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l.O

NARPAGANSETT BAY:
AN EXAMPLE OF ESTUARY CLASSIFICATTON

Introduction

This report summarizes data collected by the author during the
academic year 1969-1970 as a participant in the Bay Watch project,
The information given within condenses an enormous amount of available
data, and presents it in a form the author feels is instructive, This
paper also serves as an introduction to the functioning of the bay

system, and as a guide for and prerequisite to the model study.

Estuary Classification

The problem of estuary classification has been extensively studied,
Its primary function is to identify the major processes, with emphasis
on overall circulation and mixing, The work of Bowden, Pritchard, and
Hansen and Rattray will be reviewed herein.

An excellent qualitative survey of the subject by Bowden (1) will
serve as an introduction., The pattern for common estuaries is basically
the upstream flow of more séline (and, therefore, denser) seawater, op-
posed by the flow of relatively "fresh" water (essentially zero salinity),
which enters primariiy as river discharge. Conservation of mass implies
that some water must be leaving the estuary. This is usually accomplished
by a two-~layver flow at the estuary entrance, wiﬁh the denser seawater
entering at the bottom, and the lighter mixture leaving at the top. The
strength of each flow, and the extent of mixing are indices for clagsifi-
cation,

The ratic of tidal volume to freéﬁ@ater volume is a typical parameter.

As the relative tidal volume increases, the tidal mixing becomes important,
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and stratification decreases. Degree of vertical stratification is another
important parameter. Three of Powden's major types of estuaries appear in
Figures 1 a, b, ¢, based on volume flows and stratification.

The most stratified type is the salt wedge, characterized by strong
river flow, Mixing between water masses is slight, and occurs mainly by
the effects of friction,

A second type is the two-layer flow with entrainment, Mixing is ac-
complished by the upward flow of seawater which occurs when internal waveg
break. There is no downward flux of Ereshwater,

The third type is a two-layer flow with vertical mixing, Here the
strong tidal currents cause salt transport over the entire vertical
column, although the upper flow is still less saline,

The last type is the vertically homgggneous estuary, with tidal

currents so strong as to produce only horizontal salinity gradients, TIn

real estuaries, however, vertical gradients must exist if the estuary is

freshwater fed.

Pritchard's (2) work deals with the dynamics as well as the classifi-
cation. He evolves the concepts of mixing, beqinning with a frictionless,
non-tidal model, and adding processes until the stratified estuary is
described.

Assume there is no friction or tidal motion. Undiluted seawater would
extend upstream to a point where the riverbed was approximately at sea level,
The opposing riverflow would hug the‘iiéhtward shore {looking downstream)
due to coriclis effect, A twowlayer system with no mixing would exist.

The next step is £he non-tidal model with friction. Breaking in-

ternal waves would carry saline water upwards only, and a net motion in

the lower layer would replace the water lost upward, Thus the volume of




the upper layer would increase toward the sea, and salt would move by
advection alone.

Introducing the tides causes a great amount of turbulence. Turbulent
eddy diffusion is another mechanism of mixing, causing a two-way motion of
salt in the vertical.

Other forces include coriolis effects and horizontal and vertical
pressure gradients. These will be dealt with more quantatively in‘future
papers by the author. -

Pritchard has selected, as the dominant parameter for classification,
the ratio of "the volume of water flowing up the estuary through a given
section during the flocod tide teo the volume of freshwater flowing into the
estuary above the section during a complete tidal cycle." (2)

The value of this ratio indicates the extent of mixing as follows:

r of order unity negligable mixing
10<r <100 partially mixed
r of order 10° fully mixed

The latest and most quantatively precise work in classificatiens has
been done by Hansen & Rattray (3). Their concepts and scheme will be used
as a base for thig paper and investigation, and as a format to introduce the
relevant physical data on Narragansett Bay in a cohesive manner.

The classification of Hansen & Rattray is based on net flow and strati-
fication, and contains seven types, Types I a, b, are net flow seaward at
all levels, and corresponds to Bowden's well-mixed estuary. Types IT a, b,
IIT a, b, and IV show varying degrees of two-layered behavior, with Type IV
being the salt wedge estuary. The extent of vertical stratification is the
other parameter: subtype (a) is slight vertical stratification {well-mixed),
and subtype (k) is appreciable stratification {unmixed or partially mixed),

The scheme is summarized in Table 1.
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2gain, the two important factors are stratification and circulation,
Two dimensionless parémeters arise from the investigations of Hansen and
Rattray, whose work has led to the use of similarity solutions (as in
boundary-layer flows). (4) These parameters are:

1. (stratification) _s
So

2, circulation
{cix a ) US/Uf
where S is salinity {0/00), Ug is net surface current, and Uf is mean

freshwater velocity, and

= Spottom ~ Stop

145}
|

o - ki (Sbottom_"' Stop)

Ug = Q freshwater
' Area

From the work on similarity comes another parameter, ¢ the "diffusive

fraction." Basically this is the fraction of salt transferred upstream by

diffusion (as opposed to advection). It is interesting to note that "is a

function of both stratification and circulation.

Hansen and Rattray have plotted and estuary type as functions of

S and Us/Ug- These appear as Figures 2 a, b,

5
(e}
In summary, we have seen that several oceanographic quantities are used

to classify estuaries and identify important processes., The next topics for

discussion are therefore:

{a) Geography: the physical dimensions of the estuary
are necessary to determine the importance
of coriolis effect and the lateral vari-
ability; cross-sectional areas and volumes
of the bay will also be useful,

(b Freshwater PFlow: this provides one of the basic quantities
for classification. Also, annmual variations
of river flow and precipitation will be
examined,




{c} Tidal Conditions: tidal heights, velocities and transports
will be examined. Non-tidal circulation
can be inferred from tidal

(@) sSalinity Distribution: vertical stratification
classification, as well
depth of no motion, and
model predictions,

3.0 Geography

is
as
as

records.,

relevant for
inferring the
a check on

The first topic of consideration is geologic data, including bay

geometry. A scale map of the Bay appears in Figure 3, and
drographic stations and sections which will be referred to

summary of physical quantities appears in Table 2.

TARLE 2

AREA AT MEAN LOW TIDE

(area above dotted lines, rFig. 3) 136
AVG, DEPTH

(at mean water level) 29
MAX, DEPTH 185
MEAN VOLUME . 1.10 x 10"
MEAN TIDAL PRISM 1.50 x 1010
LENGTH: Fox Point (Providence)

to RBeavertail Point 25.1
WIDTH: Tiverton, due West to

East Greenwich 2.9
AREZ OF WATERSHED.

(including Bay) 1700
AREA OF ISLANDS 250

The first item to considexr is the coriolis effect. A

includes hy-

later. A

Sqo

ft.
ft.,
cu.,
cu.
mi.
mi.
sq.
sq.

mi.

ft.
ft.

mi,
mi,,

comparison of

width to depth (Table 2} indicates that coriolis forces will be important

in the dynamics. The Rossby number,

Ry = (/.

is a useful indication of relative importance of the earth's rotation,

and has a value of about 2.7 (taking Vv = 1 knot, L = 10 mi,, the width of

the bay).




The corielis force is expected to have a discernable effect on the
flow, and on the entering hottom water in particular. PFigures 4 a, b
show the relative proportions of channel cross—-sections identified in
Figure 3. The entering bottom water is forced to the right by the
coriolis effect, and scouring causes the channels to be deeper there.
Sections 2 and 4 (Figqure 4a) show this most clearly, although it appears
in many of the other sections (sections 13 and 14 have been dredged, and
therefore are not natural channels). )

Secondly, the relative shallowness of the Bay ought to contribute to
the mixing process; this point will be explored further in the section
dealing with =alinity,

Lastly, the geometry-can be used to predict how the flow divides
around an obstruction, such as an island. Hicks (5) has studied this,
and he has found that the geometry of the channel is of small importance

compared to that of the channel entrance.

4,0 Fresh Water Flow

The primary sources of freshwater input to Narragansett Bay are
river flow, city discharge, and direct precipitation, Typical values
for each are summarized in Table 3. River and city inputs are included
in Figure 5, which graphically demonstrates the upstream freshwater influx
of typical estuarine behavior, The mean total input has been taken to be
2170 cfs (6), although other sources cite a figure of 2890 cfs {7}. The
lower number is probably accurate as a total flow from the six.largest
rivers (corrected for city discharge), while the higher probably includes
other sources, such as direct precipitation, direct runoff, and smaller

rivers, The quantity used is indicated in all charts and calculations,
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Adding to the complexity of this problem is the fact that the river
discharge varies widely throughout the year. Seasonal changes may account

for differences of 50 to 100% from the mean value. Figure 6a, shows the

anmual flow of the Blackstone River and the Pawtuxet River. The spring
thaw, releasing the frozen moisture locked in the grxound during the
winter months, swells the rivers to nearly double their average volumes,
The summer sun and vegatation take excess moisture from the ground, so
that the dry soil takes in rain water through the fall, preventing it
from reaching the rivers.

Although spring rains may be expected to influence the river dis-
charge, Figure 6b shows that precipitation is nearly constant over the
year. 1In fact, the maximum rainfall (for 1941~1950) occursfin Novenber,
when river flow is approximately two-thirds its mean value,

an approximation of total riverflow can be made using the total
precipitation and the area of the drainage basin., Comparison of runoff
records for the Blackstone and Pawtuxet Rivers indicates that fifty per-
cent of the rainfall reaches the bay thru the rivers. Thus, the mean
runoff can be_predicted approximately from precipitation. Figure 7 shows
the watershed arca for the entire Narragansett Bay. Data on individual

river basins can be obtained from (6).

5.0 Tidal conditions

The mean tical variation for the bay (difference between high and
low tide) is shown in Figure 8 (8). The characteristic standing wave of
cosine shape (5) is evident., The amplification factor has a meanlvalue
of 1.31, indicating an estuary tidal wavelength of approximately 225 miles.

From the given data, the tidal prism (volume of water stored in the

bay from low to high tide can be computed to be approximately 1.50 x 1010

~9~




cu, ft, This is on the order of one-tenth the volume of the bay. Flushing
times (1) can be calculated for various sections using the formula:

T,

- Vi + Pj
i T —x

Py
where T; is the flushing time at section i (in tidal cycles), Vi is the

mean volume above section i, and P; the tidal prism above i. The flushing

time for several sections has been conputed and summarized below in Table 4,

TABLE 4
. 8 8
Section Vi(10 cuft) Pi(lo cuft) T(# of cycles)
1-2 280 123 8.9
5-6~8 470 85 6.5
9=11 120 31 : 4.9
12 78 . 21 4.7
13 36,7 11.5 4,2
14 17.9 5.7 4,1

The tidal currents, which account for a great deal of the mixing,
are produced by the ekb and flood and reach maxirum values at about 3
hours after high and low tides. Surface tidal currents have been sum—
marized by Haight (9).

The irregularity of these currents is evidenced by the following
quote (10):

The currents of Narragansett Bay have a pronounced irreqularity

which is evidenced at times during the month by a long period

of approximate slack water preceeding the flood, and at other

times by a double flood of two distinct maxinums of velocity

separated by a period of lesser velocity. These peculiarities

appear to be somewhat unstable, consequently, flood currents

differing from those predicted should be expected.

1

The surface currents for each hour after high tide at Newport for three
stations along section #1 (Figure 3) are shown in Figure 9. The doukle

flood (positive velocity) can be distinctly seen in the curve labeled

#I, and to a lesser extent in #III.

~10-




The non-tidal surface currents can be obtained from the hourly values, y
and the results are shown in Figure 10, wHote that the flow is generally f%“'ﬁ+
downstream toward the sea, as axpected in the two-layer estuary, Of
special interest is the upstream component occuring on the western side
of several of the channels, wWhether this is a dominant feature, or an
errox or transient cffect must be determined in future studies,

Hicks (5} has calculated non-tidal transports based on non-tidal
surface velocities and salinity gradients. Mean river flow and bottom

water transports are shown in Figures 11 a, b, using updated figures by

Hicks' methods,

6,0 Salinity Distribution

Since river water of essentially zero salinity must mix with seawater,
a longitudinal salinity variation mast be expected, It is the lateral ang
vertical variation which give added information about the flow and mixing
in the estuary, and add complexity to any mathematical model of the system,
In Figures 13 a-e the longitudinal and vertical variations of salinity
{and temperature) are evident (11). Note the bottom intrusion of saline
water near the mo&th, most evident in the spring., It is obvious that the
bay is vertically stratified; salinity~depth profiles are shown in Figure 12,

The longitudinal variations are shown in Figure 14. The salinity in=-
Creases toward the sea, Note that the more shallow West Passage shows
grgater mixing (bottom water less saline due to greater mixing with surface
water), an effect predicted Ffrom the geometry alone,

The lateral variation is indicated in the plots of bottom and surface
salinity (Figures 15, 16)., As expected from geometry and coriolis forces,
the water remzins more saline in the Fast Passage. However, notice the
variation in Figure 16 of the same surface and bottom salinity (12), one

year earlier than the conditions for Figure 15.

=11-




7.0 Classification of Narragansett Ray

The gbeve data indicates that the bay has a rather complex and ever-
changing character, For this reason, the Parameters used in classification
will be computed at several crosg~sections, rather than for the whole bay.

A, Pritchard: the parameter, r = Vol tidal has been calculated at

Vol river
most of the sections shown in Figure 3. At the mouth of the bay,
the value of r is 158 (E. Passage) and 610 (%. Passage). These
values approach those for well-mixed estuaries, exactly as the
salinity profiles indicate, In the mid-bay, the values range
from &0 to 100, indicating the partially-mixed condition. Up
around Providence, r is calculated to be around 30, or approaching
the salt wedge, Nothing can be concluded about relative mixing in

each passage. Results are given in Table &,

B. Hansen and Rattray: Proceeding through the calculations, we

find a similar distinction between upper and lower bay as in
Pritchard's interpretation. From the plot (Figure 2a), we see
that the lower bay and East Passage have low diffusive fractions,
(\)(O.lO), while the upper bay has somewhat higher fractions,
(V<0,50). From Figure 2b we see that the lower bay and East

Passage are Type III, and other parts are Type II,

8.0 Conclusions
The preceeding analysis shows that the bay does not have uniforxm
mixing qualities, but rather a systematized distribution of relevant pPro=-
cesses (advection, diffusion}. &he lower bay is well-mixed (slight vertical
stratification), while the upper bay is not. More importantly, the primary
method of galt transfer upstream in the lower bay and East Passage is ad-

vection, This means that bottom water moves relatively undiluted up into

-12-
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the bay through the East Passage to the Mount Hope Bay entrance. The
West Passage carries less seawater, but allows more vertical mixing
with upper water to occur in its broad and shallow channels.

The distribution of volume transports can be determined by elemenfary
hydraulic principles, using only the areas of channel entrances, Further
verification is advisable, but the principle seems to be guite sound and
important,

Lateral variation over the whole bay is considerable, but is probably
not too great in individual channels (except entrances).ﬁ Thus a possible
model approach to consider is that of the bay as a network of cross—con—
nected shallow channels, with little (or well-known) lateral variation,
and a tweo-layer flow field.

Ancther possibhility is to incorporate the similarity approach to the
present two-dimensional {in the horizontal) model. Having calculated
averagé velocity over the depth, possible inferences as to vertical velo~
city distribution (as functions of tidal exchange and river flow, for
example) can be made.

A third point to consider is whether the mathematical model sﬁould
calculate velocity or salinity as the primary variable. when felocity
is known at each model station, the salinity profile could be predicted
using similarity techniques, and the velocity computed from that.

Lastly, it should be noted that all the necessary parameters for
calculating flushing times {river discharge, salinity distributions,
bay geometry, and tidal volumes) are included.in this report, and at

least two methods may be used for such calculations (1).

~14~
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