r!rdr,
Rf Ku�dx = f B r!rdr

nRhn

Lemma 3.3: Im B r! = 0 for r C [0, oo!, and 2B r! = A' r!.

Proof: Let Q = @ r! be a real C function in �.7!, such that @ r!

remains bounded as r ~ oo. By letting R -+ oo, the right-hand-side of

�.7! vanishes by �.1!. Then �.7! follows

0 = 2 f d u � � K dX = 4i d Im B r!!rdr. �.8!8$ Bu Ou ~ OQ
R~! n Or Or Or p Br

Let us denote

g+ r!:= max Im[B  !I,O!,

g  r!:= mar  � Im[B r!j, 0!,

g>+  r!: = 2 g+ t! dt

then

= � �  I!I' ! = g  r!.+8/+ 1 8 +~ +
Or 2 Or

Since
e � 2k e +! Ir

B r! 0  !, asr~oo,
r

 t>+ r! is bounded as r ~ oo. iVow taking Q� r! C C~[0, oo! such that

Iv� r! �  j+ r j Ic~ ~ 0 a' n ~ oo
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and substituting v'� into �.7!, we conclude that

4i [g+ r!] rdr = 0.
0

Hence, g+ r! = 0. In the same way we can prove g  r! = 0; consequently,

Im[B r!] = 0 for r E [O,oa!, �.9!

and
2'

A' r! =  uu, + uu,!dzdH = 2B r!.
0 Z

�.10!

Now we are in a position to prove:

. Theorem 3.1: .Under the assumptions of Lemma 3.1, it follows that

« �= 0 in R,'   n.

Proof: Rewriting �.7! as

[A r! P�+ -$,! + 2B r! ]grdrf 1

[A r!��+ � @,! + 28 r!if,,]ifrdr
1

0 r

= f [i~I' Oq eq !+-lwl' uq' u~� !!~~. �.11!

Without loss of generality, we can suppose that A r! P 0. In fact, if A r!

has zero points r�, then

from the continuity of u. Let r = sup� r�], if r = oo, then there is a r�

such that 9 C 0�. By separation of the variables in R~ $ B�� it is easy

to see that «� : 0 in R>~   B��and hence, by analyticity of the solutions
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hence u ro,8, z! = 0 on   r�,8, z! E R>, 0 < 8 < 2', = E Zj, which follows





By assumption, A r! g 0,

r

14  !I <

  M � +go -i/21osA ~!

Ir ~ @ ril>eilon+i l~

l-~  !I'"

We can choose Po such that +go � -' ! 1, then Q satisfies �,12!; conse-

quently, Theorem 3.1 is proved.

4 An Existence Theorem

We are going to combine the double- and single-layer integral representa-

tions to prove the existence of a solution to �.1! �,5!, We do this by

seeking a solution of the exterior Dirichlet Problem �.1! �.5! in the

form of a combined double- and single-layer potential:

where we use the subscript   to denote in which variables we compute

the normal derivative and perform the integrator. The source point is at

 x, z!,and g P 0 is an arbitrary real parameter.

We recall that G z,  , Ix �  I! has a representation of the form �.11!.

If we de6ne the operators S, IC, A' from C 80! to C 8Q! by

Sp;= 2/ G ", , ix �  ijp g, !du~,  x, =! E 80,



Ii'p:= 2 f ' P  ,C!da,  x,z! e an,r >G z,  , Ix �  I!
J� Bv

and S, K, K' are the operator de6ned by

Sp:= 2f O X,V!p Y!da< x,,z! q BB

1~4:= 2 4 X, Y!$ Y,C!de~,  x,z! C 80,
8

an Bvt

I 'P:= 2 4 X, Y!$ V,Qd,  , ! Q an,
a

an Ov

where
iklx- Yl

C X, Y! =, X =  x,z!, Y =   , !,

then we have the decompositions

SP = SP+ Sig,

KP = KP+ Kig,

K'P = K'P+ A',4.

Vote that Si, IC>, Ix,' are integral operators with the continuous ker-

nels 4> z, , ~x �  ~!, a 4> z,t,",~x �  ~!, and a� �4i z, , x �  ~!, respec-

tively, Based on the well known boundary properties for these operators

S, K, and Ii', we can conclude that. S, IC, K' satisfy the same jump

condition as S, K, A" respectively.

Theorem 4.1 The composite double- single- layer potential u x,z!

defined by �.1! is a solution of �.1! �.5!, provided that the density

u' ~ C BQ! is a solution of the integral equation

� 2!
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The first Green's formula implies that

ig f  p 'da = f u ' d~. = f  i ~ u ' � k' u!'!dx.

Since k is real, it must, be

d =0

and g = 0 on BB.

Combining Theorem 4.1 and 4.2, we then obtain the desired conclusion.

Theorem 4.3 The problem �,1! �,5! is uniquely solvable.

5 Propagating Far FieM Patterns

We have known that in a constant depth ocean there are only finite many

propagating modes of wave. the others will evanesce soon. Therefore, the

far- field pat tern in a constant depth ocean will contain only the information

from the propagating modes. One wonders how much information has

been lost in the propagating process, In this section, we will present a

representation of far-field patter'ns in terms of the combined double- single-

layer potential, and we will discuss some of the properties of far-field

pattern. A further discussion can be found in [6],[10].

Let 8 = }x �  }, r = }x}, r' = } }, x  r,8!,    r',8'!. R

r + r~ � 2rr'cos H � 8'!. We can expand the Hankel function Hp  kR! as

Hp  kR! P e�II� kr! 1�  kr'!cosn 8 � 8'!, r ! r', �. 1 !
n=p

where ep � � 1, and e�= 2 for n > 1.

18



Irr view of  o.1!,

 - C!l  I! G    i  i!
Vg

-i  J  ka�r'!P� t,!cosm8'!]

+d� z!H~'~ ka�r!sinm8[   J  ka�r'!b�  !sinm8'!
8Vg

 ~ 2!
n=O m=O

where

� z,8, r', j,8'! = P� z! cosm8[   J  ka�r'!P�  !cosm8'!
2h BVg

� i J  ka�r'!$�  '!cosm8'!]+ sinm8[ �  J  ka�r'!P�  !sinm8'!
BVg

� i  J  ka�r'!P�  !sinm8'!]! .

Since for n ! iV, a�= ~la�j,

e+p[ kla~lr i m+ 1/-! j
2

a ~'i ka�r!

e � I ia�ir
0 ,i !=0  i !, asr oo.

Hence,
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CQ OO 8

26
P� z!H  ka�r!cosm8[  J  ka�r'!P� t,'!cosm8'!

a=O m=O BV 



Now from �.1!  set It = 1!,

u x,z! = Q
@=0

exp ika�r!

f I I 1P exp[i �  m+1/ !-]a � z,8,r', ,8'!   t! x,z!d8<+0  3/z!
an 2

IV
I

esp ika�r! f� z,8! + 0 ,,!, as r ~ oo �.4!
n=rf ' +n~

where

CO 7ff� z, 8! = � f P ezIz   �  zzz+ 1/2! � !a � z, Hr',  ,,8'!I g zz, z!zIHz,
n = 0,1,...,>V;

play the role of a far-field pattern, and g 6 C 80! is the unique solution.

of integral equation �,2!.

We call the function

F z,8!:= Q f� z,8!  s.s!

QD c7
F z,8! = P 4� z! Q e cosm8 [  J  ka�r'!   !�  !cosmic'!2h~ �" an Bv~

� i  J~  ka�r'!P�  ,"! cosmic'!]g x,  ! do' ,
00 a

sinm8 [ �   J  ka�r'!P�  !sinm8'!
m=0 BA Bvg

-i  J  ka�r'! t!�  !sinm8'!]g x,  !de!'~!,

 8, z! E [0,2!r] x [0, h].  s.6!

Let F be the set of far-6eld patterns. In the case of Rs and R~, we

know that there is an one-to-one correspondence between F and C� l!

20

the 'propagating far-field pattern". From the representation of a � z,8, r',  ,,8'!.
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