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The Propagating Solutions and Far-field Patterns
for Acoustic Harmonic Waves in a Finite Depth
Ocean

Yongzhi Xu
Dept. of Math. Sciences ,

University of Delaware ,
Newark , DE 19716 . !

1. Introduction

In the theoretical study of the sound field produced by a source in an
ocean, the model of a point source in an ocean of constant depth has been
investigated very thoroughly (cf.[1]). Probably the reason for this is that
it approximates a real sound source in a real ocean. In the past, this has
been a reasonable assumption because the real sources considered were
often small. However, it is anticipated that in the future the attention will
be turned to quieter and dispersed sources of sound in the ocean. This
means that one must be closer to the sources in order to be able to detect
them.

In the past, observations were made, moreover, so far a.wﬁy that one
could assume that the sound source was simply a point source. In the
future, one must assess the effects of distributed sources of sound, that‘ is,

one must consider the shapes of the sound sources.
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This motivates us to investigate the two kinds of problems:

(1) The direct propagation prodlem, i.e., if we know the shape of an
object, how is the sound field produced or scattered by it? What can
we expect to detect in a reasonable distance? This problem is to find an
operator T mapping the boundary of the obstacle and the incident field
onto the far field patterns.

(2) The tnverse scatiering problem, i.e. if we have detected the scattered .
data at a distance, can we say anything about the shape of the obstacle, that
is, can we invert the operator T to reconstruct the shape of the scattering
obstacle?

Recently, much progress has been made on the inverse scattering problen
for time-harmonic acoustic waves in the whole space (cf. {3],[4]). However,
in a finite depth ocean, the interaction of the surface and bottom of the
ocean on the sound waves causes a pronounced effect in the far field pat-
tern. These surfaces, for example, permit only a finite number of modes to
propagate, the other waves being evanescent.

For the direct problem, much investigation has been made. However,
for the three dimensional wave propagation in an ocean, “the exact theory
of wave scattering from rough surfaces has not jret been developed.”([5],
also [2]) In particular, when using integral equation method, there may be
real values of k at which uniqueness fails.

In this paper, we will discuss problem (1). The main contribution of
this paper is to prove that for any real value of k, our problem is uniquely

solvable. We will obtain a representation in terms of single and double
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layer potentials for the solutions, establish an ezistence theerem, and fur-
thermore, find a representation for the far field pattern. Based on these
results, we can characterize the far-field pattern and discuss the inverse

scattering problem. (¢f. [6],[7],[8],{13])

2 The Representation of Propagating Solu-
tions

Let R} = {(x,2) € R* x = (z1,22) € R%,0 < z < h}, where & is a positive
constant; moreover, let {2 be a bounded domain with a C? boundary having
an outward unit normal », such that ¥ C R}. The direct propagation
problem in a homogeneous ocean, of constant depth, with a pressure release

surface, and a rigid bottom may be modeled as (cf.[1]):

Dyu+Ku=0,inRI\T, (2.1)
u=0, atz=0, (2.2)
Jdu

—_— r= 2
5, =0 at , (2.3)

lim r3( 2 _ ikanut) = 0, r = =0 2
lim 7 (-5;——3 ayul) =0, r=|x|, n=0,1,...,00. (2.4}
u=g(x,z), for(x,z)e . (2.5)

Here Aj is the three dimensional Laplace operator, k¥ a real number, g a

given function, and u, the n** normal propagation mode. i.e. if

(2n +1)°n? !

) 1
==

Onl(2) = sin[k(1l - a?)¥z] (2.7)



then u may have a normal mode representation
o0

=3 éa(2)ul(x). (2.8)

un(x) is the n* normal mode.[1]

Let G(z,zp,r) be the Green’s function in R} satisfying the radiating
condition (2.4). Then G(z,z¢,7) can be written as [1]:

G(120,7) = 52 3 bul2)9n(20) BV (kaar), (2.9)
n-O

where H{!(r) is Hankel function of first kind of order n.

If 4 is a solution of (2.1) ~ (2.4) in CHR}\ 1) N C(R} \ ) such that
the normal derivative on the boundary exists in the sense that the limit

So(x,2) = im(v(x,2), grad w((x,7) = hv(x,2)), (x,7) € 89

exists uniformly on 3. Then by Green’s formula,

d _ oG
[ (6661 x = € DL - SR ¢, | x = € Dl O} do

é3"u('£,C) BG

- [ {6 ¢ x - €1 2,6, x = £ (€, ¢)}do

{ if (x,z) € N

: (2.10)
— e {G(z, ¢ x— g N2LL 285 ¢, x — £ Du(€, () }do

if (x,2) eRI\Q

where
Qe:={(y. )l y—x [ +(¢ - .';')2]”2 < e}, T.:=0Q,;

1p 1= {{Y,C) S Rf,ly |< R}, Ta:= dg;



and €, R are positive numbers such that @, C R} \ 2,7 C Q5.

Since G(z,(,| x — £ |) can be written as [1]
ek VX g+ (C P

G(z.( | x~ €)= _ +0(z.6 €], (211)
i /[ x— [ +(z—C)

where

ok \/IX—ER+(z=C-2nh)

1 [+ +]
$i(z,(, | x=EN== Y {
AT = om0 §7| X — &2 +(z = ¢ - 2nk)?
ek V/IX—EP+(z+¢-2nA)2 e*V Ix~E1 +(z+¢)?

lx—¢ [ (2+C—2ﬂh)’}*4N;|x—6|2+(Z+C)”

it may be seen that ®,(z,{,| x — £ |) is bounded and continuous at z =

¢.x = £. Therefore

G%’-da — 0,

and
j, “?égd" - u{x,z), ase— 0.

From (2.10) we have
] {G @— - E?E-u}da —/ {G'a—u - Q-g-u}da
_{0 if (x,2) € Q,
| ulx, 2)

if (x,z) e R}\ Q.
Let

G(z,20,7) = Z Andal(2)Ba(20)HS (ka,r),

n—'l}

and denote

y20,7) = D+ 3 = Gy + Gl,

n<N n>N
G(z. .z 1) = Z + Z = 'V‘*'G’v
na N n>»N



where .V = [(2kh — 7)/27]. As usual, here {a] is used to denote the integer
part of a. From (2.6) we know that ¢, 2 0ifn < N, ia, < 0if n > N. In

view of asymptotic behavior of Hj(r), we know that

, 1. . 1
v =0(=z) Gn=0(Z5)

a 3 A, 1
5 Gwlkanr) = 0( =5 3,2), - —G'(kayr) = O =7):
9 3

—Gy~ ikGy== = ¥ éu(z)én (z0)( 5= H‘“(ka,,r)

ar 2h =

. (1) _ 1
—tkaHy '(ka,r)] = 0(7‘37), asr — oo.

Consequently, if we can prove

] | u[?do = 0(1), as R — oo, (2.13)
Tn
then
Su OG Ju | - oG ., -
f {Ga—r—gu}do'—fra {(Ga—r—zLGu)—-(—a;—sz)u} do,
(2.14)
_32 — ke 2 1/2 2 1/2
{7 - ikGu}do <(/ |———zLG| dor) (/I_R|u| do)
hop2r R 1/2
< c[fo fo ﬁdedg] -0, as R— 0. (2.15)

/ {Ga—" - szu} do
or

h pirm )
=Lk {{w 2 #a(2)6n (C)Hé”(kmx—el” o n(c)]

n=0

{ > ikanon($)0a( OV H (kay | x — € |)} [f undn(_g')]}ﬁ’dﬂdg'
n=0 \

n:O
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1 du, .
=~z'[ { 2)H (ka, | x ~ 5|)[3r —zka“un] R}da.

n=0

By the radiating condition (2.4) and H{ )(ka,, [ x—£]) = 0(Hm), as r — o0,

we can conclude that

/ {Gg—: - szu} doe —+0, as R — co. (2.16)
In order to prove (2.13), we note that for 0 < n < N, a, > 0,
2
0= lm ELu — tkanuy,| do
R—co JI'g or
. Bu, ' 2202 Ay
= 2 —_ . 2.
RIEIQIQ e { 3, + k*a;|uf + 2Im{kanu, 3 )} ¢ do (2.17)

Since

upon substituting the imaginary part of the last equation into (2.17),

+ k2|u,,]2} do = —‘?Z Im(kf Anttn 2= T dcr),

n=0

hm {
R—oo JTp "0
it follows that

> [ twldo =0(1). (2.19)

n=0

For n > N, we have a, = i|a,|; hence, by the asymptotic properties of

the Hankel functions

elkanr
uwH”(iar)—O( )‘

2
so that
> [ lualtdo = 0(1). Rt
n=NVN+1 Fr



This proves {2.13).
In view of the above discussion, we can state:
Theorem 2.1: let u € C* R} \ ) N C(R} \ Q) such that the normal

derivative exists in a strong sense on df2 be a solution to the problem (2.1)-

(2.4). Then

oG 3u _Jo if (x,2) €N
L, {”_ - G_} do = { u(x,z), if (x,2) € R\ L. (2.20)

Remark: Since G(z,(, |x — £|) satisfy the radiating condition (2.4}, it is

easy to see that u(x, z) in (2.20) satisfies the same radiating condition.

3 The Uniqueness Theorem

We want to show that if u € C}(RI\ )N C(RJ\ Q) is a solution of (2.1) ~
(2.5) where g = O,then u = 0 in R} \ 2. We will prove this in several steps.

Lemma 3.1: if u € C}(R3\ TN C(R\ Q) is a solution of (2.1) ~ (2.5)
with homogeneous boundary data g = 0, then for any R > 0 such that
QrD 0

S Im f ,_RRdG =0,

n=0
where u, is the n** normal mode of the solution.

Proof: By Green’s formula, we have

o" o
'[Bnura(u—a?— u——-)do’ =f \n(uA T —-udu)dX

(B |uf? - B*|u|*)dX = 0.
Qa\

Hence,

Im u@do* —Im (u@—ugz—)d’a—o

v 2 or ar



which follows from u being zero on 9. Now expanding u(x, z) as

u(x,z) = f a2 )un(x),

n=0
we have
Im ug—:da
= Im/ f [i ¢n(z)un(r 6)] {Z ém —} r—R Rdzdé
0
- %ImZ] wa(r, 9) ™ |,-r RS,

n=0

which lemma 3.1 follows.
Lemma 3.2 Under the assumptions of Lemma 3.1, we may conclude

that
e—kﬂn.',] T

u=O(T

)y ast— o0, (3.1)

Proof: In view of the radiating condition (2.4),for 0 < n< N, a, >0

2

N 2
0= lim —1— a_u — thantn Rd9
R=o S a, Jo |Or h=R
= lim i -}_ 21 3Un : +kzaz|ﬂ. |2 +‘7Im(ka i aﬁ:) Rd#f
Reoo =t a, Jo or nion - ~ O A
r=

N 2
. 1 g2 || Qun
= dm 2 o, { 5

+ Jim ZkImZ/ { "} Rd6
r=R

+ kzazluﬂP} Rdé
r=R

n=0

© o ( SET
— lim 2k n 5
Jim mn=§+1_/; {un - }mRRdG (3.2)

By Lemma 3.1

oty

2%Im Z f {un

} Rdf = 0.
r=f
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Forn> N + 1, u, = 0(e~*I*IR), as R — oo; hence,

. 2 2r aﬁ'r‘: _
Rll{xclo 2klm ﬂ;-l-l'/ﬂ {ung}r=ﬂ Rdb =0
(3.2) becomes

N o1 g
lim Z —_
R0 n=p @n J0

du, ?
or

+ k‘*'ai|un|’} Rd8 = 0. (3.3)

r=R

In view of the a, being positive for n = 0,1,..., N, (3.3) implies that as

R — 0o we must have
2r
/ lun|*Rd8 = o(1), n=0,1,...N. (3.4)
0

Since for sufficient large R, any solution of (2.1) ~ (2.5) can be written in

the form of

u(x,z) = Zcﬁ (2)un(x i Li CuiH{V(kanr)e | $a(2),

n=0 =00

from (3.4},

2m oo
] |un(R,8)2Rd0 = 3 |Coj | HP (kanR)[227R = o(1).
[¢]

J=00

We must have
|an|2|H}1)(kanR)|221rR =o(1) as R — oo,

n=0,1,.,N;j=0,41,£2 ..

However,

HP(ka,R) =0(=+=) as R— 00, n=0,1,..,N. (357

R1/2
So

Co,y=0, forn=0,1,..N, j=0,£1.42...
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that is

u, =0 forn=0,1,...,N

Hence,
o0 o0 1
u(x,2) = Y da(u(x)= 3 Z Cn;H (ka, r)e”a 6a(2)
n=N+1 n=N41 | r=co
—kaN+1r
= O(T) as r - 00,

Now let ¥ be a function in C2(R3\ 1) N C{R3\ ); then by the second

Green’s formula,
]n ol 5 () — % A (wp)ldX

[uw—(uw —u¢—(u¢)]da (3.6)

80ulg

If 4 = 3(r), then the left-hand side of (3.6) becomes

L [P uaT-T 8w+ (v AT-Fay)

Since k is real, and ulsq = 0, u|,20 =0, u,|,=p = 0, ¥, = 0, it follows that

ou 0¥ _Ou—ay

/Q [ul(¥v AP — w&w)+2ua—wa—r—u5;1p-§;)]dx

= [ 1w (@) — W ()l (3.7

Let us introduce the following notation:

Z(r,8) = {z € [0, R]|(r,8,2) € R} \ 2}

2
=/] |uf*d=de,
0 Z(r.8)

11



B(r):= fo i fz gy Turdzdb.

- B(r)
br) = .

then

2d : d
j;zg\nlm X = [~ a(ryrar,

R
/ Tu,.dX =f B(r)rdr.
Sa\0 g

Lemma 3.3: Im B(r) =0 for r € {0, 00), and 2B(r) = A'(r).
Proof: Let ¢ = #(r) be a real C? function in (3.7), such that ¥(r)
remains bounded as » — oo0. By letting R — oo, the right-hand-side of

(3.7) vanishes by (3.1). Then (3.7) follows

0=2 %%

¥ 3 [ =T ar]dx 4 / ¢—-—Im(B(r))rdr (3.8)

Let us denote
gt (r) := maz{Im[B(r)},0},
g~ (r) := maz{—Im[B(r)], 0},

*= (2 [ o)

then

yr 19
+ Y _ 29 4y
Vi =550 =97(n)
Since
_Zklan+ll’
B(r)~0(—-—-—-—-——) asr — 0o,

©w*(r) is bounded as r — oo. Now taking ¥,(r) € C?[0, c0) such that

|n(r) — @t {r)||t2 = 0 as n = o

12



and substituting @, into (3.7), we conclude that

[~
4;'/ [¢F(#)]*rdr = 0.
o]
Hence, g*(r) = 0. In the same way we can prove ¢~(r) = 0; consequently,

Im[B(r)] =0 forre|[0,00), (3.9)

and
A= i [ (4T, + Tur)dzdé = 2B(r). (3.10)

Now we are in a position to prove:
. Theorem 3.1: Under the assumptions of Lemma 3.1, it follows that
»=0in R}\ Q.

Proof: Rewriting (3.7) as
L@, + 28 +2B(r) S rdr

R —_
= [TTAG) e + 27) + 2B(r), Jrdr

_ N R Y ar _Ou
= [ [P~ T + [P uge —Tglide. (31

-
Without loss of generality, we can suppose that A(r) # 0. In fact, if A(r)

has zero points r,, then

A(r,) = [”fzjuﬁdzda =0,

hence u(rp,8,2) = 0on {(r,,0,2z) € R}, 0 < 9 < 2r, z € Z}, which follows
"from the continuity of u. Let # = sup,{r,}, if # = oo, then there is a r,
such that @ C Q, . By separation of the variables in R} \ Q,, it is easy

to see that v = 0 in R} \ ©,, and hence. by analyticity of the solutions

13



to the Helmhotz equation, v = 0 in R} \ 2. If 7 < 0o, we can consider
the uniqueness problem in R} \ 2; instead of R} \ 1. It is easy to see that
A(r) #0in R\ ;.

If ¥y = ¢¥(r) =0 is a solution of

Yre + L0, + 25(r) + [a(r) +iB()j¥ =0, 0<r<oo 319
b= O(r"sekla"“t"), as r — 00 (3.12)

where a(r), 5(r) are properly chosen real functions, 3(r) > 0, 6 = const. >

1, then as R — oo, the right-hand-side of (3.11) vanishes and (3.11) becomes

[ A= [ WA =0 (313)

We may conclude that
u=0 in R}\ Q.

Now we prove that (3.12) has a solution for some choice of a(r) and

B(r). Let
a(r) = () + A2 4 b(r),

Bi6—-8r+3r?), 0<r<1
B(r) = g, r>1

where f is a constant to be determine, then 8(r) € C?[0,00) such that

3(r) > 0. Let
b= pe” f; drdr (3.14)
(3.12) becomes

It is easy to see that (3.15) is solvable, such that for r > 1,
b(r) = r- FloriF (3.16)

14



W(r) = p=Foo+ifepo — [y b(ndr - (3.17)
By assumption, A(r) # 0,
()] < r= Foe o e

< My~ %l ~1/2log A(r)
Mr—E60 (rl/2eklan+1lf)

- r gﬁu

A7~
We can choose J; such that %2:[39 - % > 1, then v satisfies (3.12); conse-

quently, Theorem 3.1 is proved.

4 An Existence Theorem

We are going to combine the double- and single-layer integral representa-
tions to prove the existence of a solution to (2.1) ~ (2.5). We do this by
seeking a solution of the exterior Dirichlet Problem (2.1) ~ (2.5) in the

form of a combined double- and single-layer potential:

IG(z,¢,|x — . .
xe) = [ {ZHEEEZD o - e wie o (4

where we use the subscript £ to denote in which variables we compute
the normal derivative and perform the integrator. The source point is at
(x,z),and n # 0 is an arbitrary real parameter.

We recall that G(z,(,|x — £|) has a representation of the form (2.11).
If we define the operators §, K, K’ from C(90) to C(89) by

§6:=2 fa G(=,6,Ix — £)6(€,O)da, (x,2) € R,

AR aG(‘:ug! [x_fl) - -
Ké:= 2/30 5 BLE.C)dog. (x.2) € O,

15



3G(z, Ea |x - EI)

an v,

K'¢:=2 $(€,Q)dag, (x,2) € 09,

and S, K, K' are the operator defined by
Sé = 2/39 &(X, Y)é(Y)dos, (x,2) € 0,

)
Ké:=2 ja s 5o 2K YISY o, (x,2) € 50

K¢ := 2/ itI>(X, Y)o(Y,{)doe, (x,2) € R,
aq Ovg

where
e kIX-Y]

X= (x,z), Y = (EsC)s

then we have the decompositions
$¢ =S¢+ 519,

K¢ = K¢+ K4,
K'¢=K'¢+ K3
Note that 5;, Iy, K| are integral operators with the continuous ker-
nels ®,(z,¢, |x — £|), 5%;4)1(::,(, |x — ¢|), and 3‘97:(1)1(2,(', ix — €|), respec-
tively. Based on the well known boundary properties for these opera.tors.
S, K, and K’, we can conclude that §, K, K’ satisfy the same jump
condition as S5, K, K’ respectively.
Theorem 4.1 The composite double- single- layer potential u(x,z)
defined by (4.1) is a solution of (2.1) ~ (2.5), provided that the density

¢ € C(01) 1s a solution of the integral equation
v+ R~ i:;é‘r;" = 2o. {(4.2)

16



Proof: The combined double- single- layer potential u(x,z) obviously
satisfles Helmholtz’s equation (2.1) in R3\ Q, the radiating condition (2.4),
and the surface and bottom conditions (2.2),(2.3). Let (x,2) € R} \ Q and
let (x,z) - (Xo, 20) € 82, then

9% 5%
u(x, 2) = j; (5~ in¥yedoc+ f (—1—m¢ Ydoe

1 . 11, .
— (5K% +v - zﬂsw) 55K - zgslw)

¢+¢—=—5¢'

lOln--

So if ¢ satisfies (4.2), then

m  u(x,z)= %I{'w + 9~ agéu; = ¢(Xo, z0).

(x.z}—'(xu-zu)

Theorem 4.2: The integral equation (4.2) is uniquely solvable.

Proof: Since K — in§ is a compact_operatorm we only need to prove
that the homogeneous form of equation (4.2) has only the trivial solution
W = 0.

Let 4 € C(01) be a solution to the homogeneous equation ¥ + Loy —
in§+y = 0, then u as defined by (4.1) solves the equation (2.1) ~ (2.5) with
g = 0. ’I‘herefore, by the uniqueness theorem, » = 0 in R\ Q.

Let (x,2) € 2, (xo, 20) € 3,

. Qu_ du(x, z)
= lm  u(x,z), im :
(%, 2)—(Xa,20) ( ) au,, {x 2} (X0, 20) 3!/, ’
from the jump relations we have
. du_ |
—u. =, - 4o i, on 9.
v,

17



The first Green's formula implies that

Bu
: 25 _ LU _ 2 12,2
mjan|¢| do‘-/anuavzdax——j‘;ﬂvﬂ k2 |u[?)dX.

Since k is real, it must be

/ o = 0
i

and ¥ = 0 on 81
Combining Theorem 4.1 and 4.2, we then obtain the desired conclusion.

Theorem 4.3 The problem (2.1) ~ (2.5) is uniquely solvable.

5 Propagating Far Field Patterns

We have known that in a constant depth ocean there are only finite many
propagating modes of wave. the others will evanesce soon. Therefore, the
far- field pattern in a constant depth ocean will contain only the information
from the propagating modes. One wonders how much information has
been lost in the propagating process. In this section, we will present a
representation of far-field patterns in terms of the combined double- single-
layer potential , and we will discuss some of the properties of far-field
pattern. A further discussion can be found in [6],[10].
Let R = |x-§|, r=|x|, v = §§, x ~ (r,6), € ~ (r,8). R =
r? +r? - 2rr'cos(§ — 6'). We can expand the Hankel function H{(kR) as
HY(kR) = i exHP (k)T (kr')cosn(d — &), r > 7, (5.1)
n=0

where g = 1. and ¢, = 2 for n > 1.

18



Io view of (5.1),

aG 45, — ]
( gl: D e, x—él)

= — i i €m {qb,,(z)H,(,}’(ka,,r)cosmﬁ[—g-(.fm(kanr')¢n((’)cosm9’)
2h n=0m=0 3UE
=i Tm(kanr )P a(()cosmb')|
-f-(_bn(z)HS)(kanr-)sinmﬂ[él—?j—(Jm(kanr’)qbn(g‘)sinmﬁ")
3
—i(Im(kanr)dn(()sinmb')}}

=: Z Z mn(2,0,7, ¢, 0VH N (ka,r),

(5.
ne=0 m==0Q
where -

amnl(z,8,7,¢,0") = =

3
Efﬁn(z) {cosmﬂ[a—%(.fm(kanr')qb,,((:)cosme')

—i(Im(ka,r)$n()cosmb’)] + sinmﬂ[ég—( Jm(kanrNoa(()sinmé’)
14

—i(Jm(kan,rYda(()sinmb')]} .

Since for n > N, a, = ila,].

[_2 .
H(kanr) ~ —Fa req:p[—-k|anjr —i{m+ 1/2).3.]

e_klﬂnl"

1
0( —~7 ):0(7_3/2), as r — cc.

Hence,

9G(z,(,|x - ) N
BLf it x- )= 2

exp(ika,r)

2
whka,r

{ Z_Oe:cp[i —(m+1/2)=lamn(z.4, "'"’~C*9’_)} + 0Of 7_3'7). (5.3)

(T

as r — 20,
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Now from (4.1) (set n = 1),

ad 2
u(x,2) = Z exp(ika,r)

N mha,r

S eapli ~ (m +1/2) Jloma( 2, 6,7 c,e')} ¥(x, 2)d8g + 0(=7)

m=0

!

.N‘ 1

o 7=0 \/ Ea,,r

exp(tka,r)fa(z,8) + 0(7_3%), asr— oo (5.4)

where

fﬂ(zae) = \/gLQ {i exp[i - (m + 1/2)3]‘1“’1(‘2’9*#'(19’)} 1[)(x,z)d95,

play the role of a far-field pattern, and ¢ € C(9R) is the unique solution
of integral equation (4.2).

We call the function

. :
F(z,8):=)_ fa(2,8) (5.5)
a=0

the “propagating far-field pattern”. From the representation of a,,,{z,8, ', (,8).

: N o0 )
F(z,6) = -2-;—71_-?;’@5,1(3_) { Z emcosmi ];n[ai%(Jm(kanr')én(C)cosmﬂ’)

m=0

=i Jm(kanr')a(C)cosmb')]1p(x, C)do
ad - a L N !
+ Eﬂemsmmﬁ j(;n[a—w(.}'m(ka,,r V0 ({)sinm8")
—i(Jm(kanr)ea(()sinmé)(x, ()},
(8,z) € [0,27] x [0, A]. (5.6}

Let F be the set of far-field patterns. In the case of R? and R?, we

know that there is an one-to-one correspondence between F and C'(96})
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{cf. [3]). In particular, if u is a solution to the Helmholtz equation in
the exterior region R?\ {2 satisfying the radiating condition, if its far-field
pattern vanishes identically, then u = 0 in R®\ . Unfortunately, this
is not true in the finite depth ocean case. Following is a typical example
showing that it is possible that the far-field pattern of all scattered waves
are identical to zero.

In fact, for 0 < k < 4,

(2h + 1)2172]1,2
4k2h?

qy = [1 —- = z.ICI"'r||1

for all n = 0,1,...,00. By the representation theorem, we can conclude
that any solution to the problem (2.1) ~ (2.5) with 0 < k¥ < F has the

asymptotic property:
= 1 .
u(x, z) = 0f =7 ), asr — oo;

that is, its far-field pattern is identical to zero.
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