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Abstract: Health assessments were conducted on bottlenose dolphins in Barataria Bay, Louisiana, USA, during 2011 to 2018,
to assess potential health effects following the Deepwater Horizon oil spill, compared to the unoiled Sarasota Bay, Florida,
USA, reference dolphin population. We previously reported significant increases in T‐lymphocyte proliferation, as well as
lower T helper 1 (Th1) cytokines, higher Th2 cytokine IL‐4, and lower T regulatory (Treg) cytokine IL‐10 in Barataria Bay in
2011 compared to Sarasota Bay, consistent with Deepwater Horizon oil exposure. Although values between 2013 and 2016
were more similar to those observed in Sarasota Bay, T‐cell proliferation was again elevated and cytokine balance tilted
toward Th2 in Barataria Bay during 2017–2018. In 2018, Barataria Bay dolphins had significantly more circulating Treg cells
than Sarasota Bay dolphins. Mice experimentally exposed to oil also had significantly increased T‐lymphocyte proliferation
and circulating Treg cell number, including effects in their unexposed progeny. In vitro stimulation resulted in greater
Th2 responsiveness in Barataria Bay compared to Sarasota Bay dolphins, and in vitro oil exposure of Sarasota Bay dolphin
cells also resulted in enhanced Th2 responsiveness. Evidence points to Treg cells as a potential target for the
immunomodulatory effects of oil exposure. The immunological trends observed in Barataria Bay appeared exaggerated in
dolphins born after the spill, suggesting the possibility of continued oil exposure or multigenerational health consequences
of exposure to oil, as observed in mice. Environ Toxicol Chem 2021;40:1308–1321. © 2021 SETAC
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INTRODUCTION
Although important and interesting, relatively few studies

have documented the health effects of environmental con-
taminants on live marine mammal populations, given the in-
herent logistical constraints. Some studies have accessed
carcasses of beluga whales harvested by Inuvialuit hunters to
demonstrate relationships between polychlorinated biphenyls
(PCBs) and the expression of relevant genes (Noël et al. 2014).
Studies using remote access to live cetaceans, with biopsy
techniques, have documented changes in gene expression
associated with exposure to PCBs in northeast Pacific killer
whales (Buckman et al. 2011). An additional level of logistical

complexity emerges with live captures of marine mammals to
determine effects of contaminants. For example, live captures
of harbor seals in the northeastern Pacific demonstrated cor-
relations between PCB contamination levels and the ex-
pression of target genes in skin and blubber biopsies
(Noël et al. 2017), as well as disruptions of immune functions
(Levin et al. 2005; Mos et al. 2006), thyroid hormones (Tabuchi
et al. 2006), and vitamin A (Mos et al. 2007). Live captures of
bottlenose dolphins with comprehensive health assessments
have documented an association between PCB levels and
anemia, hypothyroidism, and immune functions (Schwacke
et al. 2012) as well as an association between harmful algal
bloom exposure and immune functions (Schwacke et al. 2010).
Longitudinal studies add yet one more level of complexity,
both logistically and financially. A semi–field study of harbor
seals temporarily held in captivity for a feeding study demon-
strated immune function impairment associated with ingestion
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of polluted fish from the Baltic Sea (de Swart et al. 1994).
Perhaps the best example of longitudinal studies using
live captures and comprehensive health assessment is the
population of bottlenose dolphins in Sarasota Bay (Wells 2014),
although it has not suffered significant health effects from en-
vironmental pollutants and is in fact often used as a reference
population, including in the present study. The present study
focuses on the long‐term impacts of the Deepwater Horizon
oil spill on bottlenose dolphin immune functions over a
decade‐long longitudinal study.

The explosion of the Deepwater Horizon oil platform on
20 April 2010 resulted in an unprecedented release of oil in the
Gulf of Mexico, and targeted funding supported broad efforts
by the scientific community to understand the ecological and
public health consequences associated with the spill. Common
bottlenose dolphins (Tursiops truncatus) are long‐lived apex
predators with genetically distinct stocks in the bays, sounds,
and estuaries of the northern Gulf of Mexico (National Marine
Fisheries Service 2019), some of which were exposed to heavy
oiling following the Deepwater Horizon spill. Numerous health
effects were associated with oil exposure in a relatively well‐
studied Barataria Bay, Louisiana, USA, population compared to a
reference population in Sarasota Bay, Florida, USA, including
decreased survival (Lane et al. 2015), abnormal adrenal function
(Schwacke et al. 2014; Venn‐Watson et al. 2015; Smith et al.
2017), lung disease (Smith et al. 2017), impaired reproduction
(Lane et al. 2015; Kellar et al. 2017), and immune system im-
pairments (De Guise et al. 2017). The immune system changes
observed in Barataria Bay dolphins sampled in 2011 appeared
to resolve over the following years (De Guise et al. 2017). The
present longitudinal study investigated the nature and mecha-
nisms of long‐term health effects of oil exposure on Barataria
Bay dolphins, including impacts on their immune system.

We present results suggesting that immune system impair-
ments in Barataria Bay dolphins similar in nature to those ob-
served 2011 were still present in 2017 to 2018. Results from
experimental mouse exposure studies and laboratory exposure
of dolphin cells to Deepwater Horizon oil further strengthen the
weight of evidence that health conditions observed in wild
Barataria Bay dolphins are associated with oil exposure. We
further provide insights into the potential mechanism involved
in immunotoxicity, investigate the potential for multigenera-
tional health effects of oil exposure, and discuss the im-
plications of these findings for other vertebrates.

MATERIALS AND METHODS
Animals

Bottlenose dolphins were temporarily captured, sampled,
and released as part of health‐assessment programs (which
included the immunological data presented in the present
study), as previously described in detail elsewhere (Wells
et al. 2004; Schwacke et al. 2014). Sampling was conducted at
2 Gulf of Mexico sites following the Deepwater Horizon oil spill:
Barataria Bay, an area that received prolonged and heavy oiling
(Michel et al. 2013), sampled in 2011, 2013, 2014, 2016, 2017,
and 2018, and Sarasota Bay, an area where no oil was observed

following the Deepwater Horizon spill, sampled in 2011, 2012,
2013, 2014, and 2018, with the data from 2011 to 2014
previously reported (De Guise et al. 2017). The well‐studied
Sarasota Bay population of resident bottlenose dolphins was
used as a reference in the present study (Wells et al. 2004).
Captures in Sarasota Bay were conducted under National
Marine Fisheries Service (NMFS) permits 522‐1785, 15543, and
20455, whereas those in Barataria Bay were conducted under
NMFS permit 932‐1905/MA‐009526. Protocols were reviewed
and approved by the Mote Marine Laboratory Institutional
Animal Care and Use Committee (IACUC; Sarasota Bay) and
National Oceanic and Atmospheric Administration's Animal
Care and Use Committees (Barataria Bay).

Four‐week‐old female B6C3F1 mice were purchased from
Charles River Laboratory and allowed to acclimate for 10 d
prior to experiments. Mice were either experimentally exposed
to oil or used as quality control in dolphin functional assays to
discriminate between daily variability and true differences
between dolphins analyzed at different times (De Guise
et al. 2017). All procedures were approved by the IACUC at the
University of Connecticut.

Mouse experimental exposure study design
Approximately 5‐wk‐old female mice were exposed to

Louisiana sweet crude oil (MC252, surrogate, SO‐20111116‐
MPDF‐003; supplied by British Petroleum; n= 25) via gavage
needle (21G, 1.5 inch), 3 times per week for 6 wk, at a dose
(~0.1% body wt per day) comparable to that which induced
immune dysregulation in mink (Schwartz et al. 2004a). Un-
exposed control mice (n= 25) received an equivalent volume of
mineral oil (M1180; Millipore Sigma). After 6 wk, mice were
euthanized (n= 8/group), and spleen and whole blood were
collected to measure T‐lymphocyte proliferation, the proportion
of T regulatory (Treg) cells, and concentrations of plasma
cytokines. After exposure (Louisiana sweet crude or mineral oil
control), another group of female mice (n= 17/group) were
mated with 8‐ to 10‐wk‐old unexposed male mice at a 2:1
(F:M) ratio. Female mice were weighed once a week after
mating. After parturition, all pups (F1) were counted weekly to
document survival. After 21 d, all pups were weaned, sexed, and
weighed. A subset of female pups, n= 17 from exposed
mothers and n= 17 from unexposed mothers, were housed for
an additional 3 wk. Afterward, all F1 mice were euthanized, and
spleen and whole blood were collected to measure the
proportion of Treg cells and concentrations of plasma cytokines
to assess the potential for multigenerational effects.

Collection of spleen and blood
Dolphin blood from the fluke blade periarterial venous rete

was collected into BD Vacutainer® tubes with sodium heparin
(Becton Dickinson) as part of the physical examinations, kept
cool, and shipped overnight for functional immunological
assays. In addition, blood was collected in serum separator
tubes, allowed to clot, and centrifuged to collect serum.
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Aliquots of serum (1mL) were collected and immediately frozen
prior to shipping on dry ice for cytokine analysis.

Mouse spleen and whole blood were collected as previously
described (Schwacke et al. 2012). Briefly, blood was immedi-
ately collected via cardiac puncture, followed by cervical dis-
location to ensure death. The spleen was harvested aseptically
from each animal, and a single‐cell suspension was prepared
using 2 pairs of forceps in complete Dulbecco's modified
Eagle's medium (DMEM; Gibco). Plasma was collected and
frozen for cytokine analysis.

Lymphocyte isolation
Mononuclear cells were isolated by density gradient cen-

trifugation on Ficoll‐Paque 1.077 (GE Healthcare Life Sciences)
gradient for 35min at 900g in dolphins and for 15min at 400g in
mice. Mononuclear cells were resuspended in complete DMEM,
washed twice, and enumerated with their viability assessed using
the exclusion dye trypan blue. Complete DMEM consisted
of DMEM supplemented with 1mM sodium pyruvate,
100 μM nonessential amino acids, 25mM 4‐(2‐hydroxyethyl)‐
1‐piperazineethanesulfonic acid, 2mM l‐glutamine, penicillin
(100 U/mL), streptomycin (100 μg/mL; all from Gibco, Grand
Island, NY), and 10% fetal calf serum (HyClone, GE Healthcare
Life Sciences).

Mitogen‐induced lymphocyte proliferation
Lymphocyte proliferation was evaluated as previously de-

scribed (De Guise et al. 2017). Briefly, mouse splenic or dolphin
blood lymphocytes (2 × 106 cells/mL) were incubated in triplicate
with 2 T‐cell mitogens (concanavalin A [ConA] and phytohe-
magglutinnin A [PHA]; Millipore Sigma) for 66 h in flat‐bottom 96‐
well plates (Fisher Scientific) at 37 °C and 5% CO2. Mitogens
were used at optimal as well as suboptimal concentrations (1 and
0.1 µg/mL for both ConA and PHA) because suboptimal con-
centrations of mitogens allow for higher sensitivity to subtle
deficits and optimal concentrations of mitogens do not always
reveal differences (Mori et al. 2006).

Lymphocyte proliferation was evaluated for the incorporation
of 5‐bromo‐2‐deoxyuridine, a thymidine analogue, detected
with a monoclonal antibody and colorimetric enzymatic reaction
(Cell Proliferation ELISA BrdU [colorimetric]; Roche Diagnostics)
per the manufacturer's instructions using an ELISA plate reader
(Multiskan EX, Ver 1.0) at 450 nm with a reference wavelength of
690 nm. Results were expressed as optical density.

Cytokine concentrations
Dolphin serum cytokines were quantified using the

Bio‐Plex Pro™ Human Cytokine Th1/Th2 Panel (Bio‐Rad), the
Millipore Porcine 5‐plex Panel, and the TGF beta‐1 Porcine
ProcartaPlex™ Simplex Kit (Thermo Fisher Scientific), as pre-
viously described (De Guise et al. 2017, 2019). Mouse plasma
cytokines were quantified using the commercially available
MILLIPLEX MAP Mouse High Sensitivity T Cell Panel. Samples

were prepared and analyzed according to the manufacturers'
instruction, with quality control samples, using the Bio‐Plex
200™ System and Bio‐Manager 5.0 software. The observed
concentration (picograms per milliliter) of each analyte for each
sample was calculated using a curve fit generated for each
analyte from the 7 standards. Prior to each use of the Bio‐Plex
200 system, an instrument calibration and validation procedure
using the Bio‐Rad Validation and Calibration kit was performed
to assure that the instrument was performing properly, per the
manufacturer's instruction. The instrument passed both cali-
bration and validation tests prior to each use. All quality control
values were within the manufacturer's specified concentration
ranges. Samples with measurements below the minimum
detection limit were assigned a value of zero.

Treg cell quantification
The proportion of dolphin peripheral blood Tregs was

measured as previously described (De Guise et al. 2019), using
monoclonal antibodies to cluster of differentiation 4 (CD4;
SIM.4, National Institutes of Health) and forkhead box P3
(FOXP3; Life Technologies). The proportion of mouse splenic
and peripheral blood Tregs was measured using the Miltenyi
Mouse Treg Detection Kit (CD4/CD25/FOXP3), according to
the manufacturer's instructions. The fluorescence of approx-
imately 30 000 events was read using a BD Biosciences
LSRFortessa X‐20 Cell Analyzer (Becton Dickinson) and
FACSDiva software (Becton Dickinson Immunocytometry
System). Lymphocytes were identified by their relative size
(forward‐scattered light) and their complexity (side‐scattered
light), and Treg lymphocytes were defined as CD4+ and
FoxP3+ (dolphins) or CD4+, CD25+, and FoxP3+ (mice).

Cytokine gene expression following stimulation
with T helper 1, T helper 2, or Treg cytokines

To assess the responsiveness of dolphin lymphocytes to a T
helper 1 (Th1), Th2, or Treg stimulus, dolphin lymphocytes were
stimulated with human recombinant cytokines and assessed for
cytokine gene expression, as previously described (De Guise
et al. 2019). Briefly, to assess a Th1 response, cells were stimu-
lated with 25 ng/mL IL‐12 (Millipore Sigma) and IFNγ (Thermo
Fisher Scientific) and analyzed for IFNγ expression. To assess a
Th2 response, cells were stimulated with 25 ng/mL IL‐4 (Millipore
Sigma) and IL‐2 (Thermo Fisher Scientific) and analyzed for IL‐4
and IL‐13 expression. To assess a Treg response, cells were
stimulated with 10 ng/mL IL‐2 (Thermo Fisher Scientific) and
TGFβ (Thermo Fisher Scientific) and analyzed for TGFβ and IL‐10
expression. Peripheral blood mononuclear cells (PBMCs) were
incubated with human recombinant cytokines for 24 h, re-
suspended in RNAlater solution (Thermo Fisher Scientific), kept
at 4 °C overnight, and then stored for up to 1 mo at –20 °C. The
RNA was extracted from dolphin PBMC samples, and gene ex-
pression was assessed using real‐time polymerase chain reaction
(PCR), as previously described (De Guise et al. 2019). Gene ex-
pression data were analyzed using the comparative CT (ΔΔCT)
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method. Samples for which the amplification of the house-
keeping genes was outside of the expected range were dis-
carded so as to not misinterpret a change in the expression of a
target gene as an inadequate PCR.

In vitro dolphin lymphocyte oil exposure
To assess the potential of oil exposure to directly affect dol-

phin lymphocyte activity, Sarasota Bay dolphin lymphocytes were
isolated as described and incubated with increasing concen-
trations of oil high energy medium accommodated fraction
(HEMAF), as described (White et al. 2017). Briefly, Louisiana
sweet crude oil (1 g/L culture medium) was mixed with DMEM
culture medium at low speed for 30 s. The mixture was then
transferred to separation funnel for 1 h and the medium removed
from the bottom of the funnel, leaving the medium/oil interface
undisturbed. As described, DMEM was supplemented, and dol-
phin lymphocytes were incubated with HEMAF and recombinant
cytokines for 24 h prior to assessing for gene expression.

Dolphin age determination
Dolphin age was estimated using life‐history data available

from photoidentification of individuals to confirm chronological
age, given the long‐term data sets in the well‐studied Sarasota
Bay population (Wells 2014). The ongoing photoidentification
efforts in Barataria Bay since the Deepwater Horizon oil spill
have resulted in sufficient information to establish age for many
younger animals in that population (Schwacke et al. 2014;
Smith et al. 2017; Barratclough et al. 2019). In a subset of the
dolphins examined, a tooth was extracted for age determi-
nation using the growth layer group method (Hohn et al. 1989).
Several dolphins underwent dental radiography for age de-
termination based on pulp‐tooth area ratios (Herrman
et al. 2020), as validated in humans (Cameriere et al. 2007). In
all cases, dolphin ages were assessed using a similar combi-
nation of methods in Barataria Bay and Sarasota Bay to de-
termine whether or not they were alive at the time of the spill.

Statistical analysis
Differences between groups (locations and year or HEMAF

concentrations) were assessed using one‐way analysis of variance
(ANOVA), with Dunnett's post hoc test used to compare groups
to the reference group (Sarasota Bay or unexposed control) or
t test to compare Barataria Bay and Sarasota Bay or dolphins alive
at the time of the spill and those born after the spill. A 2‐way
ANOVA was used to assess differences between exposure
groups (exposed vs control) and generations (F0 and F1) in mice.
All analyses were performed using SigmaStat 3.5 (Systat) or SPSS
(IBM; Ver 21), with p< 0.05 for statistical significance.

RESULTS
As previously reported (De Guise et al. 2017), given the

general lack of differences among years in Sarasota Bay,

Sarasota Bay data for all years tested were pooled, and
Sarasota Bay as a whole was considered as the reference pop-
ulation. Although a previous report documented an increase in
T‐lymphocyte proliferation in Barataria Bay dolphins in 2011 and
in some circumstances in 2013, with an apparent return to
normal (no different from Sarasota Bay) in 2014 (De Guise
et al. 2017), ConA‐ and PHA‐stimulated T‐cell proliferation in
Barataria Bay in 2016, 2017, and 2018 was significantly higher
than in Sarasota Bay (Figure 1). The increase in Barataria Bay
T‐cell proliferation in 2016 to 2018 was generally in the range of
that observed in Barataria Bay in 2011 (within 8, 5, 26, and 17%
of Barataria Bay 2011 values for suboptimal ConA, optimal
ConA, suboptimal PHA and optimal PHA, respectively) and was
most marked with suboptimal mitogen concentrations.

Mice experimentally exposed to Louisiana sweet crude oil
by gavage for 6 wk showed no significant changes in spleno-
cyte T‐lymphocyte proliferation compared to control mice
gavaged with mineral oil (Figure 2A). However, the unexposed
progeny of exposed mice had significantly (15–33%) higher
ConA‐ (suboptimal concentration only) and PHA‐ (both con-
centrations) induced T‐lymphocyte proliferation compared to
the progeny of control mice (Figure 2B).

Serum concentrations of Th1, Th2, and Treg cytokines in
Barataria Bay and Sarasota Bay dolphins are presented in
Figure 3. Cytokine concentrations were highly variable, as ex-
pected for samples from wild populations of outbred animals with
different ages and health status, resulting in generally low stat-
istical power. However, serum IFNγ in Barataria Bay‐14 and serum
IL‐5 in Barataria Bay‐16 were statistically higher than in Sarasota
Bay, whereas serum TGFß in Barataria Bay‐13, Barataria Bay‐14,
Barataria Bay‐16, and Barataria Bay‐17 was significantly lower
than in Sarasota Bay. Furthermore, although not statistically sig-
nificant, interesting trends mimic findings reported in 2011 (De
Guise et al. 2017). The Th1 cytokines IL‐2, IL‐12, and IFNγ in
Barataria Bay‐11 were 60, 6, and 37%, respectively, of the con-
centrations measured in Sarasota Bay, before reaching higher
concentrations in 2013 to 2016. However, IL‐2, IL‐12, and IFNγ in
Barataria Bay‐17 and Barataria Bay‐18 were 2% or less of the
concentrations measured in Sarasota Bay. The Th2 cytokine IL‐4
in Barataria Bay‐11 was 418% of those of Sarasota Bay, lower than
Sarasota Bay in Barataria Bay‐13 to Barataria Bay‐16, and 296 and
227%, respectively, of those of Sarasota Bay in Barataria Bay‐17
and Barataria Bay‐18. Over the years, IL‐5 was variable without a
distinct pattern. The concentration of IL‐13 in Barataria Bay‐11
was 15% of that in Sarasota Bay, before returning to higher
concentrations in Barataria Bay‐13 to Barataria Bay‐16, but Bar-
ataria Bay‐17 and Barataria Bay‐18 were 11 and 2%, respectively,
of those in Sarasota Bay. Also, IL‐10 followed an interesting trend.
Serum IL‐10 in Barataria Bay‐11 was 3% of that in Sarasota Bay,
before returning to higher concentrations in Barataria Bay‐13 to
Barataria Bay‐16, but was 1% or less than that in Sarasota Bay in
Barataria Bay‐17 and Barataria Bay‐18.

There were no significant differences in the plasma con-
centrations of the Th1 cytokines IL‐2, IL‐12, and IFNγ; the Th2
cytokines IL‐4, IL‐5, and IL‐13; and the Treg cytokines IL‐10 and
TGFß between oil‐exposed and control F0 mice and between
the unexposed progeny (F1) of oil‐exposed and control mice
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(Figure 4). Plasma cytokines concentrations were generally low
and often below the assay detection limit.

The proportion of FOXP3+ Treg cells in the blood of Barataria
Bay dolphins sampled in 2018 was significantly (~3 times) higher
than that in Sarasota Bay dolphins (Figure 5). Similarly, the
proportion of FOXP3+ Treg cells in blood of mice exposed to
Louisiana sweet crude oil by gavage for 6 wk was significantly
(~2 times) higher than that in control mice exposed to mineral oil
(Figure 6). However, there was no significant difference in the
proportion of FOXP3+ Treg cells in spleen from the same mice.
There was no significant difference in the proportion of FOXP3+

Treg cells in blood or spleen from the unexposed F1 progeny of
exposed versus control mice (data not shown).

In vitro stimulation with recombinant cytokines was per-
formed to assess the responsiveness of Barataria Bay and
Sarasota Bay dolphin lymphocytes (Figure 7). Stimulation with
recombinant IL‐4 resulted in a significantly higher expression of
the genes for IL‐4 and IL‐13 in Barataria Bay dolphins com-
pared to Sarasota Bay (Figure 7A). Stimulation with IL‐12 and
IFNγ did not result in a significantly different expression of the
genes for IFNγ in Barataria Bay compared to Sarasota Bay, nor
did stimulation with IL‐2 and TGFß significantly change the
expression of the genes for TGFß and IL‐10. Further, pre-
incubation of Sarasota Bay dolphin lymphocytes with in-
creasing concentrations of HEMAF significantly increased the
expression of the gene for IL‐13 upon stimulation with IL‐4
(Figure 7B), whereas others were not significantly affected.

When available, age determination through photo-
identification, tooth growth layer group, or dental radiography
was used to assess whether dolphins sampled were alive at the
time of the spill or born after the spill. Dolphins that were born

after the spill had significantly (19%) higher ConA‐ (suboptimal
concentration) induced T‐lymphocyte proliferation than dol-
phins that were alive at the time of the spill (Figure 8). Although
cytokine levels were highly variable, resulting in relatively low
statistical power, interesting trends were observed (Figure 9).
The concentrations of the Th1 cytokines IL‐2, IL‐12, and IFNγ in
dolphins born after the spill were 42, 49, and 21%, respectively,
of those in dolphins alive at the time of the spill. The concen-
trations of the Th2 cytokines IL‐4, IL‐5, and IL‐13 in dolphins
born after the spill were 21, 245, and 54%, respectively, of
those in dolphins alive at the time of the spill. The concen-
trations of the Treg cytokines IL‐10 and TGFß were relatively
similar between dolphins born after the spill and those alive at
the time of the spill. Correlation analysis demonstrated no
significant correlation between T‐lymphocyte proliferation and
age in the reference Sarasota Bay dolphins (data not shown).
Similarly, correlation analysis demonstrated no significant cor-
relation between the Th1 cytokines (IL‐1, IL‐12, and IFNγ), the
Th2 cytokines (IL‐4, IL‐5, and IL‐13), the Treg cytokine IL‐10,
and age in the reference Sarasota Bay dolphins (data not
shown). Only the Treg cytokine TGFß was significantly neg-
atively correlated with age (R= –0.348, p= 0.004, n= 64).

There were no significant differences in litter size or weight
at weaning between the F1 progeny of oil‐exposed and control
mice (data not shown).

DISCUSSION
Long‐term immunological alterations

We present evidence that the previously documented im-
mune changes in a population of bottlenose dolphins in

FIGURE 1: Lymphocyte proliferation in blood of bottlenose dolphins upon stimulation with optimal and suboptimal concentrations of mitogens,
relative to no mitogen stimulation. Results (means of triplicates) are expressed as optical density. Samples were obtained from the reference
population in Sarasota Bay, Florida, USA, in 2011 to 2014 (n= 60) and from dolphins exposed to oiling following the Deepwater Horizon oil spill in
Barataria Bay, Louisiana, USA, sampled in 2011 (n= 29), 2013 (n= 31), 2014 (n= 32), 2016 (n= 36), 2017 (n= 22), and 2018 (n= 34). Results are
means, and error bars represent standard deviation. Results for Sarasota Bay and Barataria Bay 2011 to 2014 from De Guise et al. (2017). *Results
significantly different from Sarasota Bay (p< 0.05). ConA= concanavalin A; PHA= phytohemagglutinnin A; NM= no mitogen; OD= optical density;
opt= optimal; sub= suboptimal.
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Barataria Bay in the footprint of the Deepwater Horizon oil spill
(De Guise et al. 2017) were still present in 2017 to 2018. The
pattern of immune changes reported in Barataria Bay dolphins
in 2017 and 2018 (increased T‐lymphocyte proliferation, de-
creased Th1 cytokines, tilt toward a Th2 balance, and affected
Treg cytokines, with decreased IL‐10 without decreased TGFß)
was strikingly similar to that observed in Barataria Bay in 2011
(De Guise et al. 2017). Although sampling in 2013 and 2014
appeared to show a dampening of the immunological effects
(De Guise et al. 2017), continued monitoring in 2016 to 2018
suggests a reversal of the trend. It is possible that immune
changes persisted over time but that we may not have de-
tected such persistence, given sampling variation and/or po-
tentially annual variation related to environmental conditions
and given the relatively small sample size and heterogeneous
sampling cohort.

We considered causes other than oil exposure to explain
these observations. Morbillivirus infections have been de-
scribed in marine mammals (Duignan et al. 2014; Van Bressem
et al. 2014), and morbilliviruses have the potential to modulate
immune functions. Exposure to morbillivirus is episodic in some

cetaceans in the Gulf of Mexico (Rowles et al. 2011; Fauquier
et al. 2017), and some of the dolphins sampled in Barataria Bay
exhibited detectable titers (C. Cloyed et al., Dauphin Island Sea
Lab, Dauphin Island, AL, USA, unpublished data). However,
high morbillivirus titers in bottlenose dolphins have been shown
to decrease T‐lymphocyte proliferation (Bossart et al. 2011).
Similarly, immunological changes observed in other populations
of wild bottlenose dolphins undergoing different environmental
stressors, such as exposure to harmful algal bloom toxins
(Schwacke et al. 2010) or elevated exposure to PCBs (Schwacke
et al. 2012), have been documented; but the patterns of im-
munomodulation described were qualitatively different from
those observed in the present study. Further, comprehensive
health assessments in Barataria Bay between 2011 and 2018 did
not unveil morbillivirus outbreaks, harmful algal bloom ex-
posure, high exposure to environmental contaminants, or other
causes that could explain the changes in immune functions re-
ported in the present study. Finally, it is possible that there is
continued exposure to the Deepwater Horizon oil that may not
have been completely removed from the Barataria Bay eco-
system. In fact, oil in Barataria Bay marsh sediments 8 yr after
the Deepwater Horizon spill was still 10 times above prespill
concentrations, with the authors suggesting “a long‐term con-
tamination by oil or oil residues that will remain for decades”
(Turner et al. 2019). Of interest is a particular ongoing feeding
behavior observed in Barataria Bay dolphins, whereby they
appear to “drill into the sediments” (B. Quigley, National
Marine Mammal Foundation, San Diego, CA, USA, unpublished
data), with the potential to inadvertently ingest and/or re-
suspend oil constituents and continue their exposure.

Together, our findings present a pattern of immune changes
in Barataria Bay in 2017 and 2018 similar to that observed in
dolphins sampled in Barataria Bay a year after the Deepwater
Horizon spill, which was reasonably attributed to the exposure
to oil from the spill (De Guise et al. 2017), different from pat-
terns of immunotoxicity observed in association with other
stressors, and in the absence of other compelling causes.

While reproductive impairment and immune changes were
observed in Barataria Bay dolphins following the Deepwater
Horizon spill (Lane et al. 2015; De Guise et al. 2017; Kellar
et al. 2017), as was the case for mink experimentally exposed to
oil (Mazet et al. 2001; Schwartz et al. 2004b), the observation of
oil‐induced immunological effects in our mouse experimental
exposure in the absence of reproductive effects suggests that
the immune system may be more sensitive to the adverse im-
pacts of oil exposure. This is compatible with previous re-
porting that the immune system is among the most sensitive to
the effects of xenobiotics (Tryphonas 2001).

Although the cause of health changes in wildlife is difficult to
unequivocally attribute to a specific cause, the weight‐of‐
evidence approach can help link health effects to a potential
cause. Several studies assessed the immunomodulatory effects
of individual polycyclic aromatic hydrocarbons (PAHs), but few
involved direct oil exposure. Experimental oil exposure in fish
can affect the expression of immune function genes (Jones
et al. 2017; Rodgers et al. 2018, 2020) and increase suscepti-
bility to a bacterial challenge (Jones et al. 2017), the ultimate

(A)

(B)

FIGURE 2: Lymphocyte proliferation of mouse splenocytes upon
stimulation with optimal and suboptimal concentrations of mitogens,
relative to no mitogen stimulation, in (A) F0 mice exposed to Louisiana
sweet crude oil for 6 wk by gavage (n= 8) compared to control mice
exposed to mineral oil (n= 8) and (B) the unexposed F1 progeny
of mice exposed to Louisiana sweet crude (n= 17) compared to
the progeny of control mice exposed to mineral oil (n= 17). Results
are expressed as optical density and presented as means, and error
bars represent standard deviation. *Results significantly different
from control mice (p< 0.05). ConA= concanavalin A; PHA=
phytohemagglutinnin A; NM= no mitogen; OD= optical density;
opt= optimal; sub= suboptimal.

Long‐term immune changes in Barataria Bay dolphins—Environmental Toxicology and Chemistry, 2021;40:1308–1321 1313

wileyonlinelibrary.com/ETC © 2021 SETAC



manifestation of immunotoxicity. In mammals, the observed
increase in T‐cell proliferation was very similar in nature and
magnitude to that observed in mink chronically exposed to
bunker C fuel oil (Schwartz et al. 2004b). Further, an increase in
T‐lymphocyte proliferation was also observed in our mouse
experimental oil exposure study, albeit in the F1 progeny of
exposed mice. The lack of direct modulation of T‐lymphocyte
proliferation in the directly exposed (F0) mice might be ex-
plained by the duration/chronicity of exposure and/or dose
because it has been suggested that PAHs might have sup-
pressive effects at high dose and stimulatory effects at lower
doses (Burchiel and Luster 2001). Finally, in vitro exposure of
bottlenose dolphin lymphocytes to Louisiana sweet crude
oil also resulted in a concentration–response increase in
T‐lymphocyte proliferation (White et al. 2017). The combination
of field studies in wild dolphins, mouse experimental exposure,
and in vitro oil exposure in dolphin cells supports the potential
for oil exposure to affect T‐lymphocyte proliferation in dolphins.

Modulation of cytokine balance following various PAH ex-
posures generally involves a downregulation of the Th1 re-
sponse and favors a Th2 response (reviewed in De Guise
et al. 2017). However, none of those studies involve direct oil
exposure. Our mouse study failed to demonstrate noticeable

changes in the Th1/Th2 cytokine balance in directly exposed
(F0) mice or their progeny (F1). However, cytokine concen-
trations were generally low, which is not surprising in laboratory
mice kept in environments devoid of environmental challenges.
In contrast, in vitro stimulation of dolphin lymphocytes showed
a small and nonsignificant reduction in Th1 responsiveness and
a significant increase in Th2 responsiveness in previously
oil‐exposed Barataria Bay dolphins compared to reference
Sarasota Bay dolphins. Finally, in vitro exposure of reference
Sarasota Bay dolphin lymphocytes to oil confirmed a small and
nonsignificant concentration–response reduction in Th1 re-
sponsiveness and a significant increase in Th2 responsiveness.
Altogether, the combination of wild dolphin population studies
and laboratory in vitro exposure experiments supports the
potential for oil to modulate the Th1/Th2 balance in favor of a
Th2 response in dolphins.

Potential mechanisms of immunotoxicity
With the recent speculation that Treg cells may be involved

in the immunotoxicity of oil in dolphins (De Guise et al. 2017)
and building on recent validation studies (De Guise et al. 2019),

FIGURE 3: Serum concentrations of T helper 1 (Th1; IL‐2, IL‐12, and IFNγ), Th2 (IL‐4, IL‐5, and IL‐13), and T regulatory (IL‐10 and TGFß) cytokines in
bottlenose dolphins sampled from the reference population in Sarasota Bay, Florida, USA (SB) in 2011 to 2018 (n= 68) and from dolphins exposed
to oiling following the Deepwater Horizon oil spill in Barataria Bay, Louisiana, USA (BB), sampled in 2011 (n= 32), 2013 (n= 31), 2014 (n= 32), 2016
(n= 38), 2017 (n= 22), and 2018 (n= 34). Results are means, and error bars represent standard deviation. Results for Sarasota Bay and Barataria Bay
2011 to 2014 from De Guise et al. (2017). *Results significantly different from Sarasota Bay (p< 0.05).
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the present study quantified Treg cells in Barataria Bay and
Sarasota Bay dolphins. Dolphins from Barataria Bay had 3 times
as many circulating Treg cells as reference Sarasota Bay dol-
phins. This closely resembled findings in mice experimentally
exposed to oil, which had 2 times as many circulating Treg cells
as control mice. A higher proportion of Treg cells in the ab-
sence of increased Treg cytokines in mice and dolphins sug-
gests the potential for a functional dysregulation of Treg cells
on oil exposure. There are several potential mechanisms by
which oil exposure could lead to Treg dysregulation (summar-
ized in Figure 10), informed by a recent review of the metabolic
regulation of Treg cells (Chen et al. 2019).

Activation of the aryl hydrocarbon receptor (AhR) with
2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) expanded the
population of CD4+CD25+Foxp3+ Treg cells in the pancreatic
lymph nodes of mice and suppressed the development of au-
toimmune type 1 diabetes in nonobese diabetic mice (Kerkvliet
et al. 2009). In an experimental colitis mouse model, TCDD
attenuated colitis clinical signs with increased differentiation of
Tregs and attenuation of Th17 cells, through increased meth-
ylation of CpG islands of Foxp3 and demethylation of IL‐17
promoters, suggesting epigenetic mechanisms (Singh
et al. 2011). These studies led to the search for nontoxic AhR
ligands inducing Treg cells for potential therapeutic use in

FIGURE 4: Serum concentrations (picograms per milliliter) of the T helper 1 (Th1) cytokines IL‐2, IL‐12, and IFNγ; the Th2 cytokines IL‐4, IL‐5, and
IL‐13; and the T regulatory cytokines IL‐10 and TGFß in oil‐exposed and control F0 mice (n= 8/group) and in the unexposed progeny (F1) of
oil‐exposed and control mice (n= 17/group). Results are means, and error bars represent standard deviation.
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preventing graft rejection (Punj et al. 2014), ulcerative colitis
(Lv et al. 2018a, 2018b), and arthritis (Tong et al. 2016) models.
Activation of AhR in mice by TCDD induced functional Treg
cells, whereas AhR activation by 6‐formylindolo[3,2‐b]carbazole
interfered with Treg‐cell differentiation and functionality
(Quintana et al. 2008). Thus, AhR regulates Treg‐ and Th17‐cell
differentiation in a ligand‐specific manner. This may be of im-
portance because AhR signaling is potentially important in
modulating the effects of PAHs during an oil spill (Bak
et al. 2019).

Glycolysis inhibits Treg differentiation and promotes Treg
expansion, whereas fatty‐acid oxidation promotes Treg differ-
entiation (Chen et al. 2019). If oil exposure affects oxidative
stress in dolphins, as was demonstrated in birds (Bursian
et al. 2017; Harr et al. 2017) and turtles (Mitchelmore
et al. 2015) exposed to oil, it has the potential to disrupt lipid
metabolism and potentially Treg metabolism and therefore
differentiation.

Several signaling pathways may influence different aspects
of Treg‐cell biology (Figure 10). The mammalian target of ra-
pamycin (mTOR) pathway plays an important role in the regu-
lation of Treg cells, with mTOR complexes 1 and 2 having
opposite activities on Treg‐cell expansion and function (Chen
et al. 2019). Toll‐like receptor signals promote Treg‐cell pro-
liferation but also increase glycolysis and expression of glucose
transporter 1 (Glut1), which impaired Treg‐cell suppressive
capacity; and Glut1 expression was sufficient to increase the
number of Treg cells, but it reduced their suppressive capacity
and Foxp3 expression (Gerriets et al. 2016). Defects in a kinase
controlling the expression of receptors on Tregs impaired
their metabolic and functional fitness, leading to an excessive
Th2‐dominant inflammatory disorder in mice (Yang et al. 2017).
Overall, it appears that the differentiation, expansion, and
regulatory functions of Treg cells have the potential to be
modulated independently, as appears to be the case in our

FIGURE 5: The proportion of FOXP3+ T regulatory cells in blood of
bottlenose dolphins sampled from the reference population in Sarasota
Bay, Florida, USA, in 2018 (n= 20) and from dolphins exposed to oiling
following the Deepwater Horizon oil spill in Barataria Bay, Louisiana,
USA sampled in 2018 (n= 34). Results are means, and error bars rep-
resent standard deviation. *Results significantly different from Sarasota
Bay (p< 0.05). FOXP3= forkhead box P3.

FIGURE 6: The proportion of forkhead box P3 (FOXP3+) T regulatory
cells in blood and spleen of mice exposed to Louisiana sweet crude oil
for 6 wk by gavage (n= 8) compared to control mice exposed to
mineral oil (n= 8). Results are means, and error bars represent standard
deviation. *Results significantly different from control mice (p< 0.05).

(A)

(B)

FIGURE 7: Relative gene expression of effector T helper 1 (Th1), Th2,
and T regulatory (Treg) cytokines on polarizing stimulus with the
Th1‐inducing cytokines IL‐2 and IFNγ (25 ng/mL), the Th2‐inducing
cytokines IL‐4 and IL‐2 (25 ng/mL), and the Treg‐inducing cytokines IL‐2
and TGFß (10 ng/mL). Data are expressed relative to unstimulated cells
(value of 1). The responsiveness was compared (A) between bottlenose
dolphins sampled from the reference population in Sarasota Bay,
Florida, USA, in 2018 (n= 9–13 dolphins/cytokine) and dolphins ex-
posed to oiling following the Deepwater Horizon oil spill in Barataria
Bay, Louisiana, USA, sampled in 2018 (n= 11–13 dolphins/cytokine)
and (B) in Sarasota Bay dolphins upon in vitro exposure to increasing
concentrations of high‐energy medium accommodation fraction of
Louisiana sweet crude oil (n= 3–10 dolphins/cytokine). Results are
means, and error bars represent standard deviation. *Results sig-
nificantly different from control mice (p< 0.05). HEMAF= high‐energy
medium accommodation fraction.
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study (more Treg cells without associated increased Treg
functionality). It is possible that the delicate interplays between
pathways and receptors that regulate Treg differentiation and
suppressive functions could be directly or indirectly affected by
oil exposure.

Whatever mechanism is involved, dysregulation of Treg cells
following oil exposure would be consistent with the observed
increase in T‐lymphocyte proliferation, with or without mi-
togen. Interestingly, an increase in T‐lymphocyte proliferation
at lower doses and a decrease in T‐cell proliferation at higher
doses in mice exposed to cyclophosphamide were attributed
to the higher sensitivity of regulatory T cells at low exposure
dose (Luster et al. 1993). Dysregulation of Treg cells would also
be consistent with a Th2‐biased cytokine pattern, as observed
in mice that develop Th2‐dominant inflammatory disorders
(Yang et al. 2017).

Multigenerational effects
Our mouse study demonstrated the potential for oil ex-

posure to have immunomodulatory effects on directly exposed
mice as well as their unexposed progeny. Dolphins in Barataria
Bay have been sampled up to 8 yr after the Deepwater Horizon
spill, affording the opportunity to sample dolphins that were
born after the oil spill. To explore the potential for multi-
generational effects in dolphins, we compared immune func-
tions in dolphins with a known age estimate relative to the time
of the spill. We observed an increase in T‐cell proliferation and
serum cytokines, suggesting a reduced Th1 response in dol-
phins that were born after the spill compared to those alive at
the time of the spill. The lack of significant correlations be-
tween those variables and age in reference Sarasota Bay dol-
phins suggests that those differences are not biased by the
younger age of dolphins born after the spill but rather suggests
the potential for multigenerational effects, through parental

exposure of the germline that can in turn increase disease
susceptibility of subsequent generations of the exposed an-
cestors through epigenetics (Nilsson et al. 2018) or the po-
tential for continued environmental oil exposure in young
dolphins potentially more susceptible to the effects of oil.
Several environmental toxicants have been shown to promote
the transgenerational inheritance of increased disease sus-
ceptibility in a diversity of species including birds, fish, rodents,
and pigs (Nilsson et al. 2018); and multigenerational effects
have recently been documented in fish following experimental
oil exposure, although the specific mechanisms were not
documented (Jasperse et al. 2019). The potential for multi-
generational effects of oil, irrespective of the mechanisms in-
volved, raises significant concerns for the recovery of dolphin
stocks affected by the Deepwater Horizon oil spill.

Long‐term health implications
Modeling efforts suggest that the Deepwater Horizon oil

spill resulted in 30 347 lost cetacean yr (the difference between
baseline and injured population size, summed over the mod-
eled time period) in Barataria Bay alone, with an estimated
39 yr to population recovery (Schwacke et al. 2017). Rodent
literature meta‐analyses documented that chemical‐induced
immunomodulation increases susceptibility to infectious dis-
eases, with the likelihood that the concept applies to natural
populations that experience continued background exposure
to pathogens (Luster et al. 1993). It is therefore possible that
Barataria Bay dolphins sampled in 2017 and 2018 may have
increased susceptibility to infectious diseases, therefore in-
creasing the likelihood of disease and possibly death. Such
reduction in fitness could further increase the subtle, long‐term
impact on the population and could slow anticipated pop-
ulation recovery, especially if it continues to be observed
across generations.

FIGURE 8: Lymphocyte proliferation in blood of Barataria Bay, Louisiana, USA, bottlenose dolphins exposed to oiling following the Deepwater
Horizon oil spill upon stimulation with optimal and suboptimal concentrations of mitogens, expressed as optical density. Using age estimation (when
available) relative to the time of the Deepwater Horizon spill, T lymphocyte proliferation was compared between dolphins alive at the time of the
spill (n= 155) and those born after the spill (n= 30). Results are means, and error bars represent standard deviation. *Results significantly different
from “alive at spill” (p< 0.05). ConA= concanavalin A; PHA= phytohemagglutinnin A; NM= no mitogen; OD= optical density; opt= optimal;
sub= suboptimal.
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The explosion of the Deepwater Horizon oil exploration
platform on 20 April 2010 resulted in an unprecedented re-
lease of oil in the Gulf of Mexico. Oil spills involve health risks
for humans participating in cleanup or inhabiting or otherwise
using the surrounding affected area (Laffon et al. 2016).
Respiratory problems have been documented in cleanup
workers following the Deepwater Horizon spill (Alexander

et al. 2018; D'Andrea and Reddy 2018). Other human health
impacts were recently reviewed following several major crude
oil or heavy fuel oil (bunker C) spill accidents (Aguilera
et al. 2010; Goldstein et al. 2011; Levy and Nassetta 2011;
Laffon et al. 2016). Beyond acute effects (Levy and
Nassetta 2011), subtle but potentially important immune
effects have been described in cleanup workers, including

FIGURE 9: Serum T helper 1 (Th1; IL‐2, IL‐12, and IFNγ), Th2 (IL‐4, IL‐5, and IL‐13), and T regulatory (IL‐10 and TGFß) cytokines in Barataria Bay,
Louisiana, USA, bottlenose dolphins exposed to oiling following the Deepwater Horizon oil spill and sampled in 2011 to 2018. Using age estimation
(when available) relative to the time of the Deepwater Horizon spill, serum cytokine concentrations were compared between dolphins alive at the
time of the spill (n= 155) and those born after the spill (n= 30). Results are means, and error bars represent standard deviation.
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reduced blood levels of CD4 T lymphocytes, IL‐2, IL‐4, IL‐10,
and IFNγ (Gestal Otero et al. 2004) and lower circulating
CD16+56+ natural killer cells (Laffon et al. 2013). Despite
the paucity of studies, the data confirm the potential for oil
exposure to adversely affect the immune system in humans and
that it may decrease disease resistance.

The observation of long‐term health effects in dolphins
following the Deepwater Horizon oil spill, including the trend in
unfavorable prognosis (L.H. Schwacke, unpublished data), and
the observation of subtle but potentially impactful effects on
the immune system, coupled with the observation of im-
munological changes in humans exposed to oil and the po-
tential for multigenerational effects, suggest that long‐lived
bottlenose dolphins may serve as sentinels for the potential
environmental risk associated with oil exposure.

CONCLUSIONS
The present study documented immunological alterations in

Barataria Bay bottlenose dolphins sampled up to a decade
following the Deepwater Horizon oil spill that were similar in
nature to those associated with and immediately following the
spill. The specific nature of the changes, the compatibility of
those changes with similar effects observed in a mouse model,
and in vitro exposure of dolphin cells point to the potential for
continued health effects associated with oil exposure. These
effects may result from continued exposure and/or the poten-
tial for multigenerational consequences. Our results support a
central role for Treg‐cell dysfunction as a key mechanism un-
derlying those effects. Long‐term consequences of oil ex-
posure on the highly sensitive immune system, with the
potential for multigenerational effects, might have significant
consequences on the potential for population recovery and
raise concerns for other mammalian species.
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